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Abstract

We study a competitive insurance market in which insurers have an imperfect informa-

tive advantage over policyholders. We show that the presence of insurers privately and

heterogeneously informed about risk can explain the persistent profitability, the pooling

of risk and the concentration levels observed in some insurance markets. Furthermore,

we find that a lower market concentration may entail an increase in insurance premia.
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1 Introduction

In the last few years, the American insurance industry hit repeatedly the headlines both

because of a number of reforms that are reshaping it and because of the deep technological
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changes that are substantially affecting the traditional business model. In particular, the

profitability of insurance companies has been under intense scrutiny, giving rise to a heated

debate about the driving forces of insurers’ earnings (Cabral et al., 2018). While the matter

of profits understandably catalyzed most of the attention, other features of the industry

ought to be considered. First, insurance markets appear to be highly concentrated (see e.g.

Dafny et al., 2012; Robinson, 2004).1 Second, insurance contracts often entail premia that

purposely ignore risk-relevant information, despite the fact that risk is one of the main cost

drivers of insurance policies (e.g. Finkelstein and Poterba, 2014 for the annuity insurance).

These stylized facts challenge the typical characterization of equilibria in competitive

insurance markets that builds on the seminal contribution by Rothschild and Stiglitz (1976).

Indeed, although Rothschild and Stiglitz’s (1976) analysis marks a fundamental advance

in the understanding of competition under asymmetric information, the crucial result of

that paper is that if an equilibrium exists it must be actuarially fair and separating. The

fact that persistent profitability is observed in insurance markets seems to suggest that the

classical competition framework may not be the most adequate to address the specificities of

the insurance industry. Rather, the combination of both industry concentration and profits

points towards the relevance of competitive mechanisms as those addressed by oligopolistic

models and/or to the possibility of collusive behavior among insurers. Nonetheless, both

hypotheses turn out to be largely discarded by the available empirical evidence (as discussed

in Section 2).

The considerations above indicate that there might be a hole in the literature that this

paper aims at filling by building a framework in which the key stylized facts reported in the

pertinent empirical literature emerge endogenously as a result of information asymmetries

and firms’ competition. More specifically, in this paper we investigate a competitive insur-

ance market in which insurers are better able than policyholders to estimate risk, although

they manage to do so only imperfectly.

Traditional models of asymmetric information in insurance markets (affected by moral

1A 2018 report of the American Medical Association reveals that the majority of U.S. commercial health
insurance markets are dominated by a small number of players. In 91 percent of metropolitan statistical
areas (MSAs), at least one insurer has a commercial market share of 30 percent or greater, and in 46 percent
of MSAs, a single insurer’s market share is at least 50 percent.
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hazard, adverse selection, or both), including Rothschild and Stiglitz (1976), typically assume

better informed policyholders. However, the elusive nature of risk and the skills required

to estimate it make it plausible that the informative advantage is held not (or not only) by

policyholders, but by insurers as well. Insurers are indeed better qualified, for their greater

expertise and access to data, to obtain a more precise assessment of risk than policyholders.2

In this respect, the widespread use of improved and cheap monitoring devices are relentlessly

draining the policyholder’s informative advantage, whereas the ever-increasing availability

of large data sets and advances in big data analytics and artificial intelligence are fueling the

informative advantage of insurance companies. Already in 2015, The Economist addressed

the problem of “how technology threatens the insurance business”(The Economist, March

16th, 2015).

The difficulties underlying the process of risk estimation, even for experts, may be the

cause of heterogeneity among insurers, which may be compounded by insurers’ unwillingness

(or impossibility) to share their beliefs about risk with competitors.3

We contribute to the literature on better informed insurers (e.g., Villeneuve, 2005) by

focusing on a model where each insurer estimates policyholders’ risk on the basis of a pri-

vate, imperfect signal. After observing the signal, each insurer offers a menu of contracts to

the policyholder, which may depend or not on the received signal, thus generating informa-

tive or non-informative equilibria, respectively. We find that in this setup both informative

and non-informative equilibria can emerge for different parameter constellations, reconciling

the theory with the empirical evidence about risk pooling in insurance markets.4 Further-

2 Policyholders’ inability to correctly estimate risk has been highlighted by a large number of studies
on overconfidence or unrealistic pessimism. The economic literature on overoptimism builds on the seminal
contribution of Weinstein (1980). On policyholders’ overconfidence, see e.g. Camerer (1997), Fang and
Moscarini (2005), Garcia, Sangiorgi and Urosevic (2007), Hoelzl and Rustichini (2005), Kőszegi (2006),
Menkhoff et al. (2006), Noth and Weber (2003), Sandroni and Squintani (2007), Van den Steen (2004), and
Zábojńık (2004). As for unrealistic pessimism, refer to the seminal contribution by Kahneman and Tversky
(1979).

3For instance, many laws require that medical records are not released to outsiders without the consent
of the patient. This increases the probability of mistakes in the estimation of risk by insurers. Moreover (see
e.g. Fombaron, 1997) companies may learn about the risk of their policyholders by observing claims records
and contract choices but will not freely share these private information with rival firms. As a consequence,
the rival firms do not have access to accident histories.

4Here, risk pooling means that all insurers, regardless of the signals they receive, offer the same (non-
informative) contract. The existence of informative and non-informative equilibria depends on the distribu-
tion of insurers and policyholders’ preferences, as well as on policyholders’ out of equilibrium beliefs about

3



more, we show that the competitive mechanism is not only consistent with, but actually

requires, a persistent profitability of the insurance industry (both under informative and

non-informative equilibria), overcoming the existence of actuarially fair insurance for all pol-

icyholders that is typical of the Rothschild and Stiglitz’s (1976) environment. Focusing on

informative (separating) equilibria, this result follows from the fact that truthful revelation

of insurers’ private information requires positive profits in equilibrium, which cannot be

achieved under actuarially fair schemes. Insurers’ beliefs about the riskiness of the environ-

ment in which they operate have important implications on the informational rent needed

to induce truthful revelation.5 More precisely, insurers with a lower assessment of risk may

have an incentive to lie, pretending to expect a riskier environment, in order to charge higher

premia to customers. Hence, a truthful disclosure of the riskiness of the environment requires

a higher informational rent the safer is the insurer’s estimation of risk. An even simpler ar-

gument holds for non-informative (pooling) equilibria. Indeed, an equilibrium contract must

meet the individual rationality constraints of all insurers regardless of their assessments of

the riskiness of the environment. Hence, given that the participation constraint must be met

also for those insurers believing that the environment is very risky, to be an equilibrium a

pooling contract must entail positive expected profits for the insurers assessing a safer en-

vironment. Due to the implications of truthful revelation (in informative equilibria) and of

individual rationality (in non-informative equilibria), positive profits are observed both for

pooling and separating equilibria, and in both cases they are shown to be larger for insurers’

expecting a safer market environment.

Quite importantly, our results on the existence of pooling equilibria are robust to a spec-

ification where we add the information asymmetries typical of the Rothschild and Stiglitz’s

(1976) approach (i.e. less informed insurer) to those introduced in our setup (i.e. less

informed policyholder), and we let the latter become negligible. We show that pooling

(non-informative) equilibria may exist also in this limit case – when our model converges

to that by Rothschild and Stiglitz (1976) – provided that policyholders’ types are not too

insurers’ assessments of risk.
5Throughout the paper, with riskiness of the environment we indicate insurers’ assessment of risk based

on observables.
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different (i.e. when the assessment of loss probabilities is similar). The intuition for the

existence of non-informative equilibria hinges on the informational structure, as contracts

offered by more informed insurers constitute a signaling device. Consistently with signaling

games, the choice of out-of-equilibrium beliefs allows sufficient degrees of freedom to sustain

pooling equilibria for specific parameter sets, impeding the emergence of ‘cream-skimming’

deviations. Interestingly, this mechanism is robust to the introduction of a second layer

of asymmetric information, i.e. the policyholder’s private information on the idiosyncratic

components of her own risk.

Market concentration plays an important role on the existence of equilibria. Indeed, we

prove that there exists an upper bound to the number of firms consistent with the existence of

a non-informative equilibrium, and both a lower and an upper bound for the existence of in-

formative equilibria.6 Furthermore, and somewhat counter-intuitively, it is shown that in the

case of non-informative equilibria a larger industry dispersion may entail larger equilibrium

profits, consistently with the observed unstable relationship between market concentration

and profitability.

In a policy perspective, our results may contribute to the debate about the impact of

new technologies in the insurance industry. One major concern in this respect is that –

to the extent that new technologies allow a more granular and precise assessment of risk –

personalized policies unhinge the pooling of risk that is at the foundation of the existence

and efficiency of insurance markets. Conversely, as already noted, the “coming revolution

in insurance”(The Economist, March 9th, 2017) is also expected to wreak havoc on a so-

far relatively “complacent industry”, boosting competition and eroding profits. Our paper

suggests that these conclusions might be undeserved, by showing that pooling equilibria

and persistent profitability are fully consistent with competition among insurers holding an

informative advantage over policyholders.

The rest of the paper is organized as follows. Section 2 investigates the connections

between our approach and the pertinent literature. Section 3 describes the baseline model.

6In the working paper version (i.e. Abrardi et al., 2019), we report numerical simulations for empirically
plausible parameter configurations, indicating that the upper bound is typically fairly small. This suggests
that the insurance industry should be quite concentrated, consistently with the available empirical evidence
on the structure of the industry.
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Section 4 discusses the characteristics and provides existence conditions for non-informative

(pooling) equilibria. It also provides (in Sub-section 4.3) an extension of the baseline setup

to the case of ‘two-sided’ asymmetric information – by adding an information asymmetry à

la Rothschild and Stiglitz (1976). Section 5 focuses on the characterization and existence

of informative equilibria. Section 6 extends the baseline model to an arbitrary number of

firms, showing the robustness of the results on equilibria characterization, and investigating

the correlation between market concentration and profitability in equilibrium. Section 7

concludes. All proofs and technical details that are not crucial for the understanding of the

underlying logic of our results are relegated into an Online Appendix.

2 Related Literature

The issue of competition in insurance markets has been largely debated. While the theoretical

literature building on Rothschild and Stiglitz (1976) claims that competition rules out the

possibility of positive profits for insurance companies even in the presence of information

asymmetries, a large body of empirical evidence points to the opposite conclusion, with

prices not reflecting insurance costs (e.g. Cummins and Tennyson, 1992; Robinson, 2004;

Sommer, 2017).

It is well known that insurance markets are often highly concentrated. In many countries,

the commercial health insurance market is dominated by two to three carriers (Robinson,

2004; Fulton, 2017; Dauda, 2018). High levels of concentration are also found for property-

liability insurance (e.g. Cummins and Weiss, 1993; Chidambaran et al., 1997), and for

private passenger automobile insurance (e.g. Bajtelsmit and Bouzouita, 1998). Nonetheless,

there is no evidence of a significant relationship between the rise in insurance prices and

market concentration (Dafny et al., 2012; Hyman and Kovacic, 2004). Rather, and quite

surprisingly, greater insurer concentration has been shown to depress the prices of health

insurance (Dauda, 2018). All this seems to suggest that profitability in insurance markets

requires a deeper explanation than the natural correlation between profitability and market

concentration.

Also puzzling is the role of risk pooling in insurance. The available empirical evidence
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points to the existence of observable variables – i.e., attributes of insurance buyers that are

correlated with risk – that are not used to price insurance policies. For example, Finkelstein

and Poterba (2014) note how insurance companies in the UK annuity market “voluntarily

choose not to price on the basis of risk-related buyer information that they collect”such as

the annuitant’s place of residence, although this may help to predict future mortality. This

is starkly at odds with traditional competitive insurance models, showing that risk types

must be separated in equilibrium, pointing to yet another hole in the theoretical modeling

of insurance markets.

Two streams of recent literature have attempted at reconciling the theory of insurance

markets with the empirical literature: the first building on non-exclusive contracts, and the

second on exclusive contracts with more informed insurers.

The literature on non-exclusive contracts shows the existence of profitable and pooling

equilibria by relying on the possibility for insurers to offer latent contracts that are never

chosen in equilibrium. Such contracts are used strategically to prevent deviations by com-

petitors. In a theoretical perspective, a desirable characteristic of latent contracts is that,

by inducing non-negative profits if chosen, they are consistent with the logic of sequential

rationality. There are however drawbacks. First, latent contracts do not necessarily entail

non-negative profits (e.g. the moral hazard context in Attar and Chassagnon, 2009). Second,

a large number of latent contracts might be required for an equilibrium to exist (in Attar

et al., 2011, an infinite number of latent contracts is offered in equilibrium), which is not

that appealing in practice.7 Third, there is evidence of insurance markets characterized by

the presence of exclusive contracts that entail positive profits and risk pooling (automobile

insurance contracts are almost always exclusive, as shown by Chiappori and Salanie, 2000).

The third issue is of practical importance. Indeed, the existence of exclusive contracts is

often the result of regulatory choices. Hence, there is the need for a theory, complementing

that on non-exclusive contracts and allowing instead for exclusive contracts, that can serve as

guidance for the policy maker. Attar et al. (2011) argue that, under exclusive contracts, risk

pooling and profitability cannot emerge with more informed policyholders, while Villeneuve

7Nonetheless, Attar et al. (2011) is extremely elegant in a purely theoretical perspective, achieving both
equilibrium existence and uniqueness.
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(2005) shows that this is not the case when focusing on competitive insurance markets with

more informed insurers.

Also our work focuses on exclusive contracts and is related to that of Villeneuve (2005),

although we consider a fundamentally different information structure.8 Indeed, Villeneuve

(2005) assumes that insurance companies observe the policyholder’s type, while our analysis

is based on insurers receiving only an imperfect signal about the riskiness of the environment.9

As a consequence, in our model, insurers have no better information about the policyholder’s

type than the policyholder herself. This is consistent with Harsanyi’s approach to incomplete

information games entailing that each player has more information about her own type.

Our results depart quite substantially from those obtained by Villeneuve (2005), espe-

cially insofar the characterization and existence of informative (separating) equilibria are

concerned. We show that informative equilibria must always be profitable in order to induce

an insurer who receives a good signal about the riskiness of the environment to reveal his

information. This is not the case in Villeneuve (2005), who finds that separating equilib-

ria need not be profitable (although they can occasionally be). Furthermore, in Villeneuve

(2005) separating contracts (with full insurance) are an equilibrium, implying that efficiency

can always be achieved with more informed insurers. We show, instead, that informative

equilibria are typically characterized by severe under-insurance, even when the signals re-

ceived by insurers are very precise. This seems to indicate a strong reliance of the equilibria

characterized by Villeneuve (2005) on the specificities of the information structure he con-

siders.10 Finally, it is worth noting that, as far as non-informative (pooling) equilibria are

concerned, we improve upon Villeneuve (2005) by showing their existence and profitability

also for heterogeneous and imperfectly informed insurers.

8Our contribution is also linked to Myerson (1983) and Maskin and Tirole (1990 and 1992), although
they focus on exclusive contracts and more informed principals in a monopolistic setting. We argue later
in the paper that the consideration of a competitive setting substantially alters the information structure of
the agency problem.

9Note that the analysis in Villeneuve (2005) is a special case of ours when we assume that the signal
received by insurers is almost perfect.

10While Villeneuve (2005) shows that a separating equilibrium always exists, we find that the existence of
informative equilibria is restricted to a specific set of parameter values. Consistently with most literature on
exclusive contracts, we cannot provide a general proof of existence of pure strategy equilibria. Nonetheless,
in our setup equilibria exist for a wide range of parameters values, as we show in Abrardi et al. (2019) by
means of numerical simulations based on a CARA specification of policyholders’ utility.
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3 A Baseline Model

We first present a baseline duopoly model in which insurers are assumed to be better able

than policyholders to assess individual risk. Throughout most of the paper, to best highlight

the implications of better informed insurers, we also assume that policyholders have no pri-

vate information about their characteristics. This model allows us to convey all fundamental

intuitions disposing of the technicalities involved by a generic n- firms oligopoly, to which

we turn later in the paper (see Section 6).

This section describes the setup and the timing of the baseline model, it defines the

adopted equilibrium concept and the belief systems we allow for, as well as the notions of

non-informative and informative equilibria.

3.1 Setup and Timing

We consider an insurance market with two insurers (i = 1, 2) and one representative pol-

icyholder. The policyholder is endowed with initial wealth W , and faces a possible loss

L.

Each insurance contract c defines an insurance premium (T ) and a reimbursement (R)

in the case of loss. The policyholder’s wealth is WL = W − L + R − T when a loss occurs

and WN = W − T under no loss. Therefore, insurers’ contracts can simply be written as

c = (WL,WN), specifying the policyholder’s wealth in the two possible states of the world.

The policyholder is assumed to be risk averse, with preferences represented by the Von

Neumann-Morgenstern utility function U(·).11 The policyholder’s expected utility (for a

generic loss probability p) when contract c = (WL,WN) is implemented can therefore be

written as

EUp(c) = pU(WL) + (1− p)U(WN).

Insurers are assumed to be risk neutral, so that (for a generic loss probability p) their

11When dealing with the issue of equilibrium existence, we specialize our analysis to the case where the
preference ordering of the policyholder is represented by a constant absolute risk averse utility function.
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profit function when contract c = (WL,WN) is implemented is given by

Eπp(c) = p(W − L−WL) + (1− p)(W −WN).

Given her specific assessment of the loss probability, the policyholder is willing to accept

any contract that is weakly preferred to the no-insurance outside option; i.e. she accepts

any insurance contract c satisfying the participation constraint

EUp(c) ≥ EUp(c),

where c = (W − L,W ) denotes the no-insurance outside option.

The environment θ in which the insurers and the policyholder operate can be either

dangerous (d) with probability Pd, or safe (s) with probability Ps = 1−Pd. The environment

θ ∈ {s, d} affects the loss probability pθ faced by the policyholder, with ps < pd. We assume

that the value of θ is unobservable, although each insurer i receives independently and

privately an imperfect signal θ̂i ∈
{
ŝ, d̂
}

about θ. The signal θ̂i identifies an insurer’s type

and it is not observable by the other insurer and by the policyholder. We refer to the vector

of signals (θ̂1; θ̂2) as a signal profile. Each signal θ̂i is correct with probability α, so that α

indicates signal precision: Pr(θ̂i = ŝ|θ = s) = Pr(θ̂i = d̂|θ = d) = α for i = (1, 2), with

1/2 < α < 1. Since signals are independent and of equal precision, the number of insurers

who receive signal θ̂i = ŝ, denoted by nŝ, is a sufficient statistics of the loss probability,

where obviously nŝ = (0, 1, 2). Namely, nŝ = 0 if both firms receive signal d̂ ; nŝ = 1 if one

firm receives signal ŝ and the other receives signal d̂; and finally nŝ = 2 if both firms receive

signal ŝ. Throughout the paper we summarize, without loss of generality, the signal profile

by nŝ. We denote with pnŝ = (p0, p1, p2) the loss probability conditional on nŝ, i.e.

pnŝ =
∑
θ=s,d

pθ Pr(θ|nŝ), (1)

where Pr(θ|nŝ) denotes the probability that the state of the world is θ (and hence the loss

probability is pθ) given that nŝ insurers receive signal ŝ.
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Each insurer i is assumed to offer a menu, Ci, of exclusive and non withdrawable con-

tracts, conditional on what is revealed to the policyholder about the signal profile.12 We

denote with C = {C1;C2} the vector of menus offered by the two insurers. The timing of

the strategic interaction between the policyholder and the two insurers is as follows.

0. Nature moves first, choosing the environment θ and drawing – independently and from

a common distribution – each insurer’s signals on the environment θ̂i;

1. insurer i, i = 1, 2, privately observes θ̂i and he updates his prior on θ conditional on θ̂i;

2. insurers simultaneously make offers consisting of a menu of contracts C = {C1;C2};

3. the policyholder observes all offers at no cost, updates her beliefs and selects one contract

belonging to a specific menu. If she does not accept any contract, she receives her

reservation option (no-insurance);

4. the accepted contract is implemented and payoffs are received.

This timing entails that the policyholder and the insurers rely on different estimates of

the loss probability. In stage 0, there is no information about the loss probability but for the

prior, so that the ex ante loss probability can be written as p̄ = pdPd+psPs. The ex ante loss

probability is updated by insurers at the interim stage (stage 1), based on the private signal

they receive. We denote by pθ̂ each insurer’s ad interim estimation of the loss probability,

obtained when insurer i observes only his own signal θ̂i. In the next stage of the game

(stage 3), the policyholder gathers market information about the signals received by insurers

based on their offers. Let µ̃i(C) ∈ [0, 1] be the probability (obtained using Bayes rule) that

the policyholder assigns to θ̂i = ŝ given the vector C of contract menus she observes (i.e.

µ̃i(C) = Pr(θ̂i = ŝ|C)), so that the vector µ̃(C) = {µ̃i(C)}i=1,2 represents the policyholder’s

belief about insurers’ type (i.e. about the signal profile {θ̂i}i=1,2). Then, based on µ̃(C) and

using again Bayes rule, the policyholder can estimate the ex post loss probability p̃(C).13

12The structure of these menus is clarified in Subsection 3.2, as it depends on whether the equilibrium
considered is informative or non-informative.

