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Abstract

Using a machine-learning algorithm that can predict visually salient portions of images,
we construct decision weights based on salient parts of a stock price chart. We analyze
these weights in three experimental studies that vary in the realism of the price path images
and task complexity. We find that these decision weights are predictive of future invest-
ments. We conclude that visual salience captures attention paid to historical returns. Visual
salience goes beyond overweighting returns at the tails of the historical distribution or with
respect to their difference to a reference return as in the models of Barberis et al. (2016) and
Bordalo et al. (2013). Moreover, we find that visual salience affects investment decisions
independently from recency effects.
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1 Introduction and Motivation

Benartzi and Thaler (1995) in their seminal work on the equity premium puzzle propose that

investors form expectations about future returns of an investment by using the historical dis-

tribution of annual stock market returns. Newer models suggest applying prospect theory to

the historical return distribution (Barberis et al., 2016) or weighting historical returns by their

salience compared to a benchmark return (Bordalo et al., 2013; Cosemans and Frehen, 2017).

Both these types of models assign decision weights to individual returns from the past to form

an expectation of future returns.

These classes of decision weights have psychological foundations. We add to this literature

by relying on neuroscientifically motivated measures of attention for the decision weights. At-

tention is a scarce resource for investors during financial decision-making. Events that are likely

to be attention-getting are thought to affect what investments people make (Barber and Odean,

2007; Hillert et al., 2014; Mohrschladt and Schneider, 2018). In decision weights as in Barberis

et al. (2016) or Bordalo et al. (2013), the role of attention is accounted for by overweighting

returns at the tails of the return distribution. A variety of evidence suggests that investors pay

more attention to these extreme returns. These models are undoubtedly a portable approxima-

tion of important first-order salience effects. However, it is conceivable that the visual salience

of price charts captures attentional effects toward certain types of returns features which are

predictive of investment, beyond overweighting the tails.

A common representation of a stock’s performance is a visualization of historical prices in

a chart. We explore whether the decision weights investors assign to individual past returns are

driven by the allocated attention. We propose that initial attention towards specific returns is

determined by the visual salience of respective points on the visualized price path. An effective

way to measure visual attention is by recording visual fixations and eye movements (saccades).

2



Early studies using measures of visual fixation in economics showed that what people looked

at, and what they did not, could explain deviations of strategizing from equilibrium predictions

(Camerer et al., 1993).

More recent research has extended this insight using a neuroscientifically-inspired algorithm

(Cornia et al., 2018, Salience Affective Model (SAM)). SAM is one of the latest in a careful se-

ries of increasingly-improved algorithms which are trained to predict which points of an image

are more visually salient than others. SAM is trained on actual eye-tracking data. Since price

charts are a ubiquitous source of information for investors, we explore whether SAM can iden-

tify returns in these price chart images that are more (or less) visually salient, and assign higher

(or lower) decision weights to these returns. Investors’ valuations of historical returns can then

be modeled by using a preference function consisting of the product of the salience-derived

decision weights and a value function. We propose that visual salience enters the function by

affecting the decision weights. This approach enables us to compare the visual salience model

with the existing models of Barberis et al. (2016) and Bordalo et al. (2013).

We collect data from three experimental studies to evaluate the performance of the visual

salience model. The three studies vary with respect to the degree of realism of the depicted

price charts and the degree of control over the predictions of the different models. The purpose

of Study I is to explore if the visual salience model has predictive power for investments based

on empirical price charts that investors are exposed to in reality. We find that the model is, in

contrast to the models of Barberis et al. (2016) and Bordalo et al. (2013), able to significantly

predict invested amounts even without specifying a particular value function.

Study II is designed to isolate the impact of the effect of temporal ordering of returns on

predictability. Barberis et al. (2016) accomodate a recency effect by adding an exponential

decay function to CPT which accounts for overweighting more recent returns (see also Bordalo

et al., 2019). The Study II data suggest that there are at least two coexisting, independent effects:
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a recency effect, and a visual attention and salience effect. Depending on the context, investors

might either rely more on recent returns or on the most visually salient returns.

Study III considers the simplest possible depiction of price charts controlling for many fac-

tors which could influence investment decisions like image or task complexity. Moreover, in

this study we have control over the environment and attention of the participants. We show

that even in this simple and controlled setup, the visual salience model is able to predict future

investments.

1.1 Connections to previous research

Our research is connected to four ongoing kinds of research in finance and economics. We

summarize these briefly and elaborate on them (with detailed citations) in Section 1 of the

Online Appendix.

First, several studies explore how the framing or presentation of historical returns seem to

activate different biases and heuristics investors use, and and influence their decision making.

We also show that presentation formats influence investment through their visual salience. Sec-

ond, the large amount of information cheaply available to investors means that investors, and

even institutional investors, cannot pay attention to everything. Many studies show that height-

ened attention influence investment choices. We do the same by predicting (and also measuring)

visual attention in investment experiments. Third, behavioral models propose different ways in

which past returns are weighted and integrated to form expectations about future returns, and

drive investment. We add a new model of that type, using visual salience to weight past returns.

Fourth, visual salience has also been used to explain choices in a couple of studies about con-

sumer and strategic game choices. We use similar measures to predict investment, for the first

time.
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2 Theoretical Framework

Let X be a random variable with realizations x1, ..., xm where m ∈ M denotes either past re-

alizations k ∈ K, or future realizations s ∈ S. M can be interpreted as the state space which

describes the choice problem under risk. Since the entire state space M and possible future re-

alizations s ∈ S are unknown to the decision maker (DM), she relies on past realizations to help

evaluate what is possible in the future. Barberis et al. (1998) argue that such an extrapolation

is psychologically rooted in the “representativeness heuristic”, a concept introduced by Kahne-

man and Tversky (1972, 1973). This heuristic leads the DM to think that the limited sample of

past realizations is representative of the full distribution of possible outcomes, weighted by the

likelihood that the DM associates with each past realization. In this paper’s setting, investors

use a combination of past returns and decision weights to evaluate the appeal of investing in the

future. The investors evaluate X according to:

V (X) =
∑
k∈K

πkv(xk), (1)

where v(·) is a continuous, strictly increasing value function, and πk represent the decision

weights associated with historical realizations that occurred with objective probability pk. In

the following sections, we will explore how visual salience affects the decision weights that

the investors assign to the past realizations, and how the model compares against the decision

weights used in the canonical studies of Barberis et al. (2016) and Bordalo et al. (2013). We

also explore how the results are impacted when value functions are replaced by correlations

between returns and decision weights.1

1Consistent with most finance models, the analyses are based on returns. When confronted with price charts,
investors might base their decisions on the visually accessible absolute changes in prices, rather than on returns.
We explore this possibility further in Section 13 of the Online Appendix.
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2.1 Decision Weights

Decision weights formalize how investors feel about probabilities (Wakker, 2010). In invest-

ment decision, it is common to use a two step procedure to determine how decision weights

influence investment. First, a mathematical function that transforms objective probabilities into

decision weights is developed. This weighting function is motivated by psychological insights

or axioms (e.g. (Prelec, 1998) and has one or two parameters controllling its shape. In the sec-

ond step, these parameters are statistically calibrated to fit observed behavior. This procedure

underlies the decision weights in prospect theory (Tversky and Kahneman, 1992) or salience

theory (Bordalo et al., 2012, 2013).

The visual salience decision weights do not follow this two-step procedure. Instead, objec-

tive probabilities are directly distorted by predicted attention weights. The only restriction is

that the visual salience decision weights (attention weights × objective probabilities) have to

add up to one. No further specific parametrization is needed, although a theory is needed to

predict weights from visual attention. Recent research in neuroeconomics motivates the use of

attention weights by showing that subjects in the laboratory attach more weight to attributes that

they attend to more when making binary or multi-attribute choices, as well as choices among

risky lotteries (Krajbich et al., 2010; Krajbich and Rangel, 2011; Mormann and Frydman, 2017;

Mullett and Stewart, 2016).

To illustrate how CPT, salience theory, and the visual salience approach determine decision

weights, consider the following example. Let xt be the price for every period following a

stationary AR(1) process with xt+1 = ρxt + εt with ρ = 0.6. Three exemplary associated price

paths for 15 time periods of historical realizations are depicted in the upper panel of Figure

1. All three paths are constructed from the identical 15 returns, only the temporal ordering of

the returns differs. As a result, the visual appearance and the shapes of the price paths also

differ. Associated returns are depicted in descending order below the price charts. Empirical

6



Figure 1: CPT and Salience

The figure shows three price paths of 15 periods historical realizations constructed from the returns in the graph
below. The returns are the result of stationary process xt+1 = 0.6xt + εt. The two graphs below present decision
weights based on CPT and salience theory. The bottom three graphs are visual salience decision weights for path

1 (dots), 2 (crosses), and 3 (squares).
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Figure 2: CPT and Salience

The figure shows the first price path from Figure 1 with an overlay of the heat map returned by SAM. The darker
the overlay the more attention is allocated to that area of the price path. The returns in the order of occurrence and

the resulting visual salience weights are depicted below.

frequencies for each of the 15 returns are pk = 1/15, k ∈ {1, ...., 15} and will be treated as

objective probabilities.

Probability weighting as in CPT transforms the corresponding objective probabilities using

the following functional. The historical returns are separated into n gains and m losses relative

to a pre-specified point (e.g., the status quo), and sorted in ascending order. The objective

probability of each return k is then transformed into a decision weight by applying: 2

2We assume that π+(0) = π−(0) = 0 and π+(1) = π−(1) = 1.
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Figure 3: CPT and Salience

The figure shows the second price path from Figure 1 with an overlay of the heat map returned by SAM. The
darker the overlay the more attention is allocated to that area of the price path. The returns in the order of

occurrence and the resulting visual salience weights are depicted below.

πCPT
k =

{
w+(pk + . . .+ pn)− w+(pk+1 + . . .+ pn), for 0 ≤ k ≤ n

w−(p−m + . . .+ pk)− w−(p−m + . . .+ pk−1), for −m ≤ k ≤ −1
(2)

and w+(p) =
pδ+

(pδ+ + (1− p)δ+)
1
δ+

and w−(p) =
pδ−

(pδ− + (1− p)δ−)
1
δ−

δ(0, 1] (3)

with n gains andm losses. Based on experimental evidence, probability weighting functions are

predominantly inverse S-shaped, which means concave for small probabilities and convex for

moderate and high probabilities (Abdellaoui, 2000). The original parametrization for this func-

tional is δ+ = 0.69, δ− = 0.61 (Tversky and Kahneman, 1992), but the optimal parametrization

depends on the underlying decision problem and elicitation method used (Wu and Gonzalez,

1996). Moreover, several alternative specifications of the probability weighting functional it-
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Figure 4: CPT and Salience

The figure shows the third price path from Figure 1 with an overlay of the heat map returned by SAM. The darker
the overlay the more attention is allocated to that area of the price path. The returns in the order of occurrence and

the resulting visual salience weights are depicted below.

self are discussed in the literature (Goldstein and Einhorn, 1987; Prelec, 1998; Diecidue et al.,

2009). While the exact decision weights change depending on the parametrization or weight-

ing function, the general idea remains: extreme returns are overweighted. This can be seen

from the third graph in Figure 1. Moderate returns are underweighted while extreme returns are

overweighted. One characteristic that is important to note is that CPT decision weights do not

depend on the temporal order of returns.

In salience theory (Bordalo et al., 2012, 2013), decision weights are derived from salience

weights. Salience overweights returns that have a large magnitude of difference from specified

reference value, and underweights returns that are close to this reference value. This idea of

salience is operationalized by assigning each return a salience rank, depending on its difference
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from the reference value.

πSalk = pk × hk with the salience weight hk =
νκk∑
i ν

κipi
ν ∈ (0, 1] (4)

where κk denotes the salience rank of xk, which is measured by:

κk = σ(xk, x̄k) =
|xk − x̄k|

|xk|+ |x̄k|+ θ
where x̄k is a reference value

These decision weights formalize how investors attend to differences rather than absolute

values (Kahneman, 2003). They have the properties of ordering and diminishing sensitivity:

salience increases in the distance from the reference value, and salience decreases as the ref-

erence value gets farther from zero. Often the reference value is the aggregated stock market

return or a similar benchmark (Bordalo et al., 2013; Cosemans and Frehen, 2017). For a sin-

gle price path, such market benchmarks are not very feasible as the investor lacks information

about the market. Instead, the price path can be treated as resembling a lottery with its histor-

ical returns as potential outcomes (Barberis et al., 2016). In this setting, a possible reference

value in the spirit of Bordalo et al. (2012) can be the average of all historical returns. This

implies that returns that are dramatically different from this reference value are salient in the

minds of investors, and are thus overweighted when aggregating historical returns into future

expectations.

For the analyses, we use the parameter values suggested in Bordalo et al. (2012) of ν =

0.7, θ = 0.1.3 An illustration is in the lower graph of Figure 1. The reference value is close

to the moderate realized returns; that is why those returns receive the lowest salience weight.

The reference value makes salience theory context-dependent, and thus flexible and applicable

to many economic decisions. At the same time, eliciting the reference value is difficult, and
3The smaller the ν, the more weight is put on the extreme returns (farther from the reference value).
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there exists no standard procedure. As a result, predictions can be sensitive to the specification

of reference points which changes salience weights. Also, just like CPT weights, they do not

depend on the temporal order of returns.4

For decision weights based on visual salience, we rely on eyetracking measures of subjects’

eye movements, as well as general predictions of rapid visual attention. For prediction, we apply

a neural network model called the Salience Attentive Model (SAM) developed in computer

vision. This model uses direct measures of attention measured through eye-tracking of a large

sample of average people freely gazing at thousands of images. The measured fixations are

used to “train” an algorithm which creates a many-layered convolutional neural network, that

takes images as an input and outputs predictions of where the fixations will occur. Overfitting

is prevented by evaluating the trained model in a separate “test” set of eyetracking data.

For our application, we input images of price charts into the algorithm. SAM outputs a

greyscale image assigning higher values (close to 1) to pixels that contain features that are more

visually salient and lower values (close to 0) to pixels that contain features that are less visually

salient. We aggregate the visual salience values for all the pixels associated with each price, and

average the values across consecutive prices to obtain a decision weight for each return.

Visual salience probability weighting is defined as:

πVS
k = pk × lk,

∑
k

πk = 1, with the visual salience weight lk =
γk∑
i γipi

(5)

and γk =
SAM(Pk−1) + SAM(Pk)

2

where SAM(Pk) denotes the visual salience of price Pk as predicted by SAM.

