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Abstract

We propose an easily computable measure called the Major Complexity Index (MCI) that
captures the latent skills taught in different majors. By applying the Method of Reflections to
the major-to-occupation network, we construct a scalar measure of the relative complexity of
majors. Our measure provides strong explanatory power of major average earnings and em-
ployment. Further evidence suggests that the MCI is strongly associated with advanced skills
such as quantitative problem-solving, and the use of computing technology. We also provide
a two-stage algorithm to partial out selection on observables which opens up possibilities of
applying the complexity measure in various contexts.
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1 Introduction

The return to education varies widely across fields of study in college (Altonji et al., 2012, 2016).1

This heterogeneity is partly due to the fact that different majors send students to differing sets of

occupations. For example, students with a petroleum engineering degree can find high-paying jobs

as petroleum engineers, which are not easily accessible to students from many other majors. From

the perspective of human capital accumulation, this linkage between college majors and students’

occupational outcomes largely reflects the match of multi-dimensional skills.2 That is, through

various college majors, students acquire different sets of skills, which are subsequently employed

in diverse job tasks.

The natural question to ask, then, would be: which major equips students with the most

applicable set of skills? There is considerable difficulty when striving to answer this question. First

of all, the skill acquisition process through different college majors is unobservable and thus needs

to be indirectly inferred. Moreover, it is challenging and potentially dangerous for researchers to

define what constitutes a “skill”. In the previous literature, skills are typically defined from our

intuitions, in low dimensions, such as verbal and quantitative, or cognitive and non-cognitive (e.g.,

Kinsler and Pavan, 2015; Heckman et al., 2006), rather than suggested by data empirically.

In this paper, we take a drastically different approach. By adopting the so-called “building-

block” model proposed by Hidalgo and Hausmann (2009) in the context of international trade, we

create an indirect measure of the skill set acquired through college education for each major. The

intuition of the “building-block” approach is rather straightforward. In the context of education,

each skill can be viewed as a different type of building block, like a Lego piece of a different

shape. Each occupation is a Lego model, which requires a unique combination of building blocks.

In order for a college graduate to find a job within an occupation, she needs to obtain the required

1Altonji et al. (2012) shows that the wage gap between electrical engineering and general education majors is
almost as large as that between college and high school graduates.

2As the skill-portfolio analysis literature (e.g. Silos and Smith, 2015) suggests, some skills are very specific
to certain occupations while others are more generally applicable. Conversely, some skills are easily attainable
from many majors (e.g. oral communication) while others are taught in specific majors (e.g. understanding of
thermodynamics that is commonly trained in a petroleum engineering major).
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set of building blocks to form such a model. Now, the role of college majors is clear in this analogy:

Each major is a bucket of building blocks where students can pick up the required pieces from.

What we need is a measure that captures the number and variety of blocks available in each

bucket (i.e. college major). One obvious candidate is the number of occupations a major sends its

students to. For instance, petroleum engineering and education administration majors both send

graduates to eight distinct occupations, which may seem to imply that they teach similarly complex

skills. However, this simple counting method would miss important information on the difficulty

and specificity of skills that can be acquired from different majors. For example, one major may

send students to occupations that only require a minimal skill set students could acquire from a

large number of majors. In contrast, students from another major may find jobs in occupations

where students from other majors cannot easily get in. In such cases, we would think the latter

equips students with a set of more valuable, non-substitutable skills.

To construct such a measure, we adopt the “Method of Reflections” technique introduced by

Hidalgo and Hausmann (2009).3 This method exploits the rich information embedded within a

major-to-occupation flow network and recovers the latent structure of necessary building blocks

by an iterative algorithm. This paper is, to our knowledge, the first attempt to apply the Method of

Reflections in the labor and education context.

Specifically, by incorporating information from the entire bipartite major-to-occupation net-

work, we are able to uncover the underlying tripartite network connecting college majors to the

skills they produce, and occupations to the skills they require. We call this measure the Major

Complexity Index (MCI). The MCI takes into account relevant neighboring information in the

network so that majors with exactly the same spread (number of occupations a major sends students

to) can yield very different complexity ranks. Using the example above, petroleum engineering

and education administration majors are both linked to eight occupations: the former is tied

with occupations that are rarely accessible (less “ubiquitous” in the terminology of Hidalgo and

3Hidalgo and Hausmann (2009) introduce this method to take the bipartite network between countries and their
exported goods and measure the latent production capacities and technologies that countries possess in order to
produce the basket of observed exports. After its first introduction, this Economics Complexity Index (ECI) has
been extensively utilized in the international trade literature (Tacchella et al., 2012; Mealy et al., 2019).
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Hausmann, 2009) to other majors and thus returns a high major complexity index rank (2/137);

while the latter maps students to occupations that are linked to many other majors, each of which

is not highly ranked within the MCI, and in turn yields a lower MCI rank (135/137). The underlying

idea is that occupations that require a complex set of skills are linked to, on average, majors that

teach complex skills, while majors that equip more complex skills can send students to occupations

that are more demanding. Thus, the complexity index has to be constructed recursively.

We explore three versions of the MCI according to a: (1) Binary flow matrix; (2) Weighted

flow matrix based on the distribution of students within a major-to-occupation network; and (3)

Controlled flow matrix based on the average marginal effects from a multinomial logit framework

that accounts for potential bias due to selection on observables. One caveat of using the Method of

Reflections in education-labor contexts is selection bias. Our modified two-stage algorithm (Con-

trolled MCI) allows us to remove selection on observables, and as such, it opens up possibilities of

using the complexity measure in settings where selection bias would otherwise be a concern.

Our empirical analysis employs individual-level information, including college major choice

and occupational outcome, from the National Survey of College Graduates (NSCG) data in 2003,

2010, and 2015, to construct a bipartite major-to-occupation network for each year and examine the

relationship between the MCI measures and average earnings as well as employment differentials

across college majors. Our results indicate that the MCI reveals important aspects of college majors

that matter to earnings (especially in recent years) and employment of college graduates. For

example, using NSCG 2015 data, 1 standard deviation increase in the Binary MCI raises salary by

$12,821 or 16.9%, and boosts employment by 1.78 percentage points. An interesting observation

within our study is that the power of the MCI to explain across-major wage differentials has

increased considerably between the early 2000s and 2015, and decreased for employment. It is

plausible to believe that as the structure of the economy transitions to a more technology-based

era, the major complexity provides more insights into the earning differentials rather than the

employment margin. This is consistent with recent work by Acemoglu and Autor (2011) which

suggests that the rapid diffusion of new technologies may distort the earning distribution in a way
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that benefits high-skilled workers.

In order to better understand what the MCI captures, we combine our major-to-occupation

flow data from the NSCG with major level characteristics from the National Survey of Student

Engagement (NSSE). Our results suggest that high MCI majors tend to have students with better

pre-college academic qualifications, e.g. higher SAT scores in all three dimensions (mathematics,

verbal reasoning, and writing ability), especially through a strong positive correlation with SAT

math. In addition, high MCI majors are more intense and demanding in terms of time spent

preparing for class, completing problem sets, and working on longer written assignments. More

interestingly, in terms of knowledge and skills acquired through college education, students within

high MCI majors tend to report further development of quantitative and practical problem solving,

and the use of computing and information technology, but not in terms of basic skills such as

written and spoken communication (which presumably are developed mainly through primary and

secondary education). There are surprisingly few easily-computable quantitative descriptions of

college majors, with limited examples such as major average SAT scores. Our comprehensive

measure of major complexity is simple to compute with a minimum data requirement. It not

only facilitates us to better understand the unobserved skill production process through college

majors, but also provides a convenient and informative reference for both prospective students in

choosing college majors, and education administrators in strategic planning, especially in resource-

constrained environments.

Overall, our work contributes to a rich literature on the skill formation in college. This literature

has been confronted with important challenges that we believe our approach is able to circumvent.