13The ex post loss probability depends on the characteristics of the emerging equilibrium. If all insurers
offer the same contract menu (a pooling uninformative equilibrium), policyholders learn nothing about
insurers’ signal profiles and need therefore to rely on the loss probability estimated ex ante. Conversely,
under separating (informative) equilibria, the policyholder infers insurers’ type by looking at contract menus,
and she can exploit this information to update the ex ante loss probability.
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3.2 Equilibrium and Beliefs

Given the timing and information structure of the model, the appropriate notion of equi-

librium is that of perfect Bayesian equilibrium (PBE). Focusing on symmetric equilibria in

which all insurers with the same type offer the same menu, a PBE can be defined as follows.

Definition 1 A symmetric Perfect Bayesian Equilibrium is defined by (a) a vector of con-

tract menus Ce = (Ce
1 ;Ce

2), where Ce
i ∈

{
Ce
θ̂i

}
θ̂i=ŝ,d̂

, i = 1, 2, depending on the type of insurer

i, and (b) a belief mapping µ̃(C) such that:

1. insurers’ strategies are sequentially rational, so that for any insurer i of type θ̂i, the

menu Ce
θ̂i

is the one maximizing expected profits given (1) the strategy profile of insurer

j, Ce
j , j 6= i, and (2) the policyholder’s strategy;

2. for any given information set, the policyholder’s equilibrium strategy selects the contract

belonging to Ce that maximizes her expected utility given her beliefs µ̃(C);

3. beliefs are consistent with Bayes rule when relevant.

The notion of Perfect Bayesian Equilibrium requires the definition of a belief system

based on Bayesian updating on the equilibrium path and arbitrarily defined off the equilib-

rium path. The pertinent literature on informed insurers uses a variety of out of equilibrium

beliefs. That closest to our contribution focuses almost exclusively on two such types of be-

liefs: pessimistic and optimistic (see e.g. Villeneuve, 2005 and Seog, 2009). The policyholder

is defined as optimistic (pessimistic) when she believes that a deviating insurer receives the

good signal ŝ (bad signal d̂), holding constant the equilibrium beliefs about the other. Ob-

viously, beliefs need not be necessarily entirely optimistic or pessimistic: indeed, one could

consider a broader array of beliefs, obtained as a convex combination of the two extremes.

We focus on this more encompassing view, by defining the probability that the policyholder

assigns to the event that a deviating insurer is of type ŝ when a deviation is observed as her

‘degree of optimism’. Formally,

Definition 2 The policyholder shows a degree of optimism x ∈ [0, 1] if, for any deviation,

Ci 6= Ce
i , µ̃i(C) = x. In this case, the policyholder is labeled as x-optimistic.
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Note that, as it is standard in the literature, we assume that a deviation by insurer i

reveals nothing about the type of the other insurer. Furthermore, the policyholder’s degree of

optimism x is independent of the specific deviation from the equilibrium operated by insurer

i. Allowing for different degrees of optimism x, the properties and implications of alternative

belief systems can be investigated. Interestingly, the notion of x-optimistic beliefs includes

that of fully optimistic (x = 1) and fully pessimistic (x = 0) beliefs, as well as that of passive

beliefs, which describes a policyholder retaining prior beliefs about the type of the deviating

insurer (holding constant her equilibrium beliefs about the other insurer).14

It is useful to further discuss the implications of the model information structure, infor-

mally anticipating the characteristics of the possible equilibria entailed by such structure.

Our setup may give rise to two fundamental asymmetric information problems. The first

has the formal structure of a more informed principals problem stemming from the fact

that insurers have private information about the riskiness of the environment in which they

operate. Two opposite scenarios may emerge depending on whether insurers’ information is

revealed or not in equilibrium (resulting in informative or uninformative equilibria). In fully

informative equilibria, each insurer’s menu conveys information about his type: the differ-

ences in the menus offered by ŝ and d̂ insurers imply separating equilibria on the insurers’

types in the first stage. Conversely, in non-informative equilibria the insurers’ offers do not

carry information about the insurers’ signals: ŝ and d̂ insurers offer identical menus, which

implies pooling on the insurers’ types in the first stage.

The second asymmetric information problem arises exclusively in the context of informa-

tive equilibria, and it is originated by the fact that the insurers’ menus convey information

about their private signals. Thus, the policyholder is able to infer the signal profile by ob-

serving the two menus. Such market information is not available to the insurers when they

make their offers since they are unaware of their competitor’s type. Namely, the policyholder

knows the whole signal profile when choosing the contract, while insurers know only their

own type when issuing the offer. Despite insurers have private information, the strategic in-

teraction that arises in our competitive setup is very different from that typically investigated

by the more informed principal literature. Rather, our problem is analogous to a screening

14In our setup, passive beliefs are immediately obtained by setting x = αPs + (1− α)Pd.
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one with better informed agents, where the signal profile constitutes the policyholder’s type.

Then, insurers offer an incentive compatible menu of different contracts, with one contract

for each possible policyholder’s type. The resulting equilibrium exhibits strong similarities

with the Rothschild and Stiglitz menu, the only difference being that in our setup there are

two different types of insurers rather than just one. The implication of the existence of two

types of insurers, ŝ and d̂, is that their offers must necessarily differ. Indeed, any difference

in the equilibrium menus of the two types of insurers conveys information about their types,

and this is what ultimately makes the offer informative. Therefore, fully informative equi-

libria must entail separation, both with respect to the insurers’ types (through differences

in the equilibrium menus) and to the policyholder’s types (through the offer of a menu of

contracts, with one contract for each signal profile).

Under non-informative equilibria, instead, the insurers’ types are not conveyed to the

policyholder, which prevents her from making an inference about the signal profile. Indeed,

in equilibrium there is only one type of policyholder, who maintains her ex-ante beliefs about

risk even after observing the insurers’ offers. Thus, given that observationally there is only

one type of policyholder, the outcome of non-informative equilibria no longer entails a menu

of contracts, but simply a single contract. Moreover, since any difference in the contract

offered in equilibrium by the ŝ and d̂ insurers would convey information about the insurers’

types, non-informative equilibria necessarily require that the equilibrium contract coincide

for both types of insurers.

4 Non-Informative Equilibria: Characterization and

Existence

We now turn to the existence and characterization of equilibrium offers, focusing first on non-

informative equilibria.15 For an equilibrium not to be revealing insurers’ information, it must

be that both firms offer the same menu of contracts. In terms of strategies, this obviously

corresponds to a pooling equilibrium. In order to reduce the burden imposed on our model

15Although other types of equilibria may exist under mixed strategies, we restrict our attention to pure
strategy equilibria only, consistently with what is typically done in the pertinent literature.
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by technicalities, and consistently with the available empirical evidence, throughout the rest

of the paper we restrict our attention to contracts entailing under or full insurance.16 Even

in this case, the set of non-informative equilibria is potentially infinite, as it depends on a

number of factors, and particularly on the set of beliefs off the equilibrium path. Throughout

the paper, we restrict the set of admissible contracts to those implying non-negative profits

with positive probability if accepted, hence focusing exclusively on equilibria whose outcomes

convey interesting economic insights in terms of profitability.17

In this setup, we show that the existence of non-informative equilibria depends funda-

mentally on insurers holding private information. A similar result has also been obtained

by Villeneuve (2005), although in a more restrictive setup where firms perfectly know the

policyholder’s type, while the latter is only imperfectly informed about her own type. Our

framework improves over that of Villeneuve (2005) by allowing for a formulation that is

fully consistent with Harsanyi’s approach to incomplete information games. The existence

of pooling equilibria is obviously in stark contrast with Rothschild and Stiglitz (1976), who

show that risk pooling cannot emerge when private information is held by policyholders only.

Finally, in Section 4.3 we extend our baseline model to the case of two-sided asymmetric

information (i.e. a scenario in which insurers have private information about the environment

and policyholders have private information about their own characteristics), in order to

compare our results to those emerging in the seminal Rothschild and Stiglitz’s (1976) setup.

4.1 Characterization

In non-informative equilibria, no revelation of information occurs as the insurers’ offers do

not convey information about their signals. This implies that no effective signaling on the

insurers’ type takes place. Since information would be revealed through differences in the

equilibrium offers by the two types of insurers, insurers’ offers must be identical, regardless

of the signal received, ŝ or d̂. The observation of the equilibrium offers does not allow the

policyholder to gather market information about the realized signal profile. For this reason,

16Such restriction is without loss of generality, at least in the case of non-informative contracts.
17 Abrardi et al. (2019) generalize the analysis, showing that any individually rational allocation can be

sustained as a non-informative equilibrium, when allowing for (latent) contracts entailing non-positive profits
if accepted.
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non-informative equilibria imply the existence of only one policyholder’s type, who has an

ex ante estimation of risk. Hence, the insurers do not have to screen among different types

of policyholder. Since there is just one type of policyholder, each insurer’s offer entails

only one single pooling contract. In particular, there cannot exist pooling menus. Thus,

d̂ and ŝ insurers in equilibrium offer the same contract ce. As no information is conveyed

in equilibrium, insurers simply update their beliefs on the environment based on their own

signal θ̂. The loss probability estimated by insurers when signal θ̂ is received can thus be

written as pθ̂ = ps Pr(s|θ̂) + pd Pr(d|θ̂) (ad interim estimation of risk). The expected loss

probability estimated by the policyholder in equilibrium corresponds instead to the ex-ante

loss probability p̄ = pdPd + psPs.

The equilibrium contract ce must meet three conditions. First, it must be profitable, or

fair, for all insurers’ types, so that insurers’ participation constraint Eπpθ̂(c
e) ≥ 0 must be

satisfied for all θ̂ = {ŝ, d̂}. Second, it must be acceptable by a policyholder who has the

prior estimation of the loss probability, so that the policyholder’s participation constraint

EUp̄(c
e) ≥ EUp̄(c) must be satisfied. Third, any deviation acceptable by the policyholder

must be less profitable than the equilibrium contract for both ŝ and d̂ insurers, given the

policyholder’s beliefs (i.e. there are no profitable deviations).

To better understand the third condition, note that the set of admissible deviations

includes single contracts only and not menus (screening of the policyholder’s type would not

be possible also in deviation), given that there is just one type of policyholder. Nonetheless,

insurers can offer different contracts according to their own type, ŝ or d̂. For all practical

purposes, it is sufficient to focus only on the most profitable deviation for a θ̂ insurer, which

we denote with cdev
θ̂

. Note that such deviation is preferred to autarky by the policyholder,

given her off-equilibrium risk assessment p̃(C).18 Formally, the contract cdev
θ̂

can be defined

as

cdev
θ̂
≡ arg max

c
Eπpθ̂(c) (2)

s.t. EUp̃(C)(c) ≥ EUp̃(C)(c),

18With a slight abuse of notation, we consider profits as function of a single contract rather than of a
menu.
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where c denotes the degenerate menu of contracts Ci offered by insurer i. Note that cdev
θ̂

is

preferred to autarky, but not necessarily to ce. Therefore, any deviation from ce guarantees

to a θ̂ insurer a level of expected profits that are at most equal to those induced by cdev
θ̂

,

Eπpθ̂(c
dev
θ̂

).

If equilibrium expected profits (1
2
Eπpθ̂ (ce)) are greater than the upper bound of deviation

profits (cdev
θ̂

), i.e
1

2
Eπpθ̂ (ce) ≥ Eπp

θ̂
(cdev
θ̂

) for all θ̂ =
{
ŝ, d̂
}
, (3)

then any acceptable and profitable deviation can be ruled out.

Interestingly, the participation constraint of any insurer is always met if (3) holds, since

Eπpd̂(c
dev
d̂

) ≥ 0. Therefore, a non-informative equilibrium exists if and only if condition (3)

and the policyholder participation constraint are met.

Proposition 1 summarizes the above discussion and it establishes (in Point 3) that for

profitable deviations not to exist, policyholder’s beliefs must be sufficiently optimistic.19

Proposition 1 If a non-informative equilibrium exists, it is such that:

1. insurers’ participation constraint Eπpθ̂(c
e) ≥ 0 must be satisfied for all θ̂ = {ŝ, d̂};

2. the policyholder’s participation constraint EUp̄(c
e) ≥ EUp̄(c) must hold;

3. the policyholder’s beliefs are sufficiently optimistic, i.e. p̃(C) < p̄ for any C 6= Ce.

The first two points of Proposition 1 follow directly from the discussion above, while point

3 requires more attention. When the policyholder is overly optimistic about her own risk,

she expects larger rebates in the contract than insurers are willing to make. Thus, marginal

undercuts from non-informative equilibria are rejected by the policyholder, who demands

optimistically a higher discount on the offer. The higher is the policyholder’s optimism,

the higher is the requested rebate and the lower is the profitability of the deviation. Opti-

mistic beliefs then hinder the effectiveness of the competitive mechanism, thus preventing

the emergence of an actuarially fair outcome.

19Optimistic beliefs can be easily justified based on the vast literature on overconfidence. See e.g. Kah-
neman and Tversky (1979), Weinstein (1980), Kreuter and Strecher (1995), and Robb et al. (2004) for
underestimation of health risk, as well as Groeger and Grande (1996) or Svenson (1981) for overconfidence
on driving ability.
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The result in point 3 of the proposition is fully consistent with the notion of distant

types, which can be found in the literature on better informed insurers (see e.g., Villeneuve,

2005). Following this literature, types are distant if all contracts that are actuarially fair

or profitable for a d̂ insurer are not acceptable by the policyholder (i.e. they do not satisfy

her participation constraint), entailing that a deviation contract cannot be preferred to the

equilibrium contract. Since the policyholder’s participation constraint crucially depends on

the belief system, types are more likely to be distant when the policyholder is sufficiently

optimistic off the equilibrium path. In particular, the assumption of distant types is a

sufficient condition to prevent deviations by d̂ insurers.

Besides characterizing them, we can immediately establish three results about the set of

non-informative equilibria.

Result 1. Equilibrium conditions allow for a multiplicity of equilibrium contracts ce.

This result is clearly illustrated in Figure 1, where the policyholder’s participation con-

straint out of equilibrium is represented by the indifference curve EUp̃ (c).20 All contracts in

the shaded area can emerge as a non-informative equilibrium outcome. Indeed, they satisfy

the participation constraint of the policyholder in equilibrium (represented by the indiffer-

ence curve EUp̄ (c)); they meet the insurers’ participation constraints, as they lie below the

zero isoprofit lines of both d̂ and ŝ insurers; and they satisfy condition (3), represented by

the dashed lines 2Eπpŝ(c
dev
ŝ ) and 2Eπpd̂(c

dev
d̂

).

Result 2. Non-informative equilibria are always strictly profitable for ŝ insurers, due to

their lower estimation of risk than d̂ insurers.

It is easy to see that if a contract is profitable for a d̂ insurer, then it is profitable for a ŝ

insurer as well, given the latter’s lower expectation of risk. Thus, the constraint Eπpŝ(c
e) ≥ 0

is never binding and the condition Eπpd̂(c
e) ≥ 0 is sufficient for the insurers’ participation

constraints to hold.21 Moreover, also d̂ insurers may have strictly positive profits whenever

20To lighten the reader’s burden, whenever possible, we rely on a graphical analysis to illustrate our main
arguments. Note that throughout the paper we disregard all contracts entailing overinsurance, although this
does not entail any significant loss of generality in the case of non-informative equilibria.

21It is important to highlight that while in Villeneuve (2005) pooling equilibria are not necessarily entailing
positive profits, this must be the case in our framework for ŝ insurers, which implies that ex ante expected
profits are always positive in our setup.

18



WL

c

cŝ
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Figure 1: Non-Informative Equilibrium

the r.h.s. of condition (3) is strictly positive. Interestingly, although profitable equilibria

may not be robust to refinements such as the Intuitive Criterion, Abrardi et al. (2019) show

that this is not the case in our setup.

Result 3. There may exist equilibrium contracts entailing full insurance and hence

inducing ex ante Pareto efficient allocations.

The point is again easily illustrated by focusing on all the contracts along the 45◦ line

in the shaded area of Figure 1. Interestingly and different from what is commonly argued

by most of the pertinent literature, Result 3 builds a case in favor of the efficiency of non-

informative equilibria (i.e. risk pooling) in insurance markets.22

4.2 Existence

In general, the issue of equilibrium existence is demanding if tackled without focusing on

specific functional forms. Hence, throughout the paper we limit our analysis of existence

to instances where the policyholder’s utility function entails constant absolute risk aversion,

adopting the following CARA specification

U(WJ) = 1− e−βWJ , J ∈ {L,N}, (4)

22For a notable exception pointing in the same direction of our result, see Diamond (1992).
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where β denotes the degree of (absolute) risk aversion. In this case, the existence of non-

informative equilibria entailing a positive level of insurance can be easily established under

relatively mild conditions on probabilities and on the degree of the policyholder’s risk aver-

sion, as summarized in Proposition 2.23

Proposition 2 Given the CARA policyholder’s utility specification (4), an (ex-ante) effi-

cient non-informative equilibrium exists if the following conditions hold:

1. the probability of the s environment is sufficiently low, Ps close to zero; i.e. both pd̂ and

p̄ are sufficiently close to pd.

2. risk aversion is sufficiently low (β close to zero);

3. the loss probability in the s environment is sufficiently low, ps close to zero, and the

precision of the signal is sufficiently high, α close to 1.

For the sake of simplicity we illustrate the economic content of the three conditions in

Proposition 2 by assuming a fully optimistic beliefs system.24

It is easy to see that Condition 1 in Proposition 2 guarantees that the insurers and the

policyholder’s participation constraints are met in equilibrium. As the probability of the

safe environment s diminishes, p̄ – the loss probability assessment of the policyholder – and

pd̂ – the loss probability assessment of the d̂ insurer – approach the same value pd.
25 If the

policyholder and the insurer have similar assessments of the loss probability, the risk aversion

of the former ensures that there exist gains from trade between the policyholder and the d̂

insurer. Moreover, recall that the participation constraint of the ŝ insurer is always met if

that of the d̂ insurer holds.

Condition 2 guarantees that no profitable deviations exist for ŝ insurers. In fact, the

lower is the policyholder’s degree of risk aversion, the lower is her willingness to pay for

insurance. Then, deviations acceptable by a fully optimistic policyholder (who estimates

a loss probability pŝ) are such that the expected profits of a ŝ insurer (with the same risk

23Abrardi et al. (2019), focusing on the CARA specification (4), provide numerical simulations confirming
that a non-informative equilibrium exists for a wide range of (empirically plausible) parameter values and it
is therefore a robust feature of insurance markets.

24By continuity, Proposition 2 holds even for less restrictive belief systems, provided they are sufficiently
optimistic as required by Proposition 1.

25This follows directly from the definition of p̄, i.e. p̄ = Psps + (1− Ps)pd as Ps goes to zero.
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assessment) are lower than those he obtains in equilibrium. However, this condition is not

sufficient to rule out deviations by a d̂ insurer.

Indeed, a d̂ insurer can improve his profits by offering an underinsurance contract when-

ever the policyholder is optimistic. This happens because a d̂ insurer estimates a higher

risk than the optimistic policyholder, and thus he prefers to reduce insurance coverage. To

prevent this deviation by the d̂ insurer being profitable, it must be that the policyholder’s

willingness to pay for insurance is low. This occurs when pŝ is sufficiently low, which in turn

requires that the signal is precise and the risk in environment s is negligible, i.e. α is close

to 1 and ps is close to zero as required by Condition 3 in Proposition 2.26

4.3 Two Sided Asymmetric Information: A Comparison with Roth-

schild and Stiglitz (1976)

In the previous section we proved the possibility of profitable pooling equilibria, while the

classical Rothschild and Stiglitz (1976) model – where asymmetric information is on the

other side of the market – predicts that only separating and actuarially fair contracts may

exist. One could conjecture that the existence of pooling equilibria is an implication of the

fact that in our setup insurers rather than policyholders have an informative advantage.

In order to check whether our result remains valid when also policyholders have private

information, we assume that the risk depends both on the general riskiness of the environ-

ment (d or s) and on the specific policyholder’s personal characteristics (such as her health or

habits), in line with Rothschild and Stiglitz (1976). We further assume that these character-

istics are perfectly and privately known by the policyholder, but unobserved by the insurers.

Finally, we maintain the assumption that each insurer receives an imperfect private signal

about the environment riskiness.

Notice that when the environment is d (or s) with high probability and the precision

26Note that if a full insurance deviation is not profitable for a ŝ insurer, then it is also not profitable for a d̂
one. To see this, observe that the gain of abiding by the equilibrium, relative to a (full insurance) deviation,
increases linearly with the assessment of the loss probability. In fact, denoting with W e the policyholder’s
constant wealth in the full insurance equilibrium contract and with W dev that in a full insurance deviation,
the gain for an insurer of sticking to the equilibrium given a generic loss probability p is given by ∆πp =
W − pL − W e − 2

(
W − pL−W dev

)
= −W + pL + 2W dev − W e. Since pŝ is lower than pd̂ it follows

immediately that if no profitable deviation exists for a ŝ insurer, then it does not exists for a d̂ one as well.
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of the signal is high, then our model can be thought of as a perturbation of the original

Rothschild and Stiglitz’s one. In the following we show that, in this case (and provided that

the damage probabilities for different types of the policyholder are not too far away), there

exists a set of parameter values guaranteeing the existence of profitable non-informative

equilibria that are also pooling on the policyholder’s idiosyncratic risk. As already noted in

the Introduction, the reason why – differently from Rothschild and Stiglitz (1976) – non-

informative pooling equilibria may exist in our setup lies in the signaling content of contracts,

which in general makes ‘cream-skimming’ opportunities more difficult to exploit.