Figures 2 - 4 illustrate the decision weights and the outcome of SAM for the three price

charts used in Figure 1. Obviously, decision weights are now dependent on the order of return
4In Section 2, Figure S1 of the Online Appendix, we vary the parameters the CPT weighting function, and the

reference value for salience, and analyze the impact on the decision weights.
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realizations. The decision weights assign higher probabilities to areas of the price paths where

SAM predicts higher attention. Thus, these decision weights do not depend on the extremity

of the return but on the attention it receives, i.e., it is not necessarily the highest return which

receives the highest weight but is dependent on the occurrence and attention allocation. While

in Figure 2 the highest return gets assigned a small weight, in Figure 3 the highest return gets

assigned a relatively high weight.

Different decision weights from the three theories are compared by calculating distance

between them and their correlation. Three metrics are used the sum of absolute distances from

empirical frequencies (
∑

k∈K |πk−pk|), the sum of absolute distances between decision weights

(
∑

k∈K |πik − π
j
k|), and the correlation between decision weights (E[(πik−π̄

i
k)(πjk−

¯
πjk)]

σ
πi
k
σ
π
j
k

).

Each metric is calculated for each path. Table 1 show the three distance metrics for the price

paths used in the Figure 1 stylized example. The absolute distances are exactly the same for

the three paths for CPT and salience theory (left table). The visual salience return weights can

be different because they based on visual features, which are likely to depend on the temporal

ordering of returns (e.g. whether high and low returns are adjacent in time and general sharp

visual contrast or unusual line orientations). The visual salience weight absolute distances are

also generally smaller in magnitude.

Correlations between Salience theory and CPT decision weights are large (r=.68) because

they both assign larger decision weights to more extreme returns. Correlations from path to

path range from slightly negative to slightly positive, enabling a good separation between visual

salience and other theories across paths. The fact that visual salience decision weights have a

wider distribution and are uncorrelated to the other two theories’ decision weights is a general

property of the price paths used in Study 1 (see Online Appendix Section 3).

To establish a proof-of-concept that visual salience decision weights can carry information

which influences investment, let us consider an example based on the data collected in Nolte and
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Table 1: Distance and correlation between decision weights from three different theories

Sum of absolute
distance from empirical frequencies

Path1 Path2 Path3
CPT 0.36 0.36 0.36
Sal 1.01 1.01 1.01
VS 0.20 0.29 0.26

Sum of absolute
distance between theories

Path1 Path2 Path3
CPT - Sal 0.78 0.78 0.78
CPT - VS 0.49 0.38 0.53
VS - Sal 1.14 0.93 1.09

Correlations between theories

Path1 Path2 Path3
CPT - Sal 0.68 0.68 0.68
CPT - VS -0.47 0.48 -0.39
VS - Sal -0.67 0.33 -0.04

The theories are Barberis et al. (2016) (CPT), Bordalo et al. (2013) (Sal), as well as the visual salience theory
(VS) applied to the three sample paths in Figure 1. (Left to right) The sum of absolute distances from empirical
frequencies ( 1

15 ); the sums of absolute distances between the different theories’ decision weights; the degree of
correlation between the different theories’ decision weights.

Schneider (2018). In this study investors are primed with four price path shapes with the same

returns but different temporal ordering, and then asked for their willingness to invest. In Figure

S5 of the Online Appendix (Section 4), we depict the two price paths with the highest and lowest

visual salience value. The two price paths are designed such that the return realizations, i.e., the

expected value is the same for both. If visual salience weights indeed have forecasting ability,

the price path which results in the highest (lowest) expected value based on salience decision

weights (left graph, right respectively) should also show the highest (lowest) invested amount.

Indeed, for the two paths the average invested amount is equal to 65.48% (left graph) and to

54.76% (right graph). This difference of more than 10 percentage points is both economically

and statistically significant (p < 0.001).

2.2 Value Functions and Correlation Measure

To set up the full model as outlined in Equation 1, we still need to define the value function.

We rely on the CPT value function which incorporates three different aspects that are psy-

chologically motivated: reference dependence, loss aversion, and diminishing sensitivity. The

functional form we use is:
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v(xs) =

{
xαs for xs ≥ 0

−λ(−xs)α for xs < 0
(6)

with λ > 1 and α < 1.

All xs are expressed as gains or losses relative to a reference point. Thus, the DM evaluates

relative returns rather than the absolute value of returns when making her decision. How refer-

ence points are formed remains an open question. For now, we encode positive returns as gains

and negative returns as losses.5

Loss aversion is the idea that people are more sensitive to losses than equally sized gains.

This is captured in the CPT value function by λ, the loss aversion parameter where λ > 1

implies that losses loom larger than gains.

Finally, the parameter α measures the diminishing marginal sensitivity that the DM has

towards large losses or large gains in the value function. As the basic parameter setup, we will

stick to the common choice of α = 0.88 and λ = 2.25.

Both the decision weights and the value functions affect the evaluation of the historical price

path. Since the visual salience measure only enters the functional through the decision weights,

we propose an additional measure based on correlations that serves as a proxy for the direct

influence of decision weights on a price path’s attractiveness independent of specifics of the

value function, like curvature or loss aversion.6 Note that we can rewrite Equation 1 as:

V (X) ∝ E(πkv(xk))

V (X) ∝ E(πk)E(v(xk)) + Cov(v(xk), πk)

5For price paths, Baucells et al. (2011) and Nolte and Schneider (2018) have proposed that the reference point
is some weighted combination of the initial, final, average, highest, and lowest price.

6When the number of decision weights is much larger than the number of possible returns, we artificially
depress any covariational/correlational structure. In Study III, we explore risky assets with only two possible
returns. In this case, to have a meaningful setup weights should collapse to the number of outcomes. This only
holds for the model of Bordalo et al. (2013), but not for the specification of CPT proposed by Barberis et al. (2016)
or for the visual salience weights. Thus, we will not use the correlational measures for the analyses in Study III.
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To capture the direct influence of different decision weights on V (X), we pay attention directly

to the covariance term. We use the correlational measure between returns and decision weights

Corr(xk, πk) as a proxy for the covariance term.7 The intuition behind this measure is as

follows: if higher (lower) returns receive a higher decision weight, the correlation between

returns and decision weights is high (low). As a consequence, this correlation should predict

attractiveness of a price path regardless of the underlying value function. In our analyses, we

investigate correlations between decision weights and returns as well as CPT value functions to

determine the performance of different decision weights. Their ranking remains identical for

either type of analysis.

3 Saliency Attentive Model (SAM)

Our hypothesis is that when investors look at a price chart, their gaze is drawn towards salient

regions. But what exactly is salient? There is a long, impressively-accumulating tradition

of computational neuroscientists using facts about actual brain processes, to emulate human

salience in the form of models that predict likely human gaze locations for a wide range of

natural images. The earliest models were Itti and Koch (2000). They used evidence about coarse

to fine encoding in layers of visual cortex to construct an analogous computational process,

inputting natural images and outputting predicted salience.

We use one such model created by the AImage Lab at the University of Modena and Reggio

Emilia called the Salience Attentive Model (SAM) (Cornia et al. (2018)). SAM is a saliency

prediction neural network model consisting of three main blocks: a feature extraction Convo-

luted Neural Network (CNN) that identifies features of input images that coincide with a high

incidence of eye fixations, a Long Short Term Memory (LSTM) attention based feature en-

coding network that refines and balances the weights assigned to different high and low level

7For linear utility without loss aversion, the two measures have similar effects on V (X).
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feature maps when making predictions for out-of-sample images, and a prior learning network

which accounts for the tendency of humans to fixate on the center region of an image.

3.1 Off-the-shelf SAM

SAM has been trained and validated on a combination of four image datasets: SALICON (Jiang

et al., 2015), MIT300 (Judd et al., 2012), MIT1003 (Judd et al., 2009), and CAT2000 (Borji and

Itti, 2015). Together, these datasets include more than 23,000 images that highlight complex

everyday scenes containing common objects in their natural context.8 Sources for these images

include Microsoft COCO, Flickr, and LabelMe. The images in these datasets consist of natural

indoor and outdoor scenes and were originally used to train machine learning algorithms for

object identification. SAM is trained and validated against the eye-tracking fixations of human

subjects on these images to predict visually salient regions in out-of-sample images, such as the

price charts we base our experiments on.

The baseline SAM trained on images of natural indoor and outdoor scenes identifies features

of the images that correlate highly with a higher number of fixations made by human observers.

The identified features could be low-level (bottom-up) such as horizontal and vertical lines, or

brighter colors, or shifts in contrast and shapes, but could also be high-level (top-down) like

faces, trees or animals etc.9 SAM identifies 512 features from the images in a training set,

and continually refines these features using an attentional LSTM to identify an optimized set of

features that are correlated with eye fixations (or lack thereof). The trained SAM then attempts

to identify these refined features in out-of-sample images in the test set to predict which pixels

8Some categories used to separate the images in these datasets include: Action, Affective, Art, Black & White,
Cartoon, Fractal, Indoor, Inverted, Jumbled, Line Drawing, Low Resolution, Noisy, Object, Outdoor Man-made,
Outdoor Natural, Pattern, Random, Satellite, Sketch, and Social. The only images in the training set that bear a
resemblance to price paths are a very small subset of the Sketch category. Two examples are provided in Online
Appendix Section 5.

9It should be noted that some features identified by the CNN in SAM are a matrix of numbers that do not have
any obvious interpretation in the English language, which makes the underlying algorithm somewhat “black-box”
in nature.
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within an image are more likely to be looked at, and which pixels are likely to be ignored.

SAM makes predictions about portions of an image that will be fixated on within the first few

seconds of interaction. We hypothesize that these initial seconds are enough for agents to form

a heuristic about potential future returns when shown images of historical price charts. This is

very similar to the ideas outlined in Barberis et al. (2016).

The SAM output after processing an input of a price chart is a corresponding greyscale

image of the same resolution as the input image, with brighter patches (values closer to one)

showing visually salient pixels, and darker patches (values closer to zero) showing visually

non-salient pixels. We then identify the pixels within each input price chart, and add up the

visual salience numbers of the corresponding pixels in the output image. These visual salience

numbers are then normalized into decision weights so that they add up to one (see Section 2.1).

3.2 SAM and Price Paths

SAM is trained on images that span a variety of domains, because the algorithm is intended

to capture general features of what is visually salient during perception of a huge variety of

images people see every day. Our approach tests the rather bold hypothesis that decision weights

derived from general visual salience might also be predictive in a specialized domain such as

financial price paths (even though no stimuli resembling price paths are in the SAM training

and test sets). However, because the SAM algorithm is not specially trained to predict how

investors look at price paths and invest, how well it predicts is a lower bound on how well more

precisely-tuned algorithms might work.

To get more evidence about whether SAM is useful for perceptions of price paths specifi-

cally (independent of top-down investment goals), we collected eyetracking data showing hu-

man subject fixations for a sample of price path images. We recorded N=57 Caltech student

participants’ eye-movements and fixations while they looked at price paths on a computer mon-
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itor. This is an important step. Success is far from certain. If the participants’ fixations do

not match up with SAM predictions, there is little hope that off-the-shelf SAM can predict

investment choices.

Following the original training procedure for MIT300 images (Judd et al., 2012), partic-

ipants were provided with the following instructions, “You will see a series of 60 price path

images. Look closely at each price path image. After every three seconds, a new price path

image will automatically appear. After viewing the price path images you will have a memory

test: you will be asked to identify whether or not you have seen particular images before.” This

task is called ”free gaze” because the subjects are not asked to make any choices which depend

on what they see. The memory test afterward is simply a device to guarantee that they are

attending.

Images were only shown for three seconds each to capture the parts to which initial attention

is allocated. Participants were presented with a total of 60 price path images. Thirty of of these

paths were selected to match those in Study III to allow for a more thorough analysis of price

path images with obvious up-down and down-up trends. The other 30 paths were drawn from

actual empirical price paths with distinct visual properties like the ones in Study I.

The participants were tested individually using an EyeLink 1000 Plus (SR Research, Os-

goode, ON, Canada) eye-tracker. Monocular eye movements were recorded at 500Hz and fixa-

tions were identified by the eye tracker using velocity algorithms. The experiment was displayed

on a widescreen Dell monitor (1280 x 1024 resolution). Participants were seated approximately

28 inches away from the monitor to allow for accurate eyetracking and comfortable gameplay.

All subjects underwent a 13 point calibration and validation cycle of the eyetracker before pro-

ceeding with the experiment trials. Stimulus presentation was controlled by MATLAB using

Psychtoolbox extensions (Brainard, 1997; Pelli, 1997).

We obtain a continuous fixation map for each price path image from the eye tracking data by
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convolving a Gaussian filter across fixation locations of all observers. A Gaussian filter is used

to spread out each fixation to the pixels that are within 1 degree of visual angle (or approximately

35 pixels) to match with the area that an observer sees at high focus around the point of fixation.

Figure 5 gives two examples of the groundtruth density maps from our experiment on the left,

and the SAM-predicted heatmaps overlaid with the price path participants looked at on the

right. By visual inspection, the figures confirm that predictions and fixations look very similar.

Moreover, we use these groundtruth density maps along with the binary fixation data as inputs

for different metrics to evaluate quantitatively how well SAM predicts salient points within

price paths.

For an overview of suitable metrics, we refer to Le Meur and Baccino (2013) and Bylinskii et

al. (2018). We use three different metrics. The first metric belongs to the group of metrics based

on receiver operating characteristics (ROC). In signal detection theory, the ROC measures the

trade-off between true and false positives at various discrimination thresholds. The area under

the ROC curve (AUC) gives us the degree of similarity of two salience maps. A value of one

indicate a perfect classification while a value of 0.5 indicates classification as by any random

picture. The simplest measure we include is the pearson correlation coefficient (CC). Lastly, as

a measure of dissimilarity we take KL-divergence which is a measure from information theory

capturing the overall dissimilarity between two probability distributions. Table 2 presents the

results. We compute metrics based on the participants’ fixations maps for price path images and

the salience maps predicted by SAM. As a benchmark, we compare this to SAM’s performance

on the set of domain-neutral images on which it was originally trained and validated. Finally, we

compare participants’ salience maps with heatmaps where (for each price path image) fixations

were randomly assigned. While there is some drop-off in SAM’s performance when applied to

the domain of price path images, it is not significant. Also, SAM performs significantly better

than random assignment of fixations when making predictions. Thus we conclude that SAM,
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although not trained on price path images, captures well what people perceive as salient within

a price path.

