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Abstract

We explore the properties of voting rules and procedures employed by appellate courts

in the US. Our model features: (1) a two-stage decision-making process (first over case

disposition, then over majority opinion content), (2) dispositional consistency (the new

rule must yield the Court’s indicated case disposition when applied to the instant case),

(3) restricted bargaining entrée (only members of the winning dispositional coalition

bargain over policy), (4) competitive offers (potentially many competitive majority

opinions), and (5) absolute majority in joins (a majority of the court must endorse the

rule in the majority opinion if it is to have precedential power). We show that the

median judge is pivotal over case dispositions, although she (and others) may not vote

sincerely. Strategic voting becomes more likely as the location of the case becomes more

extreme, resulting in majority coalitions that give the appearance of less polarization

on the court, than is truly the case. The equilibrium policy depends on the composition

of the dispositional majority, and generically does not coincide with the ideal policy of

the median judge either in the dispositional majority or the bench as a whole. Rather,

opinions are drawn toward a weighted center of the dispositional majority but often

reflect the preferences of the opinion author.

Key Words: Bargaining, Judicial Politics, Super-majority Rules, Strategic Voting,

Appellate Courts.
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1 Introduction

‘Procedures plus preferences determine outcomes.’ This insight has guided the new institu-

tionalism in political science across a score of research fields: legislatures (Krehbiel (1998),

Cox and McCubbins (2007)), executives (Moe and Howell (1999), Canes-Wrone (2010)), bu-

reaucracies (Gailmard and Patty (2007), Hirsch (2016)), political parties (Snyder and Ting

(2002), Bawn et al. (2012)), electoral systems, and more.

More problematic has been the application of the key institutionalist insight to apex appellate

courts like the U.S. Supreme Court. Part of the challenge has been addressing the fraught

question: What do judges want? But even more difficult has been coming to grips with the

unique procedures employed by these bodies. The crux of the difficulty is that high appellate

courts undertake two tasks simultaneously, not one. The first is common to all courts,

namely, conflict resolution — determining a definitive winner in a legal dispute between two

parties. In this regard, multi-member appellate courts somewhat resemble juries. The second

task, undertaken in the context of a specific legal dispute, is policy making – addressing a

hitherto unresolved issue in the law by articulating a new rule or doctrine to be applied in

this and future cases. In this role, high appellate courts somewhat resemble legislatures.

The unique procedures employed by apex appellate courts largely derive from the simulta-

neous and intertwined completion of the two tasks. A prominent example is the tripartite

voting rule employed on the U.S. Supreme Court. Here, each justice casts a vote of dissent,

join, or concur (Wahlbeck, Spriggs and Maltzman (1999)). The first category indicates that

the justice disagrees with the majorityâs resolution of the conflict between the two parties

in the litigation and (consequently and necessarily) disagrees with the new rule devised by

the majority to resolve the dispute. The second two distinctions both indicate agreement

with the majority’s resolution. But they indicate differences with respect to the new rule

articulated in the court’s majority opinion. A ‘join’ endorses the new rule so it indicates “I

vote for the majority’s resolution and also endorse the majority’s new rule.” A ‘concur’ (in

starkest form) indicates agreement with the majority’s resolution of the litigants’ dispute,

but withholds endorsement of the majority’s new rule. So it indicates, “I vote for the major-

ityâs resolution but do not endorse the majorityâs new rule.”1. On the U.S. Supreme Court,

if a rule is to have precedential power it must attract five joins.

Needless to say, this tripartite voting rule is not used in any legislature since legislatures

1Some observers of the U.S. Supreme Court distinguish between “regular” concurrences and “special”
concurrences. The former are effectively joins but offer minor cavils. The latter indicate genuine policy
disagreement with the majority opinion. See Segal and Spaeth (2002).
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do not resolve conflicts in legal disputes between two contending parties. Nor is it used by

any jury since juries do not engage in policy creation. So, what are the properties of this

distinctive voting rule? More generally, if procedures plus preferences yield outcomes, what

are the implications of the basket of distinctive procedures employed on high appellate courts

like the U.S. Supreme Court and state high courts? This question has sparked enormous

empirical literatures investigating many of the Supreme Court’s procedures, for example, case

selection, opinion assignment, unstructured back-and-forth haggling over opinion content,

the order of voting in conference, and more.

Not surprisingly, formal models of high courts have struggled to accommodate the pecu-

liar procedures employed by these jury-legislature hybrids. Early models simply discarded

the jury function of high courts, treating appellate courts as ‘little legislatures’ (Hammond,

Bonneau and Sheehan (2005), Jacobi (2009)). Some models invoked the median voter the-

orem despite the absence of Condorcet-compatible procedures. Others, responding to the

wide-spread observation that majority opinions often reflect the policy views of the opin-

ion author, invoked the Romer and Rosenthal (1978) monopoly agenda setter model, as

if, counter-factually, majority opinions were offered under a closed rule (Lax and Cameron

(2007)). But these models did not explain the source or limits of the opinion author’s

monopoly agenda power; after all, any justice in the dispositional majority is free to offer

a competing opinion and sometimes do. Another group of models discarded the legislative

part of the hybrid, instead treating appellate courts as ‘big juries’ (big in the sense of sin-

gularly important) (Fischman (2011), Iaryczower and Shum (2012)). Despite the extremely

interesting insights that follow from this approach, it jettisons much of what makes high

appellate courts notable.