4.3.1 The Model

Under two-sided asymmetric information, the loss probability depends on two factors: the

general riskiness of the environment θ ∈ {d, s} and the idiosyncratic risk j ∈ {h, l} implied by

the policyholder’s personal characteristics. Based on her idiosyncratic risk, the policyholder

may be labeled as high risk (h) or low risk (l). Recall that whether the policyholder is high

or low risk j ∈ {h, l} is her private information.

The combination of the general and idiosyncratic sources of risk gives rise to four states

of the world, i.e. θj ∈ {dh, dl, sh, sl}. To ease the notation, we assume that the distribution

of the idiosyncratic risk, described by the ex ante probabilities Ph and Pl, is independent

from that of general risk, which is described by the probabilities Ps and Pd. Both the four

probabilities and the fact that they are independent are common knowledge.

We denote with pθj ∈ {pdh, pdl, psh, psl} the loss probability in the state of the world

θj. Given the policyholder’s idiosyncratic risk, the d environment is riskier than the s one:

pdl > psl ≥ 0 and pdh > psh. Given the riskiness of the environment, the h policyholder

is riskier than the l one: pdh > pdl and psh > psl. Each insurer i receives an imperfect

private signal θ̂i ∈ {d̂, ŝ} about the general risk θ, which is correct with probability α,

1/2 < α < 1. All signals are independent and conditional only on θ. The probability α is

common knowledge. The ex-post loss probability depends on the signal profile nŝ ∈ {0, 1, 2}

and on the policyholder’s specific risk j ∈ {h, l}.27 Therefore, the expected loss probability

27Consistently with the one-sided information case, nŝ corresponds to the number of insurers having
received signal ŝ, which can be taken as a sufficient statistic of the signal profile due to insurers’symmetry.
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of an agent who could observe all information available in the market would be pnŝj, where

pnŝj ∈ {p0h, p0l, p1h, p1l, p2h, p2l}, corresponding to the six possible market states.

The timing of the model is as follows.

1. At the beginning of the game, nature moves and chooses the values of θ and j.

Furthermore, it draws independently and from a common distribution the signals θ̂i

received by each insurer, conditional on θ;

2. insurer i, i = 1, 2, privately observes θ̂i and, conditional on θ̂i, he updates his prior on θ;

the policyholder observes j and updates her prior given j;

3. each insurer simultaneously offers a menu of contracts;

4. the policyholder observes all menus, updates her beliefs and selects one contract or the

reservation option (the no-insurance contract c);

5. the accepted contract is implemented, and payoffs are received.

In this framework, we define a non-informative pooling equilibrium (or fully pooling) as

an equilibrium in which both types of insurers, ŝ and d̂, offer one identical single contract

accepted by both types of policyholder, h and l. Hence, in such equilibrium insurers do not

convey any information about the signal θ̂ received and they do not separate the two types

of policyholder.

4.3.2 The Existence of Non-Informative Pooling Equilibria

In showing the existence of a non-informative pooling contract ce, we follow the same ap-

proach as in Proposition 2.

First, a non-informative pooling equilibrium must be profitable for both insurers’ types;

i.e. the insurers’ participation constraint Eπpθ̂(c
e) ≥ 0 must hold for θ̂ = {ŝ, d̂}. Second, it

must be acceptable by the policyholder given her assessment pj of the loss probability; i.e. the

j policyholder’s participation constraint EUpj(c
e) ≥ EUpj(c) must hold for all j ∈ {h, l}.28

Third, there must not exist profitable deviations for both ŝ and d̂ insurers. We characterize

the most profitable deviation (and develop the analysis that follows) by focusing on the

28Due to the assumption of independence between the distributions of j and θ and the fact that all signals
are independent of the distribution of j, we only need to focus on the participation constraint of the l
policyholder; i.e. EUpl(c

e) ≥ EUpl(c).
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case of fully optimistic beliefs. Given that there are two types of policyholders (h and l),

a deviating insurer θ̂ must offer a menu Cdev
θ̂

= {cdev
θ̂h
, cdev
θ̂l
}, including one contract for each

policyholder’s type, that solves

max
cdev
θ̂h

,cdev
θ̂l

PhEπpθ̂h(cdev
θ̂h

) + PlEπpθ̂l(c
dev
θ̂l

)

s.t. EUpŝh(cdev
θ̂h

) ≥ EUpŝh(c),

EUpŝl(c
dev
θ̂l

) ≥ EUpŝl(c), (5)

EUpŝl(c
dev
θ̂l

) ≥ EUpŝl(c
dev
θ̂h

),

EUpŝh(cdev
θ̂h

) ≥ EUpŝh(cdev
θ̂l

),

for all θ̂ ∈ {ŝ, d̂}. The first and second constraints of problem (5) are the participation

constraints of a h and l fully optimistic policyholder, respectively. The third and fourth con-

straints guarantee the incentive compatibility of the deviation menu. To rule out deviations,

expected profits in equilibrium must be greater than the profits in Cdev
θ̂

; i.e.

1

2
Eπpθ̂ (ce) ≥ PlEπp

θ̂l

(
cdev
θ̂l

)
+ PhEπp

θ̂h

(
cdev
θ̂h

)
for all θ̂ =

{
ŝ, d̂
}
. (6)

Proposition 3 characterizes a set of parameters for which the three conditions above are

met and therefore a non-informative pooling equilibrium exists.

Proposition 3 In a two-sided asymmetric information framework, given the CARA speci-

fication (4) of the policyholder’s utility, an (ex-ante) efficient non-informative pooling equi-

librium with fully optimistic beliefs exists if:

1. the signal received by insurers about the riskiness of the environment is very precise (α

is close to 1) and the probability of the s environment is sufficiently low (Ps close to 0).

2. the policyholder’s risk aversion is sufficiently low (β is close to zero);

3. the loss probability in environment s is sufficiently low (psl and psh are close to 0);

4. pdl is sufficiently close to pdh;

Proposition 3 establishes that it is possible to observe an equilibrium pooling the risk of

the h and l policyholders. As already noted, Condition 1 – requiring that the s environment
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is very unlikely and the signal is very precise – implies that this setup can be interpreted

as a perturbation of the original Rothschild and Stiglitz’s (1976) framework. Condition 2

prevents deviations by a ŝ insurer. This condition is analogous to Condition 2 of Proposition

2, entailing that the lower is risk aversion, the lower is the policyholder’s willingness to

pay for insurance. In the limit, under risk neutrality, profits in the deviation are zero (as

in deviation a fully optimistic policyholder has the same risk assessment of an ŝ insurer),

while profits in equilibrium are strictly positive (since the policyholder assesses a higher loss

probability than a ŝ insurer, despite her risk neutrality, she is willing to pay a price that is

profitable for ŝ). Condition 3 together with a high level of precision of the signal (α close to 1)

excludes deviations by a d̂ insurer and it is again equivalent to Condition 3 of Proposition 2.

The premium that a fully optimistic policyholder is willing to pay in deviation decreases the

lower the loss probability in the s environment, provided that the signal about the riskiness

of the environment is very precise (i.e. α is close to one, as required by Condition 1 in the

proposition). Condition 4 guarantees that a d̂ insurer obtains non-negative profits and a l

policyholder accepts the contract offer (i.e. the tightest participation constraints are met).

Intuitively, if the s environment is unlikely, the l policyholder estimates a loss probability

close to pdl, while a d̂ insurer estimates a loss probability between pdh and pdl. If these

probabilities are close to each other, then the policyholder’s assessment is not far from the

insurer’s one, and both participation constraints are met. Quite obviously, this condition –

focusing on the relative probabilities of the two types of policyholders – has no counterparts

in Proposition 2.29

5 Informative Equilibria

Having established how our setup would be affected by asymmetric information on both sides

of the insurance market, we move back to the case of one-sided asymmetric information on

29Abrardi et al. (2019) characterize, through numerical simulations based on the CARA specification
(4) of policyholder’s utility, the parameter regions where non-informative pooling equilibria and standard
separating Rothschild and Stiglitz equilibria exist. The numerical analysis confirms the existence of a non-
informative pooling equilibrium even when our setup ‘converges’ to that of Rothschild and Stiglitz (1976),
provided that the two types of policyholder are sufficiently close to one another, as implied by Conditions 3
and 4 of Proposition 3.
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the type of the insurer and turn to the characterization of informative equilibria in which each

insurer’s offer reveals his type.30 In this scenario, by observing all offers, the policyholder is

able to infer the set of insurers’ signals; i.e. to uncover the number of firms that received

signal ŝ. Hence, as already noted in Section 3, nŝ is a sufficient statistic for insurers’ signal.

This market information is available to the policyholder when she chooses her contract, while

it is not available to the insurers who only know their own type (namely, their private signal)

when making their offers. The problem at hands is therefore a screening problem in which

the market information about the signal profiles is the analogous of the policyholder’s ‘type’.

5.1 Characterization

Assuming an informative equilibrium exists, Proposition 4 provides its full characterization.31

In the following, we denote with ce
θ̂,nŝ

– where θ̂ = {ŝ, d̂} and nŝ = {0, 1, 2} – an equilibrium

contract offered by a θ̂ insurer when nŝ insurers receive signal ŝ.

Proposition 4 If an informative equilibrium exists, it has the following properties:

1. the contracts accepted in equilibrium are different for each signal profile;

2. if nŝ = 2, the accepted equilibrium contract is actuarially fair and it satisfies the incentive

compatibility constraint with equality;

3. if nŝ = 1, the ŝ insurer offers contract ceŝ,1 defined as

ceŝ,1 = arg max
c
Eπep1(c) (7)

s.t.EUp1(c) ≥ EUp1(c
e
d̂,1

);

4. beliefs are fully optimistic;

5. contract ce
d̂,0

entails non-negative profits while contract ceŝ,1 entails strictly positive profits,

if accepted; furthermore, the following condition holds

Eπŝ(c
e
ŝ,1) ≥ 1

2
Eπŝ(c

e
d̂,0

). (8)

30To save space, we do not explore the implications of two-sided information on the existence of informative
equilibria, as our results in this case are less strikingly different with respect to those emerging in Rothschild
and Stiglitz (1976).

31Refer to the proof of Proposition 7 for an arbitrary number of insurance firms in the Online Appendix.
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Figure 2: Informative Equilibrium

Figure 2 illustrates a candidate equilibrium that satisfies the conditions in Proposition

4 and in which d̂ insurers offer a menu including the two contracts ce
d̂,0

and ce
d̂,1

; ŝ insurers

offer a menu including the two contracts ceŝ,1 and ceŝ,2; the policyholder chooses contract ce
d̂,0

under signal profile nŝ = 0, contract ceŝ,1 under signal profile nŝ = 1 and contract ceŝ,2 under

signal profile nŝ = 2.

To better convey the main insights and key intuitions behind Proposition 4, it is worth

highlighting the role that competition among insurers plays in the contractual design prob-

lem. When both insurers receive signal ŝ (nŝ = 2), their profits are driven to zero by

competition. To see why, assume by contradiction that equilibrium profits are positive. In

this case, one insurer could profitably deviate by undercutting the other and his deviation

would be accepted even by a fully optimistic policyholder, who would believe that the de-

viating insurer is of type ŝ. Hence, she would have the same ex post assessment of the loss

probability as the deviating insurer himself.

A further consequence of competition among ŝ insurers is that they offer a fully separating

menu of contracts ceŝ,1 and ceŝ,2 for the signal profiles nŝ = 1 and nŝ = 2, respectively.

Pooling between these two signal profiles cannot be an equilibrium strategy, as there always

exists a profitable deviation that captures only the safest policyholder’s type (in our case,

nŝ = 2). Moreover, when both insurers receive signal ŝ (i.e. nŝ = 2), competition guarantees

that the policyholder achieves the highest possible level of expected utility. Hence, the
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incentive compatibility constraint – requiring that EUp1(c
e
ŝ,1) ≥ EUp1(c

e
ŝ,2) – must necessarily

be binding.

Matters become trickier when only one of the insurers receives signal ŝ. When the signal

profile is nŝ = 1, the competitor of the ŝ insurer must be a d̂ insurer offering the menu

{ce
d̂,0
, ce
d̂,1
}. In particular, contract ce

d̂,1
is constrained by incentive compatibility to be an

underinsurance contract. There is no such constraint for the ŝ insurer, who can therefore

maximize his profit, by increasing the insurance coverage with respect to the contract ce
d̂,1

offered in equilibrium by a d̂ insurer. Then, the only possible equilibrium contract offered

by a ŝ insurer for the signal profile nŝ = 1 is the one defined by Condition (7). Therefore,

contract ceŝ,1 entails full insurance and it is strictly profitable. Moreover, under signal profile

nŝ = 1, the offer of insurer ŝ is accepted with probability 1; i.e. contract ce
d̂,1

remains latent.

Interestingly, the existence of two different types of insurers creates a wedge with re-

spect to the Rothschild and Stiglitz (1976) model, making it impossible for actuarially fair

equilibrium outcomes under signal profile nŝ = 1. In our framework, ŝ insurers possess a

competitive edge over d̂ types. Such an advantage can be exploited when all competitors

receive signal d̂; i.e. under the signal profile nŝ = 1. It is important to point out that

the competitive edge of ŝ insurers does not come from a more favorable estimation of risk

than that of d̂ insurers32, but rather from the requirement that the contract offered by a d̂

insurer under signal nŝ = 1 is incentive compatible with the one under signal nŝ = 0. Such

requirement does not apply to ŝ insurers, as they are not in the market under the signal

profile nŝ = 0.

Note that for informative equilibria to exist beliefs need to be fully optimistic. In order

to understand why, suppose that this is not the case. More specifically, let the policyholder’s

degree of optimism be x < 1, and consider the signal profile nŝ = 1. In this case, if the

ŝ insurer deviates, the loss probability estimated by the policyholder is p̃ > p1. It follows

that the contract cdev illustrated in Figure 3 is accepted when nŝ = 1 and it is profitable. If

instead nŝ = 2, cdev would be rejected as the policyholder prefers contract ceŝ,2 offered by the

competitor, which entails no loss with respect to the equilibrium profits (that are equal to

zero).

32Indeed, under signal profile nŝ = 1 all insurers estimate risk by using p1.
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Figure 3: Beliefs in Informative Equilibria

Note also that, due to the fully optimistic beliefs, competition might not work for d̂

insurers. The argument is analogous to that we used to sustain non-informative equilibria:

if the policyholder is fully optimistic, then she systematically underestimates risk following

insurer d̂’s deviation; hence, deviations by d̂ insurers may be effectively hindered. This im-

plies, analogously to non-informative equilibria, the possible emergence of multiple equilibria,

which may entail profitable outcomes in the riskiest signal profile.

Finally, it is worth highlighting the fundamental trade-off underlying a possible deviation

by a ŝ insurer pretending to be d̂. On the one hand, by deviating, the ŝ insurer offers a more

profitable contract conceived for a riskier signal profile (entailing a higher premium rate)

with probability 1/2. On the other hand, sticking to the candidate equilibrium strategy,

he sells a less profitable contract (corresponding to the assessment of a safer signal profile)

with probability one. More technically, a deviation from the equilibrium arises when insurer

ŝ pretends to be d̂, by offering the menu {ce
d̂,0
, ce
d̂,1
}.33 To avoid such deviation, one needs

to guarantee that ŝ insurers truthfully reveal their private signal (yet another reason for

ŝ insurers enjoying positive profits in equilibrium). On the one hand, in the signal profile

nŝ = 2, a deviating ŝ insurer makes zero profits as it would be considered of type d̂ and

therefore the policyholder would prefer the competitor’s offer. On the other hand, profits

are equal to zero also in equilibrium (as ceŝ,2 is actuarially fair). Therefore, it suffices to

33Note that this type of deviation is not profitable for d̂ insurers, as they would suffer a loss by pretending
to be ŝ, hence inducing the policyholder to believe that the signal profile is less risky than it actually is.
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compare profits in signal profile nŝ = 1. In equilibrium, the ŝ insurer would obtain profits

Eπŝ(c
e
ŝ,1). Conversely, if he deviates by offering Ce

d̂
, all firms would end up offering the menu

Ce
d̂

to the policyholder, who would then believe that the signal profile is nŝ = 0. In this case,

the ŝ deviating insurer obtains profits Eπŝ(c
e
d̂,0

) with probability 1/2. Hence, Condition (8)

guarantees that the ŝ insurer has no incentives to deviate. Note finally that an obvious

implication of (8) is that, in equilibrium, ce
d̂,0
6= ceŝ,1.

Furthermore, the contract accepted in nŝ = 2 is actuarially fair, while the contract

accepted in the riskier signal profile nŝ = 1 (i.e. ceŝ,1) is not. This suggests that contracts

are fully separating, entailing different outcomes for the different signal profiles given that a

profitable contract in a signal profile cannot be actuarially fair in a safer one.

It is also instructive to compare informative and non-informative equilibria. Non-infor-

mative equilibria exist for a larger set of out-of-equilibrium beliefs than informative ones.

Indeed, the former simply requires that beliefs are sufficiently optimistic, while the latter

exist only for fully optimistic policyholders. In this respect, non-informative equilibria seems

to be more ‘robust’.

Finally, it is worth connecting our analysis to that of Villeneuve (2005). While he finds

that with identical, perfectly informed insurers, informative equilibria can support the first

best, the analysis above shows that in our setup informative equilibria always entail an

inefficient outcome. More importantly, this result holds also when the precision of the signal

received by insurers converges to 1; i.e. when our setup converges to that of Villeneuve

(2005), as it is illustrated by the following corollary of Proposition 4.

Corollary 1 In the limit α → 1, the equilibrium contract ceŝ,2 does not converge to full

insurance.

The intuition of Corollary 1 is immediately conveyed by Figure 4. In the limit for α equal

to 1, the relevant loss probabilities are p1 = p̄ and p2 = ps
34. Given that, from Proposition 4,

the contract ceŝ,1 offered by an ŝ insurer in signal profile 1 must entail full insurance, and that

the contract ceŝ,2 must be incentive compatible with ceŝ,1, then contract ceŝ,2 must be inefficient

and cannot converge to Villeneuve’s full insurance equilibrium outcome cAFs .

34In fact, p1 = psPs + pdPd and p2 = psα
2Ps+pd(1−α)2(1−Ps)
α2Ps+(1−α)2(1−Ps) .
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Figure 4: Informative equilibrium in the limit for α = 1

5.2 Existence

Proposition 4 fully characterizes informative equilibria but it doesn’t help establishing the

conditions under which such equilibria exist. As already noted, given the non convexities

embedded in the relevant incentive compatibility constraints, a general existence result is

very difficult to achieve. Nonetheless, the following Proposition 5, focusing on the CARA

specification (4) of the policyholder’s utility, provides sufficient conditions for existence by

introducing appropriate restrictions on the key parameters of the problem.35

Proposition 5 Given the CARA specification (4) of the policyholder’s utility, an informa-

tive equilibrium exists when the signal received by insurers is sufficiently precise (α is close

to 1), the damage L is sufficiently large and the loss probability in the safe environment (ps)

is sufficiently low.

The proposition establishes conditions that allow to rule out profitable deviations, at

the same time ensuring truthful revelation. More specifically, requiring that the signal is

sufficiently precise and the loss probability in the safe state is sufficiently small rules out

profitable deviations with cross-subsidies. A cross-subsidizing deviation allows to increase

35Abrardi et al. (2019) provide a numerical analysis (for the CARA specification (4) of the policyholder’s
utility) showing that informative equilibria exist for a non trivial range of (empirically plausible) parameter
values. Furthermore, and more interesting, it finds that informative and non-informative equilibria may
co-exist and that, when this is the case, the latter are typically ex ante more profitable than the former.
This is also related to the observation that non-informative equilibria can be ex ante Pareto-efficient while
informative equilibria entail necessarily second best allocations.
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profits in safer states, but decreases them in riskier ones36. In our setup, this implies that

the ŝ insurer has an incentive to deviate from the equilibrium by offering more profitable

contracts when nŝ = 2 and less profitable ones when nŝ = 1. Obviously, in a profitable

deviation the increase in profits when nŝ = 2 should more than compensate the decrease in

profits when nŝ = 1. If the signal is very precise, the estimated loss probability when nŝ = 2

is close to the true loss probability ps in the safe environment. If ps is close to zero, the

profit when nŝ = 2 goes to zero as well, thus eliminating the insurer’s incentive to deviate.

The condition on the level of damage L allows instead to meet the truthful revelation

condition (8). The larger is the level of damage, the higher is the equilibrium profit that the ŝ

insurer obtains when nŝ = 1. In fact, the level of damage affects positively the policyholder’s

willingness to pay under signal profile 137. Conversely, a higher equilibrium profit when

nŝ = 1 decreases the insurer’s incentive to deviate by offering the equilibrium contract of d̂

for signal profile 0 (i.e. the contract that would be offered in equilibrium when nŝ = 0).

