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Abstract

We consider climate policy in a world with international trade and
a global externality from the use of energy. We assume that one region
imposes a climate policy and the rest of the world does not, thereby
generating concerns about leakage and shifts in the location of produc-
tion and other activities. We derive the optimal unilateral policy and
show how it can be implemented through a tax on extraction, a par-
tial border adjustment on the import and export of energy and on the
import of goods, along with an export policy designed to expand the
export margin. A novel feature of the optimal policy is that the pric-
ing region exploits international trade in goods to expand the reach of
its climate policy. We calibrate and simulate the model to illustrate
how the optimal policy compares to more traditional policies.
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1 Introduction

Global climate negotiations have given up trying to achieve a uniform ap-
proach to climate change, such as a harmonized global carbon tax. In-
stead, current negotiations focus on achieving uniform participation, with
each country pursuing its own approach and its own level of emissions reduc-
tions. As a result, policies to control emissions of carbon dioxide vary widely
by country, and are likely to continue to do so for the indefinite future.

Widely varying carbon policies potentially affect patterns of trade, the
location of production, the effectiveness of the policies, and the welfare of peo-
ple in various countries or regions. These effects are of critical importance
to the design of carbon policy and to its political feasibility. For example,
trade and location effects were central to the design of the European Union
Emissions Trading System, the Regional Greenhouse Gas Initiative, and Cal-
ifornia’s carbon pricing system. One of the reasons that the United States
did not ratify the Kyoto Protocol was concern about the lack of emissions
policies in developing countries and the resulting trade effects. Unless con-
cerns about the effects of differential carbon prices are addressed, it may be
difficult to achieve significant emissions reductions.

To address this problem, we develop an analytic general equilibrium
model of carbon pricing and trade, where one region imposes a carbon pol-
icy and the rest of the world does not. The model is a mix of Markusen
(1975) and Dornbusch, Fisher, and Samuelson (1977). Our solution strategy
borrows from Costinot, Donaldson, Vogel, and Werning (2015). We solve for
the outcomes that are optimal for the region imposing the policy and then
show how those outcomes can be implemented in a decentralized equilibrium
using taxes and subsidies.

Our solution to the model suggests a novel approach to the problem of
unilateral carbon pricing, one where increasing the extent of trade actually
improves outcomes rather than making them worse. The approach involves
imposing a domestic carbon tax on the extraction of fossil fuels, along with
(1) what we call partial or imperfect border adjustments and (2) an export
policy designed to expand low-carbon exports from the carbon-pricing region
to the rest of the world. The partial border adjustment is a tax on imports
of fossil fuels, a rebate of prior taxes paid on exports of fossil fuels, and a tax
on imported goods based on the energy used in their production. It is partial
in that the border adjustment rate is not the same as (and is typically lower
than) the rate of the underlying extraction tax. Furthermore, the border
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adjustment does not apply to the energy embodied in exported goods. Rather
than rebating prior taxes paid, as in a conventional border adjustment, the
export policy expands exports via fixed subsidies not determined by prior
taxes. In effect, the taxing region maximizes the reach of its carbon tax
to include all goods produced domestically (regardless of where they are
consumed), all goods consumed domestically (regardless of where they are
produced), and, moreover, expands the scope of its exports to further broaden
the tax base. As the extent of trade increases, the taxing region is able to
expand the tax base further, generating better outcomes.

To understand the quantitative implications of our analysis, we calibrate
the model and solve it numerically. In our core calibration, we assume that
the OECD countries impose a carbon price and the rest of the world does
not. We compare the optimal policy to more conventional policies: (i) a
tax on the extraction of fossil fuels (as suggested by Metcalf and Weisbach
(2009)); (ii) a tax on the use of energy in production (which is how most cap
and trade systems work); and (iii) a tax on production combined with con-
ventional border adjustments (which is the structure of many recent carbon
tax proposals). Conventional border adjustments shift a tax on the use of
energy in domestic production to a tax on the energy embodied in domestic
consumption, so we think of (iii) as a tax on consumption. We also exam-
ine optimal combinations of these three conventional policies, focusing on a
combination of an extraction tax and a consumption tax, and a combination
of a production tax and a consumption tax.

Our quantitative results generate four key lessons. First, it is important to
include countries with a large tax base in the taxing coalition. Expanding the
tax base by including additional countries makes larger emissions reductions
desirable. Second, carbon pricing coalitions may want to enact policies that
generate substantial reductions even when the rest of the world does not
cooperate. Third, adding border adjustments to a production tax generates
only modest gains, and may not be worth the administrative costs. Finally,
the hybrid of the extraction tax and the consumption tax performs almost as
well as the optimal tax. The likely reason is that they have differing effects
on the price of energy, which means that more generally combining taxes
with differing effects on the price of energy is likely desirable.

Our core model does not include renewable energy, and stimulating re-
newables is often seen as a central goal of carbon pricing. To examine this
issue, we extend the analysis to include renewable energy. Renewables only
require modest adjustments to the optimal policy. Not surprisingly, renew-
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ables are exempt from the tax on extraction. If they can be sold in the market
at the same price as fossil fuels, this exemption stimulates the production of
renewables. In addition, while the optimal policy attempts to limit increases
in fossil fuel extraction in other countries, it does not do so for renewables
because the additional use of renewables in other countries does not generate
harm.

The paper proceeds as follows. The remainder of this section provides ad-
ditional motivation and reviews the relevant literature. Section 2 lays out the
basic elements of the model and characterizes its competitive equilibrium ab-
sent taxes, which forms our business-as-usual (BAU) baseline scenario. Sec-
tion 3 solves the problem of a planner designing an optimal unilateral carbon
policy for one region with the other region behaving as in a competitive equi-
librium. In Section 4 we derive a set of taxes and subsidies that implement
the optimal policy, which we take to be the policy recommendations of this
analysis. We explore the quantitative implications of the optimal policy in
Section 5, using a calibrated version of the model. Section 6 extends the
analysis to include a renewable energy sector. Section 7 concludes.

1.1 Motivation

As noted, the possibility that varying carbon prices in different regions might
affect patterns of trade, the location of production and the effectiveness of
carbon prices has been a central concern in the design of carbon policy. Our
central motivation is to understand these effects and the optimal response
to them. A related and second motivation is that there is a virtual zoo of
possible responses, and, while there has been extensive work analyzing some
of the most prominent responses, so far, it has not been clear how to pick
among the full range. That is, the question is not simply whether adding
border adjustments to a conventional production tax is desirable, which is
the focus of much of the literature. Instead, there are a wide variety of
policies, and we need a method of picking among them. To illustrate this
latter problem, we describe the range of possibilities here, along the way
defining terms that will be useful in understanding the optimal, decentralized
solution.

For simplicity, we assume (here and throughout the paper) that the price
on carbon is imposed via a tax rather than a cap and trade system. Although
there may be differences between taxes and cap and trade systems (e.g.,
Weitzman (1974)), these differences are not relevant for our purposes. We
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also only focus on carbon emissions from fossil fuels, which have been the
central focus of existing and proposed carbon prices, ignoring agriculture and
deforestation, two other major sources of emissions.

Normally, Pigouvian taxes need to be imposed directly on the externality-
causing activity rather than on imperfect proxies. There is, however, an al-
most one-for-one relationship between fossil fuel inputs into the economy and
eventual emissions. That is, almost all carbon molecules that enter the econ-
omy as fossil fuels are eventually emitted as CO2 through combustion. This
fact means that we can tax carbon at any, or multiple, stages of production
without losing accuracy.

Metcalf and Weisbach (2009) exploit this fact to suggest imposing a car-
bon tax upstream on the extraction of fossil fuels (or very nearly so). They
reasoned that there are a small number of large, sophisticated extractors,
compared to a much larger number of manufacturers using fossil fuels and a
vastly larger number of consumers of products made using fossil fuels. They
estimated that the United States could tax essentially all domestic extraction
of fossil fuels by taxing just 2,500 entities, compared to, say, the roughly 250
million vehicle tailpipes, among many other items, that would have to be
taxed with a direct tax on consumers.

In a closed economy, a tax on extraction would be the same as a tax any-
where else in the chain of production (but for administrative costs). A tax on
extraction would be embedded in the price of the fuel, causing manufactur-
ers and consumers (as well as extractors) to internalize climate externalities.
This is not true, however, in an open economy. Extraction taxes increase
the pre-tax price of fossil fuels. If te is the extraction tax and pe the pre-tax
price of energy, extractors receive pe− te after tax. Unless the tax is entirely
borne by extractors, pe will go up. Because the price of fossil fuels goes up,
extraction taxes cause foreign extractors, not subject to the tax, to increase
extraction, generating what we call extraction leakage. Extraction leakage
reduces the effectiveness of an extraction tax. To the extent Foreign emis-
sions go up because of extraction leakage, the taxing region suffers harm that
it might otherwise have avoided.

While extraction taxes cause a shift in where extraction occurs, on their
own they do not shift where manufacturing and consumption occur. If there
is a global price for energy, all manufacturers and all consumers, globally,
see the same higher price for energy generated by the extraction tax in the
taxing region. They all adjust their production and consumption accordingly,
with no particular differentiation between actors in the taxing region and the
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non-taxing region.
Actual carbon prices are usually imposed on production—that is, on the

smokestack—rather than on extraction. For example, the European Union
Emissions Trading System is on emissions from industrial use of fossil fuels.

With a production tax at rate tp, producers pay pe + tp for energy, in-
creasing the after-tax price of energy. Once again, in a closed economy, the
effects of taxing production would be the same as taxing extraction. In an
open economy, however, their effects will not be the same. Production taxes
lower the global price of energy because demand will go down: producers will
shift to cleaner manufacturing techniques and consumers will demand fewer
energy-intensive goods.

To the extent there is a global price of energy, all extractors, globally,
see a lower price of energy and extract less. There is no extraction leakage
with a pure production tax. That is, shifting away from an extraction tax
toward a production tax moderates extraction leakage by moderating the
price-increasing effect of an extraction tax (an effect we will see in our optimal
solution).

Production taxes however, cause production to shift to untaxed regions
because they reduce the comparative advantage of producers in the taxed
region. This effect is known as production leakage, or because of the pre-
dominance of production taxes, often just leakage. Leakage is generally taken
as the central measure of the (in)effectiveness of a carbon policy. It has been
called the defining issue in the design of regional climate policies (Fowlie
2009).

If there were no trade costs, production taxes would not affect the location
of consumption. All consumers, even those abroad, who purchase goods
produced in the taxing region would face a higher price for those goods. And
all consumers, even those in the taxing region, would see a lower price for
goods produced abroad. Production taxes affect where goods are produced
but not where they are consumed. With trade costs, however, taxes on
production may shift where consumption takes place because trade costs tie
production and consumption together to some extent.

Finally, a carbon tax can be imposed directly on consumption. A tax
on consumption would be based on the emissions associated with each good
when it was produced. For example, if a consumer buys a toaster, the con-
sumer would pay a tax based on the emissions from the production of the
toaster. Because of the very large number of products and consumers, and
the difficulty of determining the tax, carbon taxes are not normally proposed
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to be imposed this way. Gasoline taxes, however, might be thought of as
a version of a consumption tax, and these are collected at the gas station
pump.

These three “pure” taxes, can be combined. For example, a country
that wants to impose a $100/ton tax on emissions of CO2 could impose a
$50/ton tax on extraction, a $30/ton tax on production, and a $20/ton tax on
consumption. As we will suggest, a mix allows the country to moderate the
effects of each of the pure taxes. For example, imposing both an extraction
tax and a production tax can balance the negative effects on the location of
extraction that arise from a pure extraction tax with the negative effects on
the location of production from a pure production tax. That is, there are
not merely three possibilities, there are an infinite number of combinations
of these three that generate different effects.

The last piece of terminology is “carbon border adjustments” or just
simply border adjustments.1 Border adjustments are taxes on imports or
rebates of prior taxes paid on exports. They can apply to either fossil fuels
or goods, or both. For fossil fuels, the border adjustment is on the carbon
content of the fossil fuel. For goods, the border adjustment is on the carbon
emissions from the production of the good, what we call the embodied carbon
or embodied energy. Kortum and Weisbach (2017) provide a more detailed
description of border adjustments.

Border adjustments shift the tax downstream. For example, an extraction
tax with border adjustments on the import and export of fuels becomes a tax
on domestic production. Any fuel that is extracted domestically but exported
has the tax rebated, and any fuel that it extracted abroad but imported
has a tax imposed. All fuel used domestically, and only that fuel, bears a
tax. Therefore, we can equivalently impose an extraction tax plus a border
adjustment or a production tax. They differ only in their nominal description.
Similarly, a border adjustment on imports and exports of goods shifts the tax
from production to domestic consumption, and we can equivalently impose

1The term “border adjustment” is most often used in connection with destination-based
VATs, widely used throughout the world. Border adjustments in this context are rebates
of prior VAT paid when a good is exported and the imposition of VAT when a good is
imported.

The term “carbon border adjustment” is a border adjustment based on the carbon
content of goods including the carbon emitted during production, rather than their value
(as in a VAT). For simplicity, we shorten the term to just “border adjustment” because
the usage is unambiguous here.
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a production tax plus a border adjustment or a consumption tax.
Full or perfect border adjustments apply equally to imports and exports

and are imposed at the same rate as the underlying tax. Border adjustments
can be imposed at a different rate than the underlying tax. If the rate is less
than the underlying tax, we can think of the border adjustment as shifting
that portion downstream. For example, if an extraction tax is imposed at
$100/ton of CO2, and the border adjustment is only at $75/ton, we can
think of this as a $25/ton tax on extraction and a $75/ton tax on production.
Therefore, we can implement combinations of the three pure taxes via border
adjustments imposed at different rates than the underlying tax.

Border adjustments can also be imperfect because they apply differently
to imports and exports. For example, they can be applied to imports but
not exports. A production tax with a border adjustment applied only to
imports becomes a tax on all domestic production and on all domestic con-
sumption generating a broader tax base than any of the three pure taxes.
More generally, the border adjustment can be applied at different rates to
imports and exports (and both those rates might be different than the rate
of the underlying tax). We can decompose the effects in the same way as
suggested above.

Finally, border adjustments might apply only to a subset of goods, such as
only to goods that are particularly energy intensive. Many border adjustment
proposals are limited in this way, in large part to minimize administrative
costs. Modern economies import and export a vast number of different goods,
and computing accurate border adjustments for each of these goods would be
difficult. By imposing border adjustments only where their effects are likely
to be large, the administrative costs can be reduced.

As can be seen, there are a large number of possible taxes. Our goal is
to understand the optimal mix of these possibilities for taxing regions.

1.2 Prior Literature

Because of its prominence, there is a voluminous prior literature studying
this problem. The overwhelming majority of studies use computable general
equilibrium models to simulate carbon taxes and border adjustments. By
our count, there are over 50 CGE studies of the general problem of differ-
ential carbon prices in the peer-reviewed literature (and many more in the
gray literature) and each study considers multiple different scenarios, which
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means that there are hundreds of simulations of the problem.2 For example,
Branger and Quirion (2014) perform a meta-analysis of 25 studies of differ-
ential carbon taxes (20 of which were CGE studies, 5 of which were partial
equilibrium studies). These 25 studies, which make up only a portion of the
literature, had 310 different modeled scenarios.

CGE studies almost uniformly use leakage as their measure of the effects
of differential carbon prices. Leakage is commonly defined as the increase in
emissions in non-taxing regions as a percentage of the reduction in emissions
in the taxing region. (Hence, 100% leakage means the policy is totally in-
effective in reducing global emissions.)Leakage estimates vary considerably,
although within a relatively consistent range. The Branger and Quirion meta-
study finds leakage rates between 5% and 25% without border adjustments.
They also find that border adjustments reduce leakage by about a third to be
within a range of 2% to 12% with a mean value of 8%. Similarly, the Energy
Modeling Forum commissioned 12 modeling groups to study the effects of
border adjustments on leakage using a common data set and common set of
scenarios. Bohringer et al. (2012). They considered emissions prices in the
Kyoto Protocol Annex B countries (roughly the OECD) that reduce global
emissions by about 9.5%. Without border adjustments, leakage rates were
in the range of 5% to 19% with a mean value of 12%. They also find that
border adjustments reduce leakage by about a third, with a range between
2% and 12% and a mean value of 8%. Elliott et al (2013) replicated 19 prior
studies within their own CGE model, finding leakage rates between 15% and
30% for a tax on Annex B countries that reduced global emissions by about
13%.3

We use an analytic general equilibrium model of trade to study the prob-
lem. This approach allows us to uncover the underlying economic logic for
why some policies perform better than others, although it means that our
quantitative analysis is more illustrative than definitive because the model

2For surveys of the leakage literature, see Droge et al. 2009, Zhang 2012 and Metz et
al. 2007

3A smaller number of studies focus on the effects of carbon taxes on particular energy-
intensive and trade-exposed sectors. For example, Fowlie et al (2016) consider the effects
of a carbon price on the Portland cement industry. They find that a carbon price has the
potential to increase distortions associated with market power in that industry. Leakage
compounds these costs. They find that border adjustments induce negative leakage be-
cause of how industry actors respond, and can generate significant welfare gains at high
carbon prices.
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is stripped down. There are a small number of studies that precede us in
this approach. The classic study, which we build on, is Markusen (1975).
Markusen analyzes a two-country, two-good model in which production of
one of the goods generates pollution that harms both countries. Writing
before climate change was a widespread concern, he considers a simple pol-
lutant, such as the release of chemicals into Lake Erie by polluters in the
United States, which harms Canada (as well as the United States). One
of the countries imposes policies to address the pollution; the other is pas-
sive. Markusen finds that the optimal tax is a Pigouvian tax on the dirty
good combined with a tariff (if the good is imported) or a subsidy (if it is
exported). The optimal tariff or subsidy combines terms of trade consider-
ations and considerations related to leakage and is generally lower than the
Pigouvian tax.4

2 Basic Model

We introduce the basic model and its competitive equilibrium here before
turning to the planning problem, from which we derive the optimal unilateral
carbon policy.