Fortunately, recent papers have made major strides in modeling, rather than ignoring,

the distinctive features of apex appellate courts. Within the emerging procedural real-

ism paradigm, Carrubba et al. (2012) stand outs as particularly innovative. The model in

this paper breaks the tri-partite rule in twain, treating it as two sequential votes, the first

on case disposition, the second on policy. It implicitly adopts an important constraint on

policy, disposition consistency. In words, the announced rule must yield the Court’s chosen

case resolution when applied to the instant case. And, the model introduces what can be

called restricted bargaining entrée: only members of the dispositional majority are allowed

to engage in bargaining over the Court’s soon-to-be-announced new rule. The model shows

that bargaining entrée implies that court policy is often far from the median judge on the

whole Court. Thus, the model reunites the two decisional spheres and demonstrates that

they interact in a dramatic way. Consequently, ignoring either one is seriously misleading.
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The theoretical results carry potentially revolutionary implications for the empirical study

of high courts. For example, the particular model in Carrubba et al. (2012) identifies the

median justice of the dispositional majority as decisive in controlling the content of the ma-

jority opinion and hence Supreme Court policy. This insight is itself revelatory; in addition,

it implies that the same Court will produce distributions of policies depending on the exact

make-up of the majority dispositional coalition. Thus, a 4-5 conservative case disposition

will yield a policy quite different from that following a 5-4 liberal case disposition — a result

impossible to derive in a little legislature or big jury model but one well in accord with

common observation.

In this paper, we significantly extend the procedural realism approach to appellate courts by

incorporating additional and arguably critical features of high court procedure. Following

Carrubba et al. (2012), we treat the tripartite voting rule as two sequential votes, with entrée

to policy bargaining conditional on aligning with the winning side in the first, dispositional,

vote. We depart, however, by considering in depth strategic voting at the first stage. This is

important because under restricted bargaining entrée voters face a strong incentive to be in

the dispositional majority in order to influence subsequent policy. We show that the median

of the entire court remains decisive for the dispositional vote, but the median’s vote may

not be sincere. We further identify the judges who are most and least inclined to engage in

strategic dispositional voting, and the circumstances when they will be tempted to do so.

Second, we explicitly model the relatively unstructured policy bargaining within the dispo-

sitional majority. We do so by employing Banks-Duggan/Baron-Ferejohn sequential bar-

gaining, a strong analytical tool for such situations (Baron and Ferejohn (1989),Banks and

Duggan (2000)). Critically, we incorporate the absolute-majority-in-joins (AMJ) rule em-

ployed on the U.S. Supreme Court: five joins to the majority opinion are necessary if the

opinion is to have precedential value. The AMJ rule means that the effective decisional

threshold (voting quota) in the dispositional majority varies dramatically depending on the

size of the dispositional majority, ranging from simple majority rule (when the disposition

coalition is the whole Court) to unanimity (when the dispositional majority is a bare majority

of the Court).

We show that bargaining under the AMJ rule has strong implications for policy outcomes.

In particular, author influence re-emerges, but conditionally. More specifically, when the

intensity of bargaining is low (as parameterized by the standard discount factor in sequential

bargaining models) the designated majority opinion author has wide latitude to choose policy

and opts for his policy ideal point. However, as the intensity of bargaining increases, left and
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right ideological blocks form endogenously within the dispositional majority. The Court’s

policy is then driven to the effective center of the dispositional majority coalition, as if the

two blocks were bargaining with each other. Generically, that central position does not

correspond to the ideal point of the median justice in the dispositional majority but rather

to the Nash Bargaining Solution between the two ideological blocks. Given measures of ideal

points and bargaining intensity (e.g., case importance) that point is easy to calculate.

The model studied here, while closely tailored to the U.S. Supreme Court, has broader

applicability. First, and most obviously, it applies to other appellate courts that use similar

procedures, e.g., the U.S. Courts of Appeal and most state high courts. Second, it also

applies to other decision making bodies that simultaneously produce case decisions and rules

governing case decisions. Notable here are many independent regulatory commissions which

(perhaps unsurprisingly) have adopted procedures similar to the U.S. Supreme Court in order

to engage in the joint production of case dispositions and rules governing case dispositions.

Third, albeit more distally, it has applicability to other settings with sequential decision-

making and restricted bargaining entrée, that is, access to procedural advantages conditional

on an initial vote. An example is the organization of legislatures (especially parliaments)

at the beginning of terms. There, a leader is selected by pure majority vote (in Congress),

or members must decide whether to join the government or sit on the cross-benches (in a

parliamentary setting). Then members of the winning majority receive access to procedurally

valuable resources like the control of committees, or participation in government. In broad

terms, the incentives for strategic voting analyzed here will reoccur in settings like these.

The paper is organized in the following way. Section II presents the model. Section III

examines policy bargaining within the dispositional majority. Section IV analyzes disposi-

tional voting. Section V considers some extensions, and Section VI concludes. All proofs are

presented in the Appendix.

2 The Model

2.1 Cases, Dispositions and Rules

There is a court consisting of n judges (where n is odd) that must decide a case. A case z

encodes the details of an event that has occurred, for example, the level of care exercised

by a manufacturer or the intrusiveness of a search by the police. Let Z = [0, 1] be the case

4



space. A judicial disposition d ∈ {0, 1} of the case determines which party prevails in the

dispute between the litigants.