Figure 5: Heatmaps

(a) Eye-Tracking Heatmap (b) SAM prediction

(c) Eye-Tracking Heatmap (d) SAM prediction

The figure shows two examples of the groundtruth density maps from our experiment on the left, and the
SAM-predicted heatmaps where we also show the underlying price paths participants looked at on the right.

3.3 SAM and Statistical Features of Price Paths

The previous section shows that the off-the-shelf SAM has the ability to predict salient features

of price paths. This justifies our ultimate goal of using the attention paid to salient features

as predicted by SAM to model meaningful decision weights. However, using SAM would be

redundant if the attention weights generated by SAM can be substituted by statistical features of

price paths. Although we believe that SAM captures intuitive and emotionally evoked attention

to salient parts of a price path while statistical features are related to active and more cognitive
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Table 2: Evaluation metrics

AUC-J. CC KL
SAM (domain-neutral) 0.87 0.78 1.27
SAM vs fixations (price paths) 0.81 0.52 1.58
Random vs fixations (price paths) 0.50 0.07 12.57
Range (worst-best) 0-1 0-1 ∞-0

The table reports three evaluation metrics. We compare SAM’s performance on the domain-neutral images it was
trained on against SAM’s performance against human eye-fixations for price path images. We also use random
assignment of fixations as a comparison to see how well SAM is performing for price path images. We include one
metric using receiver operating characteristics analysis and calculating the area under the curve: AUC-J. (Judd et
al., 2009). We also include the Pearson Correlation Coefficient (CC), and Kullback-Leibler divergence (KL).

calculations, we cannot rule out that visual salience merely acts as a substitute for statistical

moments of the price paths. To eliminate this alternative explanation, we explore the relation

of visual salience weights and statistical features of price paths. We analyze pairwise correla-

tions between several measures and SAM weights in a first step, and regress SAM weights on

common features of the statistical measures identified by principal component analysis (PCA).

To find a meaningful set of statistical features to start with, we draw on the asset pricing litera-

ture (e.g., George and Hwang, 2004; Mizrach and Weerts, 2009; Bali et al., 2011; Chen et al.,

2001; Chabi-Yo et al., 2018; Raghubir and Das, 2010; McLean, 2010; Stambaugh et al., 2015;

Jegadeesh and Titman, 1993; Conrad et al., 2014) . A detailed description of the methodology

and the chosen measures can be found in Section 6 of our Online Appendix.

The main takeaway from performing these analyses is that a maximum of 20% of the vari-

ance in SAM decision weights can be explained by these statistical features. We conclude that

while there are some features of the return distribution that are correlated with visual salience,

SAM’s algorithm captures properties of the price path that cannot be reproduced by merely

combining additional statistical features.
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4 Experiments

We collect experimental data to evaluate the performance of the visual salience model. Two

studies (Study I and II) are settled on an experiment run on Amazon Mechanical Turk (MTurk).

The third study (Study III) is based on a lab experiment conducted at a German university. The

studies vary with respect to the degree of realism of the depicted price charts and the degree of

control over the predictions of the different models.Study I explore whether the visual salience

model can predict experimental investments based on price charts (from CRSP return) like those

investors often see. Study II uses the same price series, but artificially rearranges the temporal

order of the returns within a price series. Rearrangement changes the predictions of VS but

not the other two theories (excluding recency effects). Study III considers the simplest possible

depiction of price charts controlling for many which could influence investment decisions like

image and task complexity. Subjects are also told the data generating process behind the price

paths such that an optimal choice can be computed. Moreover, in this study we have perfect

control over the environment and attention of the participants. In all three studies, the start

price is fixed at 100 monetary units to keep the scaling of the y-axis constant and to limit

psychological framing effects (e.g., Glaser et al., 2007; Huber and Huber, 2018).

4.1 MTurk Experiment

For Study I and II, we recruited 500 participants from MTurk which is an online platform that

allows researchers to post small tasks that require a human to perform. Potential participants

can browse through the lists of small tasks and can self-select into the tasks of their interest. The

large available population on MTurk ensures heterogeneity in participant characteristics and a

speedy data collection for an acceptable amount of money. Our task offers the participants a

fixed and a variable completion fee, the latter depending on their choices within the experiment.

The fixed fee was set to 2 US-$ and the variable part was on average 0.94 US-$. Participants
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took a mean of 12 minutes to complete the experiment, while 95% of all completion times were

in the interval between 5 and 30 minutes. After completing the experiment, each participant

received an individual, alpha-numerical code to verify their participation. The participant typed

in the code on the MTurk Webpage and after having verified their participation, we authorized

the payment.

The experiment consists of three parts: an introduction with a small tutorial to ensure that

participants understand the general task, the task itself and a final questionnaire.

We show each participant ten different pre-selected price charts. Eight price charts stem

from a set based on stocks from the Center for Research in Security Prices (CRSP) in 2017

presenting the input data for Study I. Two charts are based on constructed price charts simulated

via a Geometric Brownian Motion (GBM), presenting the input data for Study II. For each

price chart, participants decide how attractive the price chart is, what return they expect over

the next 12 months, how risky they deem an investment into this stock, and finally and most

importantly, how much they want to invest over the next year from their initial endowment of

1000 monetary units into this stock vs a safe bank account.10 We emphasize that the chart can

give the participant an idea about the risk and return of investing over the next year but that the

return over the next year can also be much higher or lower. Participants make their investment

decisions by using a slider which allows them to invest every amount between zero and 100%

of their initial endowment. To avoid anchoring effects, there is no pre-selected slider position

at the beginning of each period. Instead, participants need to click at any position of the slider

to activate it; afterwards, they can move the slider position freely to decide on their investment.

The variable payment is based on the investment task, i.e., we incentivize this task separately.11

The participant learns that the computer will randomly select one of his 10 investment decisions
10For a detailed description of the questions and an example of the interface, we refer to Section 7 of the Online

Appendix.
11This is one of the provisions we include to account for the recent MTurk data quality debate (Kennedy et al.,

2018).
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after having completed the final questionnaire. The participants final wealth is the value of the

selected stock investment after one year plus the money in the bank account. The return of the

selected stock investment after one year is based on this stock’s actual return in the subsequent

year, i.e., CRSP data for 2018 for Study I and simulated data for Study II. The participant

received 0.001 US-$ for every monetary unit of his final wealth of the selected decision in the

investment task.

For Study I, we preselect 1000 price charts based on all 8,453 companies inferred from

CRSP for 2017-2018. We first remove double entries, firms with incomplete price data, firms

with negative prices, penny stocks (i.e., prices below 5 US-$), and lastly incomplete stock/year

combinations. In total, that leaves us with 4,246 stocks. We then form ten times ten portfolios

based on two criteria. The first criteria is the stock’s return within 2017. The second criteria is

the degree of convexity and concavity of the price path. Paths that are classified as highly convex

(concave) by our applied score tend to exhibit specific visual features, most prominently troughs

(peaks) followed by rather long winning (losing) streaks. Previous experiments indicate that

historical price paths with similar characteristics attract the attention of investors (Grosshans

and Zeisberger, 2018; Nolte and Schneider, 2018). For a detailed description of the applied

score, we refer to Online Appendix Section 8. First each stock is allocated to one decile based

on its return in 2017. Second, within each decile, every stock is assigned to a convexity score

decile. We then randomly pick 10 stocks from each bucket. We ensure that each participant

chooses on eight different stock charts where the order is randomized. In total, every price chart

is evaluated four times ensuring that each participant evaluates each chart no more than once.

For Study II, we select 300 constructed price charts. We start constructing our price paths

by simulating 252 daily returns based on a GBM. We implement 3 different parameter constel-

lations for the GBM where the base case implies a mean of 6% and a volatility of 20%, then

we decrease the mean in one specification to -6%, and fix realized skewness of the drawn path
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to zero in the third specification.12 More precisely, we draw one possible path realization for

each parameter constellation from the underlying lognormal distribution. The drawn path is the

base for constructing 100 different price paths shapes: We split the price path into twelve sub-

periods of equal length mirroring twelve months and rearrange the subperiods randomly. Thus,

all shapes of price paths are identical with respect to daily returns and returns of the twelve sub-

periods. Moreover, they are also identical for any sub-periods that are multiples of twelve. This

implies that individuals having CPT-preferences as described in the basic model of Barberis et

al. (2016), or Salient-preferences as in Bordalo et al. (2013) or Cosemans and Frehen (2017)

would assign the same value to every price path.

Besides demographic questions, we include questions on risk taking, and general traits of

decision making. Moreover, we control for attention and understanding by including a set of

quiz questions in the aftermath of the experiment. For details on the questionnaire, we refer to

the Online Appendix Section 7.

As Online Appendix Section 12 shows, the recruited MTurk sample matches the US popu-

lation exhibiting a somewhat overrepresentation of high-education groups and younger individ-

uals. This is consistent with previous literature documenting that MTurkers are actually quite

representative of the population of U.S. internet users (Ross et al., 2010; DellaVigna and Pope,

2017).

4.1.1 Results: Study I

Study I addresses how the visual salience model performs compared to the CPT-framework and

the salience-framework in predicting invested amounts of our participants relying on empirical

price charts. Table 3 presents the regression results of valuations on invested amounts for all

12In the experiment, we include two additional parameter specifications with an extreme high volatility and an
extreme low volatility. To leave one parameter fixed and increase the homogeneity in the price paths, we exclude
these in this analysis.
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Table 3: Regressions for IA, Study I: Correlation Measure

(1) (2) (3) (4) (5)
IA [%] IA [%] IA [%] IA [%] IA[%]

Corr(Return, VS weights) 0.670*** 0.635*** 0.706***
(0.235) (0.237) (0.249)

Corr(Return, CPT weights) 0.289 0.984** 1.147**
(0.242) (0.434) (0.534)

Corr(Return, Salience weights) -0.0271 -0.249** -0.310**
(0.0689) (0.121) (0.146)

Return 0.297*** 0.294*** 0.295*** 0.291*** 0.367***
(0.0206) (0.0203) (0.0204) (0.0206) (0.0160)

Stdv -0.130*** -0.137*** -0.131*** -0.140*** -0.184***
(0.0152) (0.0158) (0.0152) (0.0164) (0.0159)

Skewness 0.00859 -0.0183 0.0159 -0.0303 -0.0340
(0.0112) (0.0257) (0.0193) (0.0266) (0.0349)

Constant 0.00617*** -0.0144 -0.00142 -0.0562** -0.117**
(0.00216) (0.0121) (0.00362) (0.0275) (0.0488)

Observations 4000 4000 4000 4000 4000
R2 0.162 0.160 0.160 0.163
* p < 0.1, ** p <0.05, *** p<0.01

The table reports invested amounts on the correlation between current return, visual salience decision weight, CPT
decision weight, and the salience decision weight. Control variables are the return of the price path (Return), its
standard deviation (Stdv), and its skewness (Skewness). In Model (5) we use a Tobit regression to account for
accumulation of participants who did not invest in that stock. We use fixed effects to control for individual specific
effects. All variables are standardized for easy comparison of coefficient sizes and to enhance readability of the
table. Robust standard errors clustered on participant level are reported in parentheses.
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1000 CRSP-based price charts included in the MTurk study. We approximate the value for

all three models by the correlation of the historical return and the different decision weights

as outlined in Section 2. This isolates the effect of different value functions for the different

models from the implications of the decision weights. Model (1) of Table 3 only includes the

correlation measure for the visual salience decision weight. As controls we include in each

regression the return, standard deviation and skewness of the different price charts to account

for heterogeneity in stock characteristics. The results confirm that there is a significant and

positive relation between our measure and the invested amount. For CPT weights, this relation

is insignificant and positive (Model (2)) while for salience weights the relation is insignificant

and negative (Model (3)). Model (4) presents the results of a regression where we include all

three measures. Note that the correlation between CPT weights and salience weights is above

90%, thus we face multicollinearity. Despite this, the coefficient of the visual salience measure

remains positive and significant. Model (5) is a Tobit regression to account for some clustering

of invested amounts at 0 which has almost no impact on the visual salience coefficient. In

our MTurk sample, we see that in 13% of all decisions, nothing was invested and 0.2% of

the participants never invested. In our Online Appendix Section 11, we run further regression

analyses to account for MTurk specific issues. One regression excludes participants who fail

attention and comprehension filters, and another regression uses the attractiveness question as

a control to check the consistency of the answers. The results stay qualitatively the same. It

is also noteworthy that in line with economic intuition, the return has a positive and significant

coefficient while the standard deviation has a negative and significant coefficient for all models.

As additional analyses, we present in Table 4 the same five regressions as in Table 3 but for

a CPT value function. Table 4 shows that with a CPT value function, the visual salience model

is the only model which positively and significantly predicts invested amounts. For CPT and

salience decision weights, all coefficients remain insignificant changing between positive and
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Table 4: Regressions for IA, Study I: CPT Value Function

(1) (2) (3) (4) (5)
IA [%] IA [%] IA [%] IA [%] IA [%]

Visual Salience 0.0955*** 0.106** 0.109**
(0.0357) (0.0415) (0.0474)

CPT 0.0184 -0.0489 -0.0588
(0.0590) (0.0809) (0.0955)

Salience -0.0117 0.00768 0.00821
(0.0242) (0.0285) (0.0346)

Return 0.252*** 0.289*** 0.297*** 0.264*** 0.342***
(0.0255) (0.0296) (0.0206) (0.0315) (0.0327)

Stdv -0.0453 -0.115** -0.136*** -0.0776 -0.126*
(0.0364) (0.0567) (0.0180) (0.0599) (0.0723)

Skewness 0.0139 0.00406 0.0187 0.0235 0.0241
(0.0111) (0.0211) (0.0209) (0.0247) (0.0280)

Constant -4.60e-09*** -4.68e-09*** -4.66e-09*** -4.55e-09*** -0.0501
(2.31e-11) (5.55e-11) (1.96e-11) (9.01e-11) (0.0356)

Observations 4000 4000 4000 4000 4000
R2 0.162 0.160 0.160 0.162
* p < 0.1, ** p <0.05, *** p<0.01

The table reports invested amounts on the Visual Salience model, the CPT model (Barberis et al., 2016) and the
Salience model (Bordalo et al., 2012) where we assume gain-loss utility with curvature α = 0.88, a reference point
ρ of zero, and a loss aversion coefficient of λ = 2.25. Control variables are the return of the price path (Return),
its standard deviation (Stdv), and its skewness (Skewness). In Model (5) we use a Tobit regression to account for
accumulation of participants who did not invest in that stock. We use fixed effects to control for individual specific
effects. All variables are standardized for easy comparison of coefficient sizes and to enhance readability of the
table. Robust standard errors clustered on participant level are reported in parentheses.