Two countries, Home and Foreign, are endowed with labor, L and L∗, as
well as fossil fuel deposited under the ground, G and G∗. The ∗ distinguishes
Foreign from Home. Each country has three sectors: energy e, goods g, and
services s. Energy is extracted from deposits using labor, goods are produced
by combining labor and energy, and services are provided with labor only.
Labor is perfectly mobile across the three sectors within a country.5 As
in Dornbusch, Fisher, and Samuelson (1977), goods come in a continuum,
indexed by j ∈ [0, 1].

4Hoel (1996) generalizes Markusen’s analysis and produces similar results in the context
of climate change and carbon taxes. He also considers the case where the country may
not impose tariffs. In this case, the optimal policy will involve carbon taxes that vary
by sector (even though the harms from emissions do not vary by sector). There are a
number of other analytic models of the problem. Other related models include Holladay
et al (2018), Hemous (2016), Baylis et al (2014), Jakob, Marschinski and Hubler (2013),
Fischer and Fox (2012, 2011), and Hoel (1994).

5What we call labor can be interpreted as a combination of labor and capital, which is
used to extract energy, produce goods, and provide services.
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2.1 Preferences

We denote services consumption by Cs and define an index of goods con-
sumption Cg by:

Cg =

(∫ 1

0

c
(σ−1)/σ
j dj

)σ/(σ−1)

,

where σ > 0 is the elasticity of substitution across the individual goods j.
Preferences in Home are:

U(Cs, Cg, Q
W
e ) = Cs + η1/σC

1−1/σ
g − 1

1− 1/σ
− ϕQW

e ,

where η governs Home’s overall demand for goods.6 The harms from climate
change are captured by the last term, where QW

e = Qe +Q∗e is global energy
extraction, and ϕ is Home’s marginal harm from global emissions.7

Preferences in Foreign are the same except with η∗ in place of η, σ∗ in
place of σ, and ϕ∗ in place of ϕ. Throughout we assume Cs > 0 and C∗s > 0,
a condition that is easily checked. We restrict σ∗ ≤ 1 since inelastic For-
eign demand simplifies the solution for Home’s optimal exports of individual
goods.8

2.2 Technology

Fossil fuel is deposited in a continuum of fields, characterized by different
costs of extraction. We summarize the distribution of costs in Home by an
increasing differentiable function G(a), representing the quantity of energy
that can be extracted at a unit labor requirement below a. The distribution
in Foreign is G∗(a). We assume efficient extraction within each region so that

6We follow Grossman and Helpman (1994) in adopting quasi-linear preferences, which
greatly simplifies the analysis.

7Throughout most of the paper we equate energy with fossil fuel, measured by its
carbon content. We introduce green energy in an extension toward the end.

8We can relax this assumption by following the strategy in Costinot, Donaldson, Vogel,
and Werning (2015). For σ = 1 preferences simplify to:

U = Cs + η

∫ 1

0

ln cjdj − ϕQWe ,

and likewise in Foreign.
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low cost fields are tapped first. Focusing on Home, the labor Le employed to
extract energy Qe satisfies:

Le =

∫ ā(Qe)

0

aG′(a)da, (1)

and
Qe = G(ā(Qe)), (2)

where ā(Qe) is the highest-cost field that is tapped.9 These two expressions
apply in Foreign as well, with Q∗e, G

∗, ā∗(Q∗e), and L∗e. The output of the
energy sector is in turn used as an intermediate input E and E∗ by the goods
sector.

Goods j ∈ [0, 1] are produced with input requirement aj (in Home) and
a∗j (in Foreign) using a Cobb-Douglas combination of labor and energy:

qj =
1

νaj
LαjE

1−α
j , (3)

where Lj is the labor input, Ej is the energy input, α is the output elasticity
of labor, and:

ν = αα (1− α)1−α . (4)

The production function in Foreign is the same, but with a∗j in place of aj.
10

Services are provided in both countries with a unit labor requirement.

9An analytically convenient case, reminiscent of Houthakker (1955-56), is:

G(a) = Gaβ/(1−β),

where G and β are scale and shape parameters of the distribution. Solving (2) and (1)
under this parameterization gives a Cobb-Douglas energy extraction function:

Qe = β−βLβeG
1−β .

Asker, Collard-Wexler, and De Loecker (2019) examine data on costs of extraction across
all oil fields in the world. We plot statistics from their data, posted in Asker, Collard-
Wexler, and De Loecker (2018), as Figures 6 and 7 in the Appendix. Assuming that oil
fields are representative of fossil fuels more generally, it is clear that the constant elasticity
form does not fit the data over the entire distribution. We proceed without imposing a
particular shape, and when we get to our quantitative illustration we assume only that a
constant elasticity applies to the upper end of the cost distributions.

10In line with our Ricardian assumptions, we treat α as common across goods and
countries. Including the constant ν in the production function leads to simpler expressions
for costs, that will appear later.
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2.3 International Trade

We assume that energy and services are costlessly traded between Home and
Foreign. We take services to be the numéraire, with price 1.11 Energy is
traded at a world price pe.

Trade in the continuum of manufactured goods follows Dornbusch, Fisher,
and Samuelson (1977). Goods are arranged in decreasing order of Home’s
comparative advantage:

a∗j
aj

= F (j), (5)

where we assume that F (j) is a strictly decreasing continuous function.12

Goods are traded subject to iceberg costs on Home’s exports τ ≥ 1 and
on Home’s imports τ ∗ ≥ 1. The total input requirement for Home to supply
good j to Foreign is thus τaj and for Foreign to supply good j to Home τ ∗a∗j .

2.4 Labor and Energy Requirements

Having described technology and trade for goods, we now introduce a no-
tation for energy and labor input requirements that will prove convenient
throughout the rest of the paper. At a given energy intensity:

zj = Ej/Lj

we can invert the production function (3) to express the unit labor require-
ment for good j in Home:

lj(zj) = νajz
α−1
j . (6)

The corresponding unit energy requirement is:

ej(zj) = zjlj(zj) = νajz
α
j . (7)

Unit labor and energy requirements in Foreign, l∗j (zj) and e∗j(zj), are the
same but with a∗j in place of aj.

11We will assume that Q∗s > 0 so that given the unit labor requirement for services
the wage in Foreign is w∗ = 1. This outcome is guaranteed with a large enough labor
endowment in Foreign.

12In order to have well defined integrals in what follows, we also assume that aj and a∗j
can be treated as continuous functions of j.
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So as not to unduly constrain the optimal unilateral policy, the energy
intensity for good j may depend not only on where the good is produced
but also on where it is shipped. To handle that possibility requires some
additional notation.

For each good j we distinguish between Home’s exports, xj ≥ 0 and
Home’s production for consumption in Home, yj = qj − τxj. We also dis-
tinguish between Home’s imports, mj ≥ 0 and Foreign’s production for con-
sumption in Foreign, y∗j = q∗j − τ ∗mj. (Note that we define exports and
imports in terms of the quantity that reaches the destination, taking account
of iceberg costs .) For each good j we allow for the possibility of four dif-
ferent energy intensities zyj , zxj , zmj , and z∗j , one for each of the four lines of
production yj, xj, mj, and y∗j .

Exploiting this notation, we can express labor employed in the goods
sector in Home as the sum of the labor used to produce goods consumed
domestically and the labor used to produce goods for export:

Lg =

∫ 1

0

(
lj(z

y
j )yj + τ lj(z

x
j )xj

)
dj. (8)

We now turn to a more detailed account of how energy is used.

2.5 Carbon Accounting

We set units so that a unit of energy has a unit of carbon. Energy is extracted
in both countries. Home may export some of what it extracts or it may
import some from Foreign. Carbon is released when the energy is used to
produce goods, and these goods embodying carbon emissions are traded.
Some goods are exported and others imported before they are consumed
by households. We can therefore trace carbon from its extraction through
its release into the atmosphere and finally to its implicit consumption by
households.

We define Ie as total intermediate demand for energy used by producers
in Home and I∗e by producers in Foreign. Home’s net exports of energy, which
can be positive or negative, is extraction less intermediate demand:

Xe = Qe − Ie.

Defining Foreign’s net energy exports X∗e similarly, the global energy market
clears when Xe + X∗e = 0. These expressions account for the first level of
trade in carbon.
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Table 1: Carbon Accounting Matrix

Home Foreign Total

Home CHH
e =

∫ 1

0
ej(z

y
j )yjdj CHF

e = τ ∗
∫ 1

0
e∗j(z

m
j )mjdj Ce = CHH

e + CHF
e

Foreign CFH
e = τ

∫ 1

0
ej(z

x
j )xjdj CFF

e =
∫ 1

0
e∗j(z

∗
j )y
∗
jdj C∗e = CFH

e + CFF
e

Total Ie = CHH
e + CFH

e I∗e = CHF
e + CFF

e IWe = CW
e = QW

e .

The second level of trade in carbon is embodied in goods. The follow-
ing table depicts the bilateral flows, with rows indicating the location of
consumption and columns the location of production:

For example, Home’s implicit consumption of carbon Ce is the sum of
carbon released by producers in Home serving the local market CHH

e and
carbon released by Foreign producers in supplying Home’s imports CHF

e .

2.6 Competitive Equilibrium

Before turning to the planning problem from which we derive the optimal
unilateral carbon policy, we present the key elements of the competitive equi-
librium for this economy. Laying out the competitive equilibrium serves sev-
eral purposes: (i) it’s our business-as-usual (BAU) scenario with no carbon
policy, (ii) it describes the behavior of Foreign under a unilateral policy, and
(iii) the equilibrium structure helps in interpreting the planner’s solution.

In this BAU scenario, trade in services pins down a common wage of
w = w∗ = 1 and trade in energy pins down a common energy price pe.
The model collapses to a nearly text-book version of Dornbusch, Fisher, and
Samuelson (1977). Here we briefly state the main outcomes.13

13The full solution is provided in Appendix A, where it appears as a corollary of the
global planner’s problem.
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2.6.1 Goods Sector

Wherever it comes from, each good is produced at the cost minimizing energy
intensity:

zj = z =
1− α
αpe

. (9)

Applying (6) and (7), if good j is produced in Home the unit cost of produc-
tion is:

pj = lj + peej = ajp
1−α
e .

If good j is produced in Foreign a∗j replaces aj. These unit costs determine
prices via competition in international trade.

Home exports goods for which its cost, including transport, is below For-
eign’s or j < j̄x, where from (5) the export threshold satisfies:

F (j̄x) = τ. (10)

Likewise, Home imports goods j > j̄m where the import threshold satisfies:

F (j̄m) =
1

τ ∗
. (11)

These thresholds are invariant to the energy price.
The quantity demanded by Home consumers for a good j ≤ j̄m, whose

price is thus pj, is:
yj = ηp−σj .

Similar expressions apply for y∗j , mj, and xj, taking account of the location
of production and transport costs.

2.6.2 Energy Sector

Home’s implicit demand for energy is:

Ce(pe) = (1− α) η

(∫ j̄m

0

a1−σ
j dj +

∫ 1

j̄m

(
τ ∗a∗j

)1−σ
dj

)
p−εDe .

Here:
εD = α + (1− α)σ

is Home’s elasticity of demand for embodied energy, capturing the elasticity
of the unit energy requirement in production α as well as the elasticity of
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demand σ multiplied by the elasticity of the price of the good with respect
to the energy price 1− α. Foreign’s demand for embodied energy is:

C∗e (pe) = (1− α) η∗

(∫ j̄x

0

(τaj)
1−σ dj +

∫ 1

j̄x

(
a∗j
)1−σ

dj

)
p
−ε∗D
e ,

where, due to our assumption of σ∗ ≤ 1:

ε∗D = α + (1− α)σ∗ < 1. (12)

On the energy supply side, since the wage is 1 the cost of extraction is
a. Thus energy is extracted from all fields with a ≤ pe. The energy supply
curve in Home is thus:

Qe = G(pe), (13)

while in Foreign:
Q∗e = G∗(pe). (14)

The equilibrium energy price equates global supply and demand for energy:

Ce(pe) + C∗e (pe) = G(pe) +G∗(pe).

This energy price determines the size of the goods sector, the energy sector,
and the services sector.14

With the structure of the model in place, we will turn next to the char-
acterization of Home’s optimal carbon policy. Two particular features of the
competitive equilibrium play key roles in characterizing the optimal unilat-
eral policy. The first is Foreign’s energy demand elasticity ε∗D defined in (12).
The second is Foreign’s energy supply elasticity:

ε∗S =
dG∗

dpe

pe
G∗
. (15)

14The size of the services sector is determined by the quantity of labor not employed in
the production of goods (with labor share α) or the extraction of energy:

Qs = L− Lg − Le = L− αIe/(1− α)−
∫ pe

0

aG′(a)da.

The same applied in Foreign with Q∗s in place of Qs, I
∗
e in place of Ie, and G∗ in place

of G. We assume that L and L∗ are large enough so that Qs and Q∗s are both strictly
positive. Services are costlessly traded to achieve trade balance:

Cs −Qs = pe(Qe − Ie) +

∫ j̄x

0

τpjxjdj −
∫ 1

j̄m

τ∗p∗jmjdj.
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Although not made explicit in the notation ε∗S, the supply elasticity, unlike
the demand elasticity, typically varies with the equilibrium price.

3 Home’s Planning Problem

We consider a planner that allocates all resources in Home so as to maximize
Home’s welfare. Foreign outcomes are determined as a competitive equilib-
rium given the choices made by the planner. After solving this problem, we’ll
deduce a set of taxes on extraction, production, consumption, and trade that
implement Home’s optimal unilateral carbon policy.

3.1 Preliminaries

We start by considering the various constraints faced by the planner, the first
of which involves prices.

3.1.1 Prices for International Trade

Home and Foreign trade services at a price of 1. They trade energy at a price
pe, which is chosen by the planner. (Note that choosing a higher price means
a policy that restricts energy supply while a lower price means a policy that
restricts energy demand.)

For each good j the planner dictates the quantities yj, xj, and mj. It
also dictates the corresponding energy intensities of production zyj , zxj , and
zmj (even though Home’s imports are produced in Foreign, the planner can
set the energy intensity for how they are produced).

When Home imports from Foreign, the price is determined by Foreign’s
cost of production. This cost depends on both labor cost and energy cost in a
combination determined by the energy intensity zmj that the planner dictates.
It also depends on the iceberg cost τ ∗. The price of Home’s imports of good
j, if mj > 0, is thus:

pmj = τ ∗
(
l∗j (z

m
j ) + pee

∗
j(z

m
j )
)
.

When Foreign is producing for its domestic market, its cost-minimizing
energy intensity z∗ is given by (9) and hence its unit energy requirement is:

e∗j(z
∗) = (1− α)a∗jp

−α
e . (16)
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The price at which it sells to local consumers is:

p∗j = a∗jp
1−α
e . (17)

Home is constrained to set the export price of good j weakly below the
cost at which Foreign producers can make it themselves and the marginal
utility of good j to Foreign consumers:

pxj ≤ min
{
p∗j ,
(
c∗j/η

∗)−1/σ∗}
.

While we don’t denote it explicitly, e∗j(z
∗), p∗j , p

m
j , and pxj each depend on

the energy price pe.
We now have expressions for all the prices necessary to evaluate trade

balance.

3.1.2 Trade Balance Constraint

The value of Home’s net exports of energy, which can be positive or negative,
is peXe. The value of its exports of services, again positive or negative, is
simply:

Xs = Qs − Cs.

The value of Home’s net exports of goods is:

Xg = V FH
g − V HF

g ,

where V FH
g is the value of Home’s exports of goods and V HF

g the value of
its imports of goods. Net exports in the three sectors is connected via trade
balance, which we can express as:

Xs =

∫ 1

0

pmj mjdj −
∫ 1

0

pxjxjdj − peXe. (18)

3.1.3 Energy Constraints

The demand by Foreign consumers for good j is:

c∗j = η∗
(
p∗j
)−σ∗

, (19)

of which
y∗j = max

{
c∗j − xj, 0

}
.
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is produced in Foreign, at energy intensity z∗. We can then obtain I∗e (and
Ie) by integrating according to the expressions in Table 1.

Foreign’s energy-extraction supply curve is given by (14), a function of the
energy price pe as in the BAU scenario. Market clearing for energy implies a
constraint on Home’s net exports of energy:

Q∗e = −Xe + I∗e . (20)

Likewise, Home’s total energy production must satisfy:

Qe = Xe + Ie. (21)

We will impose each of these constraints separately in the planner’s problem
below. Together, they imply the global energy constraint:

QW
e = Ie + I∗e . (22)

3.1.4 Labor Constraint

Finally, we turn to Home’s labor constraint. Assuming efficient exploita-
tion of energy deposits (lowest cost first), the labor Le required to extract a
quantity of energy Qe is:

Le(Qe) =

∫ G−1(Qe)

0

aG′(a)da, (23)

where G−1(Qe) is the highest cost energy deposit used. Home’s labor con-
straint is simply:

Qs = L− Le(Qe)− Lg, (24)

where Lg is from (8).

3.2 The Planner’s Lagrangian

The planner’s objective is to maximize Home welfare:

U = Qs −Xs +
η1/σ

1− 1/σ

∫ 1

0

(
(yj +mj)

1−1/σ − 1
)
dj − ϕ (Qe +Q∗e) ,

subject to four constraints: (i) Home’s labor constraint (24), (ii) trade bal-
ance (18), (iii) Home’s energy constraint (21), and (iv) Foreign’s energy con-
straint (20).
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We can simply substitute the first two constraints into the objective (elim-
inating Qs − Xs from the objective). For the third it’s easier to apply a
Lagrange multiplier λe and for the fourth a Lagrange multiplier λ∗e. The
resulting Lagrangian is (dropping constants such as L):

L =
η1/σ

1− 1/σ

∫ 1

0

(yj +mj)
1−1/σ dj − ϕ (Qe +Q∗e)

− Le(Qe)−
∫ 1

0

(
lj(z

y
j )yj + τ lj(z

x
j )xj

)
dj

−
∫ 1

0

τ ∗
(
l∗j (z

m
j ) + pee

∗
j(z

m
j )
)
mjdj +

∫ 1

0

pxjxjdj + peXe

− λe
(∫ 1

0

(
ej(z

y
j )yj + τej(z

x
j )xj

)
dj −Qe +Xe

)
− λ∗e

(∫ 1

0

(
e∗j(z

∗)y∗j + τ ∗e∗j(z
m
j )mj

)
dj −Q∗e −Xe

)
.