Judges dispose of cases by applying a legal rule. A legal rule r : Z → {0, 1} maps the set of

possible cases into dispositions; it partitions the case space into cases that will be decided

for the plaintiff, and cases that will be decided for the defendant. Let X = 2Z be the space

of possible rules. We focus on an important class of legal rules, cutpoint-based doctrines,

which take the form:

r (z; y) =

1 if z > y

0 if z < y

where y denotes the cutpoint. For example, in the context of negligence, the defendant is

not liable if she exercised at least as much care as the cutpoint y.2 Let XC be the space of

cut-point rules. We have XC = {{[0, y) , [y, 1]} | y ∈ [0, 1]}. It should be clear that rules live

in an entirely different space to cases. The special structure of cut-point rules allows us to

summarize them in terms of a threshold in case-space.

2.2 Decision Making by the Court

Decision-making by the justices occurs in two distinct stages. In the first stage, each judge

casts a dispositional vote (dj ∈ {0, 1}), and the disposition of the case is determined by simple

majority rule. The dispositional votes of each judge separate the judges into dispositional

majority (denoted M ⊂ {1, .., n}) and minority coalitions. By construction, |M | ≥ n+1
2

.

In the second stage, the justices in the dispositional majority must agree upon a legal rule y

that rationalizes the chosen disposition. Consistency requires that y ≤ z if d = 1 and y ≥ z

otherwise.3

The judges in the dispositional majority bargain over the legal rule to be implemented. We

formalize this by studying a bargaining framework á la Baron and Ferejohn (1989) and Banks

and Duggan (2000). Initially, a judge from the dispositional majority is recognized to propose

a policy y that is consistent with the majority’s disposition. Upon seeing the proposal, each

2Other examples include allowable state restrictions on the provision of abortion services by medical set
providers; state due process requirements for death sentences in capital crimes; the degree of procedural
irregularities allowable during elections; the required degree of compactness in state electoral districts; and
the allowable degree of intrusiveness of police searches. Many other examples of cutpoint rules may suggest
themselves to the reader.

3For technical reasons, we require the weak inequality in both cases. We could make one of the inequalities
strict by discretizing the policy space.
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judge in the dispositional majority either votes to endorse the proposed opinion by ‘joining’

or declines to endorse the opinion by ‘concurring’. To become the policy of the court, the

proposal requires the assent of a majority of the entire court, not just the dispositional

majority. Thus, in many cases, the dispositional majority will bargain under an effective

super-majority rule.4 If the proposal is accepted, it is implemented and the bargaining game

ends. Else, the judges retire, and the process repeats itself in the following period, and this

continues until a policy of the court emerges. Delay within the bargaining game is costly,

and the judges share a common discount factor δ ∈ [0, 1).

In the first period of bargaining, we allow the identity of the proposing judge to be non-

random, reflecting the current practice where the most senior judge in the dispositional

majority determines who will write the opinion. However, in subsequent bargaining periods,

we assume judges are randomly recognized with uniform probability, reflecting the equal

right of every justice to counter-propose policies.5

2.3 Judicial Preferences

Following Carrubba et al. (2012) and Cameron and Kornhauser (2008), we assume that

judges’ preferences exhibit both expressive and policy components. Policy utility depends

on the actual policy implemented by the dispositional majority, and stems from the judge’s

concern for how future cases will be decided. Expressive utility depends neither on the

policy chosen, nor on the actual disposition of the case, but rather, on the judge’s individual

vote in the instant case.6 Whereas policy preferences are consequentialist – they depend

on actual outcomes – expressive preferences simply reflect the judge’s desire to be seen to

decide cases ‘correctly’, regardless of if or how their vote changes actual outcomes. As

will become clear, absent an expressive component of utility, judges would never have an

incentive to dissent. Rather than taking an ad hoc approach to specifying these preferences,

we present a framework that makes sense of both components in a cohesive way. We begin

by specifying the dispositional preferences of a given judge, and build both expressive and

policy preferences from this.

4Intuitively, no judge in the dispositional minority will support the proposal, since doing so would require
them to support a policy that is inconsistent with their dispositional vote.

5None of the results in the policy-making stage (Section 3) turn on the assumption of uniform recog-
nition probabilities, and, as we show in Section 5, our analysis of policy-making can easily accommodate
a more general recognition rule. However, the uniformity assumption does have implications for decision-
making at the dispositional voting stage (Section 4). We discuss the implications of non-uniform recognition
probabilities in section 5.

6Cameron and Kornhauser (2008) treats the utility of casting join vs concur votes as expressive; in
contrast, here the value of such votes comes from the policy resulting from votes.
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Suppose judge j has ideal threshold xj, and that 0 ≤ x1 ≤ .... ≤ xn ≤ 1, so that the judges

are ordered by their ideal threshold. Judge j’s dispositional utility is:

uD(dj; z, xj) =

0 if dj = r(z;xj)

l(z − xj) if dj 6= r(z;xj)

where l(·) is a quasi-concave ‘loss’ function that satisfies l(0) = 0 and l(·) < 0 otherwise

(i.e. l has a single peak at 0). There is a cost to judges when the disposition is different to

their ideal. The (strict) quasi-concavity of l implies that dispositional preferences satisfy the

increasing differences in dispositional values (IDID) property (see Cameron, Kornhauser and

Parameswaran (2019)), which entails that the cost of making ‘incorrect decisions’ becomes

larger the further is the case from the threshold xj. Intuitively, judges feel more strongly

about ‘incorrectly’ deciding ‘clear-cut’ cases (those far from the threshold), than ‘contestable’

ones (those close to the boundary that separates acceptable and unacceptable conduct).7

The expressive component of a judge’s utility is simply the dispositional utility associated

with the outcome for which she votes. To construct policy utility, we must assess the

implications for future decision-making of a given rule y. Suppose a case arises in the

future and must be decided according to the chosen decision rule. The judge’s policy utility

is her expected per-period dispositional utility from having the rule implemented, given the

distribution over cases that are likely to arise. Recall, r(z, y) is the disposition that results

from applying rule y to case z. We have:

uP (y;xj) =

∫
uD(r(z, y); z, xj)dF (z)

where cases are drawn from a continuous distribution F (z) that admits a density f(z).