6 The n−Firm Case

So far our analysis focused on a duopoly model. This allowed us to fully characterize both

non-informative (pooling) and informative (separating) equilibria, also providing existence

conditions for a CARA specification. It is interesting to investigate whether these results

extend to the general case of an oligopolistic industry with more than two firms, hence

understanding the role of market concentration for equilibrium existence and industry prof-

itability. While most of the results on the characterization of equilibria remain unaffected

when focusing on the n−firm case, the analysis of this section shows that the number of

firms significantly affect equilibrium existence conditions. In particular, as the number of

firms in the industry becomes too large, both informative and non-informative equilibria fail

to exist.

36Recall that the notion of a cross-subsidizing deviation generalizes that of a pooling deviation in the
Rothschild and Stiglitz’s (1976) framework.

37Indeed, this condition on the level of damage would be analogous to a condition requiring a sufficiently
high level of risk aversion, as it is shown in the proof of Proposition 5.
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6.1 The Model

We extend the duopoly setup considered so far to investigate an insurance market with

n firms (i = 1, 2, .., n) and one policyholder. We take the market structure as given, not

considering entry or exit from the industry. In this setup, the signal profile
{
θ̂i

}
i=1,2,...,n

is a vector summarizing the n signals received by the firms. The number of insurers who

observed ŝ is nŝ and it is a sufficient statistic for
{
θ̂i

}
i=1,2,...,n

. We denote with pnŝ the loss

probability conditional on the signal profile nŝ (see Definition (1)).

The timing and all the assumptions made for the two firm model remain valid in this

extended setup. We adapt notation by assuming that each insurer i offers a menu Ci of

contracts, and we let C = {Ci}i=1,2,...,n be the vector of menus offered by all the insurers.

We also continue to assume that all menus offered are exclusive and cannot be withdrawn.

6.2 Equilibrium Characterization and Existence

As in the rest of the paper, we proceed by distinguishing between non-informative and

informative equilibria. It is immediate to see that the number of firms doesn’t play any

substantial role in the characterization of non-informative equilibria. Indeed, only ex ante

probabilities matter in equilibrium and only interim probabilities matter in deviation. Both

are unaffected by the number of firms and thus, in characterizing non-informative equilibria,

we can immediately rely on the results of Proposition 1. As already discussed in the baseline

model with two firms, three conditions are necessary for the existence of non-informative

equilibria. This remains true also for the more general framework with n competing firms,

with the first two conditions being essentially analogous to their counterparts for the two-firm

case. The first condition requires that the insurers’ participation constraints, which depend

on the ad interim loss probabilities pŝ and pd̂, must be satisfied. The second condition is

the policyholder’s participation constraint, which depends on the prior loss probability p̄.

None of the expressions of pŝ, pd̂ and p̄ depend on the number of firms, as they are estimated

only on the basis of the prior or ad interim information. Therefore, no substantial difference

emerges with the two-firm case with respect to the insurers and policyholder participation

constraints. The set of contracts satisfying the participation constraints of the insurers and
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of the policyholder does not depend on n. The third necessary condition for the existence of

non-informative equilibria marks instead a difference with respect to the two-firm case. It

requires that the expected profits in equilibrium are larger than those in the most profitable

deviation cdev for a ŝ insurer. Since each firm sells the equilibrium contract ce with probability

1/n, the condition analogous to (6) in the n firms framework is

1

n
Eπpθ̂ (ce) ≥ Eπp

θ̂

(
cdev
θ̂

)
for all θ̂ =

{
ŝ, d̂
}

(9)

From (9), it follows immediately that there exists an upper bound to the number of

insurers consistent with the existence of a non-informative symmetric equilibrium ce, which

we denote as n̄(ce). Note that this upper bound is specific to the proposed equilibrium ce.

By inspection of (9), it is also easy to show that the set of non-informative equilibria shrinks

as the industry becomes more dispersed, given that the less profitable contracts are no longer

sustainable as equilibria.38 Since non-informative equilibria are not unique, it is convenient

to characterize the equilibrium with the highest possible number of firms n̄ among all possible

non-informative equilibria:

n̄ = max
ce

n̄(ce).

From Inequality 9, it follows that the larger are the expected profits associated to the equi-

librium contract, the larger is the upper bound.

The above discussion immediately yields the following proposition.

Proposition 6 There exists an upper bound n̄ to the number of firms that is consistent

with the existence of a non-informative equilibrium. n̄ is increasing in the expected profits

corresponding to the equilibrium contract.

To better understand the nature of the upper bound on the number of firms in a non-

informative equilibrium, it is convenient to focus again on condition (9). When the number

of competitors in the market increases and all firms offer the same contract, the probability

38The characterization of the contract cdev
θ̂

in (9) depends on the loss probabilities pθ̂ and p̃, which are

unaffected by n. Recall that pŝ = psαPs+pd(1−α)(1−Ps)
αPs+(1−α)(1−Ps) and pd̂ = ps(1−α)Ps+pdα(1−Ps)

αPs+(1−α)(1−Ps) .Hence, an increase of n

implies that the profit Eπpθ̂ (c
e) must increase.
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of attracting a customer decreases (i.e., the l.h.s. of (9) is reduced). Hence, the expected

profit in equilibrium decreases and the deviation becomes increasingly tempting. It follows

that, with a large number of insurers, only contracts with higher premia can be sustained

as equilibria. This establishes a non standard, negative relationship between insurance pre-

mia and market concentration. Moreover, note that the expected profits generated by the

accepted contracts in a non-informative equilibrium remain constant for increasing market

concentration, suggesting that an increase in market concentration is not necessarily welfare

detrimental for customers; a finding that is consistent with the available empirical literature.

Also the characterization of informative equilibria follows closely the discussion of the

two-firm case, although one needs to take into account that increasing the number of firms

also increases the number of market states (i.e. the number of signals) and therefore the com-

plexity of the equilibrium. Proposition 7 provides a general characterization of informative

equilibria for the n−firm case.39

Proposition 7 If an informative equilibrium exists, it is characterized as follows:

1. the contracts accepted in equilibrium are different for each signal profile;

2. if nŝ ≥ 2, the contracts accepted in equilibrium are actuarially fair;

3. the incentive compatibility constraints for contracts accepted in equilibrium in nŝ ≥ 2 are

binding;

4. if nŝ = 1, an ŝ insurer offers contract cmax
1 defined in (7);

5. the contracts offered in equilibrium by insurers when all of them receive signal d̂, ce
d̂,0

,

and that offered by an ŝ insurer when he is the only one receiving signal ŝ, ceŝ,1, must

entail non-negative profits (if accepted) and guarantee truth-telling, i.e.

Eπŝ(c
e
ŝ,1) ≥ 1

n
Eπŝ(c

e
d̂,0

); (10)

6. beliefs are fully optimistic.

Several of the driving forces behind the equilibrium characterization in Proposition 7 are

analogous to those highlighted for the two-firm cases (see the discussion of Proposition 4).

39We stick whenever possible to the notation used for the two-firm case.
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Notwithstanding there are some specificities of the n−firm case that are worth highlighting

First, the proposition shows that with more than one insurer receiving signal ŝ, equilibrium

outcomes must be actuarially fair. This is essentially due the fact that insurers compete à la

Bertrand, exactly as in the two-firm case when nŝ = 2. Second, the presence of more than

two firms adds an additional reason why equilibrium multiplicity can emerge. Proposition

7 shows that the contracts accepted in states nŝ ≥ 2 must entail zero profits. In order to

sustain an equilibrium it is necessary that at least two firms offer the accepted contract.

However, the contracts offered by any other firms are unrestricted provided they are not

accepted. Thus, asymmetric equilibria may emerge. Notwithstanding, restricting attention

to symmetric equilibria is without loss of generality in terms of equilibrium outcomes. Third,

Condition (10) establishes that the ŝ insurer must obtain a higher profit in equilibrium rather

than in the deviation in which he offers the d̂’s equilibrium menu, which introduces a clear

difference between the n−firm and the two-firm case (see (8)).

Finally, and more important, it is easy to show that under the conditions of Proposition 7,

there is an upper bound to the number of firms consistent with an informative equilibrium.40

Corollary 2 There exists an upper bound ¯̄n to the number of firms that is consistent with

the existence of informative equilibria. ¯̄n is decreasing in the expected profits corresponding

to the equilibrium contract.

The existence of an upper bound to the number of firms that is consistent with an

informative equilibrium has to do with the fact that, when the number of firms in the

industry grows larger, profitable deviations become available via semi-pooling menus. In

particular, there exists a menu such that the equilibrium contracts are offered in the states

where the number of firms receiving signal ŝ – i.e. nŝ – is less than n/2, while a pooling

contract that is preferred by the policyholder to the equilibrium contracts is offered in states

where nŝ > n/2. Qualitatively, the existence of a profitable pooling deviation relies on

the fact that when the number of firms in the industry grows larger all loss probabilities

converge either to ps, when nŝ > n/2, or to pd, in the opposite case, due to the logic of

40It is also immediate to see that Condition (10) implies directly that the maximum number of firms
consistent with an informative equilibrium must have a lower bound (n) as well in order to induce insurers
to truthfully disclose their information.
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Bayesian updating. This implies that all equilibrium contracts in good states are, on the

one hand, very close to each other and, on the other hand, very far from those in bad states.

In this situation, with a risk averse policyholder, the same logic that justifies the existence

of profitable pooling deviations in the Rothschild and Stiglitz’s (1976) framework applies.41

Having shown that there is an upper bound to the number of firms that is consistent

with the existence of both non-informative and informative equilibria, it is interesting to ask

whether such upper bound implies the insurance industry to be concentrated. Although this

is clearly an empirical matter, Abrardi et al. (2019) show (for the CARA utility specification

in Eq. (4) and empirically plausible parameter constellations) that the industry needs to be

fairly concentrated for both types of equilibria to exist.42

7 Concluding Remarks

The improvements in data collection and storage and the rise of computing power over the

last decades have significantly affected the insurance industry, allowing insurance companies

to achieve more reliable predictions and risk estimations. In this perspective, the traditional

information asymmetry affecting the insurance sector may flip-over to the other side of the

market. Indeed, because of their expertise and access to relevant statistics, insurers are likely

to be better equipped than policyholders to accurately assess the level of risk associated

to a specific environment. Still, a precise assessment of risk is not straightforward even

for practitioners, and some degree of heterogeneity in insurers’ evaluations is unavoidable,

possibly related to the access to different data warehouses, or to the availability of multiple

predictive algorithms.

The key result of our analysis is that – when insurers have an imperfect informational

advantage over policyholders – equilibria always entail positive profits for some insurers and

do not necessarily imply disclosure of the insurers’ information despite competition. This

41See the proof of Corollary 2 for more details on the nature of profitable pooling deviations.
42In all the numerical exercises in Abrardi et al. (2019), the number of firms consistent with the existence

of an equilibrium never exceeds eight, and it is typically much lower. Although this evidence is not the result
of a fully calibrated analysis, it seems to be robust to different parameter specifications. Furthermore, it
is consistent with the available empirical evidence showing that actual insurance markets are significantly
concentrated.
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result is both entirely new to the insurance literature (at least as far as separating equilibria

are concerned) and is fully consistent with most of the available empirical evidence that

reports the abundance of unused observables in the definition of insurance contracts, as

well as the profitability of insurance markets. Intuitively, the emergence of non-informative,

profitable equilibria depends on policyholders’ overly optimistic attitude about the riskiness

of the environment. Indeed, to the extent that optimistic policyholders are willing to accept

only ‘cheap’ contracts (that would excessively curtail insurers’ profits), the functioning of the

competitive mechanism is effectively hindered. Moreover, equilibrium profits need necessarily

be positive also in the case of informative equilibria, as this is required to induce truthful

revelation of information by insurers with a low assessment of risk.

The fact that equilibria – both informative and non-informative – can be sustained only

if profits are sufficiently high, has direct implications in terms of market concentration.

In fact, we show that there is an upper bound on the number of firms consistent with

the existence of an equilibrium, and that – quite counter-intuitively – a larger industry

dispersion may entail larger equilibrium profits. Also these results are consistent with the

available empirical evidence on industry concentration, and on the ambiguous relationship

between market concentration and profitability.

In a theoretical perspective, we highlight the role played by the informational struc-

ture on the type and features of equilibria. Our contribution to the literature on insurance

markets originated by Rothschild and Stiglitz’s (1976) seminal paper is twofold. First, our re-

sults on non-informative equilibria show that even an infinitesimal (imperfect) informational

advantage by insurers might be sufficient for Rothschild and Stiglitz’s (1976) equilibria –

based on the efficiency of the competitive mechanism – not to survive. Indeed, the failure

of the competitive mechanism in our model can be related to that occurring in signaling

models, where it originates from the existence of degrees of freedom in the choice of out-of-

equilibrium beliefs. The novelty of our contribution is to show that this result is robust to

the policyholder having private information on the idiosyncratic components of her own risk

(i.e. to the introduction of a second layer of asymmetric information). Second, focusing on

informative equilibria, we prove that our equilibria do not converge to those emerging in the

signaling models of insurance such as Villeneuve (2005), as a consequence of the fact that
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insurers might receive heterogeneous and imperfect signals. In particular, the informative

equilibria emerging in our setup are always profitable and typically entail under-insurance

even when insurers’ information is very accurate.

Existing models of insurance markets focus on either insurers, or policyholders, holding

perfect information about risk. A more realistic representation should probably allow for

both insurers and policyholders holding some amount of private information. Our analysis,

by combining features of pure-signaling and pure-screening models, is only a first step in

this direction, however enough to suggest that there are novel and unexpected insights to be

uncovered.
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Appendix A Proofs

Proof of Proposition 1

Parts 1 and 2 of the proposition simply require that the relevant policyholder’s par-

ticipation constraints hold. Point 3 can be proved by contradiction. Assume p̃ ≥ p̄ and

consider that a ŝ insurer deviates by adopting an undercutting strategy; i.e. by offering

contract cdev = (W e
L + ε,W e

N + ε), with ε > 0 arbitrarily small. Showing that this deviation

is profitable requires that: (i) cdev is always profitable if accepted, (ii) it is preferred to the

equilibrium given out-of-equilibrium beliefs, and (iii) it is acceptable in the deviation by the

policyholder, i.e. it meets her participation constraint given out-of-equilibrium beliefs p̃. We

address each of these conditions in turn.

(i) In the limit for ε→ 0, we have that

Eπpŝ(c
dev) = Eπpŝ(c

e) >
1

2
Eπpŝ(c

e),

i.e. the deviation cdev is profitable for ŝ if it is accepted.

(ii) The policyholder prefers the deviation to the equilibrium contract only if EUp̃(c
dev) >

EUp̃(c
e). Recall that:

EUp̃(c
dev) = p̃U(W e

L + ε) + (1− p̃)U(W e
N + ε) (A.1)

EUp̃(c
e) = p̃U(W e

L) + (1− p̃)U(W e
N). (A.2)

Given that ε > 0, it must be

EUp̃(c
dev) > EUp̃(c

e). (A.3)

1



(iii) The deviation is acceptable if it satisfies the policyholder’s participation in the

deviation, i.e. EUp̃(c
dev) − EUp̃(c) ≥ 0. By subtracting EUp̃(c), on both sides of (A.3), we

obtain

EUp̃(c
dev)− EUp̃(c) > EUp̃(c

e)− EUp̃(c). (A.4)

Furthermore, note that

EUp̃(c
e)− EUp̃(c) ≥ EUp̄(c

e)− EUp̄(c). (A.5)

Indeed, (A.5) can immediately be rewritten as

(p̃− p̄)(U(W e
L)− U(W − L) + U(W )− U(W e

N)) ≥ 0,

which is verified under the assumption that p̃ ≥ p̄, since U(W e
L) ≥ U(W − L) and U(W )−

U(W e
N) ≥ 0. Combining (A.4) and (A.5), we have that EUp̃(c

dev) − EUp̃(c) ≥ 0 holds.

Hence, conditions (i)-(iii) hold, and a profitable deviation exists, if p̃ ≥ p̄. Therefore, for an

equilibrium to exist it must be p̃ < p̄, which completes the proof. Q.E.D.

Proof of Proposition 2

The relevant loss probabilities read

pŝ =
psα(1− Pd) + pd(1− α)Pd
α(1− Pd) + (1− α)Pd

pd̂ =
ps(1− α)(1− Pd) + pdαPd

(1− α)(1− Pd) + αPd
p̄ = psPs + pdPd.

Letting α = Pd = y and considering the limit for y → 1, we have that

lim
y→1

pŝ =
ps + pd

2

lim
y→1

pd̂ = pd

lim
y→1

p̄ = pd

2



Consider the full insurance contract W e
L = W e

N = W e satisfying with equality the partic-

ipation constraint of the policyholder, as a candidate non-informative equilibrium contract;

i.e.

e−βW
e

= (1− p̄) e−βW + p̄e−β(W−L),

or

W e = − 1

β
ln
(
(1− p̄) e−βW + p̄e−β(W−L)

)
.

For the sake of simplicity, we focus on a fully optimistic policyholder. We first need to check

that the proposed equilibrium contract meets the participation constraints of the d̂ and ŝ

insurers. The expected profits for d̂ must be positive; i.e. Eπd̂ = W − pd̂ −W e ≥ 0. In the

limit for y → 1, and after straightforward simplifications Eπd̂ can be rewritten as

−pdL+
1

β
ln
(
1− pd + pde

βL
)
≥ 0.

This condition holds with equality if pd = 0 and pd = 1, while it is strictly positive for all

pd ∈ (0, 1). In fact, the l.h.s. of the inequality is a strictly concave function in pd (note that

the second derivative w.r.t. pd is negative; i.e. − 1
β

(−1+eβL)2

1−pd+pdeβL
< 0 for β > 0). Then, the

participation constraint of a d̂ insurer is Eπd̂ = W − pd̂ −W e > 0, whenever pd ∈ (0, 1) and

β > 0.

Given that pŝ < pd̂, at the candidate equilibrium also the participation constraint of the

ŝ insurer is not binding; i.e. Eπŝ = W − pŝ − W e > 0. Furthermore, by continuity, all

participation constraints are also satisfied in a neighborhood of α, Pd close to 1, as required

by condition 1 of the Proposition.

We next show that point 2 of the Proposition is sufficient to rule out deviations by

a ŝ insurer. The most profitable deviation for a ŝ insurer, given the policyholder’s fully

optimistic beliefs, is the full insurance contract lying on the participation constraint of a

fully optimistic policyholder; i.e.

W dev
ŝ = − 1

β
ln
(
(1− pŝ) e−βW + pŝe

−β(W−L)
)

3



In our CARA setup, equilibrium condition (3) reads

1

2
(W −W e − pŝL) ≥ W −W dev

ŝ − pŝL,

which can be rewritten as

2W dev
ŝ ≥ W − pŝL+W e (A.6)

Therefore, we need to check that A.6 holds in the limit for β = 0. By Hôpital’s rule, we have

that

lim
β→0

W dev
ŝ = lim

β→0
−
−
(
(1− pŝ) e−βWW + pŝe

−β(W−L) (W − L)
)

((1− pŝ) e−βW + pŝe−β(W−L))
=

= (1− pŝ)W + pŝ (W − L) = W − pŝL

and

lim
β→0

W e = lim
β→0
−
−
(
(1− p̄) e−βWW + p̄e−β(W−L) (W − L)

)
((1− p̄) e−βW + p̄e−β(W−L))

=

= (1− p̄)W + p̄ (W − L) = W − Lp̄.

Hence for β → 0, condition A.6 becomes 2(W − pŝL) ≥ W − pŝL+W − Lp̄, which holds as

pŝ < p̄. By continuity, condition (A.6) holds for β sufficiently low.

Finally, we check that no deviations exist for the d̂ insurer. Notice that the set of

d̂’s profitable deviations acceptable by an optimistic policyholder is empty if the policy-

holder’s indifference curve passing through autarky and estimating risk by pŝ runs above the

zero-isoprofit line of a d̂ insurer for all values. This is the case when the marginal rate of

substitution of the policyholder computed in c, 1−pŝ
pŝ

U ′(W )
U ′(W−L)

, is higher (in absolute value)

than the slope of the isoprofit line of an insurer who estimates risk by pd̂,
1−pd̂
pd̂

; i.e.

U ′(W )

U ′(W − L)
≥

(1−pd̂)

pd̂
1−pŝ
pŝ

. (A.7)

Using the limits for y → 1 under our CARA specification, inequality (A.7) can be written

4



as

e−βL ≥ 1− pd
pd

ps + pd
2− ps − pd

,

which holds strictly if ps is sufficiently small (as required by condition 3 in the proposition)

and β is close to 0 (as required by condition 2). Q.E.D.

Proof of Proposition 3

It is convenient to first compute all loss probabilities needed to characterize both the

equilibrium and the off-equilibrium expected utilities and profits. In equilibrium, the only

relevant probabilities for the policyholder are the ex-ante ones; i.e.

ph = psh(1− Pd) + pdhPd

pl = psl(1− Pd) + pdlPd.

Focusing on fully optimistic beliefs off the equilibrium path, off-equilibrium probabilities are

computed assuming that the deviating insurer receives signal ŝ. Therefore, by using Bayes

rule, we have

pŝh =
pshα(1− Pd) + pdh(1− α)Pd

α(1− Pd) + (1− α)Pd

pŝl =
pslα(1− Pd) + pdl(1− α)Pd
α(1− Pd) + (1− α)Pd

.