The terms in the Lagrangian are, line by line: (i) Home’s welfare less services
consumption, (ii) what remains of Home’s labor constraint after substituting
out the provision of services, (iii) what remains of Home’s trade-balance con-
straint after substituting out services exports, (iv) Home’s energy constraint,
and (v) Foreign’s energy constraint. We want to maximize this Lagrangian
by the optimal choice of {yj}, {xj}, {mj}, {zyj }, {zxj }, {zmj }, Qe, Xe, and pe.
(When we get to the point of optimizing over pe we will be explicit about
how Q∗e, p

x
j , e

∗
j(z
∗), and y∗j each depend on pe.)

We solve this problem, starting with what Costinot, Donaldson, Vogel,
and Werning (2015) call the inner problem, involving optimality conditions
for an individual good given values for Qe, Xe, λe, λ

∗
e, and pe. We then eval-

uate the optimality conditions for Qe, Xe, and pe. The Lagrange multipliers
λe and λ∗e will be solved in the process, once we clear the energy market.

3.3 Inner Problem

Solving the inner problem consists of first order conditions with respect to
the variables that are specific to some good j: yj, xj, mj, z

y
j , zxj , and zmj .

These first order conditions, and their implications given Qe, Xe, λe, λ
∗
e, and

pe, can be considered one good at time. We therefore define a Lagrangian
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for good j:

Lj =
η1/σ

1− 1/σ
(yj +mj)

1−1/σ

− νaj
(
yj
(
zyj
)α−1

+ τxj
(
zxj
)α−1

)
− νa∗jτ ∗

((
zmj
)α−1

+ pe
(
zmj
)α)

mj + pxjxj

− λeνaj
(
yj
(
zyj
)α

+ τxj
(
zxj
)α)

− λ∗eνa∗j
(
max

{
c∗j − xj, 0

}
(z∗)α + τ ∗mj

(
zmj
)α)

,

where we have substituted in the expressions for unit input requirements
(6) and (7) in Home (as well as their analogs in Foreign). We consider the
variables relevant to Home consumers first, then turn to those relevant to
Foreign consumers. Many details of the derivation are relegated to Appendix
B.

3.3.1 Goods for Home Consumers

The first order condition for zyj implies:

zyj = zy =
1− α
αλe

.

The planner requires all Home producers serving the domestic market to
produce at the same energy intensity. Similarly, the first order condition for
zmj implies:

zmj = zm =
1− α

α (pe + λ∗e)
.

All Foreign producers serving consumers in Home also produce at the same
energy intensity, but potentially different from producers in Home.

Due to the inherent corner solutions, the first order conditions for yj and
mj are more intricate. Yet their implications are easy to distill by defining the
good j̄m for which both first order conditions hold with equality. Applying
(5), this cutoff good will satisfy:

F (j̄m) =
1

τ ∗

(
λe

pe + λ∗e

)1−α

. (25)
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1. For any good j < j̄m Home has a comparative advantage, which leads
it to produce for itself:

yj = η
(
ajλ

1−α
e

)−σ
,

while importing nothing, mj = 0.

2. For any good j > j̄m Foreign has a comparative advantage, which leads
Home to import:

mj = η
(
τ ∗a∗j (pe + λ∗e)

1−α)−σ ,
while producing nothing for itself, yj = 0.

3. We can ignore the pattern of trade for the measure-zero cutoff good
j = j̄m.

Note that the iceberg cost of moving goods from Foreign to Home shrinks
the range of goods that Home imports. For any good that Home does import,
this iceberg cost also reduces the quantity imported.

3.3.2 Goods for Foreign Consumers

We now turn to Home’s exports to Foreign. The first order condition for zxj
implies:

zxj = zx =
1− α
αλe

.

All Home producers serving the export market produce at the same energy
intensity, the same as their energy intensity for serving the domestic market.

From the derivative with respect to xj, we first obtain an optimality
condition that:

pxj = p∗j . (26)

This result is driven by our assumption that Foreign demand is inelastic.15

15Suppose not, so that:

pxj =
(
c∗j/η

∗)−1/σ∗

< p∗j .

It follows that y∗j = 0, c∗j = xj , and:

∂pxj
∂xj

= −
pxj
σ∗xj

.
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Imposing (26), we can return to the first order condition for xj to get:

∂Lj
∂xj

= −νajτ
(
zxj
)α−1 − λeνajτ

(
zxj
)α

+ pxj + λ∗eνa
∗
j (z∗)α .

The terms on the right-hand side are: (i) the marginal value of Home’s labor
used to produce more of xj, (ii) the value of the energy used, (iii) the value
of the revenue obtained, and (iv) the value of reducing Foreign’s energy use.
Substituting in the solution for zxj , z∗, and pxj and then combining the first
two terms, this derivative simplifies to:

∂Lj
∂xj

= −τajλ1−α
e + a∗jp

1−α
e + a∗jλ

∗
e (1− α) p−αe . (27)

The last term plays a novel role in the solution. It represents the value that
the planner places on the energy Foreign would use to produce an additional
unit of good j if it didn’t import the good from Home.

To distill results about consumption in Foreign, define the good j̄x such
that

∂Lj
∂xj

∣∣∣∣
j=j̄x

= 0.

Applying (5), this cutoff good satisfies:

F (j̄x) =
τ
(
λe
pe

)1−α

1 + (1− α) λ∗e
pe

. (28)

1. For any good j < j̄x Home has comparative advantage, which leads it
to export:

xj = η∗
(
a∗jp

1−α
e

)−σ∗
,

while Foreign produces y∗j = 0 for itself. (Note that Home’s export
quantity for any such good is at a corner solution, which will become
relevant later when we consider optimal pe.)

In this case, under our assumption that σ∗ ≤ 1:

∂Lj
∂xj

= −νajτ
(
zxj
)α−1 − λeνajτ

(
zxj
)α − (1− σ∗

σ∗

)
pxj < 0.

As a consequence, the planner will reduce xj , whenever pxj < p∗j , which raises pxj . The
increase in pxj ultimately leads to the condition: pxj = p∗j .
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Table 2: Production and Distribution of a Good

Home Foreign

Home yj = η (ajλ
1−α
e )

−σ
mj = η

(
τ ∗a∗j (pe + λ∗e)

1−α)−σ
Foreign xj = η∗

(
a∗jp

1−α
e

)−σ∗
y∗j = η∗

(
a∗jp

1−α
e

)−σ∗

2. For any good j > j̄x Foreign has a comparative advantage, which leads
it to produce for itself:

y∗j = η∗
(
a∗jp

1−α
e

)−σ∗
,

with xj = 0.

3. We can ignore the pattern of trade for the measure-zero cutoff good
j = j̄x.

The iceberg cost τ has no direct effect on Home’s goods exports, in con-
trast to the direct effect of τ ∗ on Home’s goods imports. That’s because Home
determines the quantity of good j to export based on Foreign’s marginal util-
ity evaluated at the cost to Foreign of producing good j itself. Because the
iceberg cost appears in (28), however, a higher τ narrows the range of goods
that Home exports.

It is useful to compare the terms for each of the four quantities of good
j. As in Table 1, the rows indicate the location of consumption while the
columns indicate the location of production.

These terms are all as might be expected except for Home’s exports,
xj: (i) they reflect the global price of energy pe rather than Home’s shadow
price λe, (ii) although produced in Home, they reflect Foreign productivity a∗j
rather than Home’s productivity aj, and (iii) they do not reflect the iceberg

costs of export τ . That is, xj 6= η∗ (τajλ
1−α
e )

−σ
as one would expect. The

reason is because if Home is to export it is constrained to price exports no
higher than Foreign’s cost, and it is never optimal for Home to export at a
price below Foreign’s cost.
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3.4 Outer Problem

We now turn to the optimality conditions for Xe, Qe, and pe, rewriting the
Lagrangian in terms of aggregate magnitudes:

L =
η1/σ

1− 1/σ
C1−1/σ
g − ϕ (Qe +Q∗e)

− Le(Qe)− Lg
+Xg + peXe

− λe (Ie −Qe +Xe)

− λ∗e (I∗e −Q∗e −Xe) . (29)

We consider how Q∗e, Lg, Xg, Ie, and I∗e depend on the energy price once we
get to the first order condition for pe.

3.4.1 Energy Exports

The first order condition with respect to Xe is:

∂L
∂Xe

= pe − λe + λ∗e = 0,

which implies:
λe = pe + λ∗e. (30)

Thus, the optimal energy export policy requires the shadow value of energy
in Home λe to be the same as the shadow value of energy faced by producers
in Foreign that serve customers in Home, pe + λ∗e.

Combined with the results from the inner problem, an implication is that
optimal energy intensity is the same for all producers serving consumers in
Home (whether the producers are in Home or Foreign) and for all producers
in Home (whether serving consumers in Home or Foreign):

zy = zx = zm = z =
1− α
αλe

, (31)

where from the inner problem we established that these energy intensities do
not vary by good. The exception to equalization is z∗, the common energy
intensity for any goods produced in Foreign for consumption there.

Another implication is that the extensive margin in Home, of what goods
are produced locally and what goods are imported, is the same as in the
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BAU equilibrium: F (j̄m) = 1/τ ∗. For the goods that Home imports, the
price simplifies to:

pmj = ατ ∗a∗jλ
1−α
e + (1− α) peτ

∗a∗jλ
−α
e . (32)

Note that this is the price at the port, appropriate for computing the trade
balance, not the price that consumers in Home pay.

3.4.2 Energy Extraction

The first order condition with respect to Qe is:

∂L
∂Qe

= −ϕ− ∂Le
∂Qe

+ λe = 0.

The extra labor in Home to extract a bit more energy is the labor requirement
in exploiting the marginal energy deposit, G−1 (Qe).

16 Hence the first order
condition simplifies to:

Qe = G (λe − ϕ) . (33)

This condition is the same as Home’s energy-extraction supply curve (13) in
the BAU scenario, but with pe + λ∗e − ϕ in place of pe.

17

We’ve now determined global energy supply given λ∗e and pe, with Home
extraction being lower when marginal damages ϕ are high. A more definitive
statement requires solving for λ∗e and pe, which we turn to next.

3.4.3 Energy Price

The first order condition with respect to pe is:

∂L
∂pe

= −ϕ∂Q
∗
e

∂pe
− ∂Lg
∂pe

+
∂Xg

∂pe
+Xe − λe

∂Ie
∂pe
− λ∗e

(
∂I∗e
∂pe
− ∂Q∗e
∂pe

)
= 0. (34)

16Integrating (23) by parts, it becomes:

Le(Qe) = G−1(Qe)Qe −
∫ G−1(Qe)

0

G(a)da.

Differentiating it in this form:

∂Le
∂Qe

= G−1(Qe) +Qe
∂G−1

∂Qe
−G(G−1(Qe))

∂G−1

∂Qe
= G−1(Qe).

17If ϕ is large enough it’s possible that ∂L/∂Qe < 0 even at Qe = 0. The corner solution
is then Qe = 0 and λe ≤ ϕ.
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To make sense of this condition requires that we clarify how the five aggregate
variables Q∗, I∗e , Ie, Lg, and Xg appearing in (29) depend on pe.

Dependence on the Energy Price Foreign energy extraction depends
directly on the energy price via (14), with elasticity given by (15). The
dependence on the energy price is more subtle for the other four aggregates.
Home directly chooses z, j̄m, j̄x, {mj}, and {yj}. This means that we can
treat them as fixed when differentiating the Lagrangian with respect to pe
since each satisfies its own first-order condition from the inner problem.18

Furthermore, we can take as fixed the unit energy requirement for Home
producers, whether supplying the domestic or export market. On the other
hand

{
pxj
}

, {xj},
{
pmj
}

,
{
y∗j
}

, and
{
e∗j(z

∗)
}

were not chosen by the planner,
or were optimized at a corner solution. They must be considered in the first
order condition. We apply (32), (26), (17), (16), and results in the second
row of Table 2 to compute the derivatives of the four aggregates.

Energy use by Foreign producers connects to the energy price via:

I∗e = (1− α)η∗p
−ε∗D
e

∫ 1

j̄x

(
a∗j
)1−σ∗

dj + τ ∗
∫ 1

j̄m

e∗jmjdj,

so that:
∂I∗e
∂pe

=
∂CFF

e

∂pe
= −ε∗D

CFF
e

pe
< 0, (35)

where Foreign’s demand elasticity ε∗D is from (12). That is, a change in
the energy price effects Foreign’s use of energy only through its domestic
consumption CFF

e and not through its exports of goods to Home CHF
e . Home

has chosen and optimized the determinants of CHF
e (j̄m, mj, and zm).

Energy use by Home producers is:

Ie =

∫ j̄m

0

ejyjdj + (1− α)η∗p−(1−α)σ∗

e

∫ j̄x

0

τaj
(
a∗j
)−σ∗

dj,

so that:
∂Ie
∂pe

=
∂CFH

e

∂pe
= −(1− α)σ∗

CFH
e

pe
< 0. (36)

18Thus, Cg in (29) does not appear in (34) since it depends only on terms that were
optimized in the inner problem.
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Goods-sector employment in Home is closely tied to energy use via:

Lg = Ie/z =
α

1− α
λeIe,

so that:
∂Lg
∂pe

=
α

1− α
λe
∂Ie
∂pe

< 0. (37)

Home’s net exports are:

Xg = η∗p
1−ε∗D
e

∫ j̄x

0

(
a∗j
)1−σ∗

dj−αλ1−α
e

∫ 1

j̄m

τ ∗a∗jmjdj−(1− α) peλ
−α
e

∫ 1

j̄m

τ ∗a∗jmjdj,

so that:
∂Xg

∂pe
=
∂V FH

g

∂pe
−
∂V HF

g

∂pe
= (1− ε∗D)

V FH
g

pe
− CHF

e . (38)

Restatement of the Optimality Condition Using these results along
with the global energy constraint (22), we can rewrite the first order condition
(34) as:

λ∗e = ϕ
∂Q∗e/∂pe

∂ (Q∗e − CFF
e ) /∂pe

+

(
Q∗e − CFF

e

)
− ∂Πg/∂pe

∂ (Q∗e − CFF
e ) /∂pe

, (39)

where Πg is Home’s surplus from goods exports:

Πg(pe) = V FH
g (pe)−

λe
1− α

CFH
e (pe). (40)

Using the elasticities demand and supply (local), we can rewrite (39) as:

λ∗e = ϕ
ε∗SQ

∗
e

ε∗SQ
∗
e + ε∗DC

FF
e

+
pe
(
Q∗e − CFF

e

)
− (1− ε∗D)V FH

g + σ∗CFH
e

ε∗SQ
∗
e + ε∗DC

FF
e

.

This equality will generate a locus of combinations of pe and λ∗e. The global
energy constraint (22) will generate another. Their intersection gives us the
solution for pe and λ∗e.
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3.5 Assessment

We can now compute the optimal policy in principle:

1. The inner problem, together with (30), gives Ie, I
∗
e , and Xg in terms of

pe and λ∗e.

2. Equations (14) and (33) give Q∗e and Qe as functions of pe and λ∗e.

3. Equation (39) together with the global energy constraint, combining
(20) and (21), nails down pe and λ∗e.

Along the way we can also solve for Xe, Qs, and Xs. Before actually com-
puting the solution for a parameterized version of the model, we reinterpret
the optimality conditions in terms of a set of taxes and subsidies.

4 Optimal Taxes and Subsidies

We now turn to a set of taxes and subsidies that deliver the unilaterally
optimal outcomes in a competitive equilibrium. The taxes must meet the
following conditions:

1. By (31), the energy intensity of production is the same for all goods
produced in Home or consumed in Home: zy = zm = zx.

2. The import margin is the same as in the BAU case (25): F (j̄m) = 1/τ ∗.

3. The energy price faced by Home producers is λe, where by (30): λe =
pe + λ∗e.

4. The energy price faced by producers in Foreign serving customers in
Home is also pe + λ∗e.

5. Home’s energy extraction must satisfy (33): Qe = G (pe + λ∗e − ϕ).

6. Home’s export margin is (28): F (j̄x) = τ
(
λe
pe

)1−α
/
(

1 + (1− α) λ∗e
pe

)
.

7. Producers in Home selling goods in Foreign do so satisfying (26): pxj (pe) =
p∗j(pe).

8. The energy price, pe, satisfies (39).
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While these optimal outcomes are unique, the taxes that deliver them are
not. We focus on a set that is easy to describe and potentially practical to
administer.19 In particular, we consider (1) an extraction tax, te, set at the
standard Pigouvian rate ϕ, (2) a border adjustment, tb, and (3) an export
policy based on Home’s comparative advantage in producing goods. The
border adjustment is imperfect or partial in that it need not be at the same
rate as the underlying extraction tax (and often it will be at a lower rate)
and it applies only to imports and exports of energy and imports of goods,
but not to the export of goods. Below we illustrate that this set of taxes
implements Home’s optimal planning outcome.

4.1 Extraction Tax and Border Adjustments

Consider the following two taxes: a tax on extraction, te, equal to marginal
harm, ϕ, and a border adjustment on all imports and exports of energy, and
on the energy embodied in imports, all at rate λ∗e:

te = ϕ, (41)

tb = λ∗e.