Firstly, skills are presumably high dimensional. In the seminal paper, Cunha and Heckman (2007)

identify two dimensions of skills, cognitive and non-cognitive, by means of a factor model. These

two dimensions may likely be the most important distinction of skills, especially for early child-

hood education. In the context of college education, however, more fine-grained skill categories are

necessary. For instance, leadership, a specific skill within the non-cognitive domain, is documented

to have predictive power of potential earnings (Kuhn and Weinberger, 2005). A recent paper
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by Deming (2017) highlights the importance of social skills in the labor market. Note, other

intuitive measures of skills, such as quantitative versus verbal, are too coarse for the same reason.

Secondly, the knowledge and skills acquired in college are particularly of interest by employers,

and yet it is extremely difficult to measure the skills obtained by students that are factored in hiring

decisions. On the occupation side, many studies have analyzed the skills required by different

occupations (e.g. Graetz and Michaels, 2018). However, it is not an easy task to quantify the

same skills acquired in college majors. For instance, how do we measure the programming skills

that students can obtain from an economics major on average? Furthermore, the demand for

skills constantly evolves over time as technology exponentially advances, and it is challenging

yet critical to scrutinize the responses to such changes by college majors. Finally, one important,

but under-explored aspect is the complementarity among skills (Cunha et al., 2006). Often a job

task requires a combination of skills. For example, to be a financial engineer, one not only needs

to be skilled in financial econometrics and programming but also management and communication

that complement the technical background and help to improve job performance. Even if we fully

observe the skill production process, with high dimensionality, it rapidly becomes impossible to

estimate the complementary effects of every combination of fine-grained skill categories.

In summary, all of these challenges make our approach particularly appealing. Our proposed

method does not intend to solve these issues, but rather circumvents them. To see this, it is impor-

tant to note that the “building block” model fully captures the high-dimensional and combinatorial

nature of skills, while the computation of the MCI avoids explicit estimation of the acquired skills

and directly uncover the relative value of majors. That is, by exploiting the match of students

between college majors and occupations, the MCI infers the latent skills taught in different majors

and that are required by different occupations.

The rest of the paper is organized as follows: Section 2 introduces the Method of Reflections in

the context of major-to-occupation network. Section 3 details the data sources. Section 4 presents

our empirical results, and Section 5 discusses the limitations and important implications from both

students and policymakers’ perspectives.
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2 Methods

Suppose we have M college majors and O occupations. Let N be a M ×O flow matrix that

represents the majors to occupations network. We first consider the flow matrix to be a binary

matrix where Nm,o = 1 if and only if there exists at least one student who graduates from major

m and finds a job in occupation o, and Nm,o = 0 otherwise. Using the Method of Reflections

introduced by Hidalgo and Hausmann (2009), we iteratively calculate the value for each major and

occupation according to equation (1) and (2), respectively:

km,b =
1

km,0
∑

o∈O
Nm,oko,b−1 (1)

ko,b =
1

ko,0
∑

m∈M
Nm,okm,b−1 (2)

where b = 1, ...,B refers to the number of iteration and the initial values (b = 0) are the raw counts

from the flow matrix:
km,0 = ∑

o∈O
Nm,o

ko,0 = ∑
m∈M

Nm,o

Intuitively, km,0 represents the “spread” of major m in terms of the total number of occupations

students can get in after graduating from major m. Similarly, ko,0 represents the “specificity” of

occupation o in terms of the count of majors that can place students in occupation o.4 On the

major side, a larger spread indicates higher complexity (as such a major can lead students to more

occupations), while on the occupation side, smaller specificity implies higher complexity (as such

an occupation accepts students only from limited majors). Upon convergence, the even iteration on

the major side produces what we call the Binary Major-Complexity-Index (MCI).5 The following

example illustrates the Method of Reflections in the context of major-to-occupation flow network.

4The term “spread of a major” and “specificity of an occupation” correspond to “diversification of a country” and
“ubiquity of a product” in Hidalgo and Hausmann (2009). Either way, they represent the number of links directly
connected to a node.

5A similar index can be computed on the occupation side which is beyond the focus of this paper.
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Example of Binary MCI

Mathematics

Accounting

English

Fine Art

Theorist

Accountant

Journalist

Sales

4

2

2

1

k m,0

4

3

8/3

7/3

k o,1

3

17/6

2.5

7/3

k m,2

Figure 1: Bipartite Major-to-Occupation Network Example

Suppose there are four majors and four occupations, linked in a network as shown in Figure 1.

For m = Mathematics,

km,0 = 4,

indicating that students with a math degree find jobs in four distinct occupations (i.e. the spread

of Mathematics is four). This is the naive complexity index at b = 0 where Mathematics is ranked

in first place, followed by Accounting, English, and lastly Fine Art. The intuition is that the more

occupations a major directs students to, the more complex the major is in terms of skills taught.

However, this naive measure does not account for the accessibility of occupations. Using the

example in Figure 1, the spread of Accounting and English majors are both two, with a common

occupation outlet (Journalist). The difference is that Accounting can lead students to become

Accountants, which is less accessible to students from other majors, when compared to Sales that

is the alternative occupational outcome to an English major.

To incorporate this useful information within the network, we exploit the iterative procedure

called the Method of Reflections. We first use the spread km,0 to calculate the complexity of each
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occupation, ko,1, in the first iteration (b = 1). As an example, for o = Accountant,

ko,1 =
1

ko,0
∑

m∈M
Nm,okm,0

=
1
2
(1×4+1×2+0×2+0×1) =

4+2
2

= 3.

That is, there are two majors, Mathematics and Accounting, that place students as Accountants

(ko,0 = 2), and the average spread (km,0) of these two majors is calculated to be 3. The same

calculation can be carried out for all occupations o ∈O , as shown in Figure 1, ko,1 column. Again,

using the example in this network, Journalist and Sales are both connected to three majors (the

occupation specificity ko,0 = 3), but the spread of majors that are linked to Journalist is, on average,

greater than that for Sales. As a consequence, Journalist is ranked higher than Sales in this iteration.

Importantly, majors are connected to one another through the occupation nodes within a network,

and this intermediate step ko,1 is essential to reflect such connections.

We then iterate back (b = 2) to update the complexity measure of each major km,2 using those

values obtained in ko,1. See the solid and dashed arrows on the top of Figure 1 for a graphic

illustration of the iteration procedure. Back to the example of m = Mathematics,

km,2 =
1

km,0
∑

o∈O
Nm,oko,1

=
1
4

(
4+3+

8
3
+

7
3

)
= 3,

where Nm,o = 1 for all o∈O since the Mathematics major is linked to all four occupations, and thus

is omitted from the calculation above. Intuitively, the average score of ko,1 is three for Mathematics.

Recall, ko,1 captures the average spread of majors that are connected to an occupation. Following

this logic, km,2 is basically the average of average spread of majors that are connected to one

another through common occupational outcomes. What’s embedded in this averaging process is

the adjustment of major spread by occupation specificity. As shown in Figure 1, the complexity

index of Accounting is updated from km,0 = 2 to km,2 = 17/6 = 2.83̇, while the adjustment for the
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English major is only from km,0 = 2 to km,2 = 2.5 in this iteration. As a result, Accounting is now

ranked higher than the English major, precisely for the aforementioned reason that Accounting can

send students to occupations that are difficult to get into (i.e. Accountant in this example), and in

turn it is connected to other majors that are relatively more complex in terms of skills taught.

While we stop the illustration at b = 2, we iterate on this procedure until its full convergence.

The complexity index on the occupation side, ko,b for any odd number b, takes the average of the

complexity scores of all majors linked to this occupation from the previous iteration, km,b−1. They

are then used to compute the complexity index on the major side in the next iteration, km,b+1, which

is the average of ko,b for all occupations linked to major m. The underlying idea is that occupations

that require a complex set of skills are linked to, on average, majors that teach complex skills, while

majors that equip more complex skills can send students to occupations that are more demanding.