The IDID property implies that policy utility uP (y;x) is strictly quasi-concave in y for

every x, although it is not necessarily concave. Moreover, the IDID property implies that,

whenever xi > xj, ∂uP (y;xi)
∂y

> ∂uP (y;xj)
∂y

, or equivalently, ∂2uP (y,x)
∂x∂y

> 0.8 Hence, preferences

exhibit the single-crossing property; the benefit from marginally increasing the policy y is

monotone in the judges’ ideal policies.

Example 1. Suppose cases are uniformly distributed on [0, 1]. In Table 1, we provide a

7Such preferences are commonly used in the judicial politics literature. For example, see Baker and
Mezzetti (2012), Chen and Eraslan (2018), amongst others.

8 To see this, note that, for any policy y and any ideal policy x, ∂uP (y;x)
∂y = (−1)1[y<x]l(y − x). Then,

∂2uP (y,x)
∂x∂y = (−1)1[y>x]l′(y − x) > 0, since l′(z) > 0 if z < 0 and l′(z) < 0 otherwise.

7



mapping between the dispositional loss function l and commonly used policy utility func-

tions, including absolute value (tent-shaped) utility, quadratic utility, and bell-curve shaped

(Gaussian density) utility. Bell-curve shaped policy utility will be shown to have some nice

properties that we make use of in later examples.

Dispositional Utility Policy Utility

l(z − xi) = −1 uPi (y) = −|y − xi|
l(z − xi) = −|z − xi| uPi (y) = −1

2
(y − xi)2

l(z − xi) = −|z − xi|e−
1
2

(z−xi)2 uPi (y) = e−
1
2

(y−xi)2 − 1

Table 1: Relationship between Dispositional and Policy Utility. The table shows the disposi-
tional utility specification that induce commonly used policy utility functions including: (i)
absolute value (tent-shaped) utility, (ii) quadratic utility, and (iii) bell-curve shaped (Gaus-
sian density) utility.

During the bargaining game, the disagreement payoff to each judge is uP (D;x). We make

the standard assumption that disagreement is worse for each judge than agreeing to any

feasible policy (i.e. uP (D, x) ≤ uP (y, x) for all y ∈ [0, 1]).

Overall utility is the sum of policy and expressive components:

uP (y;xj) + αuD(dj; z, xj)

where α > 0 denotes the relative importance of the expressive component of utility. Notice

that policy utility depends on the actual chosen policy y, whereas expressive utility depends

only upon the judge’s dispositional vote.

Our formulation of judicial preferences can be further motivated in the following way: Con-

sider a dynamic model in which the court confronts a single case in each future period, and

suppose judges discount the future at rate ρ ∈ (0, 1).9 Take a given case z, and a rule y that

decides the current and all future cases, each assumed to be an independent draw from dis-

tribution F (z). Then, the expected lifetime utility of a judge having purely consequentialist

preferences would be:

uD(r(z; y); z, xj) +
ρ

1− ρ
uP (y;xj)

Setting α = 1−ρ
ρ

, this expression almost exactly coincides with our formulation of judicial

utility. (Our formulation differs only in that current period utility depends on the judge’s

9To clarify, the discount factor δ captures the cost of delay in the bargaining phase of the court’s
deliberations in a single case. The discount factor ρ is reflects the judges’ present bias, and the passage of
time between cases.
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dispositional vote, and not the actual disposition of the case.) Moreover, under this approach,

α has a natural interpretation as the importance to utility of the current case relative to the

future stream. As α → 0, the court becomes perfectly future (and thus, policy) oriented,

whereas as α → ∞, the court ignores the future entirely, and thus only cares about the

disposition of the current case.

We should note the role of the ‘legal status quo’ within the bargaining game, as this point

has engendered some controversy among judicial scholars. We take the view that, although

there is a prior legal policy, this policy effectively reverts to a null policy when the Court

takes the case – policy is in limbo until the Court resolves the case. Indeed, our bargaining

protocol requires that bargaining continue until a majority policy is agreed to. The only way

for policy to revert to the status quo ante is for the Court to re-enact it anew in the majority

opinion. In Section 5, we consider the alternative framework in which, if bargaining fails,

policy reverts to the status quo ante. We show that our results continue to hold under this

alternative formulation, and so the question of the ‘legal status quo’ is not crucial to our

analysis.

Additionally, we note that our formulation implicitly assumes that the court can commit

to implementing its chosen policy when deciding future cases; i.e. the announced policy

is time-consistent and renegotiation-proof. In a recent paper (see Cameron, Kornhauser

and Parameswaran (2019)), we showed that the IDID property was sufficient to sustain

policy commitment in equilibrium, provided that judges were sufficiently concerned about

the future. Rasmusen (1994) provides a similar analysis, although a different mechanism

enforces commitment in his model. Beyond these, we know of no other models of collegial

courts that address the problem of commitment. Recent legislative models of sequential

policy making with evolving status quos determined by earlier rounds of policy-making are

suggestive (Baron (1996), Kalandrakis (2010)) but we do not pursue this point any farther

in this paper.