This set of taxes satisfies conditions 1 through 5.
This border adjustment sets the price of energy in Home to pe + tb =

pe + λ∗e = λe. If Home imports energy, the border adjustment adds to the
world price pe, bringing it up to pe + tb. This price is what producers in
Home pay and is also the pre-tax price that Home extractors receive. If
Home exports energy the border adjustment is paid to energy exporters so
that their pre-tax price remains pe + tb even as they sell on the world market
at price pe.

Because the border adjustment applies to the energy embodied in im-
ported goods, Foreign producers of these goods will internalize the cost of
energy as being pe + tb. Their energy intensity of production when ship-
ping to Home is therefore equalized to that of Home producers, giving us
zy = zm = zx . Moreover, the range of goods that Home imports is invariant
to these taxes, so F (j̄m) = 1

τ∗
.

19Metcalf and Weisbach (2009) mention ways to ease the administrative burden of a
carbon tax while and Kortum and Weisbach (2017) discuss the administrative difficulties
of border adjustments, some of which we address with the policy proposed here.
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Home extractors receive a pre-tax price of pe + tb (whether they sell do-
mestically or export), and they pay an extraction tax, te = ϕ. The after-tax
price received by Home’s extractors is thus:

pe + tb − te = pe + λ∗e − ϕ.

Therefore, the energy extraction in Home satisfies (33), inducing the optimal
Qe.

20 While we have not yet determined the optimal level of the border
adjustment, we have determined the optimal wedge between the price that
Home’s producers pay for energy and the price that its extractors receive.
That wedge is the extraction tax, which equals the marginal damages from
global emissions, ϕ.21

4.2 Export Taxes and Subsidies

4.2.1 Levels

Conditions 1, 6 and 7 determine Home’s export policy. Condition 1 requires
that producers in Home selling in Foreign face the same energy price as when
they sell domestically. This means that the border adjustment should not
apply to Home’s exports. That is, it is optimal for Home to give its exporters
the incentive to produce at lower energy intensity rather than rebating taxes
on export.

To meet conditions 6 and 7, Home provides exporters of each good j with
a per unit tax or subsidy, depending on Home’s comparative advantage in
producing that good. To derive the subsidy and tax, first solve for the good
j0 ∈ (0, j̄x) that Home exports at a cost exactly equal to the price it charges:

τaj0 (pe + tb)
1−α = a∗j0p

1−α
e ,

so that j0 satisfies:

F (j0) = τ

(
pe + tb
pe

)1−α

.

Exporters could not normally sell any goods, j ∈ (j0, j̄x], because their
costs would exceed the price. To meet the optimal export margin, Condition

20It’s possible to have pe + tb ≤ ϕ in which case Home’s extraction sector shuts down.
21Markusen (1975) obtains the same result, refering to it as a production tax rather

than an extraction tax as we do. His taxes are ad valorem while ours are specific.
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6, Home must subsidize all of these goods in an amount equal to the losses
producers would otherwise incur:

sxj = τaj(pe + tb)
1−α − a∗jp1−α

e =

(
τ
aj
a∗j

(
pe + tb
pe

)1−α

− 1

)
p∗j .

For goods j ∈ [0, j0), Home has stronger comparative advantage relative to
Foreign. Exporters would normally sell at their cost rather than p∗j(pe) as
required. To induce these exporters to sell at p∗j(pe), (Condition 7), Home
imposes a per-unit tax at a rate of txj = −sxj .

4.2.2 Cost

Integrating over all the goods that Home exports, the tax revenue net of the
subsidy turns out to be Home’s surplus from exporting, which first appeared
as (40):

τ

∫ j0

0

txjxj(pe)dj − τ
∫ j̄x

j0

sxjxj(pe)dj

= η∗
∫ j̄x

0

(
1− τ aj

a∗j

(
pe + tb
pe

)1−α
)(

p∗j
)1−σ∗

dj

= V FH
g − (pe + tb)

CFH
e

1− α
= Πg. (42)

4.2.3 Crosshauling

The subsidies for exports create the possibility for crosshauling if iceberg
costs are sufficiently low. To see why, note that if tb > 0 (which we discuss
below),

(pe + tb)
1−α < p1−α

e + (1− α) p−αe tb.

The right-hand side is the first-order expansion of the left-hand side around
tb = 0. Rearranging, multiplying both sides by λe, and using λe = pe + tb,(

pe+tb
pe

)1−α

1 + (1− α) tb
pe

< 1.
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If iceberg costs are close enough to 1, this inequality will continue to hold
even if the left-hand side is multiplied by the product of the iceberg costs,
ττ ∗. In this case:

F (j̄x) <
1

τ ∗
= F (j̄m).

Since F is monotonically decreasing, it follows that j̄m < j̄x. Under these
conditions of low trade costs there are goods that Home simultaneously im-
ports and exports. The optimal policy can imply crosshauling.

The economic rationale for crosshauling is that Home controls energy
intensity not only for all production in Home, but also for production in
Foreign that Home imports. In contrast, goods produced in Foreign, for
consumption there, escape Home’s climate policy.

Increased trade gives Home more control over the use of energy, helping
it to lower global emissions. In particular, if trade costs are low enough,
Home is willing to supply a range of goods to Foreign at a price below the
shadow price of those goods to Home consumers, which is the rationale for
the subsidy sxj .

To illustrate, consider a good j for which aj = a∗j = a, and assume there
are no trade costs at all. With tb = 0, Home would be indifferent between
exporting this good or having Foreign produce it for itself. But, with tb > 0
global energy use is reduced if the good is produced in Home and exported
to Foreign. The energy requirement is a (1− α) (pe + tb)

−α which is less than
if Foreign produced for itself, with energy requirement a (1− α) p−αe per unit
produced. On the other hand, Home is indifferent between importing this
good or producing it for itself. In either case both the cost of production and
the energy content are the same because Home controls the energy content
of its imports.

Trade costs mute this effect. With high enough trade costs, F (j̄x) >
F (j̄m) . The inherent inefficiency of crosshauling overcomes its advantage in
reducing global emissions.

4.3 Optimal Border Adjustment

The final component of the tax system is the level of the border adjustment.
We can employ equation (39) for that purpose, substituting in tb = λ∗e, and
rearranging to get:

tb =
Q∗e − CFF

e

∂ (Q∗e − CFF
e ) /∂pe

+ ϕ
∂Q∗e/∂pe

∂ (Q∗e − CFF
e ) /∂pe

− ∂Πg/∂pe
∂ (Q∗e − CFF

e ) /∂pe
, (43)
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The first term captures terms-of-trade manipulation, the second captures
Home’s response to shifts in where extraction occurs and the third captures
the net cost of Home’s export subsidy.

This formula (43) is a generalization of the result in Markusen (1975).22

We will consider the three terms on the right hand side in turn. It is conve-
nient to first express it in terms of elasticities, as:

tb =
pe
(
Q∗e − CFF

e

)
ε∗SQ

∗
e + ε∗DC

FF
e

+ ϕ
ε∗SQ

∗
e

ε∗SQ
∗
e + ε∗DC

FF
e

−
−(1− ε∗D)V FH

g + σ∗CFH
e

ε∗SQ
∗
e + ε∗DC

FF
e

.

Note that the denominator is always positive.

4.3.1 No Global Externality or Trade in Goods

With no global externality we have ϕ = te = 0 and with infinite iceberg costs
the last term vanishes. Only the first term in (43) remains. Furthermore,
with no trade in goods, the numerator becomes Foreign’s net exports of
energy, and the denominator is its derivative:

tb =
X∗e

∂X∗e/∂pe
=

peX
∗
e

ε∗SQ
∗
e + ε∗DC

FF
e

.

Equation (43) reduces to the classic inverse elasticity formula for the optimal
trade tax.

Suppose the numerator is positive so that Home is a net importer of
energy. The optimal policy has Home impose a positive border adjustment
tb > 0. The tax on energy imports, lowers the world price of energy pe,
improving Home’s terms of trade.

If the numerator is negative so that Home is a net exporter of energy,
Home will tax exports with tb < 0. Doing so raises the world energy price,
raises demand for energy in Home (which is not subject to the tax), and
improves Home’s terms of trade. With no global externality there is no
presumption that the border adjustment is positive.

22He refers to it as an optimal trade tax as opposed to a border adjustment. Without
trade in differentiated goods, Markusen’s formula doesn’t have the last term.
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4.3.2 Global Externality but No Trade in Goods

Now consider marginal damages from the global externality of ϕ > 0. The
first two terms in (43) remain:

tb =
X∗e

∂X∗e/∂pe
+ ϕ

∂Q∗e/∂pe
∂X∗e/∂pe

=
peX

∗
e

ε∗SQ
∗
e + ε∗DC

FF
e

+ ϕ
ε∗SQ

∗
e

ε∗SQ
∗
e + ε∗DC

FF
e

.

We focus on the second, having discussed above how the trade tax can be
used to improve Home’s terms of trade. The second term will determine how
the optimal border adjustment depends on the Pigouvian extraction tax of
te, set equal to marginal damages.

This second term, which multiplies the cost of carbon ϕ, is bounded
between zero and one:

0 ≤ ∂Q∗e/∂pe
∂X∗e/∂pe

=
ε∗SQ

∗
e

ε∗SQ
∗
e + ε∗DC

FF
e

< 1.

Thus, the externality on its own (treating X∗e = 0) will lead Home to impose
a partial border adjustment in that the rate that is lower than the underlying
extraction tax:

0 ≤ tb = te
ε∗SQ

∗
e

ε∗SQ
∗
e + ε∗DC

FF
e

< te.

The numerator reflects what might be thought of as extraction leakage.
Home’s tax on extraction increases pe. In response, Foreign will extract more,
as reflected in ε∗SQ

∗
e, causing harm to Home of ϕε∗SQ

∗
e. Increasing tb moderates

this effect because it lowers pe: a higher tb gives a higher net-of-tax price to
Home’s exporters (so expands global energy supply) and makes the use of
energy more costly (so lowers global energy demand).

The denominator is the sum of extraction leakage, as just discussed, and
demand-side effects. As we increase tb, the price of energy goes down, result-
ing in an increase in Foreign consumption of energy: ε∗DC

FF
e . (Note that the

demand side effect only includes CFF
e because CFH

e , CHF
e , and CHH

e are all
controlled through Home’s policy.) The border adjustment has to balance
these effects.

To illustrate, if extraction in Foreign is very responsive to the price of
energy while demand is inelastic, Home’s optimal border adjustment will
approach the level of the Pigouvian extraction tax. The reason is that a
higher border adjustment lowers the world energy price, reducing Foreign’s
extraction of energy, while in this case not inducing much extra demand in
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Foreign. On the other hand, if Foreign extraction is quite inelastic while
demand is elastic, Home’s border adjustment will approach 0. The reason
is that a lower border adjustment raises the world price of energy, reducing
Foreign demand, while in this case not inducing much extra extraction in
Foreign.

4.3.3 General Case

Allowing for trade in goods means that we need to take account of all three
terms in (43), the last of which captures Home’s concern with its surplus in
exporting goods. Furthermore, the first two terms no longer depend only on
Foreign’s net energy exports, but on its energy extraction less the energy it
uses in supplying domestic goods consumption.

The third term in (43) reflects Home’s market power in exporting goods
together with its use of goods exports to broaden the scope of its carbon
policy. For example, if ∂Πg/∂pe > 0, Home’s surplus from the export market
goes up with a higher energy price, so it lowers tb.

4.4 Recap

Let’s summarize what we’ve achieved by interpreting the optimal policy in
terms of this particular set of taxes and subsidies. Home’s optimal policy
will be an extraction tax te = ϕ combined with a border adjustment tb on
energy trade, including the energy content of Home’s imports of goods. The
border adjustment leaves goods imports unchanged from BAU. The border
adjustment is incomplete because Home’s energy taxes are not removed on
exports of goods. Rather, Home imposes a set of subsidies and taxes per unit
exported, without regard to the energy content. Exports are subsidized for
goods in which Home’s comparative advantage is weak and taxed for goods in
which Home’s comparative advantage is strong. The subsidy can potentially
be large enough that Home exports and imports the same good. The next
section proposes a strategy for quantitative evaluation.

5 Quantitative Illustration

We now turn to the quantitative implications of the optimal unilateral pol-
icy. We pursue a strategy, based on Dekle, Eaton, and Kortum (2007), in
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which we calibrate the BAU competitive equilibrium to data on global car-
bon flows. We then compute the optimal unilateral policy relative to this
baseline. Doing so greatly reduces the number of parameters we need to
choose.

To proceed we first need to specify the comparative advantage curve F (j)
and the energy fields, G(a) and G∗(a). We then calibrate the baseline BAU
competitive equilibrium to data on energy extraction and global carbon flows.
From this base, we compute the taxes and subsidies that would shift the
model economy to the outcomes dictated by the optimal unilateral policy.
We also compare the BAU and optimal policies to more conventional policies
such as pure extraction, production, and consumption taxes. We start by
providing some of the details of the simulation (with most of the derivations
relegated to the Appendix), and then present our key results.

5.1 Setup

5.1.1 Functional Forms.

To solve the model numerically we employ several convenient functional
forms.

Comparative Advantage We parameterize the efficiency of the goods
sector in each country by:

aj =

(
j

A

)1/θ

, (44)

a∗j =

(
1− j
A∗

)1/θ

, (45)

where A and A∗ determine absolute advantage in either country, and θ de-
termines (inversely) the scope of comparative advantage. Taking the ratio,
we obtain a functional form for Home’s comparative advantage curve:

F (j) =
a∗j
aj

=

(
A

A∗
1− j
j

)1/θ

,

where F (j) is continuous and strictly decreasing as specified in (5).
This functional form allows us to easily solve for the import and export

thresholds in the BAU. In the BAU baseline a country’s average spending per
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good doesn’t depend on the source of the good. Since the share of energy in
the cost of any good is the same, the baseline value of the import threshold
is:

j̄m =
CHH
e

Ce
=

A

A+ (τ ∗)−θ A∗
,

while the baseline value of the export threshold is:

j̄x =
CFH
e

C∗e
=

τ−θA

τ−θA+ A∗
.

Energy Supply We parameterize the upper end of the distribution of costs
across energy fields, for all a ≥ a, as:

G(a) = GaεS , (46)

G∗(a) = G∗aε
∗
S , (47)

where G and G∗ are parameters governing the quantity of energy in each
region while εS and ε∗S are the constant elasticities of supply at the upper
ends of each distribution.23

Normalizing the baseline energy price to 1 in the BAU competitive equi-
librium, we have Qe = G and Q∗e = G∗.

5.1.2 Calibration of BAU Scenario.

We calibrate the BAU scenario to carbon accounting data for 2015 from the
Trade Embodied in CO2 (TECO2) database made available by the OECD.24

Units are gigatonnes of CO2. Energy extraction data for 2015 is from the
International Energy Agency World Energy Statistics Database. We use
emissions factors to convert units of energy to units of CO2.

For most of our results, members of the OECD form the taxing region,
Home, and the non-OECD countries are Foreign. Table 3 provides our cali-
bration.

Note that by this CO2 metric the OECD represents about one-third of
the world. It represents a smaller share of extraction and a larger share of
implicit consumption, nearly twenty percent of which is imported.

23The distributions are unrestricted for a < a. The threshold a, however, must be below
the after-tax energy price arising under the optimal unilateral policy.

24The values that we take from TECO2 are broadly consistent with those available from
the Global Carbon Project.
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Table 3: Baseline Calibration for Home as the OECD

Home Foreign Total

Home CHH
e = 11.3 CHF

e = 2.5 Ce = 13.8

Foreign CFH
e = 0.9 CFF

e = 17.6 C∗e = 18.5

Total Ie = 12.2 I∗e = 20.1 IWe = CW
e = 32.3

Extraction Qe = 8.6 Q∗e =23.7 QW
e = 32.3

Table 4: Parameter Values

α εS ε∗S σ σ∗ θ

0.85 0.5 0.5 1 1 4

In addition to the carbon accounting data, we need values for six param-
eters: θ, εS, ε∗S, σ, σ∗, and α, the last three of which determine the demand
elasticities, εD and ε∗D.25 These parameters remain fixed as we compute the
optimal policy. We determine values for them using a variety of sources.26

Table 4 lists our central values for these parameters. (In our simulations, we
test for sensitivity to parameter choice, so in some cases, we allow the pa-
rameters to vary.) Appendix E provides details on our calibration procedure.

25The eight other parameters: A, A∗, G, G∗, η, η∗, τ , and τ∗ are all subsumed by
calibrating to the carbon accounts.

26We choose α = 0.85 based on the ratio of the value of energy used in production to
value added. (In our model that ratio is (1 − α)/α.) Values for εS and ε∗S are estimated
using data in Asker, Collard-Wexler, and De Loecker (2018), by fitting the slope of G(a)
and G∗(a) among oil fields with costs above the median. Appendix E provides more
details. We take θ = 4 based on the preferred estimate in Simonovska and Waugh (2014).
The values for σ and σ∗ are interim.
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5.1.3 From BAU to Optimal

For any endogenous variable x we denote the BAU baseline value by x and
the value under the optimal unilateral policy by x(pe, tb). In the baseline
tb = 0, te = 0, and the energy price is 1. The magnitude of the tax rates
under the optimal policy can be interpreted in the ad-valorem sense, relative
to the initial energy price. The optimal unilateral policy requires that we set
the extraction tax to te = ϕ.

For example, under the optimal unilateral policy, the import threshold
remains fixed while the export threshold changes to:

j̄x(pe, tb) =
τ−θA (pe + (1− α) tb)

θ

τ−θA (pe + (1− α) tb)
θ + A∗

(
pαe (pe + tb)

1−α)θ
=

(pe + (1− α) tb)
θ CFH

e

(pe + (1− α) tb)
θ CFH

e +
(
pαe (pe + tb)

1−α)θ CFF
e

.

The second line shows what we achieve by calibrating to the carbon accounts.
Energy extraction, for pe + tb − ϕ ≥ a, is:

Qe(pe, tb) = (pe + tb − ϕ)εS Qe.

Using similar reasoning we can express the values under the optimal uni-
lateral policy for each component of energy demand and for the value of
goods trade. See Appendix D for details.