Thus, the complexity index has to be constructed recursively. Upon convergence, we obtain the

Binary Major-Complexity-Index (MCI) on the major side, which is a specificity-adjusted spread

taking into account relevant neighboring majors that map students into the same occupations. The

intuition, which is further elaborated in Section 4.1, is that by utilizing the major-to-occupation

bipartite network, we are able to shed light into the underlying tripartite network connecting college

majors to the skills they produce, and occupations to the skills they require.6

Weighted MCI

The MCI calculation above utilizes a binary adjacency matrix. One could also construct the index

using a weighted adjacency matrix instead. That is, if 100 students with a math degree find jobs

in Theorist (10), Accountant (40), Journalist (20), and Sales (30), we then use the percentage of

students from major m to each occupation as the proper weights (e.g., 0.1, 0.4, 0.2, 0.3) rather

than equal weights (e.g. 1
4 ) to calculate km,b. Similarly, if 100 students end up being Accountants,

6We elaborate on how a tripartite network of major-skill-occupation reduces down to a bipartite major-occupation
network in Appendix A. The goal of the MCI is to infer the relative complexity of the skill set in each major based on
the building block model (a tripartite network) from the information contained within a bipartite flow network. See
Hidalgo and Hausmann (2009) and Hidalgo (2021) for more extensive discussions.
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with 40 from Math and 60 from Accounting, we use the percentage of students from each major

to occupation o as the proper weights (e.g., 0.4, 0.6) rather than equal weights (e.g. 1
2 ) to calculate

ko,b. In this case, we call the converged even-iteration value on the major side the “Weighted MCI”.

Controlled MCI

One caveat of using the Method of Reflections in the education-labor context is potential selection

bias. That is, the apparent linkage between major m and occupation o could be partially due to

factors other than skills match, such as gender preference. To account for selection on observable

characteristics, we construct what we call the “Controlled MCI” using the multinomial choice

framework. Specifically, we first regress the choice probability of each occupation on student

characteristics, together with major dummies where a major dummy equals one if a student gradu-

ates in this major, and zero otherwise. That is, for each student i, let (mi,oi,xi) be a tuple of his or

her major choice, occupation choice, and other characteristics, such as age and gender. For each

occupation o ∈ O , we estimate the model:

Prob(oi = o|mi,xi) = f

(
∑

m∈M
αm,oI (mi = m)+βoxi

)
,

where I (.) is an indicator function. We first conduct the estimation through a multinomial logit

model7, and then construct the adjacent matrix such that the (m,o)th element represents the average

marginal effect of graduating with a major m on the likelihood of being in occupation o.8 Similarly,

we can construct our second weight matrix by regressing the choice probability of majors on

occupation dummies, such that for each major m ∈M ,

Prob(mi = m|oi,xi) = f

(
∑

o∈O
αo,mI (oi = o)+βmxi

)
.

Intuitively, in the regression of occupation on majors, the average partial effects represent, on

average, how likely a person is in this occupation from each major. Vice versa. Note that these

7Estimation is performed via the gradient descent algorithm on the maximum likelihood.
8The Method of Reflections requires all entries of the matrix to be non-negative. Thus we normalize the matrix

by the min-max scaling.
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regressions do not intend to infer causality between occupations and majors. The purpose is to

construct weight matrices that capture the joint distribution of major and occupation as before

while controlling for observables. Once we obtain the weight matrices, we can implement the

Method of Reflections to construct the Controlled MCI.9,10 This is done exactly as in the Weighted

MCI approach, however, we now replace the matrix Nm,o within equation (1) with controlled major

matrix, and the matrix Nm,o within equation (2) with the controlled occupation matrix.

3 Data

Our main data is sourced from the National Survey of College Graduates (NSCG) administered by

the National Science Foundation. We use three cross-sectional datasets from the 2003, 2010, and

2015 surveys for our main analysis. One strength of the NSCG data is that it provides individual-

level information on schooling (including major choice) along with occupational history, both of

which are critical to construct a bipartite major-to-occupation network. We create three major-

to-occupation networks, one for each survey year, with the following two data restrictions: First,

in order to concentrate our analysis on the occupational placement of more recent graduates, we

restrict our dataset to contain only individuals below the age of 40. Second, in order to minimize

noise from spurious major-to-occupation linkages, we only keep majors and occupations with a

minimum of at least 5 individuals in them.11

Table 1 provides descriptive statistics for our main outcome variables—major average salary

9Although, due to data limitation, we are only able to control gender and age in the individual regressions discussed
above, our purpose here is to introduce this generalized procedure so that practitioners with better data availability (e.g.
SAT scores, high school GPA, family background and resources, etc.) can utilize it to compute a robust major index.

10To identify the model, it is required that variables have sufficient variation in every major and every occupation.
For instance, Geological Engineers occupation in 2003 only contain males (12 students) and Pre-school Teacher
Education major in 2015 only contain females (42 students), and therefore are dropped from the analysis. For the
same reason, we exclude ethnicity as a control variable as it results in omission of many majors and occupations.

11After imposing these restrictions, we have 27,852 observations in 2003, 24,315 observations in 2010, and 38,685
observations in 2015, that are used to construct major-to-occupation matrices. We are able to connect 140 majors to
92 occupations in 2003, 135 majors to 100 occupations in 2010, and 137 majors to 100 occupations in 2015. The
number of majors and occupations are not restricted to be the same across years since they potentially reflect structural
changes in the labor market. For instance, as technology reshaped the landscape in the 2000s, the national survey in
2010 and 2015 included trending occupations such as Computer Network Architect, Computer Programmer, Software
Developers, Web Developer, etc. that were not captured in the 2003 survey.
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in 2015 dollars (Salary) and major average employment rate (Employment Rate)—along with the

major spread (Spread) and Major Complexity Index (MCI) obtained using the binary (MCI B),

weighted (MCI W), and controlled (MCI C) approaches. As shown in Panel A, there are a total

of 137 majors in 2015 with an average major-level salary of $66,758 and employment rate of 91

percentage points. The mean major spread is about 37, implying that, on average, majors direct

students to 37 distinct occupations. The major complexity indices are standardized to have within-

sample mean of zero and variance of one.12 Using the Binary MCI in 2015 as an illustration, the

General Business major has a standardized index of zero, while Physics is one standard deviation

above, and Elementary Teacher Education is one standard deviation below. Panel B and C display

the major-level information of 2010 and 2003, respectively. The mean salary is slightly higher in

2010 compared to 2015; however, the variance, as well as the range (min and max), are smaller

during the recovery period of the 2008 financial crisis. The lower mean employment rate tells a

similar story. In contrast, the mild recession in 2001 does not have the same long lasting effects.

The mean salary and employment rate are both higher in 2003 compared to 2010, where 76% of

the majors, including Medical preparatory programs, Economics, and Accounting, experienced

higher payments in real terms back in 2003, while other majors, such as Counseling Psychology,

Statistics, and Petroleum Engineering enjoyed a wage premium surge in the late 2000s. Lastly, it’s

worth noting that the major spread is lower in 2010 compared to 2015, and even smaller in 2003.

To further understand what the Major Complexity Indices capture, we combine the 2015

NSCG data with a pooled cross-sectional dataset from the National Survey of Student Engagement

(NSSE) for the years 2010-2011.13 The latter contains rich student level data on the types of

tasks and assignments performed across majors, such as what knowledge and skills are developed

through college education as well as the hours spent on homework and papers. It also contains

pre-college information, such as SAT scores. We are able to map 78 majors between the two

datasets. Additional details pertaining to the matched dataset is provided in Appendix D.

12The indices are obtained after 250 iterations to ensure full convergence.
13NSSE surveys both freshmen and seniors in college. Our final NSSE sample of 2010 and 2011 data include 43%

freshmen and 57% seniors who are most likely in the labor market by the time of 2015.
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4 Results

The empirical results are organized into three subsections. We elaborate on the intuition of the

MCI in Section 4.1, and present major-level regression results for both salary and employment in

Section 4.2. Lastly, Section 4.3 provides an in-depth decomposition analysis of the MCI measure.