2.4 Strategies and Equilibrium

We analyze equilibrium in the policy-making stage and the dispositional-voting (adjudica-

tion) stage, in turn.

Given the repeated game structure of bargaining in the policy-making stage, strategies can be

quite complex as they may be history dependent. We restrict attention to stationary strate-
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gies, which require that players choose equivalent strategies in every structurally equivalent

sub-game.

A strategy for judge j (in the dispositional majority) in the policy-making stage is a pair

(yj, Aj), where:

• yj (z,M, δ) denotes the policy proposed by the judge, whenever she is recognized to

make a proposal, given the case and the composition of the dispositional majority

M ⊂ {1, .., n}.

• Aj (z,M, δ) denotes the set of proposals that the judge will accept, whenever she is in

the dispositional majority.

The equilibrium concept is stationary sub-game perfection with weakly undominated strate-

gies. Weak undominance requires that each judge vote for her more preferred option (re-

gardless of whether her vote would sway the outcome or not). This rules out equilibria in

which judges vote for less favored outcomes, sustained by the belief that their vote will be

inconsequential to the dispositional outcome.

A strategy for judge j at the adjudication stage is a dispositional choice dj (z;α, δ) ∈ {0, 1}
given a case z, anticipating the equilibrium rule that will be chosen in the policy-making

stage. An adjudication (Nash) equilibrium is a pair (d,M) denoting the majority disposition

and the composition of the dispositional majority, having the property that no judge could

do better by switching her vote.

3 The Policy Stage

In this section we characterize behavior in the policy-making stage for a generic dispositional

majority. In section 4, we find the optimal dispositional coalition, given the policy bargaining

that is anticipated to follow.

We begin by characterizing equilibrium proposals when δ < 1. As we will see, there will be

a range of policies proposed in equilibrium, reflecting the agenda-setting prerogative of the

opinion author. Accordingly, we distinguish our approach from median-voter-type models

that predict a single equilibrium policy. We subsequently reconcile our approach with those

appealing to median voter logic by taking the limit as the agenda-setter’s power goes to zero.

We show that, even in this scenario, the equilibrium policy will not generically coincide with

the median judge’s ideal.
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3.1 Equilibrium Characterization

Let z be the case, and suppose the dispositional majority coalition M ⊆ {1, ..., n} contains

m ∈ {k, ..., n} members, where k = n+1
2

. Without confusion, we re-label the judges in the

coalition, preserving the ordering of ideal policies, so that M = {1, ...,m} with x1 ≤ .... ≤ xm.

(Once the majority coalition has been determined, the preferences of the non-majority judges

become inconsequential to policy-making, so we are free to disregard them, and focus on the

m remaining judges.) Similarly, we are now free to focus solely on policy utility, since

dispositional utility was determined at the time of the dispositional vote.

Recall that the policy must be consistent with the disposition of the court. If the majority

disposition was 1, the majority must choose a policy in the interval [0, z], whilst if the

disposition was 0, it must choose a policy in the interval [z, 1]. Generically, the court’s

policy must be contained in [x, x], where x ∈ {0, z} and x ∈ {z, 1}.

The bargaining framework in this model is analogous to those studied by Banks and Duggan

(2000), Cardona and Ponsati (2011) and Parameswaran and Murray (2018), although there

are some important differences. Since those papers provide detailed expositions of the equi-

librium characterization, we defer to them, and instead briefly provide an intuitive account

of the equilibrium. Detailed proofs can be found in the Appendix.

Before presenting the formal proposition, we make note of two important details. First, each

judge bases her decision to support a proposal or not by comparing the policy utility from

the current proposal to her (discounted) expected policy utility from entertaining counter-

proposals. The set of equilibrium counter-proposals, thus, establishes the opportunity cost

of accepting a given proposal, which in turn establishes the set of proposals acceptable to

each judge. Since each proposer seeks to build a winning coalition around their proposal, the

anticipation of future counter-proposals disciplines each judge’s decision about which policy

to propose when they are recognized.

Second, because policy preferences satisfy the single-crossing property, in equilibrium, the

policy coalitions that support and reject any proposal will both be connected.10 We stress

that this is an equilibrium phenomenon; the decision rule does not require that the ‘join’ and

‘concur’ coalitions be connected, but optimal behavior, nevertheless, ensures that they will

be. Since the proposer only needs the support of k = n+1
2

judges, it suffices to either earn the

10To see this, note that, by the single-crossing property, for any two policies, y, y′ with y′ > y, if player i
prefers y′ to y, then every player j with xj > xi will also prefer y′ to y. Similarly, if judge i prefers y to y′,
then so will all judges j with xj < xi. The result follows immediately from this.
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support of the left-most k judges {1, ..., k} in the dispositional majority, or the right-most k

judges {m− k + 1, ...,m}, where judge m− k + 1 is the kth judge from the right. It follows

that judges {m − k + 1, ..., k} must be in every equilibrium coalition. Moreover, judges

m− k+ 1 and k are decisive in the sense that a proposal that loses their support cannot be

winning. Following Compte and Jehiel (2010), we refer to these as the left and right decisive

judges, respectively. If m = n, so that the join coalition need only be a simple majority of

the dispositional coalition, then the left and right decisive judges will both coincide with the

median judge. By contrast, for any m < n, m− k + 1 < k, and so, generically, the decisive

judges will be non-median players, with distinct preferences.