We express the change in welfare relative to Home’s baseline spending on
goods:

W =
U(pe, tb)− U

Vg
.

5.1.4 Constrained Optimal Policies

To understand the optimal policy, it is useful to compare it to more conven-
tional policies. We will consider four conventional policies, a pure extraction
tax, a pure production tax, a pure consumption tax, and a hybrid consisting
of a mix of extraction and consumption taxes. In each case, we find Home’s
optimal policy assuming it is constrained to a particular choice (e.g., we find
Home’s optimal extraction tax conditional on Home being constrained to
choosing only an extraction tax).
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Pure Extraction Tax If Home can only choose an extraction tax, it can
only choose Qe, Xe, and pe, with all other outcomes determined in a decen-
tralized equilibrium. We solve the Lagrangian for these values and reinterpret
the outcome as a decentralized equilibrium. The optimal extraction tax in
this case is:

te = ϕ
εDCe + ε∗DC

∗
e

ε∗SQ
∗
e + εDCe + ε∗DC

∗
e

− pe (Q∗e − C∗e )

ε∗SQ
∗
e + εDCe + ε∗DC

∗
e

. (48)

Ignoring the second term, this rate is below the value of te = ϕ in the optimal
unilateral policy. How much below turns on the value of ε∗SQ

∗
e. If Foreign

is a major energy extractor and if its price elasticity of supply is high, then
Home will want to choose a lower extraction tax.

Turning to the second term, note that the numerator is the value of
Foreign’s net exports of energy based on its implicit consumption of embodied
energy. Its use of energy in production doesn’t matter here. If Foreign is an
exporter in this sense then Home wants a lower extraction tax to improve its
terms of trade. For the same reason, it will choose a higher extraction tax if
Foreign is a large net importer in this sense.

Pure Consumption Tax For a pure consumption tax, we follow the same
procedure except now the planner is constrained to choose only:

{
zyj
}

,
{
zmj
}

,
{yj}, {mj}, Xe, and pe, with all other outcomes determined as in a decen-
tralized competitive equilibrium. Using the same procedure, the optimal
consumption tax is

tc = ϕ
εSQe + ε∗SQ

∗
e

εSQe + ε∗SQ
∗
e + ε∗DC

∗
e

+
pe (Q∗e − C∗e )

εSQe + ε∗SQ
∗
e + ε∗DC

∗
e

. (49)

We can equivalently impose a consumption tax by imposing an extraction
tax at that rate and a full border adjustment, te = tb, on all imports and
exports of energy and goods. Unlike the optimal unilateral policy, since the
border adjustment applies to exports of goods, these goods bear no tax.

Optimal Hybrid In our hybrid tax, we allow Home to combine extraction
taxes and consumption taxes. Solving for the optimal mix is the same as for
a pure consumption tax, replacing the competitively determined Qe with the
planner’s choice. The optimal tax in this case is:

te = ϕ
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together with a border tax of:

tb = ϕ
ε∗SQ

∗
e

ε∗SQ
∗
e + ε∗DC

∗
e

+
pe (Q∗e − C∗e )

ε∗SQ
∗
e + ε∗DC

∗
e

. (50)

Since its a partial border adjustment, unlike the pure consumption tax, the
net-of-tax price received by Home’s energy extractors is pe + tb − ϕ.

Pure Production Tax and Hybrids We find the optimal pure produc-
tion tax and hybrids involving production taxes numerically.

5.1.5 Solving for Equilibrium Values

The equilibrium energy price pe clears the market:

CHH
e (pe, tb) + CFH

e (pe, tb) + CFF
e (pe, tb) + CHF

e (pe, tb) = Qe(pe, tb) +Q∗e(pe),
(51)

while the optimal border adjustment tb satisfies:

tb =
ϕε∗SQ

∗
e(pe)− peCFF

e (pe, tb)− (pe + tb)σ
∗CFH

e (pe, tb)− (1− ε∗D)V FH
g (pe, tb)

ε∗SQ
∗
e(pe) + ε∗DC

FF
e (pe, tb)

.

(52)
We iterate between (51) and (52) until we find a pair (pe, tb) that satisfies
both. We can then evaluate any outcome of the model at this pair to explore
the optimal unilateral policy. We use a similar procedure for the optimal
constrained policies.

Our script is in Matlab, and we use the solving procedure described above
rather than a built-in solver. Our code is available at https://github.com/
dweisbach/Optimal-Unilateral-Carbon-Policy.

5.2 Simulations

5.2.1 Optimal Policy

We begin with a simulation of the optimal policy in the OECD (Figure 1).
We illustrate the policy for the marginal harm ranging from ϕ = 0 to ϕ = 2.
We show the emissions reductions, the change in welfare, the change in the
price of energy, and the tax rates under the optimal policy.

Global emissions go down by almost 1/3 with ϕ = 2. This is a substantial
reduction given that emissions in the OECD are only about 1/3 of global
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Figure 1: Optimal Policy in the OECD

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 

Marginal Damages

 

24

25

26

27

28

29

30

31

32

33

W
o

rl
d

 E
m

is
s
io

n
s
 (

g
ig

a
to

n
n

e
s
 o

f 
C

O
2

)

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 

Marginal Damages

 

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

E
n

e
rg

y
 P

ri
c
e

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 

Marginal Damages

 

0

2

4

6

8

10

W
e

lf
a

re
 C

h
a

n
g

e
 (

%
 o

f 
in

it
ia

l 
g

o
o

d
s
 c

o
n

s
u

m
p

ti
o

n
)

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 

Marginal Damages

 

0

0.5

1

1.5

2

T
a

x
 R

a
te

s

Extraction Tax

Border Adjustment

emissions. Note that this does not mean that the OECD reduces its emissions
to near zero. As we will discuss, some of the reductions arise outside the
OECD because of how the optimal policy expands the carbon price to trading
partners.

The extraction tax rate (bottom right) is always equal to ϕ. Recalling
that the tax rate can be interpreted in the ad-valorem sense, the optimal tax
rates range from 0 to up to twice the initial price of energy.

For values of ϕ close to zero, the border adjustment is still positive and ac-
tually exceeds the extraction tax rate. This policy arises because the OECD
has a deficit in energy (Qe = 8.6 and Ie = 12.2). The border adjustment hits
energy imports, raising the price faced by energy users in the OECD, stimu-
lating energy extraction there, and lowering the price of energy on the world
market. The price of energy (pre-border adjustment) falls from 1 to 0.95, an
improvement in the OECD’s terms of trade. For the same reason, welfare
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goes up even when there is no need for a climate policy because ϕ = 0.
As ϕ and the extraction tax go up, the two lines cross. When ϕ = 2

the border adjustment is just half the value of ϕ. Energy extractors are thus
bearing a large share of the carbon tax. The OECD’s policy, however, still
pushes the energy price below 1 until ϕ and the extraction tax approach 2.
At this extreme, the net price received by energy extractors in the OECD,
pe + tb − te, approaches zero.

To further examine the features of the optimal policy, we present four
simulations.

5.2.2 Coalition Size

We start by examining a key factor in global climate negotiations: which
countries are in the taxing coalition. As noted, one of the major criticisms
of the Kyoto Protocol was that it left major emitters out of the coalition re-
quired to adopt carbon policies. The Paris Agreement was, in part, designed
to address this criticism.

To examine the effects of coalition size, the top left panel of Figure 2 shows
the effects on global emissions of optimal unilateral policies assuming that
only the European Union (EU), the United States, or the OECD imposed
a carbon policy. It compares those three coalitions with the optimal global
policy (which reduces to an extraction tax equal to marginal harm).27 The
calibration for the EU is given in Table 5 and for the US in Table 6.All other
parameters remain the same across each case.

In each case, the carbon policy is set optimally given the taxing coalition
and the marginal harm. Note that because the value of ϕ scales with the
coalition’s population, it is misleading to fix ϕ in comparing results across
the different cases. If, for example, ϕ = 1 for half the world, it would need
to be in the range of 2 for the whole world to represent equal harm per unit
of energy. In addition, because Figure 2 shows the optimal policy for each
coalition, the tax and subsidy rates for the different coalitions will not, in
general, be the same for any given level of marginal harm.

The global policy achieves much larger emissions reductions than the
policy in any of the narrower coalitions (even without adjusting for a larger
ϕ appropriate for the whole world). With ϕ = 2, the global tax reduces

27We treat the global case as the limit of our two-region model as Foreign becomes
infinitesimally small. The EU is treated as having 28 members as it had, prior to Brexit,
in 2015.
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Figure 2: Choice of Pricing Coalition
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emissions by 17.6 Gt CO2, compared to about an 8.7 Gt CO2 reduction if
the carbon policy only applied in the OECD countries. A carbon policy only
in the EU is largely ineffective, reducing emissions by only 1.3 Gt CO2.

These effects are driven at least in part by the size of the coalition, with
the size of the coalition measured by the size of the tax base, not by GDP.
The GDP of the EU is roughly the same as the GDP of the United States
(and its population is larger), but a tax in the United States is much more
effective at reducing global emissions because the tax base in the United
States is much larger. As can be seen by comparing Tables 5 and 6, the
United States extracts much more than the EU (Qe of 4.5 versus 1.0),uses
more energy to produce goods ((Ie of 5.0 versus 3.5) and consumes more
energy (Ce of 5.8 versus 4.0).

An additional reason that the size of the coalition might matter is that
the larger the coalition, the smaller the possible leakage. At the limit, with
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Table 5: Calibration for Home as the European Union

Home Foreign Total

Home CHH
e = 3.0 CHF

e = 1.0 Ce = 4.0

Foreign CFH
e = 0.5 CFF

e = 27.8 C∗e = 28.3

Total Ie = 3.5 I∗e = 28.8 IWe = CW
e = 32.3

Extraction Qe = 1.0 Q∗e =31.3 QW
e = 32.3

a global coalition, there can be no leakage. The other three panels in Figure
2 explore this issue, showing the change in Q∗e, I

∗
e , and C∗e for each of the

different coalitions. For the most part, Foreign extraction goes down, not up,
reflecting what might be thought of as “negative” extraction leakage. (The
kinks in the curves for the EU and the US reflect the point at which the pol-
icy pushes Qe to 0.) The change in I∗e is often positive, indicating production
leakage. Note, however, that the change in I∗e for the EU tax, while posi-
tive is less than half a gigaton, which means that production leakage is not
the explanation for the poor effectiveness of the EU-only policy.28 Foreign
production goes down for the US and OECD policies for high values of ϕ,
once again reflecting negative leakage, this time with respect to production.
Finally, C∗e goes up, except for the US-only tax for values of ϕ above about
1 and for the OECD tax for values of ϕ above about 1.6.

5.2.3 Extraction and Consumption Taxes

Figure 3 compares four different carbon policies in the OECD: the optimal
policy, a pure extraction tax (48), a pure consumption tax (49), and the
optimal mix of extraction and consumption taxes (50). The extraction tax

28It may be possible to argue that the poor performance of the EU reflects the force of
leakage, even though the resulting leakage is small, since the optimal policy tries to avoid
leakage and in doing so sacrifices some of its effect on global emissions. We find it more
direct to simply point out that the optimal policy tries to maximize welfare in the taxing
region.
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Table 6: Calibration for Home as the United States

Home Foreign Total

Home CHH
e = 4.6 CHF

e = 1.2 Ce = 5.8

Foreign CFH
e = 0.4 CFF

e = 26.1 C∗e = 26.5

Total Ie = 5.0 I∗e = 27.3 IWe = CW
e = 32.3

Extraction Qe = 4.5 Q∗e =27.8 QW
e = 32.3

and the consumption taxes represent the two extreme cases: all the way
upstream and all the way downstream. Figure 2 shows the results for two
values of the supply elasticity in Foreign, our base estimate of ε∗S = 0.5 and
an alternative, higher value of ε∗S = 1.

As can be seen, the pure extraction and pure consumption taxes do poorly
compared to the optimal tax. They achieve only about half the emissions
reductions for any given value of marginal harm. Since they are derived by
putting constraints on what the planner can choose, the pure taxes do not
perform as well at improving Home’s welfare as the optimal tax.

Notably, the OECD would choose to impose a significant carbon policy
even when the rest of the world does not. Emissions in the OECD are 12.2Gt
CO2, about a third of global emissions (as reflected in the value of Ie in Table
(3)). For ϕ = 2, the optimal carbon policy reduces global emissions by 8.7
Gt CO2, and as Figure 2 shows, only about 1.5 Gt of these reductions are
from I∗e . The OECD would choose similar, though more modest, policies
if it is constrained to choosing between a pure extraction or consumption
taxes. That the OECD would choose these policies on its own may have
important implications for the design of climate negotiations: even if one or
more countries hold out, it makes sense for the remaining countries to impose
a substantial carbon price.

The choice between pure extraction and consumption taxes depends on
Foreign’s supply elasticity. For low values, an extraction tax reduces emis-
sions more effectively than a consumption tax does (though they perform
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Figure 3: Extraction and Consumption Taxes
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about the same with respect to Home’s welfare). With a high elasticity, a
consumption tax does better. The reason that the value of ε∗S changes how
the taxes perform is that the two taxes have different effects on pe. Extrac-
tion taxes increase pe while consumption taxes decrease it. When ε∗S is high,
increasing pe generates a larger response in Foreign, which means that the
extraction leakage generated by an extraction tax is more of a problem when
ε∗S is high. Conversely, because consumption taxes lower pe, they do better
when ε∗S is high.

The hybrid of extraction and consumption taxes does much better than
either tax alone. While all three are affected by the value of ε∗S, the hybrid
appears less sensitive to ε∗S than either of the pure taxes. While the hybrid
tax performs almost as well as the optimal tax in reducing emissions, the
cost is higher in the sense that for a given level of emissions reductions, the
welfare gains are smaller with the hybrid tax than with the optimal tax. In
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part this reflects the aggressive pricing of goods exports by Home under the
optimal policy.

5.2.4 Production and Consumption Taxes

Actual carbon prices are typically imposed on production. In addition, most
studies of unilateral carbon taxes assume that the tax is imposed on pro-
duction and examine the effects of adding border adjustments. Figure 4
analyzes this set of trade-offs, comparing those taxes to the optimal tax, and
an optimally-set hybrid of production and consumption taxes (which we can
think of as partial border adjustments). As with Figure 3, Figure 4 shows
those results with ε∗S = 0.5 and ε∗S = 1. (Note that the optimal tax and the
consumption tax in Figure 4 are the same as in Figure 3.)

Figure 4: Production and Consumption Taxes
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Production taxes and consumption taxes perform about the same in this
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simulation, with consumption taxes having a slight advantage which grows
when ε∗S = 1. These results suggest that adding border adjustments to
production taxes does not significantly add value, particularly when ε∗S is
low. If, as Kortum and Weisbach (2017) suggest, border adjustments are
difficult to administer, the gains may not be worth the administrative costs.

The hybrid between production and consumption taxes does not notice-
ably improve the outcomes. Instead, the gains from a hybrid tax appear to
come from adding an extraction tax to the mix. This is likely because extrac-
tion taxes operate differently on pe than either production or consumption
taxes. Combining production and consumption taxes does not allow the tax-
ing region to moderate the effects of the tax on pe, and, therefore, does not
generate substantial gains.

5.2.5 Location

As we noted at the start, a central concern in the design of unilateral carbon
prices has been the effects of unilateral taxes on the location of activities,
such as causing manufacturing to move abroad. Figure 5 examines this issue,
showing how taxes affect location (as measured by activity in the non-taxing
region) of extraction, Q∗e, energy intermediates in production, I∗e , and implicit
consumption of energy, C∗e . It illustrates these effects for the same taxes used
in Figure 3, the optimal tax, an extraction tax, a consumption tax, and a
hybrid of those two, with ε∗S = 0.5 (our base calibration). We focus on the
effects in Foreign and show, for reference, the change in global emissions.
Because we are showing changes from the baseline in Q∗e, I

∗
e , and C∗e , the

units are all carbon dioxide and can be compared.
As expected, due to their differing effects on pe, the extraction and con-

sumption taxes have diverging effects on Foreign extraction. Extraction taxes
increase Foreign extraction while consumption taxes decrease Foreign extrac-
tion. Similarly, their effects on production and consumption go in opposite
directions. Because they raise pe (for all producers and consumers), extrac-
tion taxes reduce Foreign production and consumption. Because they lower
pe (for all producers and consumers), consumption taxes increase Foreign
production and consumption. The effects get larger as marginal harm gets
larger.

The hybrid tax and the optimal tax both resemble an extraction tax in
that Foreign extraction goes up and Foreign production and consumption
go down as marginal harm gets larger. The effects, however, are muted as
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compared to a pure extraction tax. That is, it appears to be desirable to use
features of the different taxes to reduce location shifts to some extent.

Figure 5: Effects on Location
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These simulations are preliminary in that our model abstracts from many
features of the economy. Nevertheless, they are suggestive of central ideas
in tax system design. The key lessons include: (i) it is important to include
countries with a large tax base in the taxing coalition; (ii) even if foreign
governments do not cooperate, carbon pricing coalitions may want to enact
policies that generate substantial reductions; (iii) adding border adjustments
to a production tax generates only modest gains, and (iv) combining taxes
with differing effects on the price of energy is likely desirable.
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6 Renewable Energy

Up to this point we have assumed that all energy is from fossil fuels. We now
consider how the optimal policy changes in the presence renewable energy,
which we take to be carbon free and a perfect substitute for users.

With renewables, Home’s supply of energy is now the sum of fossil fuels,
Qf , and renewables, Qr:

Qe = Qf +Qr,

Endowments of fossil fuels are still summarized by G(a) while the quantity
of renewable energy that can be generated at a cost below a in Home is R(a).
Foreign is endowed with G∗(a) and R∗(a). Foreign’s energy supply curve is
thus:

Q∗e = G∗(pe) +R∗(pe),

while their extraction of fossil fuels is:

Q∗f = G∗(pe).

Global emissions are:
QW
f = Qf +Q∗f .