The relevant probabilities for the insurer are the interim probabilities – those conditional on

the signal received – that are given by

pŝ = (pshPh + pslPl)
α (1− Pd)

α (1− Pd) + (1− α)Pd
+ (pdhPh + pdlPl)

(1− α)Pd
α (1− Pd) + (1− α)Pd

pd̂ = (pdhPh + pdlPl)
αPd

αPd + (1− α)(1− Pd)
+ (pshPh + pslPl)

(1− α)(1− Pd)
αPd + (1− α)(1− Pd)

,

where we made use of the fact that the distribution of j is independent from that of θ.

Considering that psl = psh = 0 (by condition 3 of the Proposition) and pdl = pdh (by

5



condition 4), letting α = Pd = y, and considering the limit y → 1, we have that

lim
y→1

pŝh =
pdh
2

lim
y→1

pŝl =
pdh
2

lim
y→1

pl = pdh (A.8)

lim
y→1

pd̂ = pdh

lim
y→1

pŝ =
pdh
2
.

Consider as candidate equilibrium the full insurance contract ce, which is actuarially

fair for d̂; i.e W e = W − pd̂L. Note that the participation constraint of a ŝ insurer is also

satisfied, since pŝ < pd̂. For the proposed contract to be an equilibrium one it must be that:

i) all relevant participation constraints are satisfied; ii) ce guarantees higher profits to an ŝ

insurer than any acceptable deviation; and iii) ce guarantees higher profits to a d̂ insurer

than any acceptable deviation. We address each of the conditions in turn.

i) The l policyholder’s participation constraint is

e−β(W−pd̂L) ≤ pl(e
−β(W−L)) + (1− pl)e−βW ,

which can be rewritten as

eβpd̂L − pleβL ≤ 1− pl.

In the limit y → 1 and using (A.8), the above condition becomes

eβLpdh − 1 ≤ pdh(e
βL − 1) (A.9)

Condition (A.9) holds for all βL and pdh. Indeed, the l.h.s. of (A.9) is a convex function in

pdh, while the r.h.s. is linear in pdh. This implies that the l.h.s. and the r.h.s. can cross at

most twice for pdh = 0 and pdh = 1. Instead, for all pdh ∈ (0, 1) condition (A.9) holds as a

strict inequality.

6



ii) Note that a deviation consists of a menu of two contracts, one for the l− and one for

h−type policyholder, which must be incentive compatible. Therefore, the upper bound on

the deviation profits for a ŝ insurer is obtained by relaxing the policyholder incentive compat-

ibility constraint on the deviation menu. This implies that the upper bound is characterized

by the two full insurance contracts guaranteeing that the policyholder’s participation is

binding when the loss probabilities are pŝh and pŝl, respectively; i.e.

W dev
ŝh = − 1

β
ln
(
pŝhe

−β(W−L) + (1− pŝh)e−βW
)

W dev
ŝl = − 1

β
ln
(
pŝle

−β(W−L) + (1− pŝl)e−βW
)
.

Notice that if the proposed deviation is not profitable, then it is also unprofitable to do

screening on one type of policyholder only. The equilibrium profits for ŝ are higher than in

the given deviation if

W − pŝL− (W − pd̂L)

2
≥ Ph(W − pŝhL−W dev

ŝh ) + (1− Ph)(W − pŝlL−W dev
ŝl ), (A.10)

i.e.

pd̂ + pŝ
2

βL ≥ Ph ln
(
pŝhe

βL + (1− pŝh)
)

+ (1− Ph) ln
(
pŝle

βL + (1− pŝl)
)
. (A.11)

In the limit for y → 1, condition (A.11) becomes

e
3
4
βLpdh − 1 ≥ pdh

2
(eβL − 1). (A.12)

It is easy to show that condition (A.12) is met for all pdh. In fact, when pdh = 0, (A.12)

holds as an equality. Instead, for pdh = 1, it becomes

e
3
4
βL − 1 ≥ 1

2
(eβL − 1).

When βL → 0 (condition 2 in the proposition), also the latter inequality holds as equality.

However, the slope of the l.h.s. is greater than the slope of the r.h.s. in a neighborhood of

7



βL = 0. Hence, the inequality holds strictly in a neighborhood of pdh = 1 for βL sufficiently

close to 0. Therefore, for βL sufficiently low, there exists a pdh ∈ (0, 1) such that the

inequality is satisfied with strict sign.

iii) Notice that the set of d̂’s profitable deviations acceptable by an optimistic policy-

holder is empty if the policyholder’s indifference curve passing through autarky and estimat-

ing risk by pŝh lays above the zero-isoprofit line of a d̂ insurer. This holds true whenever

the marginal rate of substitution of the policyholder computed in c – i.e. 1−pŝh
pŝh

U ′(W )
U ′(W−L)

– is

higher (in absolute value) than the slope of the isoprofit line of an insurer who estimates risk

using pd̂; i.e.

U ′(W )

U ′(W − L)
≥

(1−pd̂)

pd̂
1−pŝh
pŝh

Under the adopted CARA specification and in the limit for y → 1 the above inequality can

be rewritten as

e−βL ≥ 1− pdh
2− pdh

.

Noting that the r.h.s. is lower than 1
2

and the l.h.s. is close to 1 if β is close to 0, imme-

diately allows to conclude that the inequality holds under the condition established in the

proposition, which concludes the proof. Q.E.D.

Proof of Corollary 1

From Proposition 4, contract ceŝ,2 must be incentive compatible with respect to ceŝ,1 and

the incentive compatibility constraint must be binding, i.e.

EUp̄(c
e
ŝ,2) = EUp̄(c

e
ŝ,1) (A.13)

Moreover, the definition of ceŝ,1 in point 3 of Proposition 4, ceŝ,1 entails full insurance, such

that W e
N−ŝ,1 = W e

L−ŝ,1 = W e
ŝ,1. Consider the actuarially fair full insurance contract (W −

psL,W − psL), which is the equilibrium outcome of s insurers in Villeneuve’s set up, and

assume – by contradiction – that ceŝ,2 converges to (W − psL,W − psL) when α→ 1. Then,

8



the incentive compatibility constraint (A.13) can be rewritten as

U(W − psL) = U(W e
ŝ,1),

which holds if and only if W − psL = W e
ŝ,1. However, if W − psL = W e

ŝ,1, then Eπp̄(c
e
ŝ,1) =

(ps − p̄)L < 0, which violates condition (8). Q.E.D.

Proof of Proposition 5

The proof proceeds in three steps: a) the first characterizing equilibrium contracts, b)

the second checking truthful telling, c) the third ruling out deviations with cross subsidies.

a) Characterization of the equilibrium contracts

Recall that there are degrees of freedom in the characterization of the equilibrium out-

come in signal profile nŝ = 0. Suppose that d̂ offers the full insurance, actuarially fair

contract ce
d̂,0

in signal profile 0, i.e.

W e
N−d̂,0 = W e

L−d̂,0 = W − p0L.

The contract offered by d̂ in signal profile nŝ = 1 is both incentive compatible with ce
d̂,0

and

actuarially fair by Proposition 4, i.e.

1− e−β(W−p0L) = p0(1− e−βW
e
L−d̂,1) + (1− p0)(1− e−βW

e
N−d̂,1)

Eπ1(ce
d̂,1

) = p1(W − L−W e
L−d̂,1) + (1− p1)(W −W e

N−d̂,1) = 0

Using again Proposition 4, we have that the contract ceŝ,1 offered by ŝ in signal profile nŝ = 1

is incentive compatible with ce
d̂,1

and it entails full insurance (W e
L−ŝ,1 = W e

N−ŝ,1 = W e
ŝ,1), i.e.

1− e−βW e
ŝ,1 = p1(1− e−βW

e
L−d̂,1) + (1− p1)(1− e−βW

e
N−d̂,1).

The contract ceŝ,2 offered by ŝ in signal profile nŝ = 2 is both incentive compatible with ceŝ,1

9



and actuarially fair:

1− e−βW e
ŝ,1 = p1(1− e−βW e

L−ŝ,2) + (1− p1)(1− e−βW e
N−ŝ,2)

Eπ2(ceŝ,2) = p2(W − L−W e
L−ŝ,2) + (1− p2)(W −W e

N−ŝ,2) = 0.

Then, we need to solve for W e
L−d̂,1,W

e
N−d̂,1,W

e
ŝ,1,W

e
L−ŝ,2,W

e
N−ŝ,2 the system of equations:



1− e−β(W−p0L) = p0(1− e−βW
e
L−d̂,1) + (1− p0)(1− e−βW

e
N−d̂,1)

p1(W − L−W e
L−d̂,1) + (1− p1)(W −W e

N−d̂,1) = 0

1− e−βW e
ŝ,1 = p1(1− e−βW

e
L−d̂,1) + (1− p1)(1− e−βW

e
N−d̂,1)

1− e−βW e
ŝ,1 = p1(1− e−βW e

L−ŝ,2) + (1− p1)(1− e−βW e
N−ŝ,2)

p2(W − L−W e
L−ŝ,2) + (1− p2)(W −W e

N−ŝ,2) = 0

(A.14)

The system describes two menus, composed by two contracts each. By construction, and

given the single crossing property, the four contracts exist and lie between autarky and full

insurance.

The second and the last equations in (A.14) can be rewritten as

W e
N−d̂,1 =

W − p1L− p1W
e
L−d̂,1

1− p1

(A.15)

W e
N−ŝ,2 =

W − p2L− p2W
e
L−ŝ,2

1− p2

.

Using (A.15), the first equation of system (A.14) can be written as

e−β(W−p0L) = p0e
−βW e

L−d̂,1 + (1− p0)e
−β

W−p1L−p1W
e
L−d̂,1

1−p1 ,

which implicitly determines W e
L−d̂,1. The third equation in (A.14) in turn becomes

e−βW
e
ŝ,1 = p1e

−βW e
L−1d̂ + (1− p1)e

−β
W−p1L−p1W

e
L−d̂,1

1−p1 ,

10



which determines W e
ŝ,1. Finally, the fourth equation in (A.14) can be written as

e−βW
e
ŝ,1 = p1e

−βW 2ŝ
L + (1− p1)e

−βW−p2L−p2W
2ŝ
L

(1−p2) ,

implicitly determining W 2ŝ
L . Hence, using (A.15), the system (A.14) can be rewritten as:

e−β(W−p0L) = p0e
−βW e

L−d̂,1 + (1− p0)e
−β

W−p1L−p1W
e
L−d̂,1

(1−p1)

e−βW
e
ŝ,1 = p1e

−βW e
L−d̂,1 + (1− p1)e

−β
W−p1L−p1W

e
L−d̂,1

(1−p1) (A.16)

e−βW
e
ŝ,1 = p1e

−βW 2ŝ
L + (1− p1)e

−βW−p2L−p2W
2ŝ
L

(1−p2)

Given that the above contracts satisfy, by construction, the relevant participation and incen-

tive compatibility constraints, they constitute an equilibrium if two further conditions are

verified: truthful telling, that is the ŝ insurer does not have any incentive to mimic a d̂ type,

and robustness to deviations with cross subsidies.

b) Truthful telling

The truthful telling condition is given by

W − p1L− (W − p0L)

2
≤ W − p1L+

1

β
ln
[
p1e
−β(W e

ŝ,1) + (1− p1)e−βW
e
ŝ,1

]
,

which can easily be written as

W e
ŝ,1 ≤ W − (p0 + p1)L

2
. (A.17)

Note that the first and second equations in (A.16) can be derived from

e−βW
e
ŝ,1 = p̃e

−βW e
L−d̂,1 + (1− p̃)e−β

W−p1L−p1W
e
L−d̂,1

(1−p1) . (A.18)

More specifically, if p̃ = p1, then (A.18) is equivalent to the second equation of (A.16) and it

determines the equilibrium W e
ŝ,1. Instead, if p̃ = p0, (A.18) is equivalent to the first equation

11



of (A.16) and it determines W − p0L. Moreover, note that

∂W e
ŝ,1

∂p̃
= − 1

β

e
−βW e

L−1d̂ − e−β
W−p1L−p1W

e
L−1d̂

1−p1

p̃e
−βW e

L−1d̂

+ (1− p̃)e−β
W−p1L−p1W

e
L−1d̂

1−p1 < 0

Finally, if
∂W e

ŝ,1

∂p̃
> −L

2
, then W e

ŝ,1 < W − (p0+p1)L
2

. Hence, a sufficient condition for truthful

telling to hold is given by

− 1

β

e
−βW e

L−d̂,1 − e−β
W−p1L−p1W

e
L−1d̂

1−p1

p̃e
−βW e

L−d̂,1 + (1− p̃)e−β
W−p1L−p1We

L−d̂,1
1−p1

> −L
2
,

which is equivalent to

(βLp̃− 2) e
−βW e

L−d̂,1 + (βL(1− p̃) + 2e)
−β

W−p1L−p1W
e
L−1d̂

1−p1 > 0.

The latter inequality holds in the relevant under- or full insurance region if L > 2
βp0

, where

p0 = (1−α)2psPs+α2pd(1−Ps)
(1−α)2Ps+α2(1−Ps)

, i.e. L is sufficiently large.

c) Robustness to deviations with cross subsidies

Finally, we turn to the robustness of the candidate equilibrium to deviations with cross

subsidies by the ŝ insurer. In deviation, the insurance company gives up some or all profits in

signal profile nŝ = 1, but it makes a profit in signal profile nŝ = 2. In order to minimize losses

in signal profile nŝ = 1, the insurer offers a full insurance contract that we denote with W dev
ŝ,1 .

The profit maximizing contract in signal profile nŝ = 2 – denoted with
(
W dev
L−ŝ,2,W

dev
N−ŝ,2

)
–

gives the same level of expected utility as the full insurance contract W dev
ŝ,1 – which entails

that the relevant incentive compatibility constraint holds with equality – and makes the

policyholder indifferent to the equilibrium contract in the same signal profile. Therefore, the

deviation with cross subsidies is defined by the system e−βW
dev
ŝ,1 = p1e

−βW dev
L−ŝ,2 + (1− p1) e−βW

dev
N−ŝ,2

p2e
−βW 2ŝ

L + (1− p2) e−βW
2ŝ
N = p2e

−βW dev
L−ŝ,2 + (1− p2) e−βW

dev
N−ŝ,2 .

(A.19)
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By totally differentiating A.19 and simplifying, we obtain p1e
−βW dev

L−ŝ,2 (1− p1) e−βW
dev
N−ŝ,2

p2e
−βW dev

L−ŝ,2 (1− p2) e−βW
dev
N−ŝ,2

 d
 W dev

L−ŝ,2

W dev
N−ŝ,2

 =

 e−βW
dev
ŝ,1

0

 dW dev
ŝ,1

and hence  ∂W dev
L−ŝ,2

∂W dev
ŝ,1

∂W dev
N−ŝ,2

∂W dev
ŝ,1

 =

 p1e
−βW dev

L−ŝ,2 (1− p1) e−βW
dev
N−ŝ,2

p2e
−βW dev

L−ŝ,2 (1− p2) e−βW
dev
N−ŝ,2

−1  e−βW
dev
ŝ,1

0


(A.20)

=

 (1− p2) e
βWdev

L−ŝ,2

p1−p2 e−βW
dev
ŝ,1

−p2
e
βWdev

N−ŝ,2

p1−p2 e−βW
dev
ŝ,1

 .
By totally differentiating the insurer’s expected profits with respect to W dev

ŝ,1 , we can imme-

diately see that the condition for the deviation not to be (locally) profitable reads

−Pr (1|ŝ)− Pr (2|ŝ)

(
p2 (1− p2)

eβW
dev
L−ŝ,2

p1 − p2

e−βW
dev
ŝ,1 − (1− p2) p2

eβW
dev
N−ŝ,2

p1 − p2

e−βW
dev
ŝ,1

)
=

= −Pr (1|ŝ) + Pr (2|ŝ) p2 (1− p2)

p1 − p2

(
eβW

dev
N−ŝ,2 − eβW dev

L−ŝ,2

)
e−βW

dev
ŝ,1 ≤ 0 (A.21)

Notice that deviating from the equilibrium implies that W dev
ŝ,1 increases. This in turn entails

that
(
eβW

dev
N−ŝ,2 − eβW dev

L−ŝ,2

)
decreases. Since from (A.20),

∂W dev
L−ŝ,2

∂W dev
ŝ,1

> 0,
∂W dev

N−ŝ,2
∂W dev

ŝ,1
< 0, we have

that ∂
∂W dev

ŝ,1

(
eβW

dev
N−ŝ,2 − eβW dev

L−ŝ,2

)
< 0.

Hence, it is necessary and sufficient to compute (A.21) at W e
ŝ,1, obtaining

W e
ŝ,1 ≥

1

β
ln

(
Pr (2|ŝ)
Pr (1|ŝ)

p2 (1− p2)

p1 − p2

(
eβW

e
N−ŝ,2 − eβW e

L−ŝ,2
))

. (A.22)
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Recall that the relevant loss probabilities are

p1 = psPs + pd(1− Ps)

p2 =
α2psPs + (1− α)2pd(1− Ps)
α2Ps + (1− α)2(1− Ps)

P (1|ŝ) =
α(1− α)

Ps(1− α) + (1− Ps)α

P (2|ŝ) =
Psα

2 + Pd(1− α)2

Psα + Pd(1− α)

Using these probabilities, we have that

P (2|ŝ)
P (1|ŝ)

p2 (1− p2)

p1 − p2

=
Ps − 2Psα + α

2Psα + 1− α− Ps
·

· [(1− α)2(1− Ps)(1− pd) + α2Ps(1− ps)] [psPsα
2 + pd(1− Ps)(1− α)2]

(pd − ps)Ps(1− Ps)α(1− α)(2α− 1)
,

which for ps = 0 becomes

Ps − 2Psα + α

2Psα + 1− α− Ps
[(1− α)2(1− Ps)(1− pd) + α2Ps] pd(1− Ps)(1− α)2

pdPs(1− Ps)α(1− α)(2α− 1)
.

Note that the latter expression is 0 for α = 1. Since (A.22) is continuous, it must hold also

in a neighborhood of ps = 0 and α = 1. Noticing that limα→1 p0 = pd, the truthful telling

condition becomes βLpd > 2, which requires that L is sufficiently large. Again by continuity

the condition holds also in a neighborhood of α = 1. Q.E.D.

Proof of Proposition 7

To ease the exposition, the proof is organized as a sequence of Lemmas. We denote with

Λp(c
′) the set of contracts such that any contract c in the set is (i) preferred to contract

c′ when the policyholder’s loss probability assessment is p – i.e. EUp(c) ≥ EUp(c
′) – and

(ii) it does not entail negative expected profits for the insurer in signal profile nŝ = n –

i.e. Eπpn(c) ≥ 0. Moreover, we denote with Γeo the set of contracts that are accepted

with positive probability in equilibrium, and we refer to them as the set of outcomes. Γeo

includes two subsets of contracts: the subset of contracts Γeŝ sold by ŝ insurers, and the

subset of contracts Γe
d̂

sold by d̂ insurers. Hence, contracts sold by both ŝ and d̂ belong to

14



the intersection of Γeŝ and Γe
d̂
. Given a contract c ∈ Γeo, we denote with Nc the set of signal

profiles in which contract c is accepted. Furthermore, we denote with p̃nŝ the assessment of

the loss probability by the policyholder when an ŝ insurer deviates and the true signal profile

is nŝ. Recall that all contracts accepted in equilibrium must be incentive compatible. Indeed,

if a contract is not incentive compatible and it is accepted in a different signal profile, it can

always be relabeled. We thus denote with ce
θ̂,nŝ

the contract that in equilibrium is preferred

by the policyholder to the other contracts in the menu Ce
θ̂

when the signal profile is nŝ.

Our first Lemma establishes that in a specific signal profile – say nŝ – the insurer makes

higher profits if he were able to sell the contract of a riskier signal profile rather than the

contract designed for nŝ.

Lemma A.1 Eπpnŝ (c
e
θ̂,nŝ−1

) ≥ Eπpnŝ (c
e
θ̂,nŝ

) for any pair of full or underinsurance contracts

ce
θ̂,nŝ

, ce
θ̂,nŝ−1

∈ Γeo.

Proof. Since

Eπpnŝ (c
e
θ̂,nŝ−1

) = pnŝ(W − L−WL(ce
θ̂,nŝ−1

)) + (1− pnŝ)(W −WN(ce
θ̂,nŝ−1

))

and

Eπpnŝ (c
e
θ̂,nŝ

) = pnŝ(W − L−WL(ce
θ̂,nŝ

)) + (1− pnŝ)(W −WN(ce
θ̂,nŝ

)),

the inequality in the statement of the Lemma holds if

pnŝ(WL(ce
θ̂,nŝ−1

)−WL(ce
θ̂,nŝ

)) + (1− pnŝ)(WN(ce
θ̂,nŝ−1

)−WN(ce
θ̂,nŝ

)) ≤ 0 (A.23)

By incentive compatibility, it must be that ce
θ̂,nŝ

/∈ Λpnŝ−1(c
e
θ̂,nŝ−1

) and ce
θ̂,nŝ
∈ Λpnŝ

(ce
θ̂,nŝ−1

).

