

Modeling the Impacts of Agricultural Support Policies on Emissions from Agriculture

David Laborde, Abdullah Mamun, Will Martin, Valeria Piñeiro & Rob Vos

International Food Policy Research Institute

30 April 2020

2020 NBER

Research question

How might the vast amount of agricultural support be repurposed to better serve environmental, economic and resilience goals?

A global public good issue Agriculture matters for GHG emissions

Sources of global emissions (2010) in percentage

Source FAO

Impacted by a global shift in public policies

Market Price Support Domestic Support
 Decoupled Payment — Total Support

non-OECD countries covered by OECD

Source: OECD

Extended set of instruments

Data

GHG database

- Based on FAOSTAT (Tubiello and al.)
- Extended for energy and fertilizers

Model

2019 release+ Extensions for domestic support policiesWith reclassification of payments

+ GTAP 10 database
+ Extensions / adaptation

A proper dataset

GHG Database: Reconstruct with bottom-up approach

Emissions by commodity & source 2015 % of total Ag. Production emissions

	Rice	Other Cereals	Milk	Beef	Pigmeat	Poultry	Total
Crop residues	1.5	3.6	0	0	0	0	5.1
Enteric fermentation	0	0	11	30.5	0.6	0	42.1
Manure	0	0	6.2	16.8	3.7	2.9	29.6
Pesticides	0.2	0.8	0	0.1	0	0	1.1
Rice cultivation	12.6	0	0	0	0	0	12.6
Synthetic Fertilizers	2.4	6.5	0	0.7	0	0	9.6
Total	16.7	10.9	17.2	48.1	4.3	2.9	100

Domestic support policies dataset

Producer Assistance, \$bn, 2014-16

Annual coupled subsidies and GSSE, 2014-16 (US\$ billion)

	Narrow	Broader		All		
	Environmental	Environmental	Fertilizer	Coupled	Decoupled	GSSE
	Conditionality	Conditionality	Subsidies	Subsidies	Subsidies	
Australia	0.2	0.1	0.0	0.5	0.4	1.0
Brazil	0.0	2.9	0.0	4.5	0.0	2.7
Canada	0.0	0.0	0.0	1.7	0.0	1.8
Switzerland	0.8	2.6	0.0	1.4	1.1	0.8
Chile	0.0	0.1	0.0	0.4	0.0	0.4
China	0.0	7.2	0.0	53.7	5.9	39.9
Colombia	0.0	0.0	0.0	0.9	0.0	0.6
Costa Rica	0.0	0.0	0.0	0.0	0.0	0.0
EU28	8.8	65.0	0.0	36.2	44.4	12.9
Indonesia	0.0	0.0	1.4	1.9	0.0	1.2
India	0.0	0.0	11.0	28.0	0.0	12.2
Iceland	0.0	0.0	0.0	0.1	0.0	0.0
Israel	0.0	0.0	0.0	0.2	0.0	0.2
Japan	2.4	5.8	0.0	4.8	3.0	8.4
Kazakhstan	0.0	0.0	0.0	1.1	0.0	0.5
Korea	0.8	0.9	0.1	1.0	0.8	2.9
Mexico	1.1	1.1	0.0	3.7	0.0	0.8
Norway	0.1	0.1	0.0	1.4	0.0	0.2
New Zealand	0.0	0.0	0.0	0.0	0.0	0.4
Philippines	0.0	0.0	0.0	0.0	0.0	0.0
Russia	0.0	0.0	0.0	0.0	0.0	0.0
Turkey	0.1	0.1	0.3	3.1	0.0	2.9
Ukraine	0.0	0.0	0.0	1.1	0.0	0.2
USA	5.1	24.9	0.0	16.8	11.2	8.7
Vietnam	0.0	0.0	0.0	0.5	0.0	0.7
South Africa	0.0	0.0	0.0	0.2	0.0	0.3
Total	19.4	110.8	12.8	163.3	66.8	99.7

Method on domestic support

Nominal rate of protection (NRP), 2016 (as a percent of world price, weighted average)

	GLOBAL	High Income Countries	Middle Income Countries	Low Income Countries
Oilseeds and products	-1.78	-0.26	-2.71	-6.66
Fruits and vegetables	-1.03	12.33	-2.28	28.46
Sugar	15.84	15.66	17.63	-38.28
Bovine Meat	11.12	8.70	13.75	13.95
Maize	9.15	-0.54	26.00	47.78
Milk	8.21	15.87	1.09	-55.96
Poultry meat	13.22	10.88	14.88	
Rice	30.36	109.31	22.96	17.98
Wheat	19.67	4.58	34.48	-25.86
TOTAL	7.00	9.50	7.20	-41.18

Measuring (international) market access distortions

- Two potential approaches:
 - Direct measures of border protection for imports Bouet and al. 2008, RIE) and for exports Laborde and al., 2013, World Economy)
 - Indirect approach through price gaps: OECD (PSE manual, 2016)
- First approach well suited for trade policy reforms but could omit other distortions e.g. NTBs
- We select the second approach building on the Ag-Incentives Consortium data → Nominal Rate of Protection, both positive and negative

- But, NRP are not bilateral!
 - Issue of preferences and relevance for the "where it comes from"
- "Bilateralisation" of NRPs
 - Split of NRP information into two instruments:
 - o NRP<0 : export taxes</p>
 - NRP>0 : import duties
 - Rescaling of the bilateral tariff structure to reproduce unilateral NRP (trade weighted)

A Global Model

What is the impact of current farm policies on GHG emissions?