We assume that renewable energy is nontradable, so net exports of energy
are the same as net exports of fossil fuel: Xe = Xf . We also assume that
Home continues to use fossil fuels, thus ruling out a situation in which Home
chooses Qf = 0 (if marginal damages are very high) while also importing no
energy, Xe = 0 (if Home’s renewable sector is very efficient).

A final assumption, which we explored in Kortum and Weisbach (2017),
is that Home cannot influence the size of the renewables sector in Foreign
through its import policy.29 Home may find it impossible to verify the type
of energy used in Foreign to produce goods. If it cannot verify the source of
energy used, it cannot condition imports on the use of renewables. Moreover,
even if Home can verify the type of energy used in production, if Foreign’s
renewable sector is sufficiently large, it could simply use renewables for its
exports to Home and fossil fuels for its domestically consumed goods. In
this case, a requirement that Foreign’s exports to Home be produced with

29Home can influence Foreign’s use of renewables via pe. The share of renewables in
Foreign’s energy mix, however, could go either up or down with pe depending on the
shape of G∗(a) and R∗(a) in the relevant range around a = pe.
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renewable energy would be futile because it would not change Foreign’s, or
global, emissions.

Under these assumptions introducing renewables into the planner’s opti-
mization turns out to be rather simple. Given the price and shadow values
of energy (pe, λe, and λ∗e) the inner problem, which concerns the production
and allocation of an individual good j, is unchanged. The outer problem is
the same as in our base case (29), except that it must account separately for
labor used in the fossil fuels and renewables sectors.

This difference generates only two changes to the first order conditions
and the resulting taxes. First, while Home’s optimal supply curve for fossil
fuels remains the same

Qf = G(λe − ϕ),

the first order condition for Qr does not include the marginal damages pa-
rameter because renewables do not cause harm:

Qr = R(λe).

As a result, while the extraction tax te = ϕ continues to apply to Home’s
fossil-fuel extractors, producers of renewable energy are not taxed at all.
They receive the domestic energy price in Home of pe+ tb for the energy that
they produce. This implicit subsidy to renewables is hidden from users of
energy who pay pe+tb for either type of energy. Similarly, the energy intensity
of goods producers is computed as before, without regard to which type of
energy they use. We break the connection between carbon and energy.

Second, in the expression for the optimal border adjustment, the term
reflecting marginal harm from Foreign extraction applies only to Q∗f because
Foreign’s use of renewables does not generate harm in Home:

tb =
Q∗e − CFF

e

∂ (Q∗e − CFF
e ) /∂pe

+ ϕ
∂Q∗f/∂pe

∂ (Q∗e − CFF
e ) /∂pe

− ∂Πg/∂pe
∂ (Q∗e − CFF

e ) /∂pe
.

The interpretation of the border adjustment remains effectively the same as
for (43).

The global market-clearing condition for energy becomes:

CW
e = G(pe + tb − ϕ) +R (pe + tb) +G∗(pe) +R∗(pe).

The demand for energy (the left-hand side) remains unchanged by the addi-
tion of renewables, given the price of energy and the border adjustment.
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7 Conclusion

While the model in this paper is highly stylized, its simplicity yields analytical
insights into the features of an optimal unilateral carbon policy. The main
new finding is the extent to which international trade can be exploited to
broaden the reach of unilateral carbon policy.

To see whether such effects are of first-order importance, it is critical to
push the analysis in a more quantitative direction, extending it to multiple
countries and perhaps to multiple periods of time as well. For the first
extension, the multi-country model of Eaton and Kortum (2002) retains the
Ricardian structure of trade in goods used here while the model of Larch and
Wanner (2019) is a natural multi-country generalization of the energy sector.
On the second extension, the dynamic analysis in Golosov, Hassler, Krusell,
and Tsyvinski (2014) appears amenable to nesting within a multi-country
world.
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A Global Planner’s Problem

Consider a planner seeking to maximize global welfare:

UW = Cs + C∗s +
η1/σ

1− 1/σ

∫ 1

0

(
(yj +mj)

1−1/σ − 1
)
dj

+
(η∗)1/σ∗

1− 1/σ∗

∫ 1

0

((
y∗j + xj

)1−1/σ∗
− 1
)
dj − ϕW (Qe +Q∗e) .

Here
ϕW = ϕ+ ϕ∗

is marginal global damages from global emissions.30 The planner is con-
strained by the endowments of labor in each country as well as by a global
energy constraint:

Ls + Le + Lg ≤ L,

30Since welfare is linear in consumption of services, transfers between countries (as long
as both countries still consume services) do not alter global welfare. This indeterminacy
has no implications for our objective of determining optimal global energy extraction as
well as production and consumption of manufactured goods in each country.
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L∗s + L∗e + L∗g ≤ L∗,

and
Ce + C∗e ≤ Qe +Q∗e.

Since Cs + C∗s = Ls + L∗s we can substitute the two labor constraints
into the objective while applying a Lagrange multiplier λWe to the global
energy constraint. The resulting Lagrangian, after dropping L, L∗, and other
constants in the objective, is:

L =
η1/σ

1− 1/σ

∫ 1

0

(yj +mj)
1−1/σ dj +

(η∗)1/σ∗

1− 1/σ∗

∫ 1

0

(
y∗j + xj

)1−1/σ∗
dj − ϕW (Qe +Q∗e)

− Le(Qe)− L∗e(Q∗e)

−
∫ 1

0

(
lj(z

y
j )yj + τ lj(z

x
j )xj + l∗j (z

∗
j )yj + τ ∗l∗j (z

m
j )mj

)
dj

− λWe
(∫ 1

0

(
ej(z

y
j )yj + τej(z

x
j )xj + e∗j(z

∗
j )y
∗
j + τ ∗e∗j(z

m
j )mj

)
dj − (Qe +Q∗e)

)
,

where L∗e(Q
∗
e) is the Foreign analog of (23). The planner chooses Qe, Q

∗
e,

{yj}, {y∗j}, {xj}, {mj}, {zyj }, {z∗j }, {zxj }, and {zmj } to maximize L.

A.1 Solution

Following Costinot, Donaldson, Vogel, and Werning (2015), we first solve
the inner problem, involving conditions for an individual good given λWe . We
then turn to the outer problem, optimizing over Qe and Q∗e while solving for
λWe .

A.1.1 Inner Problem

Solving the inner problem consists of evaluating first order conditions with
respect to the variables that are specific to some good j: yj, y

∗
j , xj, mj, z

y
j ,

z∗j , z
x
j , and zmj . The Lagrangian for good j is:

Lj =
η1/σ

1− 1/σ
(yj +mj)

1−1/σ +
(η∗)1/σ∗

1− 1/σ∗
(
y∗j + xj

)1−1/σ∗

− νaj
(
yj
(
zyj
)α−1

+ τxj
(
zxj
)α−1

)
− νa∗j

(
y∗j
(
z∗j
)α−1

+ τ ∗mj

(
zmj
)α−1

)
− λWe

(
νaj

(
yj
(
zyj
)α

+ τxj
(
zxj
)α)

+ νa∗j
(
y∗j
(
z∗j
)α

+ τ ∗mj

(
zmj
)α))

.
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The first order conditions for energy intensities of production imply:

zyj = zxj = z∗j = zmj = z =
1− α
αλWe

.

The unit energy requirement in Home is thus:

ej(z) = (1− α)aj
(
λWe
)−α

,

while in Foreign:
e∗j(z) = (1− α)a∗j

(
λWe
)−α

.

The FOC for yj implies:

((yj +mj) /η)−1/σ ≤ aj
(
λWe
)1−α

,

with equality if yj > 0. The FOC for mj implies:

((yj +mj) /η)−1/σ ≤ a∗jτ
∗ (λWe )1−α

,

with equality if mj > 0. The good j̄m at which the FOC’s for yj and mj both
hold with equality satisfies:

F (j̄m) =
1

τ ∗
.

Thus, if j < j̄m:

yj = η
(
aj
(
λWe
)1−α

)−σ
and mj = 0 while for j > j̄m:

mj = η
(
a∗jτ

∗ (λWe )1−α
)−σ

and yj = 0.
The FOC for y∗j implies:((

y∗j + xj
)
/η∗
)−1/σ∗

≤ a∗j
(
λWe
)1−α

,

with equality if y∗j > 0. The FOC for xj implies:((
y∗j + xj

)
/η∗
)−1/σ∗

≤ ajτ
(
λWe
)1−α

,
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with equality if xj > 0. The good j̄x at which the FOC’s for y∗j and xj both
hold satisfies:

F (j̄x) = τ.

Since F is monotonically decreasing, it follows that j̄x < j̄m. For j < j̄x:

xj = η∗
(
ajτ

(
λWe
)1−α

)−σ∗

and y∗j = 0 while for j > j̄x:

y∗j = η∗
(
a∗j
(
λWe
)1−α

)−σ∗

and xj = 0.

A.1.2 Implications for Aggregates

Aggregating these results from the inner problem:

Ce(λ
W
e ) = (1− α) η

(∫ j̄m

0

a1−σ
j dj + (τ ∗)1−σ

∫ 1

j̄m

(
a∗j
)1−σ

dj

)(
λWe
)−εD ,

C∗e (λWe ) = (1− α)η∗

(
τ 1−σ∗

∫ j̄x

0

a1−σ∗

j dj +

∫ 1

j̄x

(
a∗j
)1−σ∗

dj

)(
λWe
)−ε∗D ,

Lg(λ
W
e ) = αη

(∫ j̄m

0

a1−σ
j dj

)(
λWe
)1−εD + αη∗

(∫ j̄x

0

(τaj)
1−σ dj

)(
λWe
)1−ε∗D ,

L∗g(λ
W
e ) = αη

(∫ 1

j̄m

(τ ∗a∗j)
1−σdj

)(
λWe
)1−εD +αη∗

(∫ 1

j̄x

(
a∗j
)1−σ

dj

)(
λWe
)1−ε∗D ,

Cg(λ
W
e ) = η

(∫ j̄m

0

a1−σ
j dj +

∫ 1

j̄m

(
a∗jτ

∗)1−σ
dj

)σ/(σ−1) (
λWe
)−(1−α)σ

,

and

C∗g (λWe ) = η∗

(∫ j̄x

0

(τaj)
1−σ dj +

∫ 1

j̄x

(
a∗j
)1−σ

dj

)σ∗/(σ∗−1) (
λWe
)−(1−α)σ∗

.

These six terms are fully determined by λWe .
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A.1.3 Outer Problem

We now turn to the optimality conditions for Qe and Q∗e while choosing λWe
to clear the global energy market. We can rewrite the Lagrangian in terms
of aggregate magnitudes as:

L =
η1/σ

1− 1/σ
C1−1/σ
g +

(η∗)1/σ∗

1− 1/σ∗
(
C∗g
)1−1/σ∗

− ϕW (Qe +Q∗e)

−
(
Le(Qe) + L∗e(Q

∗
e) + Lg + L∗g

)
− λWe ((Ce + C∗e )− (Qe +Q∗e)) .

The first order condition with respect to Home energy extraction implies:

Qe = G(λWe − ϕW ).

Likewise for Foreign energy extraction:

Q∗e = G∗(λWe − ϕW ).

The global energy constraint determines the Lagrange multiplier as the so-
lution to:

Ce(λ
W
e ) + C∗e (λWe ) = G

(
λWe − ϕ

)
+G∗

(
λWe − ϕ

)
.

A.2 Decentralized Global Optimum

We can interpret the solution in terms of a decentralized economy with a
price of energy:

pe = λWe .

The global externality can be solved with an extraction tax in both countries
equal to global damages:

te = t∗e = ϕW .

Thus, energy extractors in both countries receive pe − ϕW .

A.3 Competitive Equilibrium

In a competitive equilibrium agents ignore the global externality. All out-
comes other than global welfare are the same as if we simply set ϕW = 0 in
the decentralized global optimum above. We treat this case as our business-
as-usual baseline.
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B Home Planner’s Problem (Missing Steps)

Here we provide missing steps from Section 3 of the text, which derives the
unilaterally optimal policy. We focus on the inner problem.

The Lagrangian for good j, repeated here for convenience, is:

Lj =
η1/σ

1− 1/σ
(yj +mj)

1−1/σ

− νaj
(
yj
(
zyj
)α−1

+ τxj
(
zxj
)α−1

)
− νa∗jτ ∗

((
zmj
)α−1

+ pe
(
zmj
)α)

mj + pxjxj

− λeνaj
(
yj
(
zyj
)α

+ τxj
(
zxj
)α)

− λ∗eνa∗j
(
max

{
c∗j − xj, 0

}
(z∗)α + τ ∗mj

(
zmj
)α)

.

We want to maximize by choice of {yj}, {xj}, {mj}, {zyj }, {zxj }, {zmj }. We
consider the variables relevant to Home consumers first, then turn to those
relevant to Foreign consumers.

B.1 Goods for Home Consumers

The first order condition for yj is:

((yj +mj) /η)−1/σ ≤ νaj
(
zyj
)α−1

+ λeνaj
(
zyj
)α

= νaj
(
zyj
)α−1 (

1 + λez
y
j

)
.

Substituting in the optimal zyj = zy and applying (4) this condition reduces
to:

((yj +mj) /η)−1/σ ≤ ajλ
1−α
e , (53)

with equality if yj > 0.
The first order condition for mj is:

((yj +mj) /η)−1/σ ≤ ντ ∗a∗j
(
zmj
)α−1 (

1 + (pe + λ∗e) z
m
j

)
.

Substituting in the optimal zmj = zm this condition reduces to:

((yj +mj) /η)−1/σ ≤ τ ∗a∗j (pe + λ∗e)
1−α , (54)

with equality if mj > 0.

63



For good j = j̄m the right hand sides of (53) and (54) are equal:

aj̄mλ
1−α
e = τ ∗a∗j̄m (pe + λ∗e)

1−α ,

yielding, via (5) as in the text:

F (j̄m) =
1

τ ∗

(
λe

pe + λ∗e

)1−α

.

Since F is strictly decreasing, for j < j̄m we get (53) holding with equality
and (54) as a strict inequality. Thus mj = 0 with yj satisfying (53). For for
j > j̄m we get (54) holding with equality and (53)as a strict inequality. Thus
yj = 0 with mj satisfying (54). This reasoning confirms the results asserted
in the text.

B.2 Goods for Foreign Consumers

The derivative with respect to xj is:

∂Lj
∂xj

= −νajτ
(
zxj
)α−1 − λeνajτ

(
zxj
)α

+ pxj (pe) + λ∗eνa
∗
j (z∗(pe))

α .

Substituting in the optimal zxj = zx, this derivative simplifies to:

∂Lj
∂xj

= −ajτλ1−α
e + a∗jp

1−α
e + a∗jλ

∗
e (1− α) p−αe ,

whose sign determines the solution for xj. If

ajτλ
1−α
e < a∗jp

1−α
e + a∗jλ

∗
e (1− α) p−αe (55)

then xj > 0. In that case xj is pushed to the maximum quantity that
Foreign will be willing to buy at price pxj . That maximum is reached when
the marginal utility of Foreign equals that price (which is the price at which
Foreign could supply the good for itself):

(xj/η
∗)−1/σ∗

= a∗jp
1−α
e .

If inequality (55) is reversed then xj = 0 and y∗j solves:(
y∗j/η

∗)−1/σ∗
= a∗jp

1−α
e .
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In this case Foreign produces all of the good j that it consumes.
The good j = j̄x for which the inequality is () is replacehese results about

consumption in Foreign, define the good j̄x such that

∂Lj
∂xj

∣∣∣∣
j=j̄x

= 0.

Applying (5), this cutoff good will satisfy:

F (j̄x) =
τ
(
λe
pe

)1−α

1 + (1− α) λ∗e
pe

.

1. For any good j < j̄x Home has comparative advantage, which leads it
to export:

xj = η∗
(
a∗jp

1−α
e

)−σ∗
,

while Foreign produces nothing for itself, y∗j = 0. (Home’s export
quantity for any such good is at a corner solution with u∗′(xj) = p∗j .)

2. For any good j > j̄x Foreign has a comparative advantage, which leads
it to produce for itself:

y∗j = η∗
(
a∗jp

1−α
e

)−σ∗
,

while demanding no exports from Home, xj = 0. (Foreign’s production
of any such good is determined by Foreign demand at price p∗j .)

C Simple Unilateral Policies

Here we derive constrained-optimal policies that focus exclusively on either:
(i) Home’s extraction of energy, (ii) Home’s implicit consumption of energy.
We do so by considering a planner whose menu of choice variables is limited
in a particular way. All variables not on the menu are determined as in
a competitive equilibrium. After solving each planner’s problem, we show
how it can be implemented with taxes in a decentralized equilibrium, and we
present formulas for the optimal tax rates.

In each case the planner’s objective is to maximize Home’s welfare:

U = Cs +
η1/σ

1− 1/σ

∫ 1

0

(
c

1−1/σ
j − 1

)
dj − ϕ (Qe +Q∗e) , (56)
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subject to four constraints: (i) Home’s labor constraint (24), (ii) trade bal-
ance (18), (iii) Home’s energy constraint (21), and (iv) Foreign’s energy con-
straint (20). While it involves some redundancy, maintaining four constraints
facilitates comparison to the unilaterally optimal policy.

C.1 Optimal Pure Extraction Tax

Suppose the planner is constrained to choose only Qe, Xe, and pe, with all
other outcomes determined in a decentralized competitive equilibrium. We
use this problem to derive the constrained-optimal pure extraction tax.

Energy intensities and the intensive and extensive margins of trade are
as in a competitive equilibrium, given pe. Other aggregates depend on pe as
in the competitive equilibrium. In particular, spending on goods by Home’s
consumers, the term relevant to their welfare, becomes:

Vg = η1/σCg
1−1/σ = ηp(1−α)(1−σ)

e

(∫ j̄m

0

a1−σ
j dj +

∫ 1

j̄m

(
τ ∗a∗j

)1−σ
dj

)
. (57)

Furthermore, this spending term is tightly linked to Home’s consumption of
embodied energy:

peCe = (1− α)Vg,

a result that we exploit in what follows.31 We can also exploit the connection
between spending on labor and energy by goods producers in Home :

Lg =
α

1− α
peIe.