29



negative sign across regressions.

To sum up, regardless of the specification of the value function, the VS model predicts in-

vested amounts significantly and positively. This is tentative experimental evidence that when

investors look at price charts, their gaze is drawn towards salient regions which impact invest-

ment. Visual attention should therefore be studied further as an aspect of models of invetment

decision making when expectations are formed taking the past realizations as a proxy.

4.1.2 Results: Study II

In Study II, we aim at disentangling the effect of visual salience from pure temporal ordering

like a recency effect, i.e., recent historical returns are more likely to be representative of returns

in the immediate future than returns from a long time ago (e.g., Bordalo et al., 2019). Recency

effects capture a fundamental psychological factor that approximates the speed of memory de-

cay, and has some empirical support in extrapolation based models (e.g., Cassella and Gulen,

2018). While CPT-values and salience-values to not vary across price paths in Study II, if

those weights are not temporally influence, Barberis et al. (2016) suggest a modification of the

original CPT to accomodate recency effects. They introduce a recency parameter ρ which un-

derweights (geometrically) returns that are further in the past. This kind of recency effect was

first established by Ebbinghaus (1880) in learning word lists, and is seen everywhere in psy-

chological and neuroscientific models of learning (Jones and Sieck, 2003; Baddeley and Hitch,

1993).

More specifically, tk is the number of months ago that return rk was realized, the multi-

plicative term in front of the value function is ρtk normalized by the weighted sum of all ρ.

In the robustness test of Barberis et al. (2016), ρ equals 0.9, 0.85, 0.8. Barberis et al. (2016)

also argue that investor’s quick, passive reaction to a chart is likely to be based on the chart

as an integral whole, with the early part of the chart affecting the investor just as much as the
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Table 5: Regressions for IA, Study II: Recency Effect

(1) (2) (3) (4) (5)
IA[%] IA [%] IA [%] IA [%] IA [%]

Visual Salience 0.205* 0.217**
(0.107) (0.107)

CPT (0.95) 0.00417
(0.0418)

CPT (0.85) 0.0362
(0.0393)

CPT (0.50) 0.0961* 0.104*
(0.0583) (0.0585)

6, 20 0.0139 0.0556 0.0496 0.0706 0.0252
(0.113) (0.116) (0.111) (0.105) (0.109)

6, 20, skew 0.0985 0.130 0.113 0.128 0.0909
(0.103) (0.116) (0.112) (0.0997) (0.102)

Constant -0.0710 -0.0627 -0.0521 -0.0473 -0.0530
(0.0618) (0.0713) (0.0701) (0.0665) (0.0648)

Observations 600 600 600 600 600
R2 0.030 0.011 0.015 0.024 0.045
Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01

The table reports invested amounts on the Visual Salience Model with CPT value function (Model(1)) and a CPT
model with recency parameter ρ = 0.95, 0.85, 0.50, Models (2)-(4). In Model (5) we run the regression with the
Visual Salience value and the CPT value (ρ = 0.5) as explanatory variables. We also include controls for the
parameter constellation of the constructed price charts, with µ = −6% and σ = 20% as reference category.
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later part. The visual salience decision weights basically capture the weight investors assign

to returns which are visually salient, while ρ captures a recency effect in the weighting of the

returns. To see whether a modified CPT-value has predictive power for our constructed price

charts, we run additional regressions. Table 5 presents the results where in Models (2)-(4) we

include ρ = 0.95, 0.85, 0.5. Model (1) includes the visual salience weights with a CPT-value

function. Interestingly, only for a very strong recency effect does the CPT-value become signifi-

cant. Including both CPT- and the visual salience-value, shows that neither model is redundant.

To determine the exact parameter value ρ for which the CPT value becomes significant, we

run regressions varying ρ from 0.95 to 0.05. Figure 6 depicts the results by illustrating the

coefficient and confidence intervals for regressions of CPT with varying recency parameter on

invested amounts. For very low parameter values, the coefficient becomes insignificant again.

Moreover, the visual salience model remains significant also when including the CPT model

with recency weighting. This gives rise to the question whether in fact investors exhibit a re-

cency and a visual attention/salience bias. Empirical research has shown that the 52-week high

has predictive power for subsequent returns (George and Hwang, 2004). Translated to the vi-

sual salience model, this could mirror a salience weighted event, while the general tendency to

overweight most recent events is an independent effect. A further investigation of this relation is

left for future research. But our results clearly demonstrate that to fully understand investment

choices, a combination of different approaches could be fruitful.

4.2 Laboratory Study
4.2.1 Experimental Setup

In Study III, we run a laboratory experiment to analyze how well the visual salience model

fares in a controlled environment with highly simplified investment options. The goals of this

study are threefold: First, we reduce task complexity to a minimum by making the available
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Figure 6: CPT with Recency weighting

The figure shows the coefficient and confidence intervals for regressions of CPT with varying recency parameter
on invested amounts.

asset a binary lottery which yields a positive or negative return with known outcomes and prob-

abilities. This implies that participants face no uncertainty regarding the underlying processes

that determine future asset prices and returns. Moreover, the investment task and information

provided are comparably easy to process. Consequently, any biases or distortions of the invest-

ment decision caused by the complexity of the task are also minimized. Second, we make the

visualization process easy to understand. Participants receive graphical information about the

lottery outcomes in form of a price chart. The price chart is a depiction of previous periods’

realizations of the binary lottery, and participants see how the price path updates after each real-

ization. This makes the fact that a price path is merely a visualization of lottery outcomes (asset

returns) apparent to participants. Given that the participants attended advanced statistic classes

during their studies, they should be able to fully understand the mechanisms behind how a price

path develops over time. Third, we run the experiment with a homogeneous student sample in

a controlled setting. Compared to Studies I and II, this adds the necessary control regarding

available information, distractions, focus on the task and all other benefits that a lab environ-
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ment provides. The experiment for Study III is fully computer-based and consists of three parts:

comprehensive instructions, the main experimental task, and a concluding questionnaire. The

course of the experiment is visualized in Section 9 of the Online Appendix.

In the main part of the experiment, participants have to repeatedly decide how much of their

endowment to invest in a risky asset. The part of the endowment that is not invested earns

no return. As described above, the risky asset is resembled by a binary lottery that has one

positive and one negative outcome.13 Expected return, standard deviation, and skewness of

outcomes is constant for a given asset, but varies between assets to reduce repetitiveness. Each

participant sees a total number of 18 different assets in randomized order. For 15 of the 18 assets

the participants first observe 15 periods in which a price path develops based on the outcomes

of the lottery.14 In these first 15 periods, they cannot make any investment decisions. Over the

subsequent 15 periods (periods 16-30), they make their investment decisions. Immediately after

they confirmed their decision, the outcome of this period is realized and the price path continues

to develop. All return realizations in the individual periods are independent from one another,

and all return properties are clearly communicated to participants.

The price charts for the first 15 periods are preconstructed for 2/3 of the 15 assets. In

these preconstructed scenarios, distributions of period returns are identical but only differ with

respect to the order in which returns occur. In preconstructed convex (concave) price charts,

negative (positive) returns occur earlier than positive (negative) returns. We included these

preconstructed charts to analyze how the price path shape affects the viability of the visual

salience measure.15 Random (non-preconstructed) charts are random realizations of the binary

13For a detailed specification of the set of binary lotteries, we refer to the Instructions of the experiment in
Section 10 of the Online Appendix.

14For the three remaining assets, no price path was shown. The analyses for this situation can be obtained from
the authors upon request, but does not impact our results but serves as a benchmark w.r.t. the replication of previous
results of Nolte and Schneider (2018).

15There were no qualitative differences in performance between scenarios, so we do not pursue this analysis
further in this paper. Additional data is available from the authors upon request.
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lottery for the first 15 periods, which can result in equal, higher, or lower overall return than in

the convex and concave scenarios. For periods 16-30, period returns for all scenarios are truly

random outcomes determined by the given parameters of the asset.

Participants use a slider to communicate their investment decisions. To avoid anchoring

effects, there is no pre-selected slider position at the beginning of each period. Instead, par-

ticipants need to click at any position of the slider to activate it; afterwards, they can move

the slider position freely to decide on their investment. The current endowment and possible

changes in wealth resulting from the chosen investment are depicted on screen to facilitate ac-

cessibility of the decision. After the final decision is made and confirmed, a pop-up window

informs participants about the realized return and the wealth consequences.

Similar to the design in Study I and II, participants are paid according to one of the 18 deci-

sion rounds. This round is determined randomly after the experiment. For this, each participant

draws a numbered ping-pong ball out of a concealed urn with 18 balls. This aims at ensuring

trust among participants about how their remuneration is determined. Participants then receive

a variable payment of 0.001e for each monetary unit of their final wealth in this round, plus a

fixed payment of 8.00e. The experiment concludes with a questionnaire on demographics and

self-perceived behavior, the Cognitive Reflection Test (Frederick, 2005), a financial literacy test

(Lusardi and Mitchell, 2011), and a risk aversion elicitation task (Holt and Laury, 2002).

We recruited 275 undergraduate and graduate business students at an university in Germany.

The experiment was conducted under controlled conditions in the computer labs of the univer-

sity in 18 separate sessions. On average, it took participants 61 minutes to complete the entire

experiment (including instructions and questionnaire), and average remuneration was 16.60e

(about 18.68 USD-$ at the time of the experiment). For comparison, a student research assistant

earned 10.00e per hour at that time.
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4.2.2 Results: Study III

To analyze our data, we use all 15 investment decisions of each decision round as our dependent

variable. This allows us to incorporate the effect of an unfolding price path in our analyses.

Since our asset only has binary outcomes, analyzing the correlation between weights and returns

as for the previous studies is not a viable option. Instead, we focus on the CPT value function

for visual salience, salience, and CPT weights.

We include expected return, standard deviation, skewness, and actual realizations as control

variables. The first three are defined by the characteristics of the risky asset and determine the

(normative) attractiveness of the asset. Since we only vary these parameters marginally between

decision rounds to prevent repetitiveness, we do not expect to see large effects on any of these

measures. Actual realizations are the result of a random process and determine the shape of the

respective price path in each round and period. They are operationalized as the average realized

returns per period.16 While expected return, standard deviation, and skewness exclusively ac-

count for participants’ beliefs, realized returns might influence beliefs and preferences, or both.

Participants might believe in autocorrelation (positive realized returns indicate higher future re-

turns) or mean-reversion (positive realized returns indicate lower future returns), ignoring the

actual probabilities and outcomes provided. Participants might also act more risk averse (seek-

ing) after positive (negative) realized returns if that pushes the asset in the gain (loss) domain.

So while there is no straight-forward expectation we have for the coefficient of this variable, it is

important to control for these effects as they would otherwise be captured in the visual salience,

salience, or CPT score.

Table 6 reports regression results for each of the three measures individually (Model (1)-

(3)) and jointly (Model (4)). We see the same pattern we have observed in Studies I and II

16Note that this is synonymous with including the total realized return, realized standard deviation, or total
number of periods with a price in-/decrease, since probabilities and outcomes of the binary lottery are constant
within each round.
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with respect to the visual salience measure. Its coefficient is highly significant and has positive

explanatory power for investments. In contrast to the first two studies, we see a similar effect

both in strength and significance for CPT, while salience remains insignificant.

One drawback of the simplified setup we test in Study III is that we cannot analyze cor-

relations, and therefore our results may be dependent on the exact specification of the value

function. We account for this unavoidable deficit with two additional analyses: first, we include

the value of a CPT value function with equal decision weights for each realized return as a

control variable. That way, we create a baseline effect that can be attributed to the particular

specification of the value function itself. Any explanatory power that the three models retain

in this setup has to stem from the decision weights. The effect of including this control vari-

able is depicted in Model (5) of Table 6. The visual salience score retains its significance, and

the coefficient remains almost unchanged. CPT on the other hand loses significance as well as

strength of relation, indicating that this measure is much more dependent on the exact specifi-

cation of the value function than visual salience. In Model (6), we also run a Tobit regression

to accommodate for accumulation of participants who did not invest in that stock. The results

remain qualitatively the same.

For our second analysis to investigate the impact of value function specification, we tested

a large number of α-λ combinations. Namely, we varied α between 0.7 and 1 in increments

of 0.01, and λ between 0.8 and 3 in increments of 0.05. We then ran Model (4) of Table 6

for each possible alpha-lambda combination within this range. In total, this procedure resulted

in 1,350 regression analyses. Figure 7 reports histograms of resulting coefficients for each of

the measures on the left hand side, and histograms of p-values on the right hand side. Results

confirm that the effect of visual salience is relatively independent of the chosen value function,

while the effect of CPT varies strongly with the parameters of the value function. For salience,

the choice of value function also doesn’t affect results, although coefficients remain small and
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Table 6: Regressions for IA, Study III: CPT Value Function

(1) (2) (3) (4) (5) (6)
IA [%] IA [%] IA [%] IA [%] IA [%] IA [%]

Visual Salience 0.0358*** 0.0257*** 0.0287*** 0.0469***
(0.00814) (0.00867) (0.00838) (0.0119)

CPT 0.0386*** 0.0245* 0.0183 0.0163
(0.0128) (0.0140) (0.0153) (0.0140)

Salience 0.00804 0.00737 0.00524 0.00719
(0.00766) (0.00763) (0.00801) (0.00794)

Expected return 0.0834 0.0685 0.0778 0.0730 0.0775 0.113*
(0.0794) (0.0790) (0.0796) (0.0793) (0.0798) (0.0601)

Expected Stdv. -0.00913 0.000798 -0.0242* 0.00271 -0.0261 -0.0409
(0.0133) (0.0154) (0.0129) (0.0153) (0.0394) (0.0270)

Expected skewness -0.251*** -0.287*** -0.256*** -0.287*** -0.275*** -0.438***
(0.0410) (0.0428) (0.0443) (0.0457) (0.0495) (0.0338)

Average realized return -0.339*** -0.346*** -0.234*** -0.363*** -0.224 -0.355***
(0.0427) (0.0520) (0.0389) (0.0547) (0.167) (0.120)

CPT equal weights -0.0488 -0.0665*
(0.0589) (0.0403)

Constant 0.115** 0.0940* 0.160*** 0.0871 0.172 0.469***
(0.0478) (0.0532) (0.0468) (0.0530) (0.119) (0.114)

Observations 61875 61875 61875 61875 61875 61875
N 275 275 275 275 275 275
R2 0.024 0.024 0.024 0.024 0.024
* p < 0.1, ** p <0.05, *** p<0.01

The table reports regressions of invested amounts on the Visual Salience model, the CPT model (Barberis et al.,
2016) and the Salience model (Bordalo et al., 2012) respectively. Control variables are expected return of the
binary lottery, its standard deviation, its skewness, and the average realized return. In Model (5) we also include
a CPT value function with equal (1/n) decision weights to control for the effect of value function specification. In
Model (6) we use a Tobit regression to account for accumulation of participants who did not invest in that stock.
We use fixed effects to control for individual characteristics of participants. All variables are standardized for
easy comparison of coefficient sizes and to enhance readability of the table. Robust standard errors clustered on
participant level are reported in parentheses.
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insignificant.17 Although there are some parameter constellations where CPT outperforms vi-

sual salience in terms of effect strength, we can conclude from Study III that attention driven by

visual salience has high explanatory power for investor decision making, even in the simplest

of choices and in a highly controlled environment.18

Figure 7: Parameter sensitivity analysis

The histogram on the left (right) shows the three models’ distribution of coefficients (p-values) for all analyzed
curvature (α) and loss aversion (λ) combinations. α is varied in increments of 0.01 between 0.7 and 1, λ in

increments of 0.05 between 0.8 and 3. In total, the graphs include coefficients and p-values from 1,395
regressions.