This implies that WL(ce
θ̂,nŝ

) < WL(ce
θ̂,nŝ−1

) and that WN(ce
θ̂,nŝ

) > WN(ce
θ̂,nŝ−1

). The slope of

the indifference curve EUpnŝ (c
e
θ̂,nŝ−1

) evaluated at ce
θ̂,nŝ−1

is −1−pnŝ
pnŝ

U ′(WL(ce
θ̂,nŝ−1

))

U ′(WN (ce
θ̂,nŝ−1

))
, and there-

fore it must be that
WL(ce

θ̂,nŝ−1
)−WL(ce

θ̂,nŝ
)

WN (ce
θ̂,nŝ−1

)−WN (ce
θ̂,nŝ

)
> −1−pnŝ

pnŝ

U ′(WL(ce
θ̂,nŝ−1

))

U ′(WN (ce
θ̂,nŝ−1

))
. Given that contract ce

θ̂,nŝ−1
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entails full or underinsurance, the r.h.s. of the above inequality is larger than −1−pnŝ
pnŝ

. It

follows that
WL(ce

θ̂,nŝ−1
)−WL(ce

θ̂,nŝ
)

WN (ce
θ̂,nŝ−1

)−WN (ce
θ̂,nŝ

)
> −1−pnŝ

pnŝ
, so that condition (A.23) holds.

The next lemma establishes that beliefs cannot be fully pessimistic in equilibrium, so

that this case needs no longer be considered in the remaining of the proof.

Lemma A.2 Equilibrium beliefs cannot be fully pessimistic.

Proof. The proof proceeds by contradiction. Assume that the ŝ insurer deviates by

offering the menu of contracts Γ′eo accepted in equilibrium, which is obtained by eliminating

from Γeo all contracts that make an ex-post loss in equilibrium (note that it has not yet been

shown that there do not exists equilibria entailing cross-subsidies). If Γ′eo coincides with Γeŝ,

then the ŝ insurer simply adds an unacceptable contract, so as to signal the deviation to

the policyholder. Since Γeo is the union of the menus Γeŝ and Γe
d̂
, each of them meeting the

participation of the ŝ and d̂ type respectively, then Γ′eo is strictly profitable for ŝ. Following

the deviation, a fully pessimistic policyholder believes that the signal profile is nŝ − 1 for

any true signal profile nŝ ≥ 1. In particular, in signal profile nŝ, the policyholder chooses

the contract ceŝ,nŝ−1 ∈ Γ′eô offered by the deviating ŝ insurer with positive probability if it is

ex-post profitable. Then, by Lemma A.1, the deviation is profitable, which establishes the

needed contradiction.

The following Lemma shows that a sufficient condition for the incentive compatibility

of the set of equilibrium outcomes is that contracts of adjacent signal profiles are incentive

compatible.

Lemma A.3 All incentive compatibility constraints hold for a given system of beliefs if they

hold for all pairs of adjacent signal profiles under the same system of beliefs.

Proof. Consider, without loss of generality, three contracts, {cA, cB, cC}, in the set

of outcomes where the three contracts are the outcomes in the states nŝ − 1, nŝ, nŝ + 1,

respectively. By assumption, they are incentive compatible for any pair of adjacent signal
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WL

WN

Figure A.1: Graphical intuition of the Proof of Lemma A.3

profiles, i.e.

cA ∈ Λpnŝ−1(cB) (A.24)

cA /∈ Λpnŝ
(cB) (A.25)

cC /∈ Λpnŝ
(cB) (A.26)

cC ∈ Λpnŝ+1(cB). (A.27)

By the single crossing property, A.24–A.27 imply that cA ∈ Λpnŝ−1(cC) and cC ∈ Λpnŝ+1(cA).

Figure A.1 provides a geometric intuition. By induction, the lemma holds also for non-

adjacent states.

The next lemma characterizes the best reply of the policyholder, proving that an under-

insurance contract of an ŝ insurer that is accepted in equilibrium is also accepted (meeting

both the relevant participation and incentive compatibility constraints) if the policyholder

holds more pessimistic beliefs.

Lemma A.4 If contract ceŝ,nŝ ∈ Γeŝ, then ceŝ,nŝ is also accepted with positive probability for

any belief p̃nŝ such that pnŝ−1 > p̃nŝ ≥ pnŝ.

Proof. The proof proceeds by contradiction and it is based on the construction of a

profitable deviation. The subset Γeŝ must satisfy the ex-ante participation of ŝ insurers, and
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the subset Γe
d̂

must satisfy the ex-ante participation of d̂ insurers. Then, if ŝ offers the menu

Γeo – provided that all its contracts are accepted with positive probability under the same

equilibrium signal profiles – ŝ obtains positive profits.

Consider the menu of contracts Γ′o, obtained by dropping from the menu of equilibrium

outcomes Γeo the contracts that make a loss contingent on the signal profile, i.e. any contract

c ∈ Γeo such that E
(
πpnŝ (c)|nŝ ∈ Σc

)
< 0. If ŝ offers the menu Γ′o and its contracts are

accepted under the same equilibrium signal profiles, ŝ obtains positive profits.

Let ŝ deviate by offering the menu Γ′o (if Γ′o = Γeŝ, then ŝ simply adds an unacceptable

contract). By assumption, following ŝ’s deviation, the policyholder assesses the loss proba-

bility by p̃nŝ , with pnŝ−1 > p̃nŝ ≥ pnŝ for any 1 ≤ nŝ ≤ n. Assume that there exists a subset

Σ′ of signal profiles n′ŝ such that, given p̃n′ŝ , the policyholder prefers another contract in Γ′o to

cen′ŝ
∈ Γ′o. In all signal profiles nŝ /∈ Σ′, ŝ obtains positive profits with the same (if cenŝ ∈ Γeŝ)

or higher (if cenŝ /∈ Γeŝ) probability than in equilibrium. In all signal profiles nŝ ∈ Σ′, ŝ makes

higher profits by Lemma A.1. Then, Γ′o is a profitable deviation for ŝ, which completes the

proof of the lemma.

The following sequence of Lemmas proves that ŝ’s equilibrium menu must be fully sep-

arating, so that a different contract is offered for each signal profile. The first Lemma of

the sequence shows that each contract accepted in equilibrium entails zero expected profits,

even if accepted in more signal profiles.

Lemma A.5 If ce ∈ Γeo is the equilibrium outcome in a set of signal profiles Nce such that

nŝ ≥ 2 for any nŝ ∈ Nce, then E
(
πpnŝ (c

e)|nŝ ∈ Nce
)

= 0.

Proof. First, we show that a contract belonging to the equilibrium outcome cannot

entail negative expected profit. Suppose that this is not the case, assuming that an insurance

company offering such a contract in Nce can drop it from its menu leaving unaffected the

choice of the policyholder in all signal profiles by Lemma A.4, thus increasing its profits.

Second, we prove that the equilibrium outcome entails no contracts with positive expected

profits. Consider that ŝ deviates by offering a menu Γ′o that is obtained by adding to

the equilibrium menu an undercutting contract cdev acceptable in signal profile n, where
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n = maxnŝ ∈ Nce . c
dev must be such that: 1) cdev /∈ Λp̃n−1

(ce) and cdev /∈ Λp̃n+1
(ce) (i.e., in

signal profiles n − 1 and n + 1, the policyholder must prefer ce over cdev); 2) cdev ∈ Λp̃n(ce)

(hence cdev is preferred to ce for nŝ = n); 3) cdev must yield higher expected profits than ce

given nŝ = n.

Given that the deviation contract cdev is incentive compatible by Lemma A.3, single

crossing and continuity guarantee that there always exists a contract meeting conditions 1)

and 2). For condition 3) to hold as well, it must be that cdev is sufficiently close to ce. Indeed,

by continuity, the two contracts give similar profits, although for nŝ = n cdev is accepted

with probability 1. By Lemmas A.3 and A.4, the policyholder still prefers cenŝ ∈ Γ′o in signal

profile nŝ, for any nŝ 6= n, which concludes the proof.

The next Lemma shows that the equilibrium outcome cannot entail pooling contracts

on non-adjacent signal profiles.

Lemma A.6 In non-adjacent signal profiles, the equilibrium outcome cannot encompass

pooling contracts.

Proof. Pooling equilibria in non-adjacent signal profiles cannot be incentive compatible.

To see why, focus w.l.g. on insurer ŝ (the same argument applies to d̂ insurers). Consider

three signal profiles nŝ, n
′
ŝ and n′′ŝ such that ceŝ,nŝ = ceŝ,n′ŝ

6= ceŝ,n′′ŝ
and nŝ < n′′ŝ < n′ŝ, i.e. ŝ

pools the offer in the non-adjacent signal profiles nŝ and n′ŝ. For the incentive compatibility

of the menu, it must be ceŝ,n′′ŝ
/∈ Λpnŝ

(ceŝ,nŝ), c
e
ŝ,n′′ŝ

/∈ Λpn′
ŝ

(ceŝ,nŝ) and ceŝ,n′′ŝ
∈ Λpn′′

ŝ

(ceŝ,nŝ), namely

contract ceŝ,n′′ŝ
is preferred to ceŝ,nŝ if and only if the signal profile is n′′ŝ . However, the inter-

section between these three conditions is empty, as Λpn′′
ŝ

(ceŝ,nŝ) ⊂
(

Λpnŝ
(ceŝ,nŝ) ∪ Λpn′

ŝ

(ceŝ,nŝ)
)

by the single crossing property given that pnŝ < pn′′ŝ < pn′ŝ . Note that the proof builds solely

on an equilibrium argument, so that beliefs play no role.

We are now ready to prove that there cannot be contracts that are accepted with positive

probability in more than one signal profile such that nŝ ≥ 2. Therefore, even if one insurer

offers a pooling contract, it can be accepted in only one signal profile.
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Lemma A.7 Consider a contract ce accepted in equilibrium in a signal profile nŝ ≥ 2:

ce ∈ Γeo. Then ce is accepted in only one signal profile, i.e. the set Nce contains only one

signal profile for all nŝ ≥ 2.

Proof. Assume that the statement in the lemma does not hold, so that the set Nce

contains two or more signal profiles. By Lemma A.5, equilibrium ex-ante expected profits

in ce over Nce are zero: E
(
πpnŝ (c

e)|nŝ ∈ Nce
)

= 0. Then, the set Nce of signal profiles such

that ce is accepted must contain at least one signal profile in which ŝ obtains strictly positive

profits. Such a signal profile must be the safest signal profile in Nce , and we denote it by n,

i.e. n = maxnŝ ∈ Nce . Consider that ŝ deviates by offering a menu Γ′o that is obtained by

adding to the equilibrium menu an undercutting contract cdev, such that it is accepted in the

deviation only in signal profile n. To this aim, cdev must be such that: 1) cdev /∈ Λp̃n−1
(ce)

and cdev /∈ Λp̃n+1
(ce) (i.e., in signal profiles n − 1 and n + 1, the policyholder must prefer

ce over cdev); 2) cdev ∈ Λp̃n(ce) (hence cdev is preferred to ce for nŝ = n); 3) cdev must yield

higher expected profits than ce given nŝ = n.

Given that the deviation contract cdev is incentive compatible by Lemma A.3, single

crossing and continuity guarantee that there always exists a contract meeting conditions 1)

and 2). For condition 3) to hold as well, it must be that cdev is sufficiently close to ce. Indeed,

by continuity, the two contracts give similar profits, although for nŝ = n cdev is accepted

with probability 1. By Lemmas A.3 and A.4, the policyholder still prefers cenŝ ∈ Γ′o in signal

profile nŝ, for any nŝ 6= n, which concludes the proof.

Lemmas (A.1) to (A.7) establish part 1 of the proposition for nŝ ≥ 2. It is now immediate

to show parts 2 and 3 (Lemma A.8) of the proposition before moving to the characterization

of the equilibrium for nŝ = {0, 1} in the subsequent lemmas.

Lemma A.8 (i) All contracts that are accepted with positive probability in equilibrium are

actuarially fair for all nŝ ≥ 2, so that Eπpnŝ (c
e
nŝ

) = 0. (ii) Furthermore, in equilibrium, the

incentive compatibility constraints of the menu of outcomes Γeo are binding for all nŝ ≥ 2.

Proof. The first part of the lemma follows immediately by noting that from Lemmas

A.6 and A.7, the set of equilibrium outcomes is fully separating for all nŝ ≥ 2. Moreover,
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from Lemma A.5, each contract is actuarially fair.

The proof of the second part proceeds instead by contradiction, showing that a devia-

tion always exists. Suppose that, in signal profile n′ŝ ≥ 2, the incentive compatibility con-

straint is not binding in equilibrium for at least one signal profile n′ŝ, i.e. EUpn′
ŝ
−1

(cen′ŝ−1) >

EUn′ŝ−1(cen′ŝ
), where cen′ŝ−1, c

e
n′ŝ
∈ Γeo.

Consider a contract cdev, such that i) cdev ∈ Λp̃n′
ŝ

(cen′ŝ
), ii) cdev /∈ Λp̃n′

ŝ
−1

(cen′ŝ−1), iii)

cdev /∈ Λp̃n′
ŝ
+1

(cen′ŝ
), and iv) Eπpn′

ŝ

(cdev) > 0 (i.e., cdev is ex-post profitable in signal profile n′ŝ).

Therefore such a contract must lie between the policyholder indifference curves using the

probability assessments p̃n′ŝ and p̃n′ŝ−1 and the zero isoprofit in n′ŝ. This area is not empty

by the single crossing property and the fact that contract cen′ŝ
is actuarially fair by the first

part of the lemma. Assume that an ŝ insurer deviates and offers the menu Cdev such that

Cdev is identical to the equilibrium menu of outcomes Γeo but for the fact that, in place of

contract cen′ŝ
contract cdev is offered.

In any signal profile nŝ riskier than n′ŝ− 1, the policyholder chooses contract cenŝ ∈ Γeo by

Lemmas A.3 and A.4, so that a ŝ insurer obtains the same profits as in the equilibrium.

In signal profile n′ŝ − 1, the policyholder chooses cen′ŝ−1 ∈ Γeo over cdev by construction

(condition ii)), so that also in this case a ŝ insurer obtains the same profits as in the equi-

librium.

In signal profile n′ŝ, the policyholder chooses cdev over cen′ŝ
∈ Γeo. In fact, given her beliefs

p̃n′ŝ , with pn′ŝ−1 > p̃n′ŝ ≥ pn′ŝ , she prefers cen′ŝ
to cen′ŝ−1 by Lemma A.4. Moreover, she prefers cdev

to cen′ŝ
by construction (see condition i)). Hence, in signal profile n′ŝ ≥ 2 after the deviation

Cdev is offered, the policyholder accepts cdev over any other contract offered either by the

deviating insurer or by competitors.

In signal profile n′ŝ + 1, given out of equilibrium beliefs p̃n′ŝ+1, the policyholder prefers

cen′ŝ+1 to cen′ŝ
by Lemmas A.3 and A.4, and cen′ŝ

to cdev by construction (condition iii)).

Finally, in any signal profile nŝ safer than n′ŝ + 1, the policyholder chooses contract

cenŝ ∈ Γeo by Lemmas A.3 and A.4, so that ŝ obtains the same profits than in equilibrium.

Since in any signal profile nŝ 6= n′ŝ a ŝ insurer obtains the same profits as in the equilib-

rium, while in n′ŝ profits are strictly higher, the deviation is profitable, which establishes the

contradiction completing the proof
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The next four lemmas characterize the equilibrium outcome in signal profile nŝ = 1.

Lemma A.9 In signal profile nŝ = 1, d̂ cannot offer an actuarially fair contract that entails

either full or over insurance.

Proof. From Lemma A.8, the equilibrium outcome entails zero profit in signal profiles

nŝ ≥ 2. Then, the sum of equilibrium profits for a d̂ insurer in nŝ = 0 and nŝ = 1 cannot be

negative, else d̂’s participation constraint would be violated. One must consider two cases.

Case 1. In nŝ = 0 and nŝ = 1 a d̂ insurer offers a pooling contract. An actuarially fair

contract for nŝ = 1 would violate the participation constraint of insurer d̂, given that the

contract would be accepted with positive probability in nŝ = 0.

Case 2. In nŝ = 0 and nŝ = 1 a d̂ insurer offers a separating menu. By incentive

compatibility, the equilibrium contract offered by d̂ in nŝ = 1, ce
d̂,1

, must entail underinsurance

(recall that over-insurance contracts are ruled out by assumption).

Lemma A.10 In the signal profile nŝ = 1, the policyholder accepts the offer of insurer ŝ

with probability 1.

Proof. The proof proceeds by contradiction assuming that EUp1(c
e
d̂,1

) ≥ EUp1(c
e
ŝ,1) (in

the signal profile nŝ = 1 the policyholder chooses the contract ce
d̂,1

) offered by a d̂ insurer.

It is easy to show that there always exists a deviation C̃ by a ŝ insurer, such that

C̃ =
{
c̃, ceŝ,nŝ

}
nŝ=2,...,n

. C̃ is a menu of contracts obtained from the equilibrium menu

Ce
ŝ =

{
ceŝ,nŝ

}
nŝ=1,...,n

by substituting contract ceŝ,1 with a contract c̃ having the following

characteristics: (i) c̃ ∈ Λp1(c
e
d̂,1

) (i.e., c̃ is preferred to ce
d̂,1

when the policyholder believes

that the loss probability is p1), (ii) c̃ ∈ Λp0(c
e
d̂,1

) (i.e., c̃ is preferred to ce
d̂,1

when the policy-

holder believes that the loss probability is p0), and (iii) c̃ lies under the zero-isoprofit line

when the signal profile is nŝ = 1.

Contract c̃ exists by the convexity of indifference curves and by the fact that, by Lemma

A.9, ce
d̂,1

cannot be an actuarially fair contract. By conditions (i) and (ii) and Lemma A.3, in

signal profile nŝ = 1, the policyholder prefers c̃ to ce
d̂,1

regardless of her beliefs (p̃1 ∈ [p1, p0)).

In any other signal profile nŝ > 1, she chooses instead the same contracts as in the equilibrium
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(i.e.implying the outcome Γeo) by Lemma A.4, so that the ŝ deviating insurer obtains the

same profits as in the equilibrium. This shows that the deviation C̃ is profitable for the ŝ

insurer, which establishes the contradiction proving the lemma.

To complete the characterization of the equilibrium outcome for nŝ = 1, we need to

introduce some additional notation. Denote with ce
d̂,1

the contract offered by a d̂ insurer that

is preferred in equilibrium to all other contracts in the menu Ce
d̂
, and strictly preferred to

all other contracts in the menu Ce
d̂

given the out of equilibrium beliefs p̃1 when the signal

profile is nŝ = 1 and the ŝ insurer deviates (i.e., p1 ≤ p̃1 < p0).

The contract that maximizes ŝ’s profits in signal profile nŝ = 1 and is preferred to ce
d̂,1

is

given by

c̃max
1 = arg max

c
Eπp1(c) (A.28)

s.t.EUp̃1(c) ≥ max{EUp̃1(ced̂,1), EUp̃1(c)}.

The next lemma establishes the uniqueness of such contract.

Lemma A.11 Contract c̃max
1 is unique.

Proof. The proof must consider two cases.

Case 1. In signal profile nŝ = 1, when the d̂ insurer offers menu Ce
d̂
, in equilibrium the

policyholder strictly prefers contract ce
d̂,1

over all other contracts in the same menu (even if,

as shown in Lemma A.10, she does not accept it). In this case, the solution of problem (A.28)

is unique due to the strict convexity of the indifference curves and the fact that contract ce
d̂,1

is unique.

Case 2: In signal profile nŝ = 1, when the d̂ insurer offers the menu Ce
d̂
, in equilibrium

the policyholder is indifferent between two or more contracts in the menu (even if, by Lemma

A.10, she accepts none of them). Assume that the policyholder is indifferent between two

contracts (the same reasoning would hold for three or more contracts), meaning that these

contracts provide the same utility EUp1(c
e
d̂,1

) given equilibrium beliefs. Hence, by single

crossing, the policyholder would prefer one of the two contracts given the out-of-equilibrium
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beliefs p̃1. The utility associated to such contract (given out-of-equilibrium beliefs p̃1) can

be used in the constraint of Problem (A.28). Therefore, since indifference curves are strictly

convex and the value of EUp̃1(c
e
d̂,1

) is unique, it is immediate to conclude that Problem (A.28)

admits a unique solution.

Finally, Lemma A.12 shows that contract c̃max
1 is the equilibrium one for nŝ = 1.

Lemma A.12 In signal profile nŝ = 1, the equilibrium contract of insurer ŝ is c̃max
1 charac-

terized in (A.28).

Proof. The proof proceeds by contradiction, assuming that ceŝ,1 6= c̃max
1 and showing

that there always exists a deviation by a ŝ insurer consisting in the offer of a contract c̃max
1 .