For notational convenience, we index the left and right decisive judges by l and r, so that

l = m − k + 1 and r = k. We have the following result, which is similar (though not

identical) to results previously noted by Cho and Duggan (2003), Cardona and Ponsati

(2011), Parameswaran and Murray (2018), amongst others:

Proposition 1. For δ < 1, the bargaining game admits a unique equilibrium. The equi-

librium is in no-delay, and is characterized by a pair
(
y, y
)
, with x ≤ y < y ≤ x, such

that:

1. When judge j is recognized, she will propose: yj =


y xj < y

xj xj ∈
[
y, y
]

y xj > y

2. The pair
(
y, y
)

satisfies:

• y = min{y ≥ x|uP (y;xr) ≥ (1− δ)uP (D, xr) + δ
m

∑
j uP (yj, xr)}

• y = max{y ≤ x|uP (y;xl) ≥ (1− δ)uP (D, xl) + δ
m

∑
j uP (yj, xl)}

Proposition 1 shows that our bargaining game admits a unique equilibrium which is char-

acterized by an interval [y, y] of ‘socially acceptable’ policies (i.e. which will receive the

support of at least k agents). Naturally, in equilibrium, each judge will propose the socially

acceptable policy closest to her ideal. Judges with ‘moderate’ preferences (those whose ideal

policies lie within the interval) will be able to successfully implement their ideal rule in equi-

librium, whilst judges with ‘extreme’ preferences must offer a compromise rule. All ‘extreme

left’ judges will pool on the same proposal y, whilst all ‘extreme right’ judges will pool on the

same proposal y. What constitutes ‘moderate’ and ‘extreme’ is itself determined in equilib-

rium, and depends on the discount factor δ, and the preferences of the left and right decisive
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judges. y is the highest policy that the left decisive judge is willing to accept, given her

continuation payoff. Similarly, y is the lowest policy that the right decisive judge is willing

to accept, given her continuation utility. Any proposal in the region
[
y, y
]

is equilibrium

consistent.

To make intuitive sense of Proposition 1, let E[y] =
∑

j pjy
j be the expected policy that will

be proposed (and accepted) in the continuation game. As we show in the Appendix, if E[y]

is proposed, it will receive unanimous support.11 Take a judge j in the dispositional majority

whose ideal policy lies below E[y]. Since delay is costly (δ < 1), judge j can offer a policy

slightly below E[y] and still retain unanimous support. Decreasing the offer further, she will

eventually lose the support of the right-most judge in the dispositional majority, then the

second-most-right judge, and so on. Since it suffices to have the support of the right decisive

judge, judge j will continue decreasing the offer until either she reaches her ideal policy, or

the support of the right decisive judge would be lost. Hence, the lowest acceptable policy is

pinned down by the preferences of the right decisive judge. A similar argument shows that

the highest acceptable policy is determined by the left decisive judge.

Example 2. Consider a case z = 0.45, and suppose the disposition of the court is d = 1. To

be consistent, the rule must satisfy y ≤ 0.45. Suppose there are 6 judges in the majority (out

of 9), with ideal policies x1 = 0, x2 = 0.2, x3 = 0.25, x4 = 0.3, x5 = 0.4 and x6 = 0.6. Judges

1,..,5 (and presumably the 3 dissenting judges) cast sincere dispositional votes, whilst judge

6 voted strategically. Suppose policy-making requires a majority of the entire bench, and

so k = 5. The left and right decisive judges, then, are judges 2 and 5, respectively. Policy

utility is given by uP (y, x) = −|y− x| and the common disagreement payoff is −1. Figure 1

depicts the set of socially acceptable policies for two values of δ.

In the first scenario (δ = 21
26

), judges 2,3,4 and 5 are able to propose their ideal policies in

equilibrium, whilst judge 1 must propose a compromise policy, which is the lowest policy

acceptable to the right decisive judge (judge 5). It is infeasible for judge 6 to propose her

ideal policy, and in equilibrium, she will propose the highest policy that is feasible y = 0.45.

In fact, the left decisive judge would in principle be willing to accept policies up to y ≈ 0.5,

however any policy above y = 0.45 would be inconsistent with the disposition of the case,

and thus infeasible. In the second scenario (δ = 0.95), judges 3 and 4 are able to propose

their ideal policies in equilibrium, whilst the remaining judges must propose compromise

policies.

11In typical bargaining games, this result follows from the concavity of players’ preferences. In our model,
preferences are not concave. However, the IDID property causes policy preferences to exhibit some concave-
like features.
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Figure 1: A(δ) represents the social acceptance set given a cost of delay δ. When δ =
21
26
≈ 0.8, A = [0.1, 0.45], whilst if δ = 0.95, then A = [0.2334, 0.3234]. Notice that when

δ ≈ 0.8, the consistency constraint (i.e y ≤ z) is binding. The dotted extension to A(δ ≈ 0.8)
represents the additional policies that would be socially acceptable absent the consistency
constraint.

The above example demonstrates the essential features of the equilibrium. There are a range

of policies that are potentially proposed in equilibrium. ‘Moderate’ judges may propose their

ideal policies, whereas ‘extreme’ judges (and, in particular, judges who vote insincerely)

must propose compromise rules. Whether a judge is ‘moderate’ or ‘extreme’ depends on the

preferences (and, in particular, the degree of patience) of the left and right decisive judges.