5 Conclusion

Human perception is highly adapted to notice certain kinds of visual features. Those attention-

grabbing features are called “salient”. Attention toward salient features is reliably predicted

by their properties, which are often context-dependent (such as contrast, novelty, familiarity,

Bayesian surprise...). We use a particular algorithm to predict visual salience of prices in a

sequential price path. In the visual salience model, investors assign decision weights to past

returns based on how visually salient the respective area of the corresponding price path is.

17Interestingly, we find strongest results for CPT when λ is between 1.2 and 2. This is consistent with results
from recent meta studies on loss aversion (Walasek et al., 2018).

18In Section 12 of the Online Appendix, we also show the parameter sensitivity analysis for the cumulative
distribution function of coefficients and p-values.
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Put differently, investors tend to pay more attention to and consequently overweigh returns that

“stick out” in some way. Li and Yu (2012) show that investors indeed pay more attention to re-

turns that are near natural anchors, for example the height of a peak (George and Hwang, 2004),

the bottom of a trough (Huddart et al., 2009), or during a particularly long streak (Raghubir and

Das, 2010).

We repurpose machine learning techniques, adapted to predict what people look at in a wide

variety of natural images, to predict salient points in price paths. These predictions may work

or may fail. To the extent that human perception of visual stimuli is universal and consistent

across many domains, an all-purpose algorithm may also predict the salient aspects of financial

stock price paths. However, the salience models are tuned to predict the first few seconds of

“bottom-up” (goal-free) perception. This does not mean the same models will predict salience

over longer periods of deliberation, of the influence of that kind of salience on longer decisions.

We can confirm the adequacy of this algorithm for price paths by providing evidence that its

predictions match actual eye-tracking data closely. We then see in three experimental studies

that the visual salience model can actually forecast investment decisions to some extent. This

holds for real stock price charts, for artificially constructed charts that only vary in the order of

the returns but not the returns themselves, and for the easiest possible depiction of artificial price

charts in repeated two-outcome lotteries. Compared to other economic models that focus on

different aspects of attention and salience like perception of probabilities and return differences,

the visual salience model has some higher explanatory power and often makes more accurate

predictions about investment decisions by the human subjects.

An interesting puzzle (which we hope to solve in upcoming revisions to this paper) is why

there is such a large difference in predictive strength between the CPT and Salience theories.

Salience theories do not predict actual subjects’ investments well. This is odd because there is a

high correlation between the two sets of weights (an average of .80, across 1,000 Study I price
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Figure 8: CPT and Salience Rank Differences

The figure shows underlying differences between the rankings of the CPT and the Salience weights. We sort all
250 returns from highest to lowest along the x-axis. The y-axis plots the average differences (across all 1,000

CRSP images) in the ranking assigned to the weights of these returns by the CPT and Salience theories.

paths). Both tend to overweight extreme returns. What is going on?

To dig further into this surprise, first remember that returns are ranked so that a low number

(e.g. #1 rank) is a positive return. A high number is a poor return. Figure 8 shows the (averaged)

differences in rankings (the CPT rank minus the Salience theory rank), for the price paths from

Study I. The x-axis is the rank of each return of the 250 returns in a particular sequence (one

is highest and 250 is lowest). You can see that extreme and middle returns are ranked similarly

in both theories (that is, the CPT-Salience rank difference is close to zero). But above-average

returns (e.g. rank 50-100) and below-average returns (150-200) are ranked quite differently

by the two weighting theories. Look at returns that are numerically ranked around 100 (i.e.

these are a little higher than he median out of 250 returns). On average, these returns have

a CPT rank which is much higher than their Salience rank (around 50 ranks higher). In the

opposite direction, lower returns that are higher-ranked numerically (150-200) get lower CPT
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ranks than Salience ranks. The CPT weights are pushing the above-average returns up and

the below-average returns down, compared to Salience weighting. Put in the opposite way,

Salience ranking tends to compress return ranks toward the middle (compared to CPT). It’s

as if the Salience weights are good at overweighting very high and low returns, but do not

differentiate sufficiently among returns that are a little above or below the median. We will

continue to explore whether this tendency is a diagnostic for why salience weights are not

predicting decisions well.

Salience theory has two free parameters, ν, θ which have psychophysical meaning. We have

not carefully explored whether regions of this two-dimensional parameter space make much

more sensible and accurate predictions about the experimental data. It may be that there are

more sensible configurations of such parameters which produce a much more plausible model

that fits these data better, while also honoring the intuitions and structure underlying Salience

theory.

Another plausible source of surprising inaccuracy of the Salience theory is our particular

selection of reference level. Bordalo et al. (2013) and related papers like Cosemans and Frehen

(2017) suggest that a sensible reference level for returns is the risk-free rate or a market return.

Bordalo et al. (2013) are particularly interested in how simple versions of their framework

could generate effects like preference for skewness and apparent time-varying risk premia, from

a more basic common source. For that purpose, a simple choice of reference point such as

market return is a good approximation. In understanding path-specific investments as in our

experimental price charts (where the average market return is not visible) there are likely to

be better specifications for the reference point. We chose a path-specific reference return (the

average) because participants have no information about any market or risk-free rate, and are

only evaluating the attractiveness of one asset at a time. We are exploring the effects of using

other plausible reference levels such as the path-specific median return, or zero, to check what
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effect this has on the performance of Salience theory in our experiments. The neuroscientific

idea that salience is strongly affected by contrast, and adaptive coding to previous experience,

may be useful in sifting through sensible specifications.

We are cognizant of the fact that investors likely look at a number of additional sources for

information before making choices in the real world. Two of our experiments present a stylized

setup where the price path is the only source they are exposed to, because we wanted to isolate

the effect of visual salience. It is likely that when considering these other sources, probability

weighting and return differences like in the models of Barberis et al. (2016) and Bordalo et al.

(2012, 2013) play a larger role in decision-making. As mentioned earlier, we believe that inte-

grating visual salience and recency effects into one model highlighting probability weighting or

return differences could deepen our understanding of the underlying mechanisms at play.

An interesting question is whether the highly salient prices and returns in the price charts

tend to correspond to statistical features. For example, do short periods with high or highly

variable prices grab attention? Do sharp ”jumps” in prices, or periods of up-and-down negative

return autocorrelation, tend to grab attention? Section 6 of the Online Appendix discusses

some preliminary results of this type. Statistical features, reduced in dimension by principal

component analysis, seem to explain about 20% of salience. We will study these relations more

carefully in future work.

Our data suggest that economic models seem to benefit from incorporating visual salience

features of decision problems, above and beyond existing concepts of salience based on numer-

ical contrast and probability weighting. Since visual salience is grounded in basic human visual

perception, it is directly measurable via eye-tracking and predictable via algorithms. This al-

lows analyzing the impact of visual salience in other economic domains where visual features

of the provided information and alternatives also may play a role. The attention that aspects of

the decision problem receive based on their visual salience potentially affects several layers of
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the decision making process, for example reference points, outcomes, or even lead to ignoring

or considering entire alternatives. Future research will shed further light on these additional

applications of visual salience.
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This Online Appendix provides additional material and analyses for ”Decision weights for ex-

perimental asset prices based on visual salience”.

• Section 1 provides details on the various strands of literature whose concepts are utilized

in this paper.

• Figure S1 of Section 2 lines up with Figure 1 of the main analyses depicting additional

specifications for CPT and Salience.

• Section 3 presents the statistics on the three decision weights for price paths used in Study

I, with Section 3.1 summarizing the distance between the decision weights and empirical

frequencies, Section 3.2 summarizing the distance between the decision weights, and

Section 3.3 summarizing the correlation between the decision weights.

• Section 4 presents the price paths used for the proof of concept in Section 2.1 of the main

paper.

• Section 5 contains two examples from the Sketch category of images that were used to

train SAM, that most resemble the shape of price paths.

• Section 6 presents the statistical measures and analyses on the relation of visual salience

and statistical features of price paths.

• Section 7 provides the full set of instructions for the MTurk experiment where the con-

vexity score for picking the CRSP stocks is described in Section 8.

• Section 9 provides an overview over the course of the experiment used for Study III and

Section 10 shows the full set of instructions for Study III.

• Section 11 presents additional analyses for the MTurk studies, including a comparison of

the MTurk sample with the US population and additional robustness tests.
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• Section 12 compares the sample of Study III with a sample representative for German

stockholders and provides cumulative density functions for distributions of coefficients

and p-values of our parameter sensitivity analysis.

• Section 13 repeats all the analyses for all three studies in the main paper using price

differences as our basis for analysis instead of returns.
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1 Literature Review

This paper adds to four different strands of literature: First, we contribute to the literature that

explores how the framing or presentation of historical returns can stimulate different biases

and heuristics within investors, and influence their decision making. Recent experimental ev-

idence suggests that price path shapes influence asset attractiveness and investment behavior

(Grosshans and Zeisberger, 2018; Nolte and Schneider, 2018). Moreover, the representation of

the price chart, i.e., the visual properties (e.g., scaling) of charts influence risk perception and

return expectations (Huber and Huber, 2018). Most information brochures display a visualiza-

tion of an asset’s price path. The average investor is easily overwhelmed by the complexity and

variety of offered products. Thus, an easily accessible graphical presentation is expected to have

a significant impact on decision making. There are several experimental studies which address

the impact of price path presentation on investment behavior. Glaser et al. (2019) analyze how

representation of returns vs. prices shape individual forecasts of asset performance. Weber et

al. (2005) find that the presentation format of historical asset returns influences expected asset

volatility. Diacon and Hasseldine (2007) find that the presentation format of asset returns has

a significant effect on subjects’ perceptions of risk and return. Glaser et al. (2007) associate

beliefs in mean reversion or trend chasing with framing effects. Asset forecasts vary depending

on whether investors are presented with returns or with prices, and the authors attribute these

differences to the representativeness heuristic. They conclude that surveys on asset forecasts

should rely on price presentation rather than returns, see also Czaczkes and Ganzach (1996).

Grosshans and Zeisberger (2018) present subjects with variously shaped price paths, and ask

them to record their levels of satisfaction if they had hypothetically held such an asset. They

conclude that the shape of the historical asset price path might shape future investment behavior

through reference point effects. The visual salience model shows that visual salience of certain
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returns in a historical price path generate attention towards those returns, which is what drives

the predictability of invested amounts in all three experimental studies.

Second, this paper adds to the literature applying visual salience to economic decision mak-

ing. Outputs from visual salience algorithms have been shown to predict economic choice

in other domains. Towal et al. (2013) find that objective visual properties such as saliency,

and subjective properties such as value, are both interactively useful in predicting decisions

in multiple-alternative forced-choice environments, e.g., choosing snacks from a vending ma-

chine. Li and Camerer (2019) find that visual salience of focal points in images are useful in

predicting winners in coordination games and hider-seeker games. Thus, visual salience has

been used in fields such as consumer choice and empirical game theory. This paper extends the

scope of its use by introducing this concept to the field of behavioral finance.

Third, this paper adds to the literature which proposes different theoretical models on how

to integrate past returns into forming expectations about future returns. A centerpiece of any

investment choice is to form expectations about the future performance of investment oppor-

tunities at the time of judgment. These expectations crucially depend on available information

and how this information is processed. Barberis et al. (2001, 2016) argue that prospect theory

values based on past returns predict future returns. One key assumption in their model is that

the presentation format of the price charts is irrelevant. The ordering of returns is only captured

in an extension of their model, by an exponential overweighting of the most recent returns,

i.e., only temporal ordering of the returns is relevant. In another class of models by Bordalo

et al. (2012, 2013) and applied in Cosemans and Frehen (2017) and Gödker and Lukas (2017),

the magnitude of the return difference to some reference value determines the weight assigned

to the return. Thus, this version of salience is context dependent, i.e., dependent on the other

available assets. The salient (extreme) returns attract attention and predict future returns. One

limitation of these models is that the salience rank of a past return is independent of the ac-
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tual probability of its occurrence. Moreover, the temporal ordering of returns and presentation

format are irrelevant in these models. In contrast, the proposed model based on the Salience

Attentive Model (Cornia et al., 2018) assumes that the weighting depends only on visual fea-

tures. Thus, presentation format and temporal ordering of returns both matter. The returns close

to salient points are overweighted. While in the models of Barberis et al. (2016) and Bordalo

et al. (2012, 2013), the weighting depends on specific functional forms, the weighting implied

by visual salience is parameter free and depends on feature extraction by a machine learning

algorithm.

Lastly, the paper adds to the literature on the role of attention in financial decision making.

Given the almost infinite amount of stock market information readily available to any investor,

paying attention to every piece would exceed individuals’ cognitive abilities (Kahneman, 1979).