4.1 Spread versus MCI

As explained in the previous section, the Major Complexity Index (MCI) constructs the complexity

measure of acquired skills by recursively considering the complexity level of other majors that map

into the same occupations. By doing so, the MCI incorporates information from the whole bipar-

tite major-to-occupation flow network and computes a comprehensive scalar measure of college

majors that captures the latent skills taught in different majors and that are required by different

occupations.

Figure 2 illustrates how the ranking of college majors change over iterations (km,0 to km,10)

using the NSCG 2015 dataset. Here, we highlight two majors: Petroleum Engineering (yellow) and

Education Administration (red). While both majors have the same spread (km,0) as their students

are mapped into the same number of occupations (8 in both cases), the type of occupations that their

students end up in differ considerably, and in turn we find that their major complexity indices (km,b

where b = even number after convergence) are different. In the case of the Petroleum Engineering

major, students are mapped into occupations that are rarely accessible to other majors such as

petroleum and chemical engineers, and therefore we infer that the Petroleum Engineering major

outputs students with skill sets that are hard to find elsewhere, and as such, it returns a high major

complexity index rank (2/137). The reverse is true for the Education Administration major in which

students are mapped into easily accessible occupations such as secondary school teaching and

educational administration work, which in turn yields a lower MCI rank (135/137). The important

takeaway here is that majors with exactly the same spread can yield very different complexity

rankings due to the specific skill combination gained through each major which results in distinct
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occupational outcomes.

4.2 Major Mean Wage and Employment Rate Analysis

While one could hypothesize that majors with greater spreads offer students a larger choice set

of occupations and therefore generate higher option value, this does not appear to be the case as

shown in Figure 3. This figure fits a linear regression between: (i) major mean salary against the

spread (km,0) in the left-hand-side plot; and (ii) major mean salary against the Binary MCI in the

right-hand-side plot. There is in fact no relationship between average salary and the spread, while

there is a strong positive correlation between the average salary and the MCI. This highlights the

intuition that variety of occupations by itself does not contain much information regarding the

important skills acquired in each major. To discuss the value of a major, we need to consider

the questions: Do the jobs available from this major require a complex skill combination that is

not easily accessible from other majors, or do they demand only a minimal skill set that anyone

could have? What comparative advantages does a major prepare its students in terms of skills and

knowledge taught that are favorable and non-replaceable in the labor market?

The ordinary least squares results in Table 2 confirm our intuition above. Major spread is

neither statistically nor economically significant in either level or log salary regressions, while the

MCI measures are statistically significant at 1 percent level in explaining the earning differentials

across college majors and substantially increase the explanatory power.14 Using NSCG 2015 data

in Panel A, one standard deviation increase in the Binary MCI raises major mean salary by $12,821

in column (2) or 16.9% in column (6), and the effect is smaller using the Weighted MCI: $11,472

in column (3) or 15.5% in column (7). The Controlled MCI paint a similar picture as shown

in column (4) and (8) with even smaller estimates when we adjust the major-to-occupation flow

matrix on the basis of age and gender, as described in Section 2. One standard deviation increase

14For instance, using NSCG 2015 data in Panel A, R2 increases from 0.001 in column (1) to 0.522 in column (2)
when the Binary MCI is controlled for. Here we note another interesting observation that the explanatory power of
the MCI increases over iterations when we employ the Method of Reflections. As shown in Appendix C, R2 increases
considerably even between the 2nd and 10th iteration.
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in the Controlled MCI raises salary by $10,739 or 14.3%. Intuitively, the complexity of a major

emerges from the number of marketable skills, the depth of each skill, and the interactions among

those skills. And these skill sets provided by each major are highly correlated with students’

potential earning outcomes. Similar patterns can be observed using NSCG 2010 and 2003 data

in Panel B and C, respectively. Interestingly, the estimates are fairly similar for the 2003 and

2010 data (slightly higher in 2010 using the Weighted and Controlled MCI), but notably smaller in

magnitude compared to the ones in 2015. The R2 is also particularly large for the 2015 data.

Furthermore, the major complexity index is also statistically significant at the 1 percent level

in explaining the employment rate differences across college majors, and it considerably increases

the explanatory power, as shown in Table 3. Using NSCG 2015 data in Panel A, one standard

deviation increase in the Binary MCI raises employment rate by 1.78 percentage points in column

(2), or 1.97 percentage points in column (3) and 1.86 percentage points in column (4), using

the Weighted and Controlled MCI, respectively.15 Surprisingly, the estimated effect is larger in

2010 and the largest in 2003, and the R2 is the highest in 2003. Together with results in the

wage regressions, it is plausible to believe that the major complexity explains the employment

and earning outcomes equally well. However, as the structure of the economy changes into more

technology-based era, the major complexity provides more insights into the earning differentials

rather than the employment margin. We provide further analysis of major ranking change over

time in Appendix B, which lends supports to the argument that the observed MCI dynamics across

time may reflect structural changes in the labor market.16

15Note, the effect is even larger if we instead use the residual employment rate where demographics such as age
and gender are partialed out at the individual level. This set of results is available upon request.

16We also explore robustness exercises where major average SAT scores and other characteristics are controlled
for in Appendix D. Even with a smaller sample size in the matched dataset, after controlling for students’ academic
qualifications (i.e. removing potential positive selection bias on preexisting abilities), majors with higher complexity
scores still produce substantially higher average earnings. And in terms of the employment margin, controlling for
additional major features results in larger estimates of the return to major complexity. See Table D.2 for more details.
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4.3 Major Complexity Index Decomposition

Our preceding analyses suggest that the MCI reveals important aspects of college majors that

matter to earnings (especially in recent years) and employment of college graduates. In order to

better understand what the MCI captures, we combine the major-to-occupation flow data from the

NSCG 2015 with major level characteristics from the National Survey of Student Engagement

(NSSE) for the years 2010-2011. In total, we are able to match 78 majors between the two

datasets.17

Table 4 provides the pairwise correlation between the Binary MCI and a number of major

specific characteristics. First of all, in terms of students’ academic preparation before coming to

college, the MCI is positively correlated with students’ performance in all three SAT measures

(mathematics, verbal reasoning, and writing ability). Noticeably, the positive correlation between

the MCI and SAT math score is particularly strong.

However, the MCI is not simply a repackaging of traditional measures, such as major aver-

age SAT scores.18 Interestingly, when examining areas where students report that their current

academic programs have helped them develop further knowledge and skills, we see that further

development of quantitative problem solving, and the use of computing and information tech-

nology are strongly positively correlated with the MCI measure, with an estimated correlation

of about 0.57 and 0.52, respectively. Applying theories or concepts to practical problems or in

new situations also has a fairly strong positive correlation with the MCI. In contrast, there is a

strong negative correlation between the MCI measure and the advancement of writing and speaking

abilities in college. Taken together with the observed positive correlation with SAT verbal and

writing scores, this suggests that higher MCI majors have students with high verbal and writing

abilities (potentially developed within prior schooling), but who primarily report developing their

ability to think critically and analytically, as well as the ability to analyze and solve quantitative and

17See Appendix D, Table D.1 for the summary statistics of the NSSE variables in the matched dataset.
18The major ranking based on the MCI is also not as simple as traditional categorizations such as STEM vs non-

STEM majors, or rough area of study (e.g. Liberal Arts, Social Science, etc.). See Appendix B, Table B.1 - Table B.3
for the major ranking based on the Binary MCI for more details.
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practical problems. Another observation worth noting is that, surprisingly, the MCI measure does

not appear to be correlated with acquiring job or work-related knowledge and skills. Presumably,

the robustness of the MCI in explaining wage and employment rate differentials across college

majors is due to quantitative and analytical skills captured by the MCI rather than direct knowledge

regarding the job content. We discuss this further in the next section.