If the signal profile is nŝ = 1, following the deviation by the ŝ insurer, the policyholder

observes the deviation c̃max
1 and n − 1 menus Ce

d̂
. She thus estimates the loss probability

to be p̃1, with p1 ≤ p̃1 < p0. By Lemmas A.3 and A.4, her preferred contract within the

menu Ce
d̂

is ce
d̂,1

; moreover, c̃max
1 is preferred to ce

d̂,1
by definition (see (A.28)). Then, in signal

profile nŝ = 1, the deviating ŝ insurer sells contract c̃max
1 . Since c̃max

1 solves problem (A.28),

while ceŝ,1 only satisfies ceŝ,1 ∈ Λp1(c
e
d̂,1

), then c̃max
1 is more profitable than ceŝ,1 in signal profile

nŝ = 1.

For any other signal profile nŝ ≥ 2, the ŝ deviating insurer’s offer (i.e. contract c̃max
1 ) is

rejected, as the policyholder prefers the competitors’ offers. This follows from the fact that

the incentive compatibility constraints of the equilibrium menu are binding by Lemma A.8,

and that the policyholder by accepting the deviation in nŝ = 1 cannot reach an higher utility

level than in the proposed equilibrium. This implies that the deviating insurer obtains zero

profits under all these signal profiles. Noting that in equilibrium profits are zero by Lemma

A.8, for any signal profile nŝ ≥ 2, the ŝ deviating insurer obtains the same profits as in the

equilibrium.

Before characterizing the equilibrium in signal profile nŝ = 0, it is convenient to show

that equilibrium beliefs must be fully optimistic, which is done in Lemma A.13 (incidentally,

this already establishes part 6 of the proposition).
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Lemma A.13 Equilibrium beliefs must be fully optimistic.

Proof. Suppose that EUp̃1(c
e
d̂,1

) > EUp̃1(c). In the solution of problem (A.28), the

constraint is binding, i.e. EUp̃1(c̃
max
1 ) = EUp̃1(c

e
d̂,1

).

Let p̃1 > p1. Then, c̃max
1 /∈ Λp1(c

e
d̂,1

), so that in equilibrium the policyholder prefers ce
d̂,1

to ceŝ,1, thus contradicting Lemma A.10, according to which ŝ’s offer is always accepted in

nŝ = 1.

If EUp̃1(c
e
d̂,1

) ≤ EUp̃1(c), then in equilibrium the participation constraint would not be

satisfied, again contradicting Lemma A.10.

Note that Lemma A.13 implies that the contract c̃max
1 characterized by (A.28) is cmax

1 ,

which is a full insurance contract.

The next two lemmas characterize the equilibrium in signal profile nŝ = 0, establishing

part 5 of the proposition.

Lemma A.14 The profits of insurer d̂ in signal profile nŝ = 0 are non-negative.

Proof. The outcome in signal profiles nŝ ≥ 2 is actuarially fair by Lemma A.8. Moreover,

in signal profile nŝ = 1, insurer d̂ offer is not accepted by Lemma A.10 so that his profits are

zero. Then, if in nŝ = 0 d̂ makes a loss, d̂’s participation constraint is not met.

Lemma A.15 Condition (10) holds in equilibrium.

Proof. Since an insurer ŝ could pretend to be d̂ by offering the equilibrium menu of

the d̂ type, it is necessary to guarantee that ŝ insurers truthfully reveal their private signal.

In signal profile nŝ = 1, the ŝ insurer in equilibrium would obtain the profit Eπŝ(c
e
ŝ,1).

Conversely, if he deviates by offering Ce
d̂
, the policyholder observes that the menu Ce

d̂
is

offered by all firms, and thus believes that the signal profile is nŝ = 0, hence choosing

contract ce
d̂,0

. In this case, the ŝ insurer obtains profits Eπŝ(c
e
d̂,0

) with probability 1/n. Then,

a necessary equilibrium condition for the ŝ insurer to truthfully reveal his signal is (10),

where the right hand side is strictly positive by construction. Note that in signal profiles

nŝ ≥ 2, condition (10) remains a necessary one whenever the contract offered by the deviating
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insurer is accepted with positive probability for some nŝ > 2, hence entailing positive profits

in deviation. It is instead both necessary and sufficient whenever the offer of the deviating

insurer is not accepted.

Having characterized the equilibrium also for the signal profile nŝ = 0, we can finally

complete the proof of the first part of the proposition (that so far has been proved just for

nŝ ≥ 2).

Lemma A.16 The equilibrium outcome Γeo is fully separating for all nŝ.

Proof. From Lemmas A.6 and A.7, the set of outcomes is fully separating for all signal

profiles nŝ ≥ 2. Moreover, it follows immediately from condition (10) that ce
d̂,0
6= ceŝ,1 – i.e.

the outcome in nŝ = 0 is different from the outcome in nŝ = 1. Finally, as the equilibrium

outcome in nŝ = 2 is actuarially fair (see Lemma A.8), it must be different from contract

ceŝ,1 – i.e. the outcome in nŝ = 1 is different from the outcome in nŝ = 2 – which completes

the proof.

This completes the proof of the proposition. Q.E.D.

Proof of Corollary 2

Proving the first statement in the corollary requires to prove that there exists a profitable

deviation contract menu when n is large enough. In order to characterize the deviation menu,

we preliminarily need to determine all relevant loss probabilities. Note first that the loss

probability in the signal profile nŝ is

pnŝ =
psPs(1− α)n−nŝαnŝ + pd(1− Ps)(1− α)nŝαn−nŝ

Ps(1− α)n−nŝαnŝ + (1− Ps)(1− α)nŝαn−nŝ
,

which by dividing both numerator and denominator by αn, can be immediately rewritten as

pnŝ =
psPs + pd(1− Ps)

(
1−α
α

)2nŝ−n

Ps + (1− Ps)
(

1−α
α

)2nŝ−n .
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The expression for pnŝ can then be used to write

pn =
psPs + pd(1− Ps)

(
1−α
α

)n
Ps + (1− Ps)

(
1−α
α

)n ,

pn
2

= psPs + pd(1− Ps),

pn
2
−1 =

psPs
(

1−α
α

)2
+ pd(1− Ps)

Ps
(

1−α
α

)2
+ (1− Ps)

.

Note that pn
2

and pn
2
−1 do not depend on n. Moreover, in the limit for n→∞, we have that

limn→∞ pn = ps.

The probability that signal profile nŝ occurs is given by

Pr(nŝ) = Psα
nŝ(1− α)n−nŝ + (1− Ps)(1− α)nŝαn−nŝ

that can be rewritten as

Pr(nŝ) = αn

[
Ps

(
1− α
α

)n−nŝ
+ (1− Ps)

(
1− α
α

)nŝ]
.

Hence, the probability of the signal profile nŝ conditional on nŝ ≥ n/2 is

Pr(nŝ|nŝ ≥ n/2) =
αn
[
Ps
(

1−α
α

)n−nŝ + (1− Ps)
(

1−α
α

)nŝ]
αn
∑n

t=n
2

[
Ps
(

1−α
α

)n−t
+ (1− Ps)

(
1−α
α

)t] .
Simplifying for αn and collecting terms, we obtain

Pr(nŝ|nŝ ≥ n/2) =
Ps
(

1−α
α

)n−nŝ + (1− Ps)
(

1−α
α

)nŝ[
Ps + (1− Ps)

(
1−α
α

)n
2

]
1−( 1−α

α )
n
2 +1

1− 1−α
α

.

Note also that the expected loss probability p =
∑n

nŝ=
n
2
pnŝPr

(
nŝ|nŝ ≥ n

2

)
conditional

on nŝ ≥ n/2 reads

p =
psPs + pd(1− Ps)

(
1−α
α

)n
2

Ps + (1− Ps)
(

1−α
α

)n
2

(A.29)
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Figure A.2: Deviations

Taking the limit of A.29 for n→∞ and noting that 1− α < α, we have limn→∞ p = ps.

Having defined all relevant loss probabilities, we can now turn to the characterization of

the contracts entering the deviation menu. To do so, it is convenient to define three contracts

c1, c2, and c3 as follows. Contract c1 is such that i) EUpn
2

(c1) = EUpn
2
(ceŝ,n

2
) (c1 provides the

same expected utility as contract ceŝ,n
2

given the loss probability pn
2
), and ii) c1 is actuarially

fair given the loss probability ps. Contract c2 is such that i) EUpn
2−1

(c2) = EUpn
2−1

(ceŝ,n
2
)

(c2 provides the same expected utility to the policyholder as contract ceŝ,n
2

given the loss

probability pn
2
−1), and ii) it is actuarially fair when the loss probability is ps. Finally, contract

c3 is such that i) EUpn
2−1

(c3) = EUpn
2−1

(ceŝ,n
2
) (c3 provides the same expected utility to the

policyholder as contract ceŝ,n
2

when the loss probability is pn
2
−1), and ii) Eπp (c3) = ε > 0

Note that c3 allows for arbitrarily small – albeit strictly positive – profits given that the loss

probability is p. Note also that c3 converges to c2 for n → ∞ since limn→∞p= ps. Observe

finally that – in defining c1, c2, and c3 – we assume without loss of generality that n is an

even number. Contract ceŝ,n
2

is then the equilibrium contract offered by the ŝ insurer and

chosen by the policyholder in the signal profile nŝ = n
2
. Proposition 7 guarantees that ceŝ,n

2

is actuarially fair in signal profile nŝ = n
2

and that it entails underinsurance.

Using the definitions of c1, c2, and c3, consider a deviation from the equilibrium by the

ŝ insurer, in which he offers a menu Cdev constituted by the equilibrium contracts ceŝ,nŝ for
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all signal profiles nŝ < n/2, plus the contract c3, i.e.

Cdev =
{
{ceŝ,nŝ}nŝ<n

2
, c3

}
.

The following Lemma shows that the deviation menu Cdev is always profitable and ac-

cepted by the policyholder.

Lemma A.17 Cdev is a profitable deviation, which is always accepted by the policyholder.

Proof. We first show that for Cdev to be a profitable deviation if accepted it must be

that

1. the contract ceŝ,nŝ ∈ Cdev is chosen when the realized signal profile is nŝ, for any

nŝ < n/2;

2. the contract c3 is chosen when the realized signal profile is nŝ, for any n/2 ≤ nŝ ≤ n.

Recall preliminarily that a separating equilibrium is fully revealing and that the poli-

cyholder is fully optimistic, implying that after a deviation of an ŝ insurer the policyholder

still believes that the signal profile is nŝ (see Proposition 7).

Cdev is a profitable deviation as the insurer ŝ offering Cdev obtains the equilibrium profits

in all signal profiles nŝ < n/2, and profits Eπp (c3) > 0 if nŝ ≥ n/2 by construction, which

is higher than the equilibrium profits. Indeed, the equilibrium contracts cenŝ are actuarially

fair for nŝ ≥ n/2 if n ≥ 3; the only profitable signal profile for ŝ in equilibrium is nŝ = 1.

We now need to show that conditions 1) and 2) always hold. Focus first on Condition

1) and consider the signal profiles nŝ < n/2.

Since EUpn
2−1

(c3) = EUpn
2−1

(ceŝ,n
2
) by definition of c3, and EUpn

2−1

(
ceŝ,n

2
−1

)
≥ EUpn

2−1
(ceŝ,n

2
)

by the incentive compatibility of the equilibrium menu, then using the single crossing prop-

erty it follows immediately that EUpn
2−1

(
ceŝ,n

2
−1

)
≥ EUpn

2−1
(c3). Hence, c3 is not chosen

when nŝ = n
2
− 1 if Cdev is offered. Moreover, by the incentive compatibility of the equilib-

rium menu and by Lemma A.3, the policyholder prefers contract cenŝ,ŝ in any signal profile

nŝ < n/2. Hence, the equilibrium contracts cenŝ are chosen for any nŝ < n/2, and the insurer

achieves the same profits as in the equilibrium for all these signal profiles.
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We now turn to Condition 2). Focus on the signal profiles n/2 ≤ nŝ ≤ n and denote

with Λp(c1) the set of contracts c that are strictly preferred to contract c1 for a given loss

probability p, and that are profitable given the loss probability ps, i.e.

Λp(c1) = {c : EUp(c) > EUp(c1), Eπps(c) ≥ 0}.

We have that

c2 ∈ Λps(c1) ⊂ Λp(c1)

for all p > ps.

Since pn
2
> ps, then it is c2 ∈ Λpn

2
(c1).

Consider the equilibrium menu. The following conditions must hold

EUpn
2

(c1) = EUpn
2

(
ceŝ,n

2

)
≥ EUpn

2
(ceŝ,nŝ) for any nŝ ≥ n/2,

where the first equality comes from the definition of c1 and the second inequality comes from

the incentive compatibility of the equilibrium menu.

This implies that ceŝ,nŝ /∈ Λpn
2
(c1) for all nŝ ≥ n/2. Since Λp(c1) ⊂ Λp′(c1) for all

p < p′, then Λpnŝ
(c1) ⊂ Λpn

2
(c1) for all nŝ > n/2. Hence, ceŝ,nŝ /∈ Λpnŝ

(c1) for all nŝ ≥ n/2. By

transitivity, the contract c2 is preferred to ceŝ,nŝ for any nŝ ≥ n/2. When n→∞, the contract

c3 converges to c2, implying that the contract c3 is preferred to ceŝ,nŝ for any nŝ ≥ n/2. Hence,

Cdev is accepted and c3 is chosen in any signal profile nŝ ≥ n/2.

Lemma A.17 implies that there exists an upper bound ¯̄n to the number of firms that is

consistent with the existence of informative equilibria.

To show that ¯̄n is decreasing in the expected profits corresponding to the equilibrium

contract, it is enough to show that as n increases only those menus associated to lower

profits are consistent with an informative equilibrium. To see this, note first that the char-

acterization of informative equilibria leaves degrees of freedom in the contracts offered by

the d̂ insurers in signal profiles 0 and 1. As a consequence, the position of the contract

ceŝ,1 = (W e
ŝ,1,W

e
ŝ,1) may vary on the 45 degree line, thus originating multiple equilibria. Note

that the wealth in the case of loss, WL(.), for all possible contracts in the equilibrium menu
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is a function of W e
ŝ,1. Observe that the equilibrium menu is identified by a set of binding

incentive compatibility constraints for all adjacent states (see Lemmas A.3 and A.8 in the

proof of Proposition 7), i.e.

EUp1(c
e
ŝ,1) = EUp1(c

e
ŝ,2)

EUp2(c
e
ŝ,2) = EUp2(c

e
ŝ,3)

...

EUpn−2(c
e
ŝ,n−2) = EUpn−2(c

e
ŝ,n−1)

EUpn−1(c
e
ŝ,n−1) = EUpn−1(c

e
ŝ,n)

Therefore, equilibria with higher EUp1(c
e
ŝ,1) also exhibit higher EUpn−1(c

e
ŝ,n), which implies

that
dWL(ceŝ,n)

dW e
ŝ,1

> 0. This in turn entails that a higher WL(ceŝ,n) shifts up the equilibrium menu,

which follows directly from the fact that incentive compatibility must hold with equality for

all adjacent states.

Given that the expected equilibrium profit for the ŝ insurer is

Eπeŝ = Pr(1|ŝ)(W − p1L−W e
ŝ,1),

we obtain that
dEπeŝ

dWL(ceŝ,n)
= −Pr(1|ŝ)

dW e
ŝ,1

dWL(ceŝ,n)
< 0. (A.30)

Consider a deviation in which the ŝ insurer gives up some or all profits in signal profile

nŝ = 1, but he makes a profit in signal profile nŝ = n. In order to minimize losses with

respect to the equilibrium contract in signal profile nŝ = 1, the insurer offers a full insurance

contract such that wealth both in the case of loss and in that of no loss is W dev
ŝ,1 . All deviation

contracts offered in signal profiles from nŝ = 2 to nŝ = n− 1 satisfy incentive compatibility

with equality, and are actuarially fair. The deviation contract offered in signal profile nŝ = n

– i.e. (WL(cdevŝ,n ),WN(cdevŝ,n )) – meets the incentive compatibility constraint with equality.
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The expected profits at the deviation are given by

Eπdevŝ = Pr(1|ŝ)(W−p1L−W dev
ŝ,1 )+Pr(n|ŝ)

(
pn(W − L−WL(cdevŝ,n )) + (1− pn)(W −WN(cdevŝ,n ))

)
Therefore,

dEπdevŝ

dW dev
ŝ,1

= −Pr(1|ŝ)− Pr(n|ŝ)

(
pn
dWL(cdevŝ,n )

dW dev
ŝ,1

+ (1− pn)
dWN(cdevŝ,n )

dW dev
ŝ,1

)
,

i.e.
dEπdevŝ

dW dev
ŝ,1

= −Pr(1|ŝ)− Pr(n|ŝ)
dWL(cdevŝ,n )

dW dev
ŝ,1

(
pn + (1− pn)

dWN(cdevŝ,n )

dWL(cdevŝ,n )

)
. (A.31)

In the most profitable deviation menu Cdev
ŝ offered by ŝ, the contract offered in signal

profile nŝ = n – cdevŝ,n ∈ Cdev
ŝ – lies on the indifference curve passing through the equilibrium

contract ceŝ,n, i.e.

EUpn(ceŝ,n) = pnU(WL(cdevŝ,n )) + (1− pn)U(WN(cdevŝ,n )),

from which

WN(cdevŝ,n ) = U−1

(
EUpn(ceŝ,n)

1− pn
− pn

1− pn
U(WL(cdevŝ,n ))

)
. (A.32)

By exploiting (A.32), we obtain

dWN(cdevŝ,n )

dWL(cdevŝ,n )
= − pn

1− pn
U ′(WL(cdevŝ,n ))

U ′(WN(cdevŝ,n ))
,

which, substituted into (A.31), gives

dEπdevŝ

dW dev
ŝ,1

= −Pr(1|ŝ)− Pr(n|ŝ)
dWL(cdevŝ,n )

dW dev
ŝ,1

pn

(
1−

U ′(WL(cdevŝ,n ))

U ′(WN(cdevŝ,n ))

)
.

The previous expression, evaluated at the equilibrium contract, reads

dEπdevŝ

dW dev
ŝ,1

= −Pr(1|ŝ)− Pr(n|ŝ)
dWL(ceŝ,n)

dW e
ŝ,1

pn

(
1−

U ′(WL(ceŝ,n))

U ′(WN(ceŝ,n))

)
. (A.33)
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To prevent deviations with cross-subsidies, (A.33) must be negative. Recall that
dWL(ceŝ,n)

dW e
ŝ,1

>

0, and that 1 − U ′(WL(ceŝ,n))

U ′(WN (ceŝ,n))
< 0 because WL(ceŝ,n) < WN(ceŝ,n). When n increases, Pr(1|ŝ)

decreases and Pr(n|ŝ) increases. Then, only equilibria in which the term

dWL(ceŝ,n)

dW e
ŝ,1

pn

(
1−

U ′(WL(ceŝ,n))

U ′(WN(ceŝ,n))

)

is small enough can survive. These equilibria are those in which the underinsurance in the

nŝ = n signal profile is low. In order to reduce underinsurance, the wealth in case of loss

at the equilibrium ceŝ,n, i.e. WL(ceŝ,n), must increase. Using Equation (A.30), this in turn

implies that the equilibrium profits Eπeŝ must become smaller, which completes the proof of

the corollary. Q.E.D.
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Not for publication Appendixes

Appendix B Existence and Robustness of Non-Informative

Equilibria

In this Appendix we check the existence and robustness of non-informative equilibria by

means of latent contracts and equilibrium refinements.

Appendix B.1 Latent contracts

We show that a non-informative equilibrium always exists by relying on the usage of latent

contracts. The idea is easily illustrated by Figure B.1. Consider, as a candidate equilibrium,

the situation in which both insurers’ types offer the menu composed by the two contracts(
ce, clat

)
and the policyholder’s out of equilibrium beliefs are fully optimistic. When of-

fered the menu
(
ce, clat

)
, the policyholder chooses contract ce. This occurs because, in

non-informative equilibria, the policyholder’s estimation of the loss probability in equilib-

rium corresponds to the prior p̄. Thus, she always prefers the contract ce to the contract clat.

Therefore, contract clat is never chosen in equilibrium (and accordingly it remains latent),

thus causing ce to be the equilibrium outcome. Geometrically, this means that the contract

clat lies below the indifference curve passing through ce and it is drawn according to the ex

ante estimation p̄ of the loss probability.

Now assume that one insurer wants to deviate from the
(
ce, clat

)
menu. A fully optimistic

policyholder who observes a deviation believes with probability one that the deviating insurer

is of type ŝ, while she retains her ex ante beliefs about the type of the other insurer. Then,

a deviation must be preferred to contract clat when the loss probability is pŝ. However,

any contract with this property would entail a loss for both d̂ and ŝ insurers, because clat

is unprofitable by construction (recall that the iso-profit lines through the no insurance

contract c are those entailing zero profits for the corresponding insurer and they are therefore

identifying the insurers’ participation constraints). Hence a profitable deviation does not

exist.
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Figure B.1: Non-informative equilibrium with latent contracts

The following proposition formalizes this result by providing the conditions under which

a contract clat exists.

Proposition B.1 If limY→0 U
′(Y ) = limY→∞ U(Y ) = +∞, the contract ce ∈ Λp̄ is always

an equilibrium outcome.