Only a few stocks end up in the choice set of investors. A firm which catches more investor

attention is more likely to be included in the investors’ portfolio (Odean, 1999; Busse and Green,

2002; Barber and Odean, 2007). A stock can attract attention through media coverage (e.g.,

Fang and Peress, 2009), lottery-like features (e.g., Kumar, 2009), high daily trading volume

(e.g., Barber and Odean, 2007), extreme daily returns (e.g., Bali et al., 2011; Ungeheuer, 2017),

daily newpapers winners and losers (e.g., Kumar et al., 2019), or related events (e.g., Koester

et al., 2016, for earnings surprises). All these papers study indirect measures of attention. An

exception is Da et al. (2011) who provide evidence that stock-related Google search volume

reflects the attention paid by private (not sophisticated) investors as they gather information

using Google. Thus, Google search volume indices provide a timely measure of firm-level,

private investor attention. Which features of these stocks determine their attractiveness also

depends on which feature grabs the most attention. Inattention to information affects choices of

private investors as well as analysts (Koester et al., 2016). While these approaches are various

their common idea is to determine the choice set of stocks investors are paying attention to.

6



In contrast, within this choice set, we look at attention towards path characteristics of an asset

measured by using eye-tracking, i.e., by using a specific computational model of where attention

is predicted to be allocated to.

In summary, we propose a model that estimates salience based on actual measurements (eye-

tracking) while previous models on salience miss the visual impact of return representation.
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2 Additional Visualizations for CPT and Salience Weights

Figure S1: CPT and Salience

The figure shows three price paths of 15 periods historical realizations constructed from the returns in the graph
below. The returns are the result of stationary process xt+1 = 0.6xt + εt. The bar charts present decision weights

based on CPT and salience theory.

The bar chart shows the returns for the historical realizations for the same three price paths
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in the main paper, arranged in descending order. It also shows the decision weights associated

with the returns when using the CPT value function along with the Tversky and Kahneman

(1992) (TK) weighting function, the Tversky and Fox (1995) (TF) weighting function, and

the Wu and Gonzalez (1996) (WG) weighting function, shown below in Equations 1, 2, and 3

respectively. The figure also shows the Bordalo et al. (2013) (Salience) decision weights (shown

below in Equation 4), along with variations where the ν parameter is changed from 0.7 to 0.85,

and the reference level x̄k is changed from the mean of the historical returns to the maximum

of the historical returns. The key idea here is that the decision weights for all variations of CPT

and Salience decision weights are the same for all three price paths. Furthermore, the different

weighting functions for CPT do not generate meaningfully different decision weights for these

price paths, but Salience decision weights are quite sensitive to parameter and reference level

specifications.

• Tversky and Kahneman (1992) (TK) weighting function

w+(p) =
pδ+

(pδ+ + (1− p)δ+)
1
δ+

and w−(p) =
pδ−

(pδ− + (1− p)δ−)
1
δ−

(1)

and δ+ = 0.69, δ− = 0.61

• Tversky and Fox (1995) (TF) weighting function

w+(p) =
γ+pδ

+

γ+pδ+ + (1− p)δ+
and w−(p) =

γ−pδ
−

γ−pδ− + (1− p)δ−
(2)

and δ+ = 0.6, γ+ = 0.65, δ− = 0.65, γ− = 0.84

• Wu and Gonzalez (1996) (WG) weighting function

w(p) = exp(−(− ln(p))δ) and δ = 0.74 (3)

• Bordalo et al. (2013) (Salience) decision weights

πSalk = pk × hk with the salience weight hk =
νκk∑
i ν

κipi
ν = 0.7 or 0.85 (4)
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where κk denotes the salience rank of xk, which is measured by:

κk = σ(xk, x̄k) =
|xk − x̄k|

|xk|+ |x̄k|+ θ
where x̄k = mean(xk) or max(xk)
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3 Statistics on decision weights

3.1 Distance from empirical frequencies

This section provides summary statistics and distributions of distances between decision weights

and empirical frequencies for price paths from Study I. Distance is calculated on a path level

by taking the sum of absolute differences between decision weights and empirical frequencies

across all 250 daily returns. In total, there are 1,000 paths, so summaries and density functions

are based on 1,000 distance values. Salience Theory is based on rank, so the sum of all dif-

ferences are identical for each price path. The procedure is similar for CPT, where different

numbers of positive and negative returns result in small differences between paths. Distances

for the Visual Salience measure are independent of return size but only rely on the degree of

visual salience, which results in a wider distribution of distances.
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Distance from empirical frequencies

Obs. Mean Median Std. Dev. Min Max
CPT 1000 0.4279 0.4280 0.0041 0.4096 0.4380
Salience 1000 1.8766 1.8766 0.0000 1.8766 1.8766
VS 1000 0.4389 0.4239 0.1329 0.1423 0.9432

Figure S2: Distance of decision weights from empirical frequencies
The figure shows the distribution of absolute distances between empirical return frequencies and associated de-
cision weights per theory. The left graph displays probability density functions of distances, the right graph the
corresponding cumulative density functions. The table reports mean, median, standard deviation, minimum, and
maximum of distances for each theory.
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3.2 Distance between theories

This section provides summary statistics and distributions of distances between theories for

price paths from Study I. Distance is calculated on a path level by taking the sum of absolute

differences between decision weights across all 250 daily returns. In total, there are 1,000 paths,

so summaries and density functions are based on 1,000 distance values. Because Salience

Theory has a lot of weights at or very close to zero, distances are generally large between

Salience Theory and the other two theories.

Distance between theories

Obs. Mean Median Std. Dev. Min Max
CPT - Salience 1000 1.6193 1.6159 0.0121 1.6101 1.7197
CPT - VS 1000 0.6133 0.6019 0.0906 0.4496 0.9904
VS - Salience 1000 1.8815 1.8810 0.0178 1.7859 1.9403

Figure S3: Distance of decision weights between theories
The figure shows the distribution of absolute distances of decision weights between theories. The left graph
displays probability density functions of distances, the right graph the corresponding cumulative density functions.
The table reports mean, median, standard deviation, minimum, and maximum of distances between each pair of
theories.
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3.3 Correlation between theories

This section provides summary statistics and distributions of correlations between decision

weights for price paths from Study I. Correlations are calculated on a path level between de-

cision weights across all 250 daily returns. In total, there are 1,000 paths, so summaries and

density functions are based on 1,000 correlations. Salience Theory and CPT exhibit strong cor-

relations of around 80% on average, as both theories overweigh more the extremes of the return

distribution. Correlation between Visual Salience and CPT or Salience Theory decision weights

is indistinguishable from zero, supporting our claim that visual salience adds a level of salience

beyond that captured in other theories.

Correlations between theories

Obs. Mean Median Std. Dev. Min Max
CPT - Salience 1000 0.8037 0.8325 0.0835 0.5342 0.8948
CPT - VS 1000 -0.0086 -0.0100 0.0735 -0.2658 0.2536
VS - Salience 1000 -0.0039 -0.0087 0.0661 -0.2124 0.2482

Figure S4: Correlation of decision weights between theories
The figure shows the distribution of correlations of decision weights between theories. The left graph displays
probability density functions of correlations, the right graph the corresponding cumulative density functions. The
table reports mean, median, standard deviation, minimum, and maximum of correlations between each pair of
theories.
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4 Price paths from Nolte and Schneider (2018)

Figure S5: Price paths for proof of concept

(a) Highest VS value (b) Lowest VS value

The figure shows the two price paths from Nolte and Schneider (2018) which have the same set of returns, but the
highest value (left) and the lowest value (right) based on visual salience decision weights. Subjects’ investments

are ten percentage points higher for the chart on the left.
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5 SAM Training Images

Figure S6: SAM training images that most resemble price paths

(a) Sketch One (b) Sketch Two

The figures are from the Sketch category of SAM training images, that most resemble the shape of price paths.
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6 Statistical Features and Visual Salience

We rely on the large literature exploring properties of past returns and prices to predict sub-

sequent returns to identify relevant statistical features that may act as substitutes for visual

salience. Most of these measures capture the notion that retail investors often buy attention

grabbing, lottery-like stocks with high total volatility. These measures encompass the 52-week-

high (George and Hwang, 2004), other price highs (Mizrach and Weerts, 2009), the maximum

return of the previous months (Bali et al., 2011), the run-length (Raghubir and Das, 2010), his-

torical skewness (Chen et al., 2001; Conrad et al., 2014), momentum (Jegadeesh and Titman,

1993), and high idiosyncratic volatility (Stambaugh et al., 2015). Additionally, we include

measures from the literature on the perception of price sequences, which include average, max-

imum, and minimum price (Baucells et al., 2011), if the price is above or below the starting

price (Nolte and Schneider, 2018), or the difference in standard deviation between the first and

second half of the (sub-)period (Borsboom and Zeisberger, 2020). We adopt these measures to

correlate them with saliency predictions by SAM. Table 1 provides an overview.
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We analyze whether visual salience can be subsumed by statistical features of price paths by

checking if our set of statistical moments are highly correlated with the visual salience of areas

on the price chart as predicted by SAM. Using the 1000 price paths analyzed in Study I, we split

the 250 daily returns in each path into 10 blocks of 25 returns each. For each 25-return-block, we

have SAM predict the visual salience of that particular region. We normalize SAM predictions

to obtain relative weights for each of the 10 blocks that add up to one. We then explore if certain

statistical features for each block of 25 returns can predict the relative weight assigned to that

block. In a first step, we report Pearson correlation coefficients between SAM weights and each

individual statistical feature in Table 1. The most prominent feature with a correlation of -0.4044

is period, i.e., whether the respective subperiod occurs early or late. This makes sense from a

visual perspective, as period can also be interpreted as an indicator how far left the respective

subperiod is in the price path image. Other features that appear high on the list are measures of

return sequences like runlength and autocorrelation, and distance measures like the difference

between minimum and maximum price (’spread’). The highest correlation for these measures

is a little above 13% though, which can be considered rather low. The second step in our

empirical strategy would be to regress SAM weights on all statistical metrics. However, since

many of these metrics are based on the same fundamental concept, multicollinearity in such

a regression would be extremely high. Therefore, we first run a principal component analyis

(PCA) among all statistical features to identify common components that can then be included

in a regression analysis. Results of this PCA are displayed in Table 2. Based on Eigenvalues >

1, eight components emerge. Regressing SAM weights on these eight components, we find that

the time-period of the blocks (earlier blocks are more salient), low autocorrelation within block

(returns fluctuating up and down are more salient), and dispersion of returns within block (larger

spreads are less salient) are statistical features that are most predictive of SAM weights (Table

3). This is consistent with the earlier analysis of correlation coefficients. However, only 8.59%
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of the total variance of SAM weights can be explained by these features. Even including twelve

components to accomodate those with an Eigenvalue > 0.8 only leads to an improvement of R2

to just below 20%. We conclude that even though there are some correlations between SAM

weights and statistical features of the respective area in the price chart, visual salience provides

a way of interpreting price charts that goes beyond what is possible with standard statistical

metrics.

Table 2: Statistical features: Principal Component Analysis
Statistical Feature Comp1 Comp2 Comp3 Comp4 Comp5 Comp6 Comp7 Comp8 Comp9 Comp 10 Comp11 Comp12
Eigenvalue 5.6443 4.7121 3.8542 2.1882 1.8790 1.4644 1.0494 1.0058 0.9989 0.9757 0.8988 0.8631
min price 0.4708
average price 0.4646
max price 0.4483
distance from starting price 0.3252
min price in % of path min price 0.2994
loss domain -0.3139
spread in % of max price 0.4542
std. dev. 0.4385
spread 0.3859
max return 0.3358 0.2627
min return -0.3778 0.2634
skewness 0.4791 -0.3375
momentum relative to path momentum 0.4081
momentum 0.4001
average return 0.3987
max return in % of path max return 0.2737 0.4907
min return in % of path min return -0.2605 0.527
no. of gains 0.5989
Relative Strength Index (RSI) 0.587
std. dev. in % of path std. dev. 0.5967
max price in % of path max price 0.694
spread in % of path spread 0.6533
runlength 0.6934
autocorrelation rt, rt−1 0.6778
period 0.9525
jump 0.9905
autocorrelation rt, rt−1 in % of path autocorrelation 0.9979
skewness in % of path skewness 0.9985
average return in % of path average return 0.9996

The table reports rotated factor loadings of the 12 factors with Eigenvalues greater than 0.8. Eigenvalues are
listed in the first row of the table. Loadings smaller than 0.25 are blanked out to enhance readability of the table.
Statistical features are ordered by their loadings on the respective components, prioritizing components with a
larger Eigenvalue.
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Table 3: Regressions for components of statistical features

(1) (2)
πV S πV S

Comp1 -0.00227*** -0.00227***
(0.000535) (0.000524)

Comp2 -0.000238 -0.000238
(0.000592) (0.000543)

Comp3 0.00106** 0.00106**
(0.000530) (0.000515)

Comp4 -0.00121** -0.00121**
(0.000567) (0.000528)

Comp5 -0.00926*** -0.00926***
(0.000548) (0.000513)

Comp6 -0.0131*** -0.0131***
(0.000575) (0.000534)

Comp7 0.00544*** 0.00544***
(0.000668) (0.000543)

Comp8 0.00345*** 0.00345***
(0.000686) (0.000509)

Comp9 0.00335***
(0.000426)

Comp10 0.00668***
(0.000489)

Comp11 -0.0131***
(0.000599)

Comp12 0.0126***
(0.000637)

Constant 0.100*** 0.100***
(0.000572) (0.000538)

Observations 10,000 10,000
R2 0.086 0.194
* p < 0.1, ** p <0.05, *** p<0.01

The table reports regressions of SAM weights (πV S) on standardized components predicted by a principal com-
ponent analysis including all investigated statistical features. The first column only includes components with an
Eigenvalue greater than 1, the second column also adds components with an Eigenvalue greater than 0.8. Robust
standard errors are reported in parentheses.
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7 Instructions for Study I and II

7.1 Introduction

Welcome and thank you for participating – your assistance is greatly appreciated! Your answers

are very important to us. Please take your time to read all instructions and questions carefully.

All your answers will be treated anonymously, with strict confidentiality, and will be used for

research purposes only. Completing the experiment will take about 20 minutes. At the end, you

will receive a code that you have to enter on Amazon’s Mechanical Turk website to receive your

payment. The payment consists of a fix payment ($2.00) plus a variable payment. The variable

payment will depend on your choices and a random component. Participants will receive a

variable payment of about $1.00 on average. Please note that your variable payment might be

higher or lower than this. Please do not refresh the page at any time or click “back” or “forward”

in your browser. This may cause a crash and you will have to start again. A “continue” button

will appear as soon as all relevant texts are shown on screen.