In terms of time spent and efforts, we find that high MCI majors tend to have students who

on average report spending longer hours preparing for classes, completing problem sets, and

working on longer written assignments. If the time spent on studying can be viewed as a proxy for

coursework intensity and difficulty, then this suggests that high MCI majors are more demanding

on students and require them to invest more efforts into their schooling, which could generate

higher payoffs.

5 Discussion

How are advanced skills formed through college education and is this skill production process

responding to the changing nature of the economy? These are very hard questions to answer

because skills are not directly observable, and some of them may not even be easily interpretable.

In this paper, instead of explicitly modeling skill dimensionality, we take an alternative approach

that computes a general measure of “complexity” for each major which reflects the skills taught

in different majors and that are required by different occupations. Through the lens of this easily

computable index, we can start to discuss these important questions.

Specifically, we apply the Method of Reflections introduced by Hidalgo and Hausmann (2009)

to the major-to-occupation flow network and construct a scalar measure of the relative complexity

in terms of skills taught in different majors. Our measure of complexity provides strong explana-

tory power in understanding average earning and employment variations across college majors.

An interesting observation within our study is that the power of the MCI to explain across-major

wage differentials has increased considerably between the early 2000s and 2015. An unexplored,
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but potentially important, reason for this may lay with quantitative skills enjoying an increasingly

larger wage premium in the labor market. Recent work by Acemoglu and Autor (2011) suggests

that such a wage premium may derive from technological advancements that result in depressing

wages in areas where machines are substitutes for laborers, while increasing wages in areas where

machines are complements for workers. Our additional results provide further support along

this avenue and suggest that the MCI strongly relates to advanced skills such as quantitative and

practical problem solving, and the use of computing and information technology.

The major complexity indices exhibit rankings of college majors (see Appendix B, Table B.1

- Table B.3 for the major ranking based on the Binary MCI) that are naturally of interest to

various stakeholders, including prospective students and their families in choosing college majors,

as well as university administrators in charge of strategic planning of their schools. From students’

perspective, it is essential to understand how the occupational outlook varies based on the choice of

major. While it is well documented that expected earning is a key factor in choosing fields of study

(Beffy et al., 2012; Wiswall and Zafar, 2015; Altonji et al., 2016), another equally important yet

underexplored aspect is what occupations become available through the skills acquired in different

college majors. Furthermore, as technology exponentially advances, skills valued by the labor

market constantly evolve (Deming, 2017; Graetz and Michaels, 2018). The time trend of the

major complexity ranking intuitively displays how each major is changing its relative position by

modifying the bucket of “building blocks” as a response to the market demand for skills.

For administrators, the major complexity index presents a convenient and informative reference

for their strategic planning. Evidently, colleges have been struggling to allocate resources across

majors, particularly under a budget-constrained circumstance. For instance, University of Wiscon-

sin at Stevens Point announced its elimination of 13 majors in 2018 to address “fiscal challenges”

(Flaherty, 2018). Most recently, many universities are facing severe financial difficulties caused

by the COVID-19 pandemic (e.g. Seltzer 2021), and are there-through forced to reallocate limited

resources across majors. The major complexity index can facilitate this decision making process by

providing information on which majors are preparing students with a more marketable combination
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of skills. It is worth emphasizing that the MCI is easily computable with a minimum data require-

ment. Many universities have a center for career development which conducts post-graduation

surveys or first-destination surveys. This allows administrators to apply our proposed method

to their own major-to-occupation network to produce individualized major complexity ranking.

They can also compare it against the national ranking of major complexity to better understand

the comparative advantages of their own institution, and build their short- and long-term strategic

plans accordingly.

One important caution in using the Method of Reflections is the assumption that major-to-

occupation mapping is based on skills only. That is, the underlying model is that college majors

produce skills, different occupations require different skill combinations, and a graduate finds a job

if and only if the skills are matched. Conversely, if a linkage does not exist between a major and

an occupation, it is only because the skills are not sufficient (“cannot get in”) rather than nobody

wants that job (“do not want to”).19 This concern is ameliorated to some extent by the fact that the

National Survey of College Graduates (NSCG) surveys a large sample of college graduates in every

wave. However, the potential selection bias remains as one caveat of applying this method to the

labor environment. For instance, the apparent match between a major and an occupation could be

partially based on factors other than skills, such as family resource or gender preference. Another

contribution of this paper is to provide a two-stage algorithm (Controlled MCI) to partial out the

selection on observables. Our algorithm opens up the possibilities of employing the complexity

measure in various other contexts.20

Despite this limitation, the Method of Reflections and the complexity index are widely adopted

in the international trade and development literature (See Hidalgo 2021 for a summary of applica-

tions in those fields) due to the minimum requirements of data and surprisingly strong explanatory

power that this simple computation offers. Similarly, our generalized measure of MCI provides a

useful tool for investigating difficult questions pertaining to the unobserved college skill production

19This critical assumption is acknowledged in the original Hidalgo and Hausmann (2009) study as well.
20If selection is on unobservables, then more structure is required.
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process. As aforementioned, a major-to-occupation network can be easily constructed from many

data sources and one can utilize the rich information contained in a network structure to extract the

major complexity feature. Moreover, we can exploit the dynamics of such a network over time to

explore any structural changes within college education as a response to the changing nature of the

labor market.

20



Reference

Acemoglu, D. and D. Autor (2011). Skills, tasks and technologies: Implications for employment

and earnings. In Handbook of labor economics, Volume 4, pp. 1043–1171. Elsevier.

Altonji, J. G., P. Arcidiacono, and A. Maurel (2016). The analysis of field choice in college and

graduate school: Determinants and wage effects. In Handbook of the Economics of Education,

Volume 5, pp. 305–396. Elsevier.

Altonji, J. G., E. Blom, and C. Meghir (2012). Heterogeneity in human capital investments: High

school curriculum, college major, and careers. Annu. Rev. Econ. 4(1), 185–223.

Beffy, M., D. Fougere, and A. Maurel (2012). Choosing the field of study in postsecondary

education: Do expected earnings matter? Review of Economics and Statistics 94(1), 334–347.

Cunha, F. and J. Heckman (2007). The technology of skill formation. American Economic

Review 97(2), 31–47.

Cunha, F., J. J. Heckman, L. Lochner, and D. V. Masterov (2006). Interpreting the evidence on life

cycle skill formation. Handbook of the Economics of Education 1, 697–812.

Deming, D. J. (2017). The growing importance of social skills in the labor market. The Quarterly

Journal of Economics 132(4), 1593–1640.

Flaherty, C. (2018). U wisconsin-stevens point to eliminate 13 majors. Inside Higher Ed.

Graetz, G. and G. Michaels (2018). Robots at work. Review of Economics and Statistics 100(5),

753–768.

Heckman, J. J., J. Stixrud, and S. Urzua (2006). The effects of cognitive and noncognitive abilities

on labor market outcomes and social behavior. Journal of Labor economics 24(3), 411–482.

Hidalgo, C. A. (2021). Economic complexity theory and applications. Nature Reviews Physics,

1–22.

21



Hidalgo, C. A. and R. Hausmann (2009). The building blocks of economic complexity.

Proceedings of the national academy of sciences 106(26), 10570–10575.

Kinsler, J. and R. Pavan (2015). The specificity of general human capital: Evidence from college

major choice. Journal of Labor Economics 33(4), 933–972.

Kuhn, P. and C. Weinberger (2005). Leadership skills and wages. Journal of Labor Eco-

nomics 23(3), 395–436.

Mealy, P., J. D. Farmer, and A. Teytelboym (2019). Interpreting economic complexity. Science

advances 5(1), eaau1705.

Seltzer, R. (2021). N.J. university could cut 26% of full-time faculty amid budget woes. Inside

Higher Ed.

Silos, P. and E. Smith (2015). Human capital portfolios. Review of Economic Dynamics 18(3),

635–652.