Decisions	Why it matters for GHG?
Which commodity to produce? "Wheat or Rice?"	Different commodities are associated with different levels of emissions of different GHGs (CO ₂ CH ₄ , N ₂ O)
Where to produce? "Brazil or Switzerland?"	Different biophysical conditions and different technologies lead to different level of emissions for the same commodity in different countries
How much to produce? "10 million tons or 100 million tons?"	The more we produce, the more we emit
How to produce?	Input and output prices change the way we adopt

"How much fertilizers should we use?" Input and output prices change the way we adopt technology and produce farm goods, using more intensive or extensive technologies

The specific role of trade policies

DECISIONS	EFFECT OF TRADE POLICIES
Which commodity to produce	Tariffs vary from one product to another
Where to produce	Tariffs have strong impacts in shifting production around the world
How much to produce	Tariffs increase the price of agricultural products and therefore will deter consumption
How to produce	Tariffs can change the cost of adopting technologies and inputs

Modelling Framework

MIRAGRODEP:

- a Computable General Equilibrium (CGE) model, built upon the MIRAGE model.
- It is a multi-region, multi-sector model, dynamically recursive CGE model;
- Government explicitly represented;
- Main source of data: GTAP 10 (base year 2014).

Assumptions:

- o Static version of the model
- Public purchases held constant and a variable consumption tax used to hold the deficit to GDP ratio constant,
- Land use held constant to focus on emissions from agriculture
- A constant level of employment.

Key closures:

- Savings defined investments;
- Current account surplus/deficit [net foreign savings] constant in terms of global GDP:
 - Real exchange rate endogenous
 - Foreign capital flows stable
- Net Public savings (government surplus/deficit): constant in terms of domestic GDP
 - Endogenous tax reform
 - No change in public investment

COUNTRIES and REGIONS

How do we produce things?

Same

Where does it come from? The role of properly capturing trade deviation effects

Each tree is built for each sector and each importer based on **cluster analysis made at the HS6 level** and done for the specific aggregation of the model

Where does it come from?

How much do we produce and which products?

CES-LES demand system, with a sub CES nest for food products
The role of price and income elasticities

Results

Key scenarios

Removing coupled subsidies: Total Impact -34mt CO₂ equivalent -0.6% of Ag. Production emissions Source of reduction Crop Residues 12% Fertilizer 42% Enteric Fermentation 25% Rice Cultivation Manure 5% 16%

Removing border measures

Total Impact +128 mt CO₂ equivalent +2.1% of Ag. Production emissions

Removing coupled subsidies and border measures Output changes, %

40

Total Impact +102 mt CO₂ equivalent +1.7% of Ag. Production emissions

Is it surprising that current trade policies are limiting GHG emissions?

Answer: No

- High prices limit consumption, and therefore reduce the scale of production
- Overall, they shift production from developing countries to more advanced, and protectionist economies. The latter have better technologies and lower emissions per unit of output for many products (but not all!)
- Free trade maximize economic efficiency in a system without externalities. With the lack of market for GHG emissions, free trade could not deliver an optimal environmental solution

What should be done: address the externalities at the source

- Develop technologies that directly reduce emissions per unit of output
- Favor technological adoption, especially in developing countries to realign economic and environmental efficiency
- Address the issue of pricing of the GHG emissions

30% reduction in emissions per unit

Global Emission Change, %

Next steps

Consider broader range of repurposing reforms

M

More about impacts on production methods

Broaden coverage of measures

Conclusions & next steps

Agricultural support is very substantial-- subsidies, trade barriers, public goods

 Policy reform needs to be guided by implications for key policy outcomes

Agricultural & land use emissions close to a quarter of global emissions

 Agricultural emissions strongly concentrated in beef, dairy & rice

Subsidies to emitting commodities increase global emissions

 Trade barriers reduce emissions by reducing global demand
 Productivity enhancement cuts emissions

Building towards a better understanding of impacts of policy redesign

References

- Christophe Gouel & David Laborde, 2018. "<u>The Crucial Role of</u> <u>International Trade in Adaptation to Climate Change</u>," <u>NBER</u> <u>Working Papers</u> 25221, National Bureau of Economic Research, Inc.
- Laborde, David & Valin, Hugo, 2010. "<u>Modelling Indirect Land Use</u> <u>Effects Of Biofuels:</u>," <u>14th ICABR Conference, June 16-18, 2010,</u> <u>Ravello, Italy</u> 188100, International Consortium on Applied Bioeconomy Research (ICABR).
- Piñeiro et al, forthcoming. A scoping review on incentives for sustainable agricultural practices: from adoption to outcomes. Nature.