General Topic

We are researching financial investment behavior. You do not need expert knowledge on this

topic – all relevant information will be given to you before you provide your choices. You will

see 10 different charts displaying stock price developments over one year. The price charts

are based on the historical stock price development of real companies, but we do not mention

names. All graphs are indexed to 100, so the charts always start at a price of 100.

Stock investments

Below, you see an example for a stock price chart (Figure S7) – just like the ones you will

see when you make your decisions. The horizontal axis of the chart represents the time frame

(January to December, i.e. 1 year). The vertical axis represents the stock price (measured in

monetary units). In this example, the stock price starts at 100 monetary units in January. Over
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the course of the year, the stock price gradually increases up to 121 monetary units in December.

Hence, the return over this year is +21 percent. It is not possible to predict precisely how the

stock price will develop next year. However, the displayed chart can give you an idea about the

risks and returns of investing into this stock.

Figure S7: Example of a price chart

The figure shows a screen shot of the exemplary price chart shown to the participants in the introductory part of
the experiment.

Your task

For each price chart you see, we ask you to indicate:

1. How attractive you find an investment into this stock.

2. How risky you deem an investment into this stock.

3. What return you expect over the following 12 months.

4. How much of a 1,000 monetary unit endowment you are willing to invest in the stock for

the following 12 months. The remainder is put in a safe bank account.

Detailed explanations on question 4 will be provided on the following page.
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Your investment decision

You have 1,000 monetary units. You want to invest this money for the following year. Your task

is to decide what part of your endowment you want to invest into a stock. The remainder is put

into a safe bank account. The stock price development over the past year is displayed in a chart

(like the one you have seen on the previous screens). The chart can give you an idea about the

risk and return of investing over the next year. Over the next year, the stock price development

can be very similar to the one displayed in the chart, but it can also be very different. Hence, the

return of your stock investment might be similar to the one displayed in the chart, but it can also

be much higher or much lower. The non-invested part of your endowment is put into a bank

account. This money is safe, i.e., it neither increases nor decreases over the next year. Your

final wealth after 1 year is the value of your stock investment after one year plus the money in

the bank account.

How you will be paid

You will receive $0.001 for every monetary unit of your final wealth in the investment task (i.e.

the final value of your stock investment plus the money in the bank account).

Examples:

Imagine that you invest 500 monetary units into a stock. The remaining 500 monetary units are

automatically put into the safe bank account.

• If the stock price increases by 50% in the next year, your stock investment is then worth

750 monetary units. Hence, your overall wealth is 1,250 monetary units (750 from stock

investment and 500 from bank account), and your variable payment is $1.25 in this ex-

ample.

• If the stock price decreases by 50% in the next year, your stock investment is then worth

only 250 monetary units. Hence, your overall wealth is 750 monetary units (250 from
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stock investment and 500 from bank account), and your variable payment is $0.75 in this

example.

Additionally to this variable payment, you will receive a fix payment of $2.00 for sure.

Summary

You will see a total number of 10 price charts. For each price chart, you will judge how attractive

and how risky you find the stock and what return you would expect for the following year. You

also decide what part of your 1,000 monetary units endowment you invest into the stock for

the following year. The remainder is put into a safe bank account where you cannot gain or

lose any money. The return of your stock investment is based on this stock’s actual return in

the subsequent year. The computer will randomly select one of your 10 investment decisions

after you complete this questionnaire. You receive $0.001 for every monetary unit of your final

wealth in the selected decision scenario. Additionally, you will receive a fix payment of $2.00

for sure.

7.2 Main Experiment

Figure S8 presents exemplary screen shots of the four decisions the participants had to take

during the main part of the experiment.

7.3 Final Questionnaire

Survey:

Please tell us something about yourself now. Your answers will help us to draw more meaningful

conclusions from your choices.

1. How old are you? <dropdown menu with 18-99>

2. Please state your gender? <radio buttons with ”male”, “female”, “other”>
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Figure S8: Interface for questions in the main part of the experiment

(a) Questions 1 and 2 (b) Questions 3 and 4

The participant had to take 10 decisions on different price paths. The Figure shows how the interface for the four
questions in the main part looked like.

3. What’s your nationality? <radio buttons with “US-American” and “Other – please spec-

ify” (plus textbox for the latter)>

4. What is your highest educational degree attained? <radio buttons with “Some high

school”, “High school degree”, “College degree”, “Master degree”, “Doctorate degree”,

“Other”>

5. What is your occupation? <textbox>

6. Are you in full employment? <radio buttons with “Yes” and “No”>

Questions on the experiment

1. If the stock price increased from 100 to 145 Dollar over one year, what is the return on

this stock? <radio buttons with “-45% / +45% / +55% / +145% / you cannot say / don’t

know” as answer possibilities>
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2. If you invested 1,500 monetary units of your endowment of 2,000 monetary units into the

stock, how much was put into the bank account? <radio buttons with “0 / 500 / 1,500 /

2,000 monetary units / you cannot say / don’t know” as answer possibilities>

3. What is fourteen minus 8? <radio buttons with “0 / 2 / 6 / 10 / you cannot say / don’t

know” as answer possibilities>

4. If the stocks return was +10% in the last year, what is the stocks return in the subsequent

year? <radio buttons with “-10% / 0% / 10% / 110% / you cannot say / don’t know” as

answer possibilities>

Questions on the experiment – Please evaluate the following statements: (1-7 Likert Scale)

1. Participating in this experiment was fun.

2. I relied on my gut feeling for my decisions.

3. I wanted to play it safe with my decisions.

4. I thought long about my decisions.

5. I believe that the past development of a stock price conveys information about its future

development.

6. The understandability of the instructions was good.

Attitude towards risks – Please evaluate the following statements: (1-7 Likert Scale)

1. I do not mind taking risks in general.

2. I do not mind taking risks in financial investments.

3. I try to minimize the chance of losing money in my financial investments.
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4. Losing some money with an investments would hurt me more than I would enjoy gaining

the same amount of money.

5. Please click on the first button on the scale below.

6. Extreme returns of a stock catch my attention.

7. I do not mind taking risks in my leisure time (e.g. by practicing risky hobbies).

8. I do not mind driving a car without seatbelt fastened.

Your financial situation

1. How much money can you spend each month? <radio button> <textbox> Dollars

<radio button> I prefer not to answer.

2. Are you the primary decision maker regarding financial matters in your household? <radio

buttons with “Yes” and “No”>

3. How many people are living in your household? <dropdown menu with 1-20> people

4. How many credit cards do you have? <dropdown menu with 0-20> credit cards

5. Did you ever invest money in the stock market? <radio buttons with “Yes” and “No”>

6. Are you currently invested in the stock market? <radio buttons with “Yes” and “No”>
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8 Convexity Score

The main idea of the score is to express the degree of the convexity or concavity of a price path.

To achieve this, we first fit a line through a price path that connects the starting point with the

end point of the path. This line represents the proportional cumulative return over the depicted

time period p assuming that the whole period return is evenly distributed over the whole length

of the path and abstracting from compounding effects. This line represents the trend of the

overall price path. For every period t the proportional cumulative return from 0 to t is defined

as

x̂0,t = t ·

p∏
i=1

(1 + xi)− 1

p
∀t ∈ [0, p]

We are now interested in the differences between the price path and this line (i.e., the area).

We calculate this difference between actual and proportional cumulative return separately for

positive and negative differences.

x̄+0,t = x0,t − x̂0,t ∀x0,t ≥ x̂0,t

x̄−0,t = x̂0,t − x0,t ∀x0,t < x̂0,t

For the considered time period we then add up all x̄+0,t as well as all x̄−0,t separately to get a

proxy for the areas between actual price path and trend line depending on whether the path lies

above the line or below it.

H+ =
m∑
i=1

x̄+0,i

H− =
n∑

i=m+1

x̄−0,i
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See Figure 1 for an illustrative example. H+ is represented by the vertically striped area

while H− is the horizontally striped area.

Figure S9: Convexity score example
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The figure illustrates the construction of our convexity measure.

The score we use now subtracts H− from H+ and divides this term by the risk associated

with a path. As a risk proxy we use the spread calculated as the difference between the maxi-

mum cumulative return and the minimum cumulative return over the entire chart period p. Our

convexity score (CS) is thus defined as:

CS =
H+ −H−

maxt(x0,t)−mint(x0,t)
(

p∏
i=1

(1 + xi)− 1)
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9 Course of the Experiment (Study III)

Figure S10: Course of the Experiment (Study III)

The figure illustrates the course of our lab experiment used for Study III.
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10 Instructions for Study III

All paragraphs appeared on screen with appropriate timely delay. Participants were instructed

to raise their hands in case they had trouble understanding the instructions. In this case, the

experimenter came to assist. Instructions were supported by appropriate graphical displays if

necessary (not displayed in this appendix for sakes of brevity).

10.1 Your task in the experiment

You will be playing 18 investment rounds in this experiment. In each investment round you can

invest into a stock and a bank account. Each investment round consists of 30 time periods. The

first time period is labeled ”period 1” and the last point in time is labeled ”period 30”.

During the first 15 periods (i.e., periods 1-15), you are observing the price development of

the stock in these first 15 periods (i.e. periods 1-15). During the last 15 periods (i.e., periods

16-30), you will have to decide how much money you want to invest into this stock and how

much money you want to invest into a bank account.

The Stock: For simplicity, we assume that the stock can only generate 2 possible returns.

You will be explicitly told about the two possible returns and the probabilities before you will

have to make your decisions.

For example: the stock may either generate a positive return of +6 percent with 50 percent

probability in a period, or it may generate a return of -4 percent with 50 percent probability in a

period. This means that the stock price has a 50 percent chance of going up by +6 percent in the

next period, and a 50 percent chance of going down by -4 percent in the next period. However,

it does not mean that the stock will always go up and down exactly 15 times each in the 30

periods of the investment round.

The bank account: All money that you don’t invest into the stock will be automatically put

into the bank account. In contrast to the stock investment, the money in the bank account will
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always remain the same, no matter what return the stock generates during the period.

Check-up questions:

1. Which statement about the stock is true:

• There are only two possible returns that the stock can generate in a period.

• There is an infinite number of returns that the stock can generate in a period.

• The stock always generates a safe return.

• None of the above.

2. Assume that the stock has a 50 percent probability of going up by 6 percent and a 50

percent probability of going down by -4 percent over one period. Which of the following

statements is true?

• The stock price will first go up 15 times and then go down 15 times.

• The stock price will go up exactly 15 times and down exactly 15 times. The se-

quence of ”ups” and ”downs” is unknown.

• You cannot predict the exact number of ”ups” and ”downs” as well as their sequence.

• None of the above.

3. Which statement about the bank account is true:

• The money in the bank account always remains the same.

• The return of the bank account is affected by the return of the stock.

• There is a 2 percent chance that all money in the bank account will be lost.

• None of the above.
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10.2 How you will be paid

In total, you will be playing 18 investment rounds. After the experiment, you will draw one

ping-pong ball out of an urn with 18 balls. The ping-pong balls have the numbers 1 to 18 on

them. The number on the ball that you have drawn represents the investment round according

to which you will be paid.

For each monetary unit that you own at the end of this investment round, you will receive a

payment of 0.001e after the experiment. In addition, you will receive a show-up fee of 8e .

Before each investment round, you will solve a ”word scramble”. After having completed

the word scramble, you will learn the random amount that will be invested in the stock in period

one of the following investment round. Recall that you will be paid according to the amount of

money that you own at the end of one investment round (i.e., in period 30). This means: The

more money is invested into the stock at the beginning of period 1, the higher is this expected

amount of money you own at the end of the investment round.

To sum up: Before each investment round, you will do a ”word scramble”. In periods 16 to

30 of the investment round, you will have to decide how much money you want to invest into a

stock and how much money you want to put in a bank account.

The stock will generate one out of two possible returns. You will be told about the possible

returns and the probabilities before each investment round. All money in the bank account will

always remain the same and is unaffected by the return of the stock.

After the experiment, you will draw one ping-pong ball out of an urn with 18 balls. The

number on the ball represents the investment round according to which you will be paid. For

each monetary unit that you own at the end of this investment round, you will receive a payment

of 0.001e after the experiment. In addition, you will receive a show-up fee of 8e .
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10.3 Final questionnaire

Cognitive Reflection Test

1. A bat and a ball cost 1.10 in total. The bat costs 1 more than the ball. How much does the

ball cost?

2. If it takes five machines five minutes to make five widgets, how long would it take 100

machines to make 100 widgets?

3. In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48

days for the patch to cover the entire lake, how long would it take for the patch to cover

half of the lake?

Financial Literacy

1. Suppose you had e 100 in a savings account and the interest rate was 2 percent per year.

After 5 years, how much do you think you would have in the account if you left the money

to grow? More than e 102 exactly e 102, less than e 102, do not know.

2. Suppose you had 100e in a savings account and the interest rate is 20 percent per year

and you never withdraw money or interest payments. After 5 years, how much would you

have on this account in total? More than 200e , exactly 200e , less than 200e , do not

know.

3. Imagine that the interest rate on your savings account was 1 percent per year and inflation

was 2 percent per year. After 1 year, how much would you be able to buy with the money

in this account? More than today, exactly today, less than today, do not know.

4. Assume a friend inherits 10,000e today and his sibling inherits 10,000e 3 years from

now. Who is richer because of the inheritance? My friend, his sibling, they are equally
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rich, do not know.

5. Suppose that in the year 2017, your income has doubled and prices of all goods have

doubled too. In 2017, how much will you be able to buy with your income? More than

today, the same, less than today, do not know.

Self-stated characteristics (all answered on a 7-point Likert scale)

1. I relied on my gut instinct in my decision-making.

2. I thought long about my decisions.

3. My decisions were well considered.

4. In general I don’t mind taking risks.

5. My decisions were influenced by the price paths.

6. The stock price paths from periods 1-15 helped me to form a belief about the future

performance of the stock.

7. I perceived the stock to be more risky when there was no price path for periods 1-15.

8. I tried looking for patterns in the presented stock price paths.

9. I believe that it was more likely for the stock price to go down if it went up in the previous

period.

10. I believe that it was more likely for the stock price to go up if it went up in the previous

period.

11. I had the impression that the price paths were manipulated.
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12. To me, it was important to end up with at least as much money as I started with in each

investment round.