Tacchella, A., M. Cristelli, G. Caldarelli, A. Gabrielli, and L. Pietronero (2012). A new metrics

for countries’ fitness and products’ complexity. Scientific reports 2, 723.

Wiswall, M. and B. Zafar (2015). Determinants of college major choice: Identification using an

information experiment. The Review of Economic Studies 82(2), 791–824.

22



Figures and Tables

Figure 2: MCI ranking over iterations (Binary Adjacency Matrix Using NSCG 2015 Data). Iterations: 0,2,4,6, and
10 are reported. Two majors (Petroleum Engineering and Education Administration) that both map into 8 occupations
are highlighted as yellow and red, respectively. Majors that are higher-up in the plot have higher MCI.
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Figure 3: Scatter and Ordinary Least Squares Regression Lines. Using 2015 NSCG data, the left-hand-side (LHS)
plot explores the relationship between major specific mean-salary and major-spread; while the right-hand-side (RHS)
plot explores the relationship between major specific mean-salary and the Binary MCI.
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Table 1: Summary statistics

Mean Std. Dev. Min Max N

Panel A: NSCG 2015 Data

Salary (2015$) 66,758.08 17,575.34 43,839.43 152,092.29 137
Employment Rate 91.01 4.62 75 100 137
Spread 36.69 19.19 6 81 137
MCI B 0.00 1.00 -2.02 3.646 137
MCI W 0.00 1.00 -1.78 3.286 137
MCI C 0.00 1.00 -1.471 4.217 137

Panel B: NSCG 2010 Data

Salary (2015$) 67,337.70 15,857.12 40,398.04 128,075.88 135
Employment Rate 88.36 5.41 69.23 100 135
Spread 31.01 17.16 5 81 135
MCI B 0.00 1.00 -1.866 3.79 135
MCI W 0.00 1.00 -2.001 3.406 135
MCI C 0.00 1.00 -1.566 4.663 135

Panel C: NSCG 2003 Data

Salary (2015$) 74,632.16 17,789.34 41,513.88 160,896.52 140
Employment Rate 89.14 5.52 66.67 100 140
Spread 29.96 16.19 3 71 140
MCI B 0.00 1.00 -2.104 3.329 140
MCI W 0.00 1.00 -2.425 3.858 140
MCI C 0.00 1.00 -1.723 5.042 140

Note: Panel A reports the summary statistics for the NSCG 2015 data and major average
statistics are computed using data from 38,685 students; Panel B for the NSCG 2010 data
and major average statistics are computed using data from 24,315 students; and Panel C
for the NSCG 2003 data and major average statistics are computed using data from 27,852
students. MCI measures are standardized to have sample mean 0 and standard deviation 1.
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Table 2: Major Level Wage Regressions

(1) (2) (3) (4) (5) (6) (7) (8)
Salary Salary Salary Salary ln(Salary) ln(Salary) ln(Salary) ln(Salary)

Panel A: NSCG 2015 Data

Spread 2015 26.18 -71.33 -7.365 11.91 0.0010 -0.0003 0.0006 0.0008
(93.45) (73.99) (71.99) (73.35) (0.0012) (0.0009) (0.0009) (0.0009)

MCI B 2015 12,821*** 0.169***
(1,870) (0.0191)

MCI W 2015 11,472*** 0.155***
(1,928) (0.0213)

MCI C 2015 10,739*** 0.143***
(2,282) (0.0256)

Constant 65,798*** 69,375*** 67,028*** 66,321*** 11.04*** 11.09*** 11.06*** 11.05***
(4,331) (3,314) (3,373) (3,398) (0.0528) (0.0386) (0.0394) (0.0404)

Observations 137 137 137 137 137 137 137 137
R-squared 0.001 0.522 0.426 0.374 0.007 0.517 0.441 0.382

Panel B: NSCG 2010 Data

Spread 2010 67.02 -22.55 -0.624 22.895 0.00149 0.000179 0.000518 0.000848
(87.01) (78.75) (72.49) (75.77) (0.00117) (0.00103) (0.000957) (0.00100)

MCI B 2010 7,801*** 0.114***
(1,241) (0.0165)

MCI W 2010 7,812*** 0.112***
(1,434) (0.0181)

MCI C 2010 6,775*** 0.098***
(1,250) (0.0192)

Constant 65,260*** 68,037*** 67,357*** 66,628*** 11.05*** 11.09*** 11.08*** 11.07***
(3,431) (3,164) (3,001) (3,110) (0.0471) (0.0420) (0.0404) (0.0420)

Observations 135 135 135 135 135 135 135 135
R-squared 0.005 0.238 0.243 0.186 0.013 0.254 0.250 0.205

Panel C: NSCG 2003 Data

Spread 2003 115.9 115.6 111.6 128.2* 0.00172 0.00171* 0.00166* 0.00190*
(80.00) (71.27) (70.87) (74.82) (0.00105) (0.000923) (0.000920) (0.000971)

MCI B 2003 8,489*** 0.121***
(1,228) (0.0161)

MCI W 2003 7,483*** 0.108***
(1,532) (0.0197)

MCI C 2003 6,265*** 0.091***
(1,663) (0.022)

Constant 71,158*** 71,170*** 71,288*** 70,790*** 11.14*** 11.14*** 11.14*** 11.13***
(3,047) (2,878) (2,819) (2,930) (0.0395) (0.0367) (0.0357) (0.0373)

Observations 140 140 140 140 140 140 140 140
R-squared 0.011 0.239 0.188 0.135 0.014 0.283 0.227 0.166

Note: Panel A reports results for the NSCG 2015 data; Panel B for the NSCG 2010 data; and Panel C for the NSCG 2003
data. The MCI measures are computed using 250 iterations. Robust standard errors are shown in parentheses. Significance is
as follows: one-percent=***, five-percent=**, and ten-percent=*.
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Table 3: Major Level Employment Rate Regressions

(1) (2) (3) (4)
EmpRate EmpRate EmpRate EmpRate

Panel A: NSCG 2015 Data

Spread 2015 0.0130 -0.0005 0.0072 0.0105
(0.0218) (0.0207) (0.0194) (0.0196)

MCI B 2015 1.777***
(0.517)

MCI W 2015 1.970***
(0.373)

MCI C 2015 1.860***
(0.404)

Constant 90.54*** 91.03*** 90.75*** 90.62***
(1.069) (1.023) (0.987) (0.996)

Observations 137 137 137 137
R-squared 0.003 0.148 0.185 0.165

Panel B: NSCG 2010 Data

Spread 2010 -0.0207 -0.0447 -0.0383 -0.0328
(0.0282) (0.0276) (0.0254) (0.0256)

MCI B 2010 2.088***
(0.578)

MCI W 2010 2.027***
(0.411)

MCI C 2010 1.871***
(0.396)

Constant 89.00*** 89.74*** 89.54*** 89.37***
(1.187) (1.169) (1.130) (1.129)

Observations 135 135 135 135
R-squared 0.004 0.148 0.142 0.123

Panel C: NSCG 2003 Data

Spread 2003 0.0270 0.0268 0.0256 0.0329
(0.0303) (0.0234) (0.0255) (0.0256)

MCI B 2003 3.092***
(0.425)

MCI W 2003 2.476***
(0.404)

MCI C 2003 2.386***
(0.422)

Constant 88.33*** 88.34*** 88.38*** 88.19***
(1.248) (0.997) (1.081) (1.099)

Observations 140 140 140 140
R-squared 0.006 0.320 0.208 0.193

Note: Panel A reports results for the NSCG 2015 data; Panel B for the
NSCG 2010 data; and Panel C for the NSCG 2003 data. MCI measures are
computed using 250 iterations. Robust standard errors are shown in parentheses.
Significance is as follows: one-percent=***, five-percent=**, and ten-percent=*.
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Table 4: Pairwise Correlations Between the MCI and Major Specific Characteristics

Variable Description MCI B 2015

Standardized Test Scores

SAT Verbal 0.36
SAT Mathematics 0.63
SAT Writing 0.29

Student Report - Developed Knowledge and Skills

Writing clearly and effectively -0.56
Speaking clearly and effectively -0.59
Thinking critically and analytically 0.15
Analyzing quantitative problems 0.57
Using computing and information technology 0.52
Working effectively with others -0.13
Learning effectively on your own -0.14
Acquiring job or work-related knowledge and skills 0.05
Applying theories or concepts to practical problems or in new situations 0.46

Student Report - Time Spent

Hours Spent Preparing for class 0.44
Amount of problem sets that take more than an hour to complete 0.63
Amount of problem sets that take less than an hour to complete -0.17
Number of written papers or reports: 20 pages or more 0.14
Number of written papers or reports: between 5 and 19 pages -0.24
Number of written papers or reports: fewer than 5 pages -0.44

Note: Based on variation across 78 majors that are mapped between 2015 NSCG data and
NSSE data for the years 2010-2011.
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Appendix A Building Block Model and Flow Network

In this section, we briefly explain the intuition of the building block model in the context of major-

to-occupation flow network. For more detailed discussion, see Hidalgo and Hausmann (2009).