The use and implicit consumption of energy are connected to the value of
Home’s net exports of goods via:

peIe − peCe = (1− α)Xg.

Recall that the trade balance constraint is:

Xs = −Xg − peXe.

31In the absence of border adjustments on goods imports, as is the case with a pure
extraction tax, we get the equation: Vg = V HHg + V HFg . Border adjustments introduce

a wedge between the price of goods at the port, relevant for V HFg , and the price paid by
consumers, relevant for Vg. Hence this equation no longer holds.
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Home’s labor constraint is:

Qs = L− Le(Qe)− Lg.

Home’s energy constraint is:

Qe − Ie −Xe = 0.

Foreign’s energy constraint is:

Q∗e − I∗e +Xe = 0.

C.1.1 The Planner’s Lagrangian

We substitute the first two constraints into the objective (56) to eliminate
Cs while attaching Lagrange multipliers λe and λ∗e to the energy constraints.
The resulting Lagrangian (dropping constants) is:

L =
σ

σ − 1
Vg − ϕ (Qe +Q∗e)

− Le(Qe)− Lg(pe) +Xg + peXe

− λe (Ie −Qe +Xe)− λ∗e (I∗e −Q∗e −Xe) .

This Lagrangian is similar to the outer problem for the planner choosing the
optimal unilateral policy after maximizing the inner problem. The difference
is that, by not maximizing the inner problem, we can’t invoke the envelope
condition. All aggregates, except the three that are directly chosen, depend
on the energy price.

C.1.2 Solution

The first order condition for Xe is:

λe = pe + λ∗e,

as in the optimal unilateral policy. The first order condition for Qe also
matches the optimal unilateral policy:

Qe = G(λe − ϕ).

67



The first order condition for pe is different. First, exploiting (57) and the
equation beneath it:

∂Vg
∂pe

=
(1− α) (1− σ)

pe
Vg = (1− σ)Ce.

Hence, we can write the first order condition as:

∂L
∂pe

= −σCe − ϕ
∂Q∗e
∂pe
− ∂Lg
∂pe

+
∂Xg

∂pe
+Xe

− λe
∂Ie
∂pe
− λ∗e

(
∂I∗e
∂pe
− ∂Q∗e
∂pe

)
= 0.

Substituting in the first order condition for Xe and

∂Lg
∂pe

=
α

1− α

(
Ie + pe

∂Ie
∂pe

)
,

we get:

λ∗e

(
∂Ie
∂pe

+
∂I∗e
∂pe
− ∂Q∗e
∂pe

)
= −σCe−ϕ

∂Q∗e
∂pe

+
∂Xg

∂pe
+Xe−

α

1− α

(
Ie + pe

∂Ie
∂pe

)
−pe

∂Ie
∂pe

Finally, we can substitute in:

∂Xg

∂pe
=

1

1− α

(
Ie + pe

∂Ie
∂pe

)
+ (σ − 1)Ce,

to get:

λ∗e

(
∂Ie
∂pe

+
∂I∗e
∂pe
− ∂Q∗e
∂pe

)
= −ϕ∂Q

∗
e

∂pe
+Qe − Ce.

We can rewrite this expression as:

λ∗e = ϕ
∂Q∗e/∂pe

∂ (Q∗e − CW
e ) /∂pe

+
Q∗e − C∗e

∂ (Q∗e − CW
e ) /∂pe

.

In terms of elasticities, we have:

λ∗e = ϕ
ε∗SQ

∗
e

ε∗SQ
∗
e + εDCe + ε∗DC

∗
e

+
pe (Q∗e − C∗e )

ε∗SQ
∗
e + εDCe + ε∗DC

∗
e

.
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C.1.3 Decentralization

In a decentralized equilibrium we can set the extraction tax as te = ϕ − λ∗e
so that:

Qe = G(pe − te).

Using the expression above for λ∗e we get the optimal value for the extraction
tax:

te = ϕ
εDCe + ε∗DC

∗
e

ε∗SQ
∗
e + εDCe + ε∗DC

∗
e

− pe (Q∗e − C∗e )

ε∗SQ
∗
e + εDCe + ε∗DC

∗
e

. (58)

Ignoring the second term, this rate is below the value of te = ϕ in the optimal
unilateral policy. How much below turns on the value of ε∗SQ

∗
e. If Foreign

is a major energy extractor and if its price elasticity of supply is high, then
Home will want to choose a lower extraction tax.

Turning to the second term, note that the numerator is the value of
Foreign’s net exports of energy based on its implicit consumption of embodied
energy. Its use of energy in production doesn’t matter here. If Foreign is an
exporter in this sense then Home wants a lower extraction tax to improve its
terms of trade. For the same reason, it will choose a higher extraction tax if
Foreign is a large net importer in this sense.

C.2 Optimal Pure Consumption Tax

Suppose the planner is constrained to choose only:
{
zyj
}

,
{
zmj
}

, {yj}, {mj},
Xe, and pe, with all other outcomes determined as in a decentralized com-
petitive equilibrium. We use this problem to derive a constrained-optimal
pure consumption tax.

Any good j consumed in Foreign, whether made in Home or Foreign, is
produced at energy intensity:

zxj = z∗j = z∗ =
1− α
αpe

.

If Foreign produces it the price is:

p∗j = a∗jp
1−α
e

while if Home exports it:
pxj = τajp

1−α
e .
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Seeking the lowest price, Foreign consumers will import any good j ≤ j̄x and
will purchase locally any good j > j̄x, where the cutoff satisfies:

F (j̄x) = τ.

Using these results we can compute some aggregates which depend only
on the global energy price. In particular, the value of Home’s goods exports
is:

V FH
g = η∗p

1−ε∗D
e

∫ j̄x

0

(τaj)
1−σ∗

dj.

A fraction α of this value is paid to labor employed in Home to produce these
exports, with the rest going to the energy input:

peC
FH
e = (1− α)V FH

g

Foreign’s revenue from domestic sales is:

V FF
g = η∗p

1−ε∗D
e

∫ 1

j̄x

(
a∗j
)1−σ∗

dj,

with:
peC

FF
e = (1− α)V FF

g .

Energy extraction in each country is determined by (13) and (14) as in the
competitive equilibrium.

C.2.1 The Planner’s Lagrangian

We again substitute the labor and trade balance constraints into the objective
(56) to eliminate Cs while attaching Lagrange multipliers λe and λ∗e to the
energy constraints. The resulting Lagrangian is (dropping constants):

L =
η1/σ

1− 1/σ

∫ 1

0

(yj +mj)
1−1/σ dj − ϕ (Qe +Q∗e)

− Le(Qe)−
∫ 1

0

lj(z
y
j )yjdj − αV FH

g

−
∫ 1

0

τ ∗
(
l∗j (z

m
j ) + pee

∗
j(z

m
j )
)
mjdj + V FH

g + peXe

− λe
(∫ 1

0

ej(z
y
j )yjdj + CFH

e −Qe +Xe

)
− λ∗e

(
CFF
e +

∫ 1

0

τ ∗e∗j(z
m
j )mjdj −Q∗e −Xe

)
.
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We want to maximize this Lagrangian by the optimal choice of {zyj }, {zmj },
{yj}, {mj}, Xe, and pe.

C.2.2 Solution

We start with the inner problem, involving conditions for an individual good
j given values for Xe, λe, λ

∗
e, and pe. We then evaluate the optimal conditions

for Xe and pe while solving for λe and λ∗e.

Inner Problem Solving the inner problem consists of first order conditions
with respect to yj, mj, z

y
j , and zmj . These first order conditions, and their

implications given Xe, λe, λ
∗
e, and pe, can be considered one good at time.

We therefore define a Lagrangian for good j:

Lj =
η1/σ

1− 1/σ
(yj +mj)

1−1/σ

− νajyj
(
zyj
)α−1 − νa∗jτ ∗

((
zmj
)α−1

+ pe
(
zmj
)α)

mj

− λeνajyj
(
zyj
)α − λ∗eνa∗jτ ∗mj

(
zmj
)α
,

where we have substituted in the expressions for unit input requirements (6)
and (7) in Home (as well as their analogs in Foreign).

The first order condition for zyj implies:

zyj = zy =
1− α
αλe

.

Unlike for the optimal unilateral policy or for the case of a pure extraction
tax, Home uses a different energy intensity for serving consumers in Home
and Foreign.

The FOC for yj is:

((yj +mj) /η)−1/σ ≤ νaj (zy)α−1 + λeνaj (zy)α = νaj (zy)α−1 (1 + λez
y) .

Substituting in the solution for zy and applying (4) this FOC reduces to:

((yj +mj) /η)−1/σ ≤ ajλ
1−α
e ,

with equality if yj > 0. If this FOC holds with a strict inequality then yj = 0
and Home imports the good.
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The first order condition for zmj implies:

zmj = zm =
1− α

α (pe + λ∗e)
.

All producers serving consumers in Home, whether domestic or foreign, pro-
duce at the same energy intensity.

The FOC for mj is:

((yj +mj) /η)−1/σ ≤ νa∗jτ
∗ (zm)α−1 (1 + (pe + λ∗e) z

m) .

Substituting in the solution for zm this FOC reduces to:

((yj +mj) /η)−1/σ ≤ a∗jτ
∗ (pe + λ∗e)

1−α ,

with equality if mj > 0.
To distill these results about consumption in Home, define the good j̄m

at which the FOC for y and m both hold. Applying (5), this cutoff good will
satisfy:

F (j̄m) =
1

τ ∗

(
λe

pe + λ∗e

)1−α

.

1. For any good j < j̄m Home has a comparative advantage, which leads
it to produce for itself:

yj = η
(
ajλ

1−α
e

)−σ
,

while importing nothing, mj = 0.

2. For any good j > j̄m Foreign has a comparative advantage, which leads
Home to import:

mj = η
(
a∗jτ

∗ (pe + λ∗e)
1−α)−σ ,

while producing nothing for itself, yj = 0.

Outer Problem We now turn to the optimality conditions for Xe and pe
while finding the Lagrange multipliers that clear the global energy market.
First, we collect results from the inner problem. The price Home pays for
imports is:

pmj = τ ∗l∗j (z
m) + peτ

∗e∗j(z
m).
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Since this price depends directly on pe, so does Home’s spending on imported
goods:

V HF
g =

∫ 1

j̄m

pmj mjdj =

∫ 1

j̄m

τ ∗l∗j (z
m)mjdj + pe

∫ 1

j̄m

τ ∗e∗j(z
m)mjdj.

By the envelope condition we ignore the dependence of mj and zm on pe, so
that the appropriate derivative is:

∂V HF
g

∂pe
=

∫ 1

j̄m

τ ∗e∗j(z
m)mjdj = CHF

e .

Energy use by Home’s producers serving the domestic market is completely
determined by the inner problem:

CHH
e =

∫ j̄m

0

ej(z
y)yjdj,

as is the labor employed:

LHHg =

∫ j̄m

0

lj(z
y)yjdj.

We therefore rewrite the Lagrangian in terms of aggregate magnitudes:

L =
η1/σ

1− 1/σ
C1−1/σ
g − ϕ (Qe(pe) +Q∗e(pe))

− Le(Qe)− LHHg − αV FH
g (pe)

− V HF
g + V FH

g + peXe

− λe
(
CHH
e + CFH

e −Qe +Xe

)
− λ∗e

(
CFF
e + CHF

e −Q∗e −Xe

)
.

We now turn to the first order conditions for maximizing L with respect to
Xe and pe.

Home Energy Exports The first order condition with respect to Xe

gives:
λe = pe + λ∗e,
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as in the optimal unilateral policy. Combined with the inner problem, we get
results familiar from the optimal unilateral policy. For j ≤ j̄m Home buys:

yj = η
(
ajλ

1−α
e

)−σ
from domestic producers and for j > j̄m Home imports:

mj = η
(
a∗jτ

∗λ1−α
e

)−σ
,

where the threshold satisfies:

F (j̄m) =
1

τ ∗
.

Finally, we have:

Lg =

∫ j̄m

0

lj(z
y
j )yjdj +

∫ j̄x

0

lj(z
x
j )xjdj = αηλ1−εD

e

∫ j̄m

0

a1−σ
j dj + αV FH

g .

Optimal Energy Price The first order condition with respect to pe is:

∂L
∂pe

= −ϕ
(
∂Qe

∂pe
+
∂Q∗e
∂pe

)
− ∂Le
∂Qe

∂Qe

∂pe
− α

∂V FH
g

∂pe
−
∂V HF

g

∂pe
+
∂V FH

g

∂pe

+Xe − λe
∂CFH

e

∂pe
+ λe

∂Qe

∂pe
− λ∗e

(
∂CFF

e

∂pe
− ∂Q∗e
∂pe

)
= 0.

Subsituting in the first order condition for Xe we get:

0 = −ϕ
(
∂Qe

∂pe
+
∂Q∗e
∂pe

)
− ∂Le
∂Qe

∂Qe

∂pe
+ (1− α)

∂V FH
g

∂pe
−
∂V HF

g

∂pe

+Xe − pe
∂CFH

e

∂pe
+ pe

∂Qe

∂pe
− λ∗e

(
∂CFF

e

∂pe
+
∂CFH

e

∂pe
− ∂Qe

∂pe
− ∂Q∗e
∂pe

)
.

Noting that:
∂Le
∂Qe

= pe,

and grouping terms, we can simplify to:

0 = (λ∗e − ϕ)
∂QW

e

∂pe
+ (1− α)

∂V FH
g

∂pe
−
∂V HF

g

∂pe

+Xe − pe
∂CFH

e

∂pe
− λ∗e

(
∂CFF

e

∂pe
+
∂CFH

e

∂pe

)
.
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To make further progress, from peC
FH
e = (1− α)V FH

g we have:

CFH
e + pe

∂CFH
e

∂pe
= (1− α)

∂V FH
g

∂pe
.

Substituting into the first order condtion, together with ∂V HF
g /∂pe = CHF

e ,
we get:

0 = (λ∗e − ϕ)
∂QW

e

∂pe
+ CFH

e − CHF
e +Xe − λ∗e

∂C∗e
∂pe

= (λ∗e − ϕ)
∂QW

e

∂pe
+Qe − Ce − λ∗e

∂C∗e
∂pe

.

Applying the global energy constaint, we finally arrive at:

0 = ϕ
∂QW

e

∂pe
+ (Q∗e − C∗e )− λ∗e

(
∂QW

e

∂pe
− ∂C∗e
∂pe

)
,

or:

λ∗e = ϕ
∂QW

e /∂pe
∂QW

e /∂pe − ∂C∗e/∂pe
+

Q∗e − C∗e
∂QW

e /∂pe − ∂C∗e/∂pe
.

C.2.3 Decentralization

We can decentralize this outcome by simply imposing an extraction tax, and
an equal border tax of:

te = tb = ϕ
∂QW

e /∂pe
∂QW

e /∂pe − ∂C∗e/∂pe
+

Q∗e − C∗e
∂QW

e /∂pe − ∂C∗e/∂pe
.

To operationalize the formula, we can rewrite it in terms of elasticites:

te = tb = ϕ
εSQe + ε∗SQ

∗
e

εSQe + ε∗SQ
∗
e + ε∗DC

∗
e

+
pe (Q∗e − C∗e )

εSQe + ε∗SQ
∗
e + ε∗DC

∗
e

. (59)

The border adjustment is applied to Home’s energy imports raising the price
of energy in Home to pe + tb. It is applied to Home’s exporters of energy so
that they receive a pre-tax price is pe+tb wherever they sell. Their net-of-tax
price, after paying the extraction tax, is always pe. The border adjustment is
also applied to the energy content of Home’s goods imports and it is removed
on the energy content of Home’s goods exports.
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C.3 Optimal Hybrid

Now consider augmenting the pure consumption tax by allowing the planner
to choose energy extraction in Home. Doing so should give us a hybrid
of the pure extraction tax and the pure consumption tax. We need only
tweak the pure consumption case solved above by replacing the competitively
determinee Qe, from (13), with an optimally chosen Qe.

C.3.1 The Planner’s Lagrangian

We can jump directly to the outer problem as the inner problem is unchanged
from the pure consumption tax case. The Lagrangian for the outer problem
becomes:

L =
η1/σ

1− 1/σ
C1−1/σ
g − ϕ (Qe +Q∗e)

− Le(Qe)− LHHg − αV FH
g

− V HF
g + V FH

g + peXe

− λe
(
CHH
e + CFH

e −Qe +Xe

)
− λ∗e

(
CFF
e + CHF

e −Q∗e −Xe

)
.

We now turn to the first order conditions for maximizing L with respect to
Qe, Xe and pe.

Home Energy Exports The first order condition with respect to Xe re-
mains:

λe = pe + λ∗e,

as in the optimal unilateral policy.

Optimal Home Energy Extraction The first order condition for Qe

remains as in the optimal unilateral policy:

Qe = G(λe − ϕ).
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Optimal Energy Price The first order condition with respect to pe is
now:

∂L
∂pe

= −ϕ∂Q
∗
e

∂pe
− α

∂V FH
g

∂pe
−
∂V HF

g

∂pe
+
∂V FH

g

∂pe

+Xe − λe
∂CFH

e

∂pe
− λ∗e

(
∂CFF

e

∂pe
− ∂Q∗e
∂pe

)
= 0.

Substituting in the FOC for energy exports and grouping terms, we can write
the FOC as:

0 = −ϕ∂Q
∗
e

∂pe
+ (1− α)

∂V FH
g

∂pe
−
∂V HF

g

∂pe

+Xe − pe
∂CFH

e

∂pe
− λ∗e

(
∂C∗e
∂pe
− ∂Q∗e
∂pe

)
.