Moreover, the social acceptance set may be constrained by the facts of the case itself; the

consistency requirement may be binding.

3.2 Comparative Statics on δ

The discount rate δ parameterizes the cost of delay in bargaining, or (equivalently) the

relative ‘importance’ of the legal issue. As Example 2 demonstrates, it is also a measure of

the degree of agenda control that the proposer exerts. When δ = 0, delay is exceedingly

costly relative to the importance to each judge of implementing their ideal policy, that the

non-proposing judges will accept any feasible policy. The proposer thus has complete control

over the agenda and will propose the feasible policy closest to her ideal. As the following

lemma shows, as δ → 1, the reverse becomes true; delay becomes costless relative to the

importance of deciding the legal question correctly. The judges will bargain ‘aggressively’

over policy, such that, in equilibrium, the proposer loses control of the agenda entirely, and

all judges will makes the same proposal.

Lemma 1. In any equilibrium, y(δ) > y(δ) whenever δ < 1. Moreover,

limδ→1

(
y(δ)− y(δ)

)
= 0.
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Lemma 1 states the familiar result that when delay is costly (δ < 1), the proposer can pull

the chosen policy somewhat towards her ideal. This results in equilibrium proposals that

are dispersed around a mean. The lemma additionally shows that as δ → 1, the proposer’s

advantage disappears, and the best the proposer can do is to announce the expected policy.

(See Predtetchinski (2011) and Parameswaran and Murray (2018).) The intuition is that, as

δ → 1, delay becomes less costly, and so the decisive judges can both be more insistent that

the equilibrium policy not be too far from the expected continuation policy. This causes

the acceptance set to narrow. In the limit as delay becomes costless, the acceptance set

collapses to a singleton, and so all judges make identical proposals. Thus, δ parameterizes

the proposer’s degree of agenda-control, and captures the extent to which policy outcomes

depend on the particular whims of the judge chosen to author an opinion.

Taken together, Proposition 1 and Lemma 1 make strong predictions about the size and

composition of the ‘join’ and ‘concur’ coalitions. When delta is low (as δ → 0), the cost of

entertaining counter-proposals is sufficiently high that all judges will support the opinion of

the court. The ‘join’ coalition will consist of all judges in the dispositional majority, and

no judge will separately write a concurring opinion. By contrast, when delta is high (as

δ → 1), judges become more demanding about the set of opinions which they will join. The

size of the ‘join’ coalition will fall to a bare majority, consisting of either the left-most or

right-most k judges. In either case, the ‘concur’ coalition will consist of judges from only one

extreme (amongst those in the dispositional majority). Thus, regardless of the size of δ, an

‘ends-against-the-middle’ dynamic should never arise in which the ‘join’ coalition consists of

relatively moderate judges, and extremists from both ends concur.

3.3 Limit Equilibria & ‘Median Voter’ Logic

As Proposition 1 makes clear, equilibrium policy-making by the Court is (generically) char-

acterized by a menu of proposer-dependent policies. This feature arises from the fact of

bargaining between the judges over policies, and requires that it is costly for judges to make

(or entertain) counter-proposals. Our approach, thus, stands in contrast to many existing

studies that predict a unique policy outcome, typically by appealing to median-voter logic.

However, in the limit as δ → 1, equilibrium in our model is also characterized by a unique

policy that is proposed by all judges. Taking the limit as counter-proposals become costless,

thus, allows for fair comparisons between our model and those existing in the literature.

There is a tight connection between median-voter-type logic (or more generally, the equi-

librium concept of the core) and the limit equilibria of our bargaining game. For example,
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Cho and Duggan (2009) show that when agreement requires a simple majority of a commit-

tee, the limit equilibrium policy precisely coincides with the median committee member’s

ideal policy. The intuition is straight-forward: the logic of the median voter theorem is that

whenever the proposed policy is other than the median voter’s ideal, a majority coalition

can be found that would replace it with something closer to the median voter’s ideal. This is

true in our bargaining game as well, except that, when delay is costly, some non-core policy

might persist, simply because it is too costly to make the counter-proposal that replaces

them. As delay become costless, this friction disappears, and so the outcome of bargaining

should coincide with the median voter’s ideal.

When agreement requires a super-majority, logic analogous to the median voter theorem

predicts an equilibrium outcome in the core.12 (Indeed, under simple majority rule (with

an odd number of players), the core is uniquely the median voter’s ideal policy; see Black

(1948) and Downs (1957)). However, under super-majority rule, the core generically contains

many policies. In fact, the core is precisely the interval of policies bounded by the ideal

policies of the left and right decisive voters. This presents a problem since there are now

a continuum of possible equilibrium policies. Parameswaran and Murray (2018) show that

amongst this multiplicity, the limit equilibrium policy µ is focal – it is the one that is robust

to introducing small costs to making counter-proposals. The bargaining limit can be thought

of as a refinement that selects the most plausible core policy from amongst the multiplicity.13

Parameswaran and Murray (2018) provide an explicit characterization of this robust policy.

Let bi,i+1 be defined as follows:

bi,i+1 = arg max
y
uP (y, xl)i · uP (y, xr)m−i

To make sense of this policy, consider the following story: Suppose the judges in the dispo-

sitional majority separate into two connected factions {1, ..., i} and {i + 1, ...,m} – which

we dub the left and right factions. The factions contain i and m − i judges, respectively.