Using the same example in Section 2 (Figure 1), there are four majors and four occupations.

Now suppose the matching of students between majors and occupations are based on four latent,

unobservable skils. On the left-hand-side of Figure A.1, a link between a major and a skill indicates

that this major equips students with this skill. Conversely, a link between a skill and an occupation

represents that this skill is required by that occupation. For example, students are required to obtain

Skill 1 and 2 to be theorists. Since Skill 1 is only acquired in the Mathematics major, only students

with a Mathematics degree can become theorists. In the similar logic, English and Fine Art majors

cannot prepare students to be Accountants since Skill 2 is not taught in those majors.

Following this process, the tripartite network of major-skill-occupation reduces down to the

bipartite major-occupation network on the right-hand-side. The goal of the MCI is to infer the

relative complexity of the skill set in each major based on the building block model (left-hand-side

figure) from the information contained within the flow network (right-hand-side figure).

Figure A.1: Illustration of the Building Block Model.
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Appendix B Major Complexity Index Rankings Over Time

Another interesting analysis based on our method is how the MCI ranking changes over time.

Figure B.1 presents the dynamics of the major ranking using the Binary MCI over the 2003 to

2015 period. It reveals that while there is considerable consistency to many of the major rankings,

some majors have experienced shifts across this time period.21 For instance, Actuarial Science

was ranked 96th in 2003, but rose to 37th in 2010, and further to a rank of 24th in 2015. It

is interesting that many majors change their rankings non-monotonically. Given that the MCI

explains the earning differences in all periods, we infer that these dynamics may reflect structural

change of labor market conditions.
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Figure B.1: Major Complexity Index (using the Binary MCI) Ranking Over Time (Years: 2003;
2010; 2015). Majors that are higher-up in the plot have higher MCI.

21The year-on-year consistency of the MCI ranking is qualitatively seen via the consistency of color-coding within
Figure B.1 (i.e. red tends to stay on top, followed by orange, green, blue, and purple).
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Table B.1: Major Ranking

(1) (2) (3) (4)
Major Description STEM 2003 2010 2015

Geophysical and geological engineering 1 4 3 1
Petroleum engineering 1 2 24 2

Mining and minerals engineering 1 1 3
Naval architecture and marine engineering 1 20 4 4

Metallurgical engineering 1 11 7 5
Architectural engineering 1 19 14 6

Nuclear engineering 1 8 1 7
Engineering sciences, mechanics and physics 1 5 8 8
Mechanical engineering-related technologies 1 14 2 9

Industrial production technologies 1 22 11 10
Environmental engineering 1 18 22 11

Computer and systems engineering 1 31 16 12
Civil engineering 1 15 13 13

Aerospace, aeronautical and astronautical engineering 1 10 9 14
Engineering, general 1 6 10 15

Mechanical engineering 1 24 17 16
Electrical, electronics and communications engineering 1 29 18 17

OTHER engineering-related technologies 1 23 21 18
Electrical and electronic technologies 1 21 12 19

Chemical engineering 1 26 19 20
Astronomy and astrophysics 1 25 27 21

Materials engineering, including ceramics and textiles 1 9 5 22
Industrial and manufacturing engineering 1 27 20 23

Agricultural engineering 1 13 6 24
Actuarial science 1 100 37 25

OTHER engineering 1 16 15 26
Geological sciences, other 1 3 36 27

Physics 1 12 23 28
Applied mathematics 1 40 42 29

Computer systems analysis 1 71 64 30
Bioengineering and biomedical engineering 1 30 47 31

Chemistry, except biochemistry 1 39 33 32
Mathematics, general 1 34 31 33
OTHER mathematics 1 37 45 34

Atmospheric sciences and meteorology 1 17 30 35
Computer science 1 43 32 36

Financial management 0 57 57 37
Environmental science or studies 1 44 52 38

Geology 1 38 26 39
Computer and information sciences 1 48 28 40

Earth sciences 1 7 34 41
Business administration and management 0 47 48 42

Operations research 1 41 25 43
OTHER agricultural sciences 1 35 35 44

Computer programming 1 77 44 45
OTHER business management/administrative services 0 53 29 46

Information services and systems 1 52 43 47
Biology, general 1 50 41 48

OTHER computer and information sciences 1 45 39 49
General psychology 0 81 54 50
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Table B.2: Major Ranking

(1) (2) (3) (4)
Major Description STEM 2003 2010 2015

Biochemistry and biophysics 1 63 51 51
Economics 0 51 50 52

Architecture/Environmental Design 0 54 40 53
Oceanography 1 28 58 54

Statistics 1 36 38 55
Political science and government 0 87 53 56

OTHER physical sciences 1 67 46 57
Business, general 0 72 59 58

Mathematics teacher education 0 84 96 59
Geography 1 55 60 60

Business marketing/marketing management 0 70 61 61
Microbiological sciences and immunology 1 83 71 62

OTHER visual and performing arts 0 66 49 63
Cell and molecular biology 1 74 82 64

Fine arts, all fields 0 88 106 65
Plant sciences 1 64 56 66

Forestry sciences 1 59 66 67
Music, all fields 0 91 87 68
Animal sciences 1 76 84 69

International relations 0 103 90 71
Sociology 0 102 81 72
Ecology 1 42 76 73

Business and managerial economics 0 80 69 74
Liberal Arts/General Studies 0 104 68 75
OTHER biological sciences 1 78 79 76
Communications, general 0 90 77 77

Accounting 0 94 63 78
OTHER natural resources and conservation 1 32 55 79

OTHER philosophy, religion, theology 0 96 85 80
OTHER communications 0 82 93 81

Food sciences and technology 1 116 72 82
Botany 1 58 75 83

OTHER agricultural business and production 0 68 124 84
Pharmacy 1 93 86 85

OTHER psychology 1 101 97 86
Public policy studies 0 73 117 87

Anthropology and archaeology 0 120 65 88
English Language, literature and letters 0 98 89 89

Pharmacology, human and animal 1 46 102 90
History, other 0 62 80 91

OTHER education 0 127 109 92
Area and Ethnic Studies 0 123 103 93

Criminology 0 130 114 94
History of science 0 79 67 95

OTHER social sciences 0 106 108 96
Agricultural economics 0 65 62 97

Law/Prelaw/Legal Studies 0 108 88 98
Philosophy of science 0 86 94 99

Journalism 0 111 74 100
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Table B.3: Major Ranking

(1) (2) (3) (4)
Major Description STEM 2003 2010 2015

Health/medical technologies 1 92 91 101
Zoology, general 1 56 104 102

OTHER foreign languages and literature 0 97 73 103
OTHER health/medical sciences 1 119 112 104

Medicine (dentistry,optometry,osteopathic,podiatry,veterinary) 1 95 125 105
Public health (including environmental health and epidemiology) 1 69 100 106