To formally prove the existence of at least one contract clat, it is convenient to introduce

the two contracts, c1 and c2, represented in Figure B.1.43 Contract c1 (resp. c2) is the contract

preferred by the optimistic policyholder among those that can be offered in a deviation by

a ŝ (resp. d̂) insurer. In particular, contract c1 is the actuarially fair full insurance contract

when the loss probability is pŝ; i.e. the contract that maximizes the expected utility of

the fully optimistic policyholder when she believes that the loss probability is pŝ and the

participation constraint of the ŝ insurer holds. Contract c2 maximizes the expected utility

of the fully optimistic policyholder when she believes that the loss probability is equal to

pŝ and the participation constraint of the d̂ insurer holds. Geometrically, c2 is the contract

lying on the tangency between the indifference curve of the policyholder estimating the loss

probability to be pŝ and the zero isoprofit line computed with probability pd̂.

We let EU lat = max{EUpŝ(c1), EUpŝ(c2)}, and we define the contract clat as follows.

Definition B.1 Contract clat is such that:
43With a slight abuse of notation, we denote indifference curves using the corresponding expected utility

levels.
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1. it provides a lower expected utility than the autarky contract c, i.e.

EUp̄
(
clat
)
< EUp̄(c), (B.1)

when the loss probability is estimated to be at the ex ante level p̄;

2. it lies on the highest between the two indifference curves passing through c1 and c2, i.e.

EUpŝ(c
lat) = EU lat, (B.2)

under the assumption that the loss probability is pŝ.

We also define a candidate equilibrium contract ce as a contract that meets the conditions

in the following definition.

Definition B.2 Contract ce is such that:

1. it provides the same expected utility as the autarky contract c, i.e.

EUp̄ (ce) = EUp̄(c), (B.3)

when the loss probability is estimated to be at the ex ante level p̄

2. it lies below the zero isoprofit line of a d̂ insurer, i.e.

Eπpd̂(c
e) = 0; (B.4)

3. it entails a positive amount of insurance, i.e

WN(ce) < W. (B.5)

Conditions (B.3), (B.4) and (B.5) guarantee, respectively, that the policyholder’s par-

ticipation constraint (conditional on the ex ante level p̄ of loss probability), the d̂ insurer’s

3



participation constraint, and the ŝ insurer’s participation constraint hold in equilibrium.

Note that at least one contract ce always exists, namely the no-insurance contract c.

We are only left to prove that clat always exists. To do so, we must show that there

always exists an intersection between the indifference curve EUp̄(c) and the highest one

among EUpŝ(c1) and EUpŝ(c2). In fact, in this case there exists an area of contracts that

satisfies simultaneously Conditions (B.1) and (B.2). Note that, under the assumption that

U ′(0)→∞, the slope of any indifference curve goes to zero when WL → 0; i.e. all indifference

curves lie in the positive orthant. In other words, if clat = (W lat
L ,W lat

N ) exists, it must be

such that W lat
L ,W lat

N > 0.

By definition of contract clat, it must be that

pŝU(W lat
L ) + (1− pŝ)U(W lat

N ) = EU lat,

p̄U(W lat
L ) + (1− p̄)U(W lat

N ) ≤ EUp̄(c).

Using the first equation, U(W lat
L ) can be written as U(W lat

L ) = EU lat

pŝ
− 1−pŝ

pŝ
U(W lat

N ). By

substituting this expression into the second inequality, we obtain

p̄
EU lat

pŝ
− p̄1− pŝ

pŝ
U(W lat

N ) + (1− p̄)U(W lat
N ) ≤ EUp̄(c),

i.e. (
1− p̄

pŝ

)
U(W lat

N ) ≤ EUp̄(c)− p̄
EU lat

pŝ
.

Given that p̄ > pŝ, under the assumption that limY→∞ U(Y ) = +∞, it is always possible

to find a W lat
N large enough for the previous inequality to be met, which guarantees the

existence of a latent contract as defined in Definition B.1 and hence proves the claim in

Proposition B.1.

It is worth stressing that latent contracts are essential to establish the existence result

of Proposition B.1. It is widely known that latent policies may be a commitment device

for firms to prevent rivals’ deviations from equilibrium. Notwithstanding, latent contracts

have been criticized along at least two dimensions. First, there is no strong evidence that

insurance firms rely on latent contractual schemes. Second, in many cases (such as the

4



one illustrated in Figure B.1) they appear to be inconsistent with the sequential rationality

principle, as firms would renege (if they could) the latent contract were it accepted with some

(even negligible) probability. For these reasons, in the main text of the paper we restrict the

set of admissible contracts to those implying non-negative profits with positive probability

if accepted.

Appendix B.2 Equilibrium refinements

The analysis of Section 4 shows that there exist multiple non-informative equilibria. The

multiplicity of equilibria arises from the degree of freedom allowed by the off-equilibrium-

path beliefs. Here we check whether these equilibria survive when refinements eliminating

equilibria supported by somehow unreasonable beliefs are introduced. A useful refinement

in the case of non-informative equilibria is the Intuitive Criterion of Cho and Kreps (1987),

which requires to identify what type of insurer would profit by deviating from a given equilib-

rium. Reasonable beliefs should assign zero probability to a type that does not gain anything

from deviating.

We apply the definition of the Intuitive Criterion as follows. Consider a PBE: given a

type θ̂, some offers of the insurer entail – whatever the subsequent beliefs of the agent –,

lower profits (strictly lower for one possible belief at least) than those earned by playing its

equilibrium action. A ‘reasonable’ belief associated with such a dominated offer must put

zero mass on type θ̂, provided that the offer gives a higher profit than the equilibrium profits

on the remaining type. If this condition is not satisfied, the equilibrium can be eliminated.

Proposition B.2 shows that some non-informative equilibria survive the proposed refine-

ment.

Proposition B.2 There exists a non-informative equilibrium allocation that entails full in-

surance and positive profits for the d̂ type, which is robust to the Cho-Kreps criterion.

In order to understand the logic behind Proposition B.2, it is useful to consider the

full-insurance, actuarially fair contract illustrated in Figure B.2
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Figure B.2: Refinement of non-informative equilibria

Consider a non-informative Perfect Bayesian Equilibrium in which both insurer’s types

offer the contract ce. This contract is actuarially fair for type d̂, it entails full insurance, and

off the equilibrium beliefs are fully optimistic.

To check whether this equilibrium is robust to the Intuitive Criterion, we identify the

contracts that would lead the insurer ŝ to earn – whatever the subsequent beliefs of the agent

–, lower profits than those obtained by playing his equilibrium action. This set of contracts

must lie above the isoprofit line 1
n
Eπŝ(c

e) in Figure B.2. A ”reasonable” belief associated

to this dominated offer must put zero mass on type ŝ, provided that the offer gives a higher

profit than the equilibrium one for type d̂. Then, one needs to identify the contracts lying

above 1
n
Eπŝ(c

e) that yield higher profits than the equilibrium ones to type d̂. Given that the

d̂ insurer makes zero profits in equilibrium, the contracts yielding him positive profits must

lie below his zero isoprofit line Eπd̂(c) = 0.

The shaded area in Figure B.2 illustrates all contracts for which an optimistic belief

is not ‘reasonable’ according to the Cho-Kreps Intuitive Criterion. Since these contracts

are not acceptable by a policyholder holding beliefs p̃ = pd̂, the condition is met and the

equilibrium is robust to the Intuitive Criterion.

Importantly, non-informative equilibria entailing positive profits can survive the refine-

ment, provided profits are not too large.
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Appendix C Numerical Analyses

This appendix provides a numerical analysis aimed at checking that the equilibria character-

ized in the main text are not of theoretical interest only, but they rather exist for empirically

plausible and sufficiently broad parameter constellations, being in this perspective a robust

feature of actual insurance markets. All the analysis is carried out for the same CARA

specification (4) of the policyholder’s utility that we consider in the main text.

Non-informative Equilibria

We first characterize the existence of non-informative equilibria and its robustness to relevant

perturbations of our baseline parameter set, focusing on full insurance (efficient) equilibrium

contracts such that the policyholder’s participation constraint is binding and the her beliefs

are fully optimistic.

Figures C.1 and C.2 illustrate how the regions of existence of non-informative full in-

surance equilibria change as a function of the loss probability in environment s (horizontal

axis) and of the precision of the signal α (vertical axis).44 The three panels in Figures C.1

and C.2 investigate how the region of existence of efficient non-informative equilibria is af-

fected by increasing levels of the probability Ps of the true state of the world being s and

of risk aversion β, respectively.45 Consistently with Proposition 2, an efficient equilibrium

44Consistently with the logic of Proposition 2, our baseline parameter set for Figures C.1 and C.2 fixes
the values of loss L, initial wealth W and loss probability pd in the d environment, letting instead Ps, β,
α, and ps vary. In both figures, we let W = 1000 and L = 300 – corresponding to a loss of 30% of the
original wealth – and pd = 0.2. We are well aware that the relevant values of the loss probabilities and
of the size of the loss depend largely on the specific insurance markets that are considered. To get some
empirical background for our choices, note that Barseghyan et al. (2013) find the claim probabilities (a
proxy for ps and pd in our setup) for home insurance to range from 0.024 (1st percentile) to 0.233 (99th
percentile), while those for auto collision to be between 0.026 and 0.139. As for average losses, heterogeneity
across lines of insurance is even larger. For example, the Insurance Information Institute (2018) reports that
the average claim severity for US home insurance over the period 2013-2017 ranges between 68,000$ for fire
and lighting damages to 368$ for credit card losses. Finally, Cohen and Einav (2005) provide a number of
different estimates for the risk aversion parameter ranging from values of the order of 10−6 to values of the
order of 10−2. We put ourselves in the worst possible situation to build our case by setting β = 0.01. Recall
in fact that according to Proposition 2 the existence of a non-informative equilibrium is favored by lower
risk aversion. It is important to note that, although our parameter set is far from being properly calibrated,
it is broadly consistent with the reported available empirical evidence.

45Figure C.1 assumes that β = 0.01 and considers three possible values of the probability Ps, and namely:
Ps = 0.05 in panel (a), Ps = 0.10 in panel (b), and Ps = 0.15 in panel (c). Figure C.2 assumes instead that
Ps = 0.10 and focuses on alternative values of the degree of risk aversion, and namely: β = 0.01 in panel
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Figure C.1: Existence of non-informative equilibria in the plane α-ps for increasing levels of
Ps: Ps = 0.05 in panel (a); Ps = 0.10 in panel (b); Ps = 0.15 in panel (c)

is more likely to exist when the precision of the signal is high and the loss probability in

the environment s is low. A lower probability that the true environment is s increases the

likelihood of an equilibrium for high α and low ps. When Ps becomes too high (such as in

panel c of Figure C.1), non-informative equilibria fail to exist, owing to the fact that the

participation constraints of the policyholder and of the insurer d̂ cannot hold simultaneously.

A lower level of Ps eliminates the non existence area in the upper left corner, but at the

same time it enlarges the non existence area at the bottom. A lower level of risk aversion

is needed to compensate the reduction of the area of existence due to a lower level of Ps.

This can be seen in the three panels of Figure C.2, where a lower level of risk aversion is

associated to a larger area of equilibrium existence, again consistently with Proposition 2.

Indeed, the non existence area at the bottom of both figures is characterized by the presence

of profitable deviations that would be accepted by an optimistic policyholder. A lower level

of risk aversion helps sustaining the equilibrium by decreasing the profitability of acceptable

deviations.

(a), β = 0.05 in panel (b), and β = 0.10 in panel (c).
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Figure C.2: Existence of non-informative equilibria in the plane α-ps for increasing levels of
risk aversion: β = 0.01 in panel (a); β = 0.05 in panel (b); β = 0.10 in panel (c)

Non-informative Pooling Equilibria in a Two-sided Asymmetric In-

formation Framework

We focus on a setup in which our two-sided asymmetric information framework is as close as

possible to that in Rothschild and Stiglitz (1976). Namely, we assume that the probability

of the s environment, as well as the loss probabilities psl and psh in the s environment,

converge to zero.46 The main goal of our numerical exercise is to characterize and compare the

parameter regions where our model admits non-informative pooling equilibria and Rothschild

and Stiglitz’s (1976) model admits separating equilibria.

Figure C.3 shows the results of such comparison, reporting on the horizontal axis the

ratio pdl/pdh of the loss probabilities for the two types of the policyholder in the dangerous

state of the world,47 and on the vertical axis the ex-ante probability Pl that the policyholder

is low risk. The red area in the figure represents the region of existence of an efficient

non-informative pooling equilibrium for α = 0.9999 and Ps = 0.0001, while the blue area

represents the region of existence of a (separating) equilibrium in the Rothschild and Stiglitz’s

(1976) framework (i.e., for α = 1 and Ps = 0).

Figure C.3 suggests that a non-informative pooling equilibrium requires the loss proba-

bilities in the two states dh and dl to be sufficiently close to each other and the probability of

46The full parameter constellation used in this numerical exercise is: α = 0.9999, Ps = 0.0001, β = 0.001,
psh = psl = 0, pdh = 0.05, W = 1000, L = 200.

47Given the assumptions on the loss probabilities in state s, the two policyholder’s types coincide when
pdl/pdh = 1.
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Figure C.3: Existence of non-informative pooling equilibria (in red) and Rothschild-Stiglitz
equilibria (in blue) in the plane Pl- pdl/pdh

the policyholder’s being of the low risk type to be sufficiently high. Conversely, a separating

equilibrium à la Rothschild and Stiglitz (1976) seems to exist only if the probability of the l

policyholder is sufficiently low and the wedge between the loss probabilities in the two states

is sufficiently large. Indeed, for low levels of Pl, the participation constraint of the l policy-

holder is not consistent with that of the d̂ insurer, so that non-informative pooling equilibria

cannot emerge. More important, Figure C.3 suggests that non-informative pooling equilibria

are possible both when equilibria à la Rothschild and Stiglitz (1976) exist and when they

do not exist because of the presence of profitable pooling deviations. This indicates that a

small perturbation of the Rothschild and Stiglitz’s (1976) framework (due to the presence

of even a minimal information advantage for insurers about a relevant characteristic of the

environment) may result in the existence of non-informative pooling equilibria in insurance

markets.
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Informative Equilibria and Comparison with Non-informative Equi-

libria

We now focus again on our baseline one-sided asymmetric information model in order to

characterize the existence and robustness of informative equilibria for increasing levels of

damage. Proposition 5 establishes that a sufficiently large level of damage L is necessary for

ensuring the existence of informative equilibria. Here we show how perturbing the level of

damage affects the existence regions of both informative and non-informative equilibria48.

The green area in Figure C.4 illustrates the changes in the region of existence of infor-

mative equilibria (focusing, for given parameter values, on the most efficient equilibrium; i.e.

the one in which the d̂ insurer offers the full insurance contract under signal profile 0) as

a function of the precision of the signal α (on the vertical axis) and of the loss probability

in the safe state of the world ps (on the horizontal axis). The three panels in the figure

assess the effects of increasing levels of damage L on equilibrium existence. It is immediate

to see from the green area in Figure C.4 that when the loss probability ps in the safe state

is low, for an informative equilibrium to exist it must be that the loss L is sufficiently large.

This is indeed what Proposition 5 requires for truthful revelation to hold. Conversely, for

higher levels of loss, an informative equilibrium exists only for intermediate levels of signal

precision. In fact, when the signal is too precise or too inaccurate, an ŝ insurer can profitably

deviate (recall that a profitable deviation entails cross subsidization)49. When the signal is

very precise, a profitable deviation is possible because an ŝ insurer believes the signal profile

nŝ = 2 to be very likely. Indeed, given that the profitability of deviations entailing cross-

subsidization originates from the contract offered when nŝ = 2, a higher probability of selling

this contract makes the deviation profitable. Recall that the loss probability when nŝ = 2

(i.e. p2) belongs to the interval (ps, p̄). Hence, when the signal is very imprecise, the loss

probability approximates p̄. Given that the policyholder is risk averse, a higher estimated

loss probability p2 implies a larger willingness to buy insurance, which in turn implies higher

48The loss probabilities we consider in our numerical exercise are pd = 0.05, Ps = 0.10, while the degree of
absolute risk aversion is β = 0.01. The level of loss is L = 100 in panel (a) of Figure C.4, L = 200 in panel
(b) and L = 500 in panel (c), whereas the initial level of wealth is W = 1000.

49Recall also that a profitable deviation with cross subsidies necessarily entails profits larger (lower) than
the equilibrium ones if nŝ = 2 (nŝ = 1).
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profits in the deviation contract offered when nŝ = 2. This explains why a deviation is more

likely to occur when the precision of the signal is low.

By considering at the same time the numerical exercises in this section and those for

non-informative equilibria, it is natural to ask whether non-informative and informative

equilibria can co-exist for the same parameter constellations. Figure C.4 shows that this is

indeed the case for a fairly broad set of parameter values. Given that in equilibrium insurers

can end up offering either types of contracts, an issue of equilibrium selection arises. While

tackling this problem in details goes behind the scope of the paper, we note that in our

numerical exercises non-informative equilibria systematically entail higher ex ante profits

than informative equilibria.50

Market Concentration

We characterize numerically the upper bound on the number of firms in the industry that

is consistent with the existence of both informative and non-informative equilibria. As far

as non-informative equilibria are concerned, our numerical analysis focuses only on full in-

surance equilibria based on fully optimistic beliefs. As for informative equilibria, we identify

50We conjecture that this numerical result indicates a more fundamental property in the comparison
between the two types of equilibria. Indeed, informative equilibria are much more demanding than non-
informative ones in terms of the necessary constraints that need to hold. Recall that the non-informative
equilibria can be ex ante efficient (and those in our numerical simulations are), while the informative ones
are necessarily of second best. This may easily translate in a lower profitability of the resulting outcomes in
equilibrium. The numerical results supporting the statement in the text are available on request.
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the parameters constellations guaranteeing that all the conditions stated in Proposition 7

are met, together with the absence of profitable cross-subsidy deviations for ŝ insurers.51

There exists a large number of different cross-subsidy deviations, involving different com-

binations of signal profiles. We focus exclusively on cross-subsidy deviations where the ŝ

insurer marginally reduces his profits in signal profile nŝ = 1, to have a marginal gain in sig-

nal profile nŝ = n. Hence, while we can identify the parameter regions where an informative

equilibrium does not exist, we can only provide necessary but not sufficient conditions for

existence.52

Figure C.5 shows the parameter regions that are consistent with the existence of infor-

mative (green) and non-informative (red) equilibria, for increasing levels of precision of the

signal (from left to right). Focusing on non-informative equilibria, it is immediate to see

that the maximum number of firms n̄ consistent with the equilibrium decreases as the level

of the damage L grows, which has interesting implications in terms of the level of profits

reached in equilibrium. Intuitively, when the damage (or, equivalently, risk aversion) is large,

a policyholder is willing to pay higher premia to get insured, owing to her risk aversion. This

higher willingness to pay translates into a higher profitability of deviations. Therefore, an

equilibrium is possible only if expected profits are sufficiently large in equilibrium. In turn,

large profits occur when there is a high probability of selling the contract, i.e. when the

number of competitors is sufficiently low.

The maximum number of firms ¯̄n consistent with the equilibrium decreases as the level

of the damage L increases also for the candidate informative equilibria, although for different

reasons than those highlighted above for non-informative equilibria. Intuitively, the larger the

damage, the higher is the inefficiency in separating menus, that is the higher is the insurer’s

incentive to deviate and obtain a profit in the safer market state. To prevent deviations

(entailing cross subsidies), the probability of the safer signal profiles must be sufficiently

low, which is achieved with a low number of firms. Indeed, if the number of firms is low,

51The full parameter set used in the numerical exercises leading to Figure C.5 is: ps = 0.01, pd = 0.05,
Ps = 0.10, W = 1000, and β = 0.01. The value of α is α = 0.70 in panel (a), α = 0.80 in panel (b) and
α = 0.90 in panel (c).

52As already noted, the truthful revelation condition is binding for sufficiently low n, while that on the
absence of cross-subsidy deviations is binding for n sufficiently large.
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Figure C.5: Range of existence of equilibria in the plane n-L for increasing levels of α:
α = 0.70 in panel (a); α = 0.80 in panel (b); α = 0.90 in panel (c)

the estimation of the probability of each signal profile is less precise. Figure C.5 also shows

that larger values of α broaden the region of existence of non-informative equilibria, while

shrinking that of informative equilibria. Indeed, in the case of non-informative equilibria,

signal precision has no impact on the characterization of the candidate equilibrium (that

depends on the ex-ante loss probability, which is independent of α), but it does affect the

nature of the deviation. In particular, a higher signal precision implies a lower risk assessment

by a policyholder who observes a deviation and believes that the deviating insurer received

signal ŝ (under fully optimistic beliefs). In turn, a lower risk assessment implies a lower

willingness to pay for insurance in deviations, reducing their profitability. This makes non-

informative equilibria more likely and consistent with a higher number of firms. The opposite

occurs for informative equilibria, as an insurer who receives the signal ŝ assigns a probability

to the safest signal profile that is increasing in the signal precision. When the safest signal

profile is more likely, deviations with cross subsidies become more profitable, which entails a

shrinking of the parameter region where informative equilibria exist. Overall, although our

numerical exercises are far from properly calibrating real insurance markets, the evidence

they provide points unambiguously to the fact that the insurance industry must be fairly

concentrated for guaranteeing the existence of a (profitable) equilibrium.
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