13. I had trouble understanding the experiment instructions.

14. Taking part in the experiment was fun.

15. I had trouble solving the Word Scrambles.

16. In general, I trust other people.

17. When I made a decision that turned out to be bad, I usually regret that decision for a long

time.

18. I would consider myself to be rather patient.
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11 Additional Analyses Study I and II

11.1 Descriptives for the MTurk Study

Table 4: Descriptive statistics

US-Population (2017) MTurk Sample
Variable N = 321, 004, 407 N = 500
Age [years; median] 37.2 30.0
Gender [female=1] 50.2 32.2
Education [%]

No degree 12.6 0.2
High School 27.3 23.4
College incl. BA 48.2 64.2
Graduate or higher 11.8 12.2

Full employment [%] 77.2 85.6
Household size [mean] 2.58 3.08

The table reports measures of central tendency of selected demographics for the US population and for our sample.
Data for the US population is based on the American Community Survey (ACS) and obtained from the website of
the United States Census Bureau.

38



11.2 Robustness Analyses for Study I

Table 5: Regressions for IA, Study I: Robustness I
(excluding 29.8% of participants who did not pass attention or comprehension filter)

(1) (2) (3) (4) (5)
IA [%] IA [%] IA [%] IA [%] IA [%]

Corr(Return, VS weights) 0.857*** 0.812*** 0.975***
(0.303) (0.306) (0.341)

Corr(Return, CPT weights) 0.369 0.984* 1.389*
(0.312) (0.562) (0.732)

Corr(Return, Salience weights) -0.00889 -0.228 -0.355*
(0.0883) (0.156) (0.199)

Return 0.385*** 0.381*** 0.383*** 0.379*** 0.509***
(0.0267) (0.0262) (0.0264) (0.0266) (0.0221)

Stdv -0.165*** -0.174*** -0.168*** -0.175*** -0.251***
(0.0194) (0.0203) (0.0193) (0.0212) (0.0217)

Skewness 0.00401 -0.0301 0.00827 -0.0401 -0.0541
(0.0143) (0.0343) (0.0255) (0.0355) (0.0487)

Constant -0.151*** -0.177*** -0.160*** -0.212*** -0.320***
(0.00279) (0.0153) (0.00467) (0.0351) (0.0613)

Observations 2808 2808 2808 2808 2808
R2 0.221 0.218 0.217 0.221
* p < 0.1, ** p <0.05, *** p<0.01

The table reports invested amounts on the correlation between current return, visual salience decision weight, CPT
decision weight, and the salience decision weight. The correlation serves to isolate the effect of different decision
weight specifications from the different assumptions about the utility function. Control variables are the return of
the price path (Return), its standard deviation (Stdv), and its skewness (Skewness). In Model (5) we use a Tobit
regression to account accumulation of participants who did not invest in that stock. We use fixed effects to control
for individual specific effects. The dependent variable is coded in percentage values to enhance readability of the
table. Robust standard errors clustered on participant level are reported in parentheses.
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Table 6: Regressions for IA, Study I: Robustness II
(excluding 27.4% of participants with large discrepancy between IA and attractiveness score)

(1) (2) (3) (4) (5)
IA [%] IA [%] IA [%] IA [%] IA [%]

Corr(Return, VS weights) 0.726*** 0.686** 0.814**
(0.273) (0.276) (0.318)

Corr(Return, CPT weights) 0.503* 1.105** 1.238*
(0.290) (0.536) (0.684)

Corr(Return, Salience weights) 0.0363 -0.215 -0.271
(0.0804) (0.147) (0.185)

Return 0.371*** 0.366*** 0.369*** 0.364*** 0.492***
(0.0245) (0.0243) (0.0244) (0.0246) (0.0208)

Stdv -0.151*** -0.161*** -0.153*** -0.163*** -0.230***
(0.0179) (0.0185) (0.0178) (0.0192) (0.0203)

Skewness -0.00472 -0.0509* -0.0109 -0.0621** -0.0701
(0.0137) (0.0296) (0.0220) (0.0310) (0.0437)

Constant 0.156*** 0.126*** 0.153*** 0.0891*** -0.0886
(0.00271) (0.0144) (0.00475) (0.0339) (0.0582)

Observations 2906 2906 2906 2906 2906
R2 0.213 0.211 0.210 0.214
* p < 0.1, ** p <0.05, *** p<0.01

The table reports invested amounts on the correlation between current return, visual salience decision weight, CPT
decision weight, and the salience decision weight. The correlation serves to isolate the effect of different decision
weight specifications from the different assumptions about the utility function. Control variables are the return of
the price path (Return), its standard deviation (Stdv), and its skewness (Skewness). In Model (5) we use a Tobit
regression to account accumulation of participants who did not invest in that stock. We use fixed effects to control
for individual specific effects. The dependent variable is coded in percentage values to enhance readability of the
table. Robust standard errors clustered on participant level are reported in parentheses.
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12 Additional Analyses Study III

12.1 Descriptives for the Lab Experiment

Table 7: Descriptive statistics

All SAVE
Variable N = 275 N = 230
Age [years] 20.47 61.21

(2.21) (14.85)
Gender [female=1] 0.29 0.49

(0.46) (0.50)
Degree [graduate=1] 0.10 0.19

(0.30) (0.40)
Self-stated risk aversion [1,7] 3.83 5.08

(1.75) (1.89)
Financial Literacy score [%] 80.28 80.69

(20.50) (24.09)
CRT score [%] 54.00 39.24

(37.60) (35.70)

The table reports the means of selected demographics and personality traits. Standard deviations are reported in
parentheses. ”CRT” indicates the Cognitive Reflection Test by Frederick (2005). The first column represent mean
data from our lab study, the last column for stock owners in Germany (data is taken from the German SAVE study
in 2009; Börsch-Supan et al., 2008). The SAVE study is representative for the German population aged 18 and
above.
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12.2 Cumulative Density Functions for Parameter Sensitivity Analysis

Figure S11: Parameter sensitivity analysis - CDF

The graph on the left (right) shows the three models’ cumulative distribution function of coefficients (p-values)
for all analyzed α-λ combinations.
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13 Price differences instead of returns

In our three studies, participants look at price path images before making investment choices.

It is plausible that participants perceive price differences (change in levels), rather than returns,

when looking at these images. We account for this possibility by conducting a robustness test

to check how our analyses in the main paper are affected when considering price differences as

the basis of analysis, as opposed to returns.

In the following sections, we repeat the analyses in the main paper for all three studies using

price differences. Results are qualitatively similar, with the Visual Salience model performing

best in all our analyses. The main changes from the analyses using returns as the basis are:

• In Study I (empirical price paths), the CPT model (Barberis et al., 2016) and the Salience

model (Bordalo et al., 2013) perform better (using the CPT value function) when pre-

dicting investments. We note that both these models are usually defined on returns in the

finance literature, so this has interesting potential for further exploration.

• In Study III (laboratory subjects), the the CPT model (Barberis et al., 2016) performs

marginally worse when predicting investments, compared to using returns as the basis for

analysis.
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13.1 Study I
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Table 8: Regressions for IA, Study I: Correlation Measure

(1) (2) (3) (4) (5)
IA [%] IA [%] IA [%] IA [%] IA[%]

Corr(PriceDiff, VS weights) 0.579** 0.537** 0.605**
(0.236) (0.236) (0.243)

Corr(PriceDiff, CPT weights) 0.296 0.760* 0.895*
(0.239) (0.420) (0.467)

Corr(PriceDiff, Salience weights) -0.00832 -0.195 -0.246*
(0.0688) (0.120) (0.140)

Return 0.295*** 0.295*** 0.295*** 0.292*** 0.368***
(0.0205) (0.0203) (0.0205) (0.0204) (0.0158)

Stdv -0.130*** -0.132*** -0.132*** -0.128*** -0.170***
(0.0152) (0.0153) (0.0152) (0.0151) (0.0147)

Skewness 0.00902 -0.0190 0.0116 -0.0203 -0.0239
(0.0112) (0.0259) (0.0194) (0.0267) (0.0317)

Constant 0.00491** -0.00842 -0.000600 -0.0311 -0.0881**
(0.00200) (0.00678) (0.00496) (0.0197) (0.0421)

Observations 4000 4000 4000 4000 4000
R2 0.162 0.160 0.160 0.163
* p < 0.1, ** p <0.05, *** p<0.01

The table reports invested amounts on the correlation between current price difference, visual salience decision
weight, CPT decision weight, and the salience decision weight. Control variables are the return of the price path
(Return), its standard deviation (Stdv), and its skewness (Skewness). In Model (5) we use a Tobit regression to
account accumulation of participants who did not invest in that stock. We use fixed effects to control for individual
specific effects. The dependent variable is coded in percentage values to enhance readability of the table. Robust
standard errors clustered on participant level are reported in parentheses.
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Table 9: Regressions for IA, Study I: CPT Value Function

(1) (2) (3) (4) (5)
IA [%] IA [%] IA [%] IA [%] IA [%]

Visual Salience 0.286*** 0.211*** 0.238***
(0.0318) (0.0347) (0.0412)

CPT 0.281*** 0.122** 0.177***
(0.0386) (0.0482) (0.0497)

Salience 0.143*** 0.0559* 0.0217
(0.0269) (0.0308) (0.0346)

Return 0.261*** 0.311*** 0.415*** 0.324*** 0.369***
(0.0202) (0.0201) (0.0343) (0.0345) (0.0321)

Stdv 0.133*** 0.124*** -0.0814*** 0.194*** 0.216***
(0.0334) (0.0384) (0.0168) (0.0424) (0.0404)

Skewness 0.0115 -0.0820*** -0.0389** -0.0476*** -0.0565***
(0.0112) (0.0161) (0.0152) (0.0174) (0.0216)

Constant 1.36e-08*** 1.30e-08*** 1.33e-08*** 1.34e-08*** -0.0496
(4.25e-11) (2.96e-11) (1.44e-11) (7.32e-11) (0.0355)

Observations 4000 4000 4000 4000 4000
R2 0.183 0.179 0.167 0.188
* p < 0.1, ** p <0.05, *** p<0.01

The table reports invested amounts on the Visual Salience model, the CPT model (Barberis et al., 2016) and the
Salience model (Bordalo et al., 2012) where we assume gain-loss utility with curvature α = 0.88, a reference point
ρ of zero, and a loss aversion coefficient of λ = 2.25, and price differences instead of returns. Control variables
are the return of the price path (Return), its standard deviation (Stdv), and its skewness (Skewness). In Model (5)
we use a Tobit regression to account accumulation of participants who did not invest in that stock. We use fixed
effects to control for individual specific effects. The dependent variable is coded in percentage values to enhance
readability of the table. Robust standard errors clustered on participant level are reported in parentheses.
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13.2 Study II
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Table 10: Regressions for IA, Study II: Recency Effect

(1) (2) (3) (4) (5)
IA[%] IA [%] IA [%] IA [%] IA [%]

Visual Salience 0.192* 0.177*
(0.105) (0.103)

CPT (0.95) -0.00534
(0.0455)

CPT (0.85) 0.0394
(0.0432)

CPT (0.50) 0.137** 0.127*
(0.0690) (0.0678)

6, 20 0.0426 0.0585 0.0573 0.0773 0.0621
(0.109) (0.110) (0.108) (0.105) (0.106)

6, 20, skew 0.114 0.136 0.120 0.129 0.112
(0.101) (0.110) (0.108) (0.0993) (0.0998)

Constant 0.432 -0.0653 -0.0571 -0.0428 0.413
(0.289) (0.0667) (0.0669) (0.0665) (0.282)

Observations 600 600 600 600 600
R2 0.026 0.011 0.014 0.028 0.041
Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01

The table reports invested amounts on the Visual Salience Model with CPT value function (Model(1)) and a CPT
model with recency parameter ρ = 0.95, 0.85, 0.50, Models (2)-(4). In Model (5) we run the regression with the
Visual Salience value and the CPT value (ρ = 0.5) as explanatory variables. We also include controls for the
parameter constellation of the constructed price charts, with µ = −6% and σ = 20% as reference category. All
models are based on price differences instead of returns.
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13.3 Study III
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Table 11: Regressions for IA, Study III: CPT Value Function

(1) (2) (3) (4) (5) (6)
IA [%] IA [%] IA [%] IA [%] IA [%] IA [%]

Visual salience 0.0213** 0.0226*** 0.0262*** 0.0430***
(0.00877) (0.00846) (0.00808) (0.0113)

CPT 0.00926 -0.00253 -0.0121 -0.0255**
(0.0113) (0.0120) (0.0145) (0.0122)

Salience 0.00240 0.00277 -0.00464 -0.00601
(0.00754) (0.00769) (0.00844) (0.00826)

Expected return 0.0843 0.0786 0.0796 0.0845 0.0914 0.132**
(0.0793) (0.0795) (0.0793) (0.0794) (0.0799) (0.0600)

Expected std. dev. -0.0147 -0.0179 -0.0241* -0.0155 -0.0708 -0.104***
(0.0136) (0.0154) (0.0129) (0.0155) (0.0466) (0.0292)

Expected skewness -0.248*** -0.255*** -0.245*** -0.247*** -0.228*** -0.372***
(0.0411) (0.0434) (0.0409) (0.0430) (0.0473) (0.0311)

Average realized return -0.300*** -0.269*** -0.242*** -0.291*** -0.0388 -0.0943
(0.0376) (0.0401) (0.0362) (0.0421) (0.190) (0.126)

1/n Decision Weights -0.0929 -0.129***
(0.0687) (0.0443)

Constant 0.128*** 0.140*** 0.156*** 0.129** 0.297** 0.646***
(0.0478) (0.0523) (0.0469) (0.0521) (0.141) (0.120)

Observations 61875 61875 61875 61875 61875 61875
N 275 275 275 275 275 275
R2 0.024 0.024 0.023 0.024 0.024
* p < 0.1, ** p <0.05, *** p<0.01

The table reports regressions of invested amounts on the Visual Salience model, the CPT model (Barberis et al.,
2016) and the Salience model (Bordalo et al., 2012) respectively (while using price differences instead of returns).
Control variables are expected return of the binary lottery, its standard deviation, its skewness, and the average
realized return. In Model (5) we also include a CPT value function with equal (1/n) decision weights to control
for the effect of value function specification. In Model (6) we use a Tobit regression to account for accumulation
of participants who did not invest in that stock. We use fixed effects to control for individual characteristics of
participants. All variables are standardized for easy comparison of coefficient sizes and to enhance readability of
the table. Robust standard errors clustered on participant level are reported in parentheses.
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