Experimental psychology 1 85 132 107
Dramatic arts 0 118 92 108

Genetics, animal and plant 1 75 70 109
Educational psychology 0 136 130 110

Medical preparatory programs (e.g. pre-dentistry,-medical,-veterinary) 1 110 110 111
Parks, Recreation, Leisure, and Fitness Studies 0 112 120 112

Industrial/Organizational psychology 0 124 99 113
Physical education and coaching 0 122 101 114

Physiology and pathology, human and animal 1 89 111 115
Linguistics 0 115 116 116

Science teacher education 0 99 105 117
Elementary teacher education 0 105 122 118

Clinical psychology 0 131 128 119
Physical therapy and other rehabilitation/therapeutic services 0 135 118 120

Counseling psychology 0 132 119 121
Health services administration 0 129 121 122

Social psychology 1 134 113 123
Nursing (4 years or longer program) 0 121 123 124

Home Economics 0 125 126 125
Secondary teacher education 0 114 83 126

Social Work 0 128 115 127
Social science teacher education 0 126 129 128

Nutritional sciences 1 117 95 129
Audiology and speech pathology 0 109 134 130

Marketing research 0 60 78 131
Public administration 0 107 107 132

Special education 0 138 127 133
Health/medical assistants 0 140 133 134
Education administration 0 113 135

OTHER public affairs 0 133 135 136
Counselor education and guidance services 0 139 137

Science, unclassified 1 33
Data processing 1 49

Computer teacher education 0 61
Pre-school/kindergarten/early childhood teacher education 0 137 131

Note: Ranking based on the Binary MCI using 2003, 2010, and 2015 NSCG data, sorted by the 2015
Binary MCI.
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Appendix C Wage Regression Results Across MOR Iterations

In applying the Method of Reflections (MOR) to our wage regressions, we find that the explanatory

power (measured by the R2 value) of the MCI is increasing over iterations. For example, comparing

column (2) and (6) in Table C.1, R-squared increases from 0.321 to 0.519 between the 2nd and 10th

iteration, using the binary transition matrix and 2015 NSCG data.

Table C.1: Wage regression results across iterations

(1) (2) (3) (4) (5) (6)
Salary Salary Salary Salary Salary Salary

Spread B 2015 26.18
(93.45)

MCI B 2015 iter2 9,954***
(1,665)

MCI B 2015 iter4 12,303***
(1,650)

MCI B 2015 iter6 12,631***
(1,692)

MCI B 2015 iter8 12,666***
(1,734)

MCI B 2015 iter10 12,658***
(1,754)

Constant 65,798*** 66,758*** 66,758*** 66,758*** 66,758*** 66,758***
(4,331) (1,242) (1,076) (1,048) (1,045) (1,046)

Observations 137 137 137 137 137 137
R-squared 0.001 0.321 0.490 0.516 0.519 0.519

Note: Binary MCI using NSCG 2015 Data. Robust standard errors are shown in parentheses.
Significance is as follows: one-percent=***, five-percent=**, and ten-percent=*.
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Appendix D NSSE Data Descriptive and Robustness Checks

To verify the robustness of major-level regression results presented in Table 2 and 3, we conduct

further analysis controlling various features of college majors, including pre-college student char-

acteristics such as SAT scores. To this end, we combine 2015 NSCG data with data from the

National Survey of Student Engagement (NSSE) for the years 2010-2011 and compute average

SAT scores of students in each major as well as major characteristics surveyed from students,

such as knowledge and skills developed through college education and hours spent on coursework.

We use data from these years since our final NSSE sample of 2010 and 2011 data include 43%

freshmen and 57% seniors who are most likely in the labor market by the time of 2015. Table D.1

summarizes the variables used for the 78 majors that we are able to map between the two datasets.

Table D.2 reports regression results where major-level features are controlled for. Comparing

column (1) and (2) in Panel A, we see that while adding controls for average SAT scores reduces the

impact of the MCI on mean salary, it still remains statistically and economically significant. One

standard deviation increase in the Binary MCI raises salary by $6,505 in column (2), which implies

that after controlling for students’ academic qualifications (i.e. removing potential positive selec-

tion bias on preexisting abilities), majors with higher complexity scores still produce substantially

higher average earnings. Additional major characteristic controls in column (5) further reduce

the MCI estimate down to $4,571, although, it is important to note that, because development

of advanced knowledge and skills is the central channel through which the MCI affects earning

outcomes, controlling for these additional characteristics may be an over-control for our purpose.

Turning to Panel B of Table D.2, it is interesting that controlling for additional major features

results in larger estimates of return (in terms of employment) to major complexity. For instance,

one standard deviation increase in the Binary MCI raises the employment rate by 1.77 percentage

points in column (2), and 1.86 percentage points in column (5).

Importantly, even with a limited sample size, these results indicate the robustness of the MCI

in explaining the wage and employment rate differentials across college majors.
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Table D.1: NSSE Summary statistics

Variable Description Mean Std. Dev.

Standardized Test Scores

SAT Verbal 549.245 43.238
SAT Mathematics 559.034 51.246
SAT Writing 538.587 47.226

Student Report - Developed Knowledge and Skills

Writing clearly and effectively 3.086 0.166
Speaking clearly and effectively 2.951 0.16
Thinking critically and analytically 3.36 0.09
Analyzing quantitative problems 3.094 0.231
Using computing and information technology 3.135 0.177
Working effectively with others 3.139 0.128
Learning effectively on your own 3.043 0.065
Acquiring job or work-related knowledge and skills 2.994 0.171
Applying theories or concepts to practical problems or in new situations 3.223 0.11

Student Report - Time Spent

Hours Spent Preparing for class 4.447 0.398
Amount of problem sets that take more than an hour to complete 2.713 0.296
Amount of problem sets that take less than an hour to complete 2.542 0.204
Number of written papers or reports of 20 pages or more 1.472 0.132
Number of written papers or reports between 5 and 19 pages 2.427 0.215
Number of written papers or reports of fewer than 5 pages 3.047 0.174

N 78
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Table D.2: Salary and Employment Rate Regressions controlling Major Characteristics

(1) (2) (3) (4) (5)
Panel A: Salary Salary Salary Salary Salary

MCI B 2015 8,442*** 6,505*** 5,948*** 6,993*** 4,571***
(1,051) (1,374) (2,004) (1,400) (1,520)

SAT Verbal -134.1 -27.09
(84.32) (122.5)

SAT Mathematics 150.5*** 236.4*
(48.87) (119.8)

SAT Writing -63.25 -107.8
(64.02) (87.95)

Student Report - Developed Knowledge and Skills Yes Yes

Student Report - Time Spent Yes Yes

Constant 64,698*** 88,242*** 32,924 -2,067 -112,731
(1,168) (14,959) (67,768) (43,602) (87,897)

Observations 78 78 78 78 78
R-squared 0.404 0.520 0.557 0.643 0.723

Panel B: EmpRate EmpRate EmpRate EmpRate EmpRate

MCI B 2015 1.494*** 1.770*** 2.085*** 1.405** 1.857***
(0.343) (0.495) (0.629) (0.545) (0.651)

SAT Verbal 0.0245 -0.0739
(0.0334) (0.0508)

SAT Mathematics -0.0135 0.0601
(0.0152) (0.0432)

SAT Writing -0.0155 -0.00488
(0.0237) (0.0265)

Student Report - Developed Knowledge and Skills Yes Yes

Student Report - Time Spent Yes Yes

Constant 91.13*** 93.58*** 67.65*** 111.8*** 82.94***
(0.404) (6.442) (20.89) (16.98) (30.40)

Observations 78 78 78 78 78
R-squared 0.151 0.161 0.388 0.232 0.491

Note: Panel A and B present results obtained by regressing major level average salaries and employment rate,
respectively, on the Binary MCI using 2015 NSCG data and the major specific characteristics shown in Table D.1.
Robust standard errors are shown in parentheses. Significance is as follows: one-percent=***, five-percent=**, and
ten-percent=*.
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