As in the pure consumption case, we have:

CFH
e + pe

∂CFH
e

∂pe
= (1− α)

∂V FH
g

∂pe
,

which together with ∂V HF
g /∂pe = CHF

e , gives:

0 = −ϕ∂Q
∗
e

∂pe
+ CFH

e − CHF
e +Xe − λ∗e

(
∂C∗e
∂pe
− ∂Q∗e
∂pe

)
.

Using the global energy constraint:

0 = −ϕ∂Q
∗
e

∂pe
+ C∗e −Q∗e − λ∗e

(
∂C∗e
∂pe
− ∂Q∗e
∂pe

)
,

which we can rewrite as:

λ∗e = ϕ
∂Q∗e/∂pe

∂ (Q∗e − C∗e ) /∂pe
+

Q∗e − C∗e
∂ (Q∗e − C∗e ) /∂pe

.

C.3.2 Decentralization

We can decentralize this outcome by imposing an extraction tax:

te = ϕ
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together with a border tax of:

tb = ϕ
∂Q∗e/∂pe

∂ (Q∗e − C∗e ) /∂pe
+

Q∗e − C∗e
∂ (Q∗e − C∗e ) /∂pe

.

To operationalize this formula for the border tax, we can rewrite it as:

tb = ϕ
ε∗SQ

∗
e

ε∗SQ
∗
e + ε∗DC

∗
e

+
pe (Q∗e − C∗e )

ε∗SQ
∗
e + ε∗DC

∗
e

. (60)

The border adjustment is applied to Home’s energy imports raising the price
of energy in Home to pe + tb. It is applied to Home’s exporters of energy
so that they receive a pre-tax price is pe + tb wherever they sell. Their net-
of-tax price is always pe + tb − ϕ. The border adjustment is also applied to
the energy content of Home’s goods imports and it is removed on the energy
content of Home’s goods exports.

D Solutions for Quantitative Illustration

Here we provide a list of equations for the parameterized version of the model
that we use for the quantitative results in Section 5 of the paper.

D.1 Unilaterally Optimal Outcomes

Imposing (44), (45), (46), and (47) we have:

1. energy intensity (except when Foreign produces for itself):

z =
1− α

α (pe + tb)
;

2. unit energy requirements (except when Foreign produces for itself):

ej = (1− α) (pe + tb)
−α ;

3. export threshold

j̄x =
τ−θA (pe + (1− α) tb)

θ

τ−θA (pe + (1− α) tb)
θ + A∗

(
pαe (pe + tb)

1−α)θ
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4. import threshold:

j̄m =
A

A+ (τ ∗)−θ A∗
,

5. energy used by producers in Home to supply Home consumers:

CHH
e =

∫ j̄m

0

ej(z)yjdj = η (1− α) (pe + tb)
−εD

∫ j̄m

0

a1−σ
j dj

= η (1− α) (pe + tb)
−εD A(σ−1)/θ

1 + (1− σ) /θ
(j̄m)

1+(1−σ)/θ
;

6. energy used by producers in Home to supply exports of Home:

CFH
e = τ

∫ j̄x

0

ej(z)xjdj = τη∗(1− α)p(α−1)σ∗

e (pe + tb)
−α
∫ j̄x

0

aj
(
a∗j
)−σ∗

dj

= τη∗(1− α)p(α−1)σ∗

e (pe + tb)
−α (A∗)σ

∗/θ

A1/θ
B

(
j̄x,

1 + θ

θ
,
θ − σ∗

θ

)
,

where and B(x, a, b) is the incomplete beta function;32

7. energy used by producers in Foreign to supply Foreign consumers:

CFF
e =

∫ 1

j̄x

e∗j(z
∗)y∗jdj = η∗(1− α)p

−ε∗D
e

∫ 1

j̄x

(
a∗j
)1−σ∗

dj

= η∗(1− α)p
−ε∗D
e

(A∗)(σ∗−1)/θ

1 + (1− σ∗) /θ
(1− j̄x)1+(1−σ∗)/θ

;

8. energy used by producers in Foreign to supply imports of Home:

CHF
e = τ ∗

∫ 1

j̄m

e∗j(z)mjdj = (τ ∗)1−σ η(1− α) (pe + tb)
−εD

∫ 1

j̄m

(
a∗j
)1−σ

dj

= (τ ∗)1−σ η(1− α) (pe + tb)
−εD (A∗)(σ−1)/θ

1 + (1− σ) /θ
(1− j̄m)

1+(1−σ)/θ
;

32The incomplete beta function is:

B(x, a, b) =

∫ x

0

ia−1(1− i)b−1di,

for 0 ≤ x ≤ 1, a > 0, and b > 0.Setting x = 1 gives the beta function itself, B(a, b).

79



9. value of Home exports of goods:

V FH
g =

∫ j̄x

0

pxjxjdj = η∗p
1−ε∗D
e

∫ j̄x

0

(
a∗j
)1−σ∗

dj

= η∗p
1−ε∗D
e

(A∗)(σ∗−1)/θ

1 + (1− σ∗) /θ

(
1− (1− j̄x)(θ+1−σ∗)/θ

)
;

10. and value of Home’s imports of goods:

V HF
g =

∫ 1

j̄m

pmj mjdj = (τ ∗)1−σ η (pe + tb)
1−εD

(
pe + αtb
pe + tb

)∫ 1

j̄m

(
a∗j
)1−σ

dj

= (τ ∗)1−σ η (pe + tb)
1−εD

(
pe + αtb
pe + tb

)
(A∗)(σ−1)/θ

1 + (1− σ) /θ
(1− j̄m)

1+(1−σ)/θ
;

11. intermediate demand for energy (for use in production in Home):

Ie = CHH
e + CFH

e ;

12. labor employed in production in Home:

Lg =
α

1− α
(pe + tb) Ie;

13. consumption demand for embodied energy in Home:

Ce = CHH
e + CHF

e ;

14. value of Home’s net exports of goods:

Xg = V FH
g − V HF

g ;

15. total spending on goods by Home:

Vg = η1/σC1−1/σ
g =

1

1− α
(pe + tb)Ce;

16. energy extraction by Home:

Qe = (pe + tb − ϕ)εS G;
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17. energy extraction by Foreign:

Q∗e = (pe)
ε∗SG∗;

18. welfare in Home (dropping a constant):

U = Cs +
σ

σ − 1
η1/σC1−1/σ

g − ϕQW
e = Cs +

σ

σ − 1
Vg − ϕ (Qe +Q∗e) ;

19. and consumption of services in Home:

Cs = Qs −Xs = L− Le − Lg +Xg + pe (Qe − Ie) .

To evaluate welfare it also helpful to have an expression for Home’s spend-
ing on goods. Combining the expressions above for j̄m, CHH

e , CHF
e , we get:

Vg = η1/σC1−1/σ
g =

1

1− α
(pe + tb) (CHH

e + CHF
e )

= η (pe + tb)
1−εD

(
A+ (τ ∗)−θ A∗

)(σ−1)/θ

1 + (1− σ) /θ
.

D.2 Expression Calibrated to BAU

We now write the key expressions under the optimal unilateral policy in
terms of the values we calibrate to under the BAU competitive equilibrium.

1. In the main text, we showed that the export cutoff is:

j̄x(pe, tb) =
(pe + (1− α) tb)

θ CFH
e

(pe + (1− α) tb)
θ CFH

e +
(
pαe (pe + tb)

1−α)θ CFF
e

,

while in BAU:

j̄x =
CFH
e

C∗e
=

τ−θA

τ−θA+ A∗
.

2. Energy demand by producers in Home to supply Home consumers be-
comes:

CHH
e (pe, tb) = (pe + tb)

−εD CHH
e .
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3. Energy demand by producers in Home to supply Foreign consumers
requires that we calculate the BAU baseline, in which Home prices at
marginal cost:

CFH
e = τ 1−σ∗

η∗(1− α)p
−ε∗D
e

A(σ∗−1)/θ

1 + (1− σ∗) /θ
(j̄x)

1+(1−σ∗)/θ
.

Under the optimal unilateral policy, we have:

CFH
e (pe, tb) = τσ

∗
(

1 +
1− σ∗

θ

)
p
−ε∗D
e

(
pe + tb
pe

)−α(
A∗

A

)σ∗/θ B
(
j̄x(pe, tb),

1+θ
θ
, θ−σ

∗

θ

)
j̄

1+(1−σ∗)/θ
x

CFH
e

=

(
1 +

1− σ∗

θ

)(
1− j̄x
j̄x

)σ∗/θ

p
−ε∗D
e

(
pe + tb
pe

)−α B (j̄x(pe, tb), 1+θ
θ
, θ−σ

∗

θ

)
j̄

1+(1−σ∗)/θ
x

CFH
e .

4. Energy demand by producers in Foreign to supply Foreign consumers
becomes:

CFF
e (pe, tb) = p

−ε∗D
e

(
1− j̄x(pe, tb)

1− j̄x

)1+(1−σ∗)/θ

CFF
e

= p
−ε∗D
e

(
C∗e
(
pαe (pe + tb)

1−α)θ
CFH
e (pe + (1− α) tb)

θ + CFF
e

(
pαe (pe + tb)

1−α)θ
)1+(1−σ∗)/θ

CFF
e .

5. Energy demand by producers in Foreign to supply Home consumers
becomes:

CHF
e (pe, tb) = (pe + tb)

−εD CHF
e .

6. The value of Home’s exports of goods becomes:

V FH
g (pe, tb) = p

1−ε∗D
e

1− (1− j̄x(pe, tb))(θ+1−σ∗)/θ

1− (1− j̄x)(θ+1−σ∗)/θ
V FH
g ,

where we set the baseline value to:

V FH
g =

1

1− α
CFH
e .

7. The value of Home’s imports of goods becomes:

V HF
g (pe, tb) = (pe + tb)

−εD (pe + αtb)V
HF
g ,

where we set the baseline value to:

V HF
g =

1

1− α
CHF
e .
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8. In the main text we showed that Home’s extraction is:

Qe(pe, tb) = (pe + tb − ϕ)εS Qe.

9. Foreign’s extraction, for pe ≥ a is simply:

Q∗e(pe) = p
ε∗S
e Q

∗
e.

Using these expressions we can return to (51) and (52), searching for the
pair (pe, tb) that jointly solves them. Having solved for the optimal border
adjustment and the corresponding change in the global energy price we can
compute all other outcomes as well.

A key outcome is Home’s welfare in moving to the optimal unilateral
policy from the BAU competitive equilibrium. The change in Home’s welfare
is:

U(pe, tb)− U = −(Le(pe, tb)− Le)− (Lg(pe, tb)− Lg) + (Xg(pe, tb)−Xg)

+ (peXe(pe, tb)−Xe) +
σ

σ − 1
(Vg(pe, tb)− Vg)− ϕ(QW

e (pe, tb)−QW
e ),

where we denote the value of Home’s spending on goods by Vg. Our preferred
measure of welfare is normalized by BAU spending on goods:

W =
U(pe, tb)− U

Vg
.

We have expressions for each of the outcomes required to evaluate this
welfare expression:

1. The change in Home’s employment in energy extraction is:

Le(pe, tb)− Le =

∫ pe+tb−ϕ

1

aG′(a)da

= Qe

∫ pe+tb−ϕ

1

εSa
εSda

=
εS

εS + 1
((pe + tb − ϕ)εS+1 − 1)Qe.

2. The change in Home’s employment in goods production is:

Lg(pe, tb)− Lg = ((pe + tb)Me(pe, tb)− 1)Lg,

where the baseline value is:

Lg =
α

1− α
Ie.
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3. The value of Home’s net exports of goods is:

Xg(pe, tb) = V FH
g (pe, tb)− V HF

g (pe, tb).

4. The value of Home’s net energy exports is:

peXe(pe, tb) = pe
(
Qe(pe, tb)−

(
CHH
e (pe, tb) + CFH

e (pe, tb)
))
.

5. The value of Home’s spending on goods is:

Vg(pe, tb) = (pe + tb)
1−εD Vg,

where the baseline value is:

Vg =
1

1− α
Ce.

6. The term that enters the change in Home’s welfare is:

σ

σ − 1
(Vg(pe, tb)− Vg) = Vg

(
(pe + tb)

(1−α)(1−σ) − 1
)

(σ − 1)/σ
.

For the case of σ = 1 this term reduces to:

lim
σ→1

Vg
(pe + tb)

(1−α)(1−σ)

(σ − 1)/σ
= −(1− α)Vg ln(pe + tb).

7. Global emissions are:

QW
e (pe, tb) = Qe(pe, tb) +Q∗e(pe).

E Data and Calibration

E.1 Calibration

For our quantitative analysis we calibrate the model to fossil fuel extraction
and the energy embodied in trade between the region that, in our model, will
enact a carbon policy (Home) and the region that will remain with business
as usual (Foreign). Our common unit for energy is gigatonnes of CO2, based
on the quantity released by its combustion.
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We consider three scenarios for the regions representing Home and For-
eign. In the first, the United States is Home and all other countries are
Foreign. The alternative scenarios, respectively, are the European Union
prior to Brexit (EU28) as Home (and all other countries as Foreign) and the
members of the Organization for Economic Cooperation and Development
(OECD37) as Home (and all others as Foreign).

Our data source for energy consumption is The Trade in Embodied CO2

(TECO2) database from OECD. We use their measure of consumption-based
CO2 emissions embodied in domestic final demand and the country of origin
of emissions. This database covers 83 countries and regional groups over the
period 2005-2015. Carbon dioxide embodied in world consumption in 2015
is 32.78 gigatonnes. We cross-checked the results with a dataset from the
Global Carbon Project. The overall difference is less than ten percent.

Extraction data are from the International Energy Agency (IEA), which
provides the World Energy Statistics Database on energy supply from all
energy sources, including fossil fuels, biofuels, hydro, geothermal, renewables
and waste. This dataset covers 143 countries as well as regional and world
totals. The data are provided in units of kilotonnes of oil equivalent (ktoe).
In order to keep the units consistent with the energy consumption data (gi-
gatonnes of carbon dioxide), we first convert to terajoules (TJ) (1 ktoe =
41.868 TJ) and then apply emission factors to the five fossil fuel types to
calculate CO2 emissions. The five fossil fuel types considered are coal and
coal products, natural gas, peat and peat products, oil products, as well as
crude, NGL and feedstocks. The emission factors are default emission fac-
tors for stationary combustion from the 2006 IPCC Guidelines for National
Greenhouse Gas Inventories. To be specific, we convert 1 TJ of crude, NGL
and feedstocks to 73,300 kg CO2, 1 TJ of natural gas to 56, 100 kg CO2, and
1 TJ of coal, peat and oil products to 94, 600 kg CO2. Using this calculation,
world extraction is 35.96 gigatonnes of carbon dioxide.

To explain the discrepancy between world consumption and world ex-
traction, note that the OECD data for embodied carbon does not include
non-energy use of fossil fuels. In other words, some fossil fuels extracted are
not combusted to produce energy. Instead, they are consumed directly or
as intermediate goods. For example, petroleum can be used as asphalt and
road oil and as petrochemical feedstocks for agricultural land. According to
EIA (2018), approximately 8 percent of fossil fuels are not combusted in the
United States. Applying this rate to the world extraction, we get a number
close to world consumption (35.96 ∗ 0.92 = 33.08, vs. 32.78).
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Given that combusted energy is the source of CO2 emissions, non-energy
use of fossil fuel extraction is excluded in our analysis. We simply re-scale the
world extraction data so that world extraction is equal to world consumption.
To be specific, the original extraction data is divided by 1.097 (the ratio of
world extraction to world consumption). Tables 3, 5, and 6 display the
resulting data we use for our calibration.

E.2 Parameter Values

For the key parameter in the goods production function α, the output elastic-
ity of labor, we calibrate (1−α)/α to the value of energy used in production
peIe relative to the value added.33 The data from TECO2 records the car-
bon emissions embodied by sector and country. We can convert to barrels
of oil based on 0.43 metric tons of CO2 per barrel of crude oil (from EPA,
2019). The price per barrel of oil is taken from the average closing price of
West Texas Intermediate (WTI) crude oil in 2015, which is $48.66 per barrel.
Value added data comes from OECD Input-Output Tables (2018). We con-
sider three definitions of the goods sector, with both the numerator (value
of energy) and the denominator (value added) computed for the same sector
definition, either: (i) the manufacturing sector, (ii) manufacturing plus agri-
culture and construction, and (iii) manufacturing, agriculture, construction,
wholesale, retail, and transportation. The values of α that we obtain are,
respectively, 0.85, 0.79, and 0.84. Our preferred value is 0.85, very close to
two of these three.

For the energy supply elasticities, εS and ε∗S, we use data from Asker,
Collard Wexler, and Jan De Loecker (2018) on the distribution across oil
fields of extraction costs. The data come in the form of quantiles (q = 0.05,
0.10, ..., 0.95), separately for the EU, the US, OPEC, and ROW (q% of
oil in the US is extracted at a cost below $a per barrel, for example). We
approximate OECD countries by aggregating the EU and US while for the
non-OECD region we aggregate OPEC and ROW. To aggregate the quantiles
for two regions, we combine them, sort the combination by the cost level,
and reassemble after taking account of total oil extraction for each region
(available from the IEA). The data are plotted on log scales in Figures 6 and
7, to reveal the supply elasticities.

33We think of value added as the closest proxy to labor cost in the model, since we
interpret labor in the model as labor equipped with capital.
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Figure 6: Calibration of the Extraction Supply Elasticity in Home
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The most costly oil fields in either region would be the first to be aban-
doned under a carbon policy. Thus, the upper end of the cost distribution is
the most relevant for calibrating the supply elasticities. Our baseline values
of εS = 0.5 and ε∗S = 0.5 are close to the slope shown in the figures when
we consider only costs above the median. Our alternative value of ε∗S = 1 is
closer to the slope if we were to use the upper 75% of costs or even all the
data.

Lacking this distributional data for coal and natural gas fields, we assume
that the distribution for oil extraction is representative of all fossil fuels.
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Figure 7: Calibration of the Extraction Supply Elasticity in Foreign
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