Suppose further that the factions behave as cohesive units and delegate decision making to

the left and right decisive judges, respectively. (We can thus think of the left and right

decisive judges as factional leaders.) To determine the equilibrium policy, the factional lead-

12The core is the set of policies for which there does not exist some other policy that is preferred to it by
a winning coalition.

13To justify this refinement, they note the tight connection between the core and the bargaining protocol.
When δ = 1, there are a continuum of equilibria in the bargaining game, each associated with a particular
policy within the core. However, for every δ < 1, the bargaining game admits a unique equilibrium. Thus,
our focus on the limit equilibrium is not ad hoc. Rather, we exploit the failure of lower-hemicontinuity of the
bargaining equilibrium correspondence at δ = 1. See Parameswaran and Murray (2018) for further details.
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ers engage in asymmetric Nash Bargaining, with bargaining weights proportional to their

faction’s size. bi,i+1 is the outcome that results from this procedure.14

Let µ denote the limit equilibrium policy. Parameswaran and Murray (2018) show that

the limit equilibrium of the bargaining game is closely related to this asymmetric Nash

Bargaining outcome. They show the following result:

Proposition 2. Let i∗ = min{i |xi > bi,i+1}. Then: µ = min{x∗i , bi∗−1,i∗}

Proposition 2 characterizes the common equilibrium policy that all judges will propose when

the cost of delay becomes arbitrarily small. Depending on the arrangement of the judges’

ideal policies, the limit proposal may either: (i) coincide with the ideal policy of one of

the judges having ideal policies within the core, or (ii) be the solution to the asymmetric

Nash Bargaining problem between the left and right decisive judges, with bargaining weights

proportional to the size of each faction.

In strong contrast to existing results, our analysis shows that the equilibrium policy will

generically not coincide with either the median judge on the bench15 , nor the median judge

in the dispositional majority. This should not be surprising. The logic of the median voter

theorem is particular to decision making under simple majority rule. But, as we have argued,

policy-making by the court often proceeds under an effective super-majority rule, and in such

cases, there is no reason to privilege the median judge over the others.

Parameswaran and Murray (2018) describe the logic of this result in significant detail and

we refer the interested reader to that paper. Here, we briefly provide intuition for the

result. Conjecture that µ ∈ (xi−1, xi). Since y → µ and y → µ, then for δ large enough,

xi−1 < y(δ) < µ < y(δ) < xi. Hence, when δ is large, judges 1,...,i − 1 will propose y(δ)

and judges i, ...,m will propose y(δ). It is as if the judges separate into cohesive factions,

with all members of the same faction making the same equilibrium proposal. Furthermore,

y(δ) and y(δ) were determined by the preferences of the right and left decisive judges,

respectively. Hence, we can think of the left decisive judge as bargaining on behalf of the left

faction, and the right decisive agent as bargaining on behalf of the right faction, with the

bargaining weights being proportional to the size of their respective factions. Parameswaran

14Our notation emphasizes that the factions consist of judges 1, ..., i on the one hand, and judges i+1, ...,m.
on the other.

15In fact, we establish in the following section that the robust policy will generically coincide with the
ideal policy of the median judge only when the dispositional vote is unanimous.
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and Murray (2018) show that, as δ → 1, the resulting policy coincides with the asymmetric

Nash bargaining solution between the left and right decisive agents.16

Notice that the separation into factions was endogenous to the policy chosen in equilibrium.

Hence, for the asymmetric Nash bargaining solution to indeed be equilibrium consistent,

it must be that this solution lies in the interval (xi−1, xi) — so that players separate into

the factions as conjectured. As the proof of Proposition 2 shows, there is a unique player

i∗ that determines the composition of factions, in equilibrium. There are two possibilities.

For some arrangement of ideal policies, the factions {1, ..., i∗ − 1} and {i∗, ...., n} induce a

faction-size weighted Nash Bargaining solution that is equilibrium consistent — i.e. which

falls in the required interval (xi∗−1, xi∗). Outside this range of parameters, the following

problem arises: If i∗ is conjectured to be in the left faction, then the location of the induced

Nash Bargaining solution will cause i∗ to want to defect to the right faction, and vice versa.

Player i∗ is pivotal. The only possibility is that the limit equilibrium coincides with i∗’s ideal

policy, xi∗ .

The following example may help in building further intuition for the results in Proposition

2:

Example 3. Suppose m = k = 5, so that the dispositional majority is a bare majority

of the Court. Then l = 1 and r = 5. Suppose policy preferences are bell-curve shaped:

uP (y, x) = e−
1
2

(y−x)2 − 1, and let the disagreement payoff be uP (D, x) = −1. Finally,

normalize: 0 = x1 ≤ x2 ≤ ... ≤ x5 = 0.5. The Nash bargaining solution when the left and

right factions are {1} and {2, 3, 4, 5} is b1,2 = 0.4. Similarly, for the remaining factions, we

16Binmore, Rubinstein and Wolinsky (1986) establish a similar result in the Rubinstein two-person alter-
nating offers bargaining setting.
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have: b2,3 = 0.3, b3,4 = 0.2, and b4,5 = 0.1.17 Notice that bi,i+1 is decreasing in i. Then:

µ =



b1,2 = 0.4 x2 > 0.4

x2 0.3 ≤ x2 ≤ 0.4

b2,3 = 0.3 x2 < 0.3 < x3

x3 0.2 ≤ x3 ≤ 0.3

b3,4 = 0.2 x3 < 0.2 < x4

x4 0.1 ≤ x4 ≤ 0.2

b4,5 = 0.1 x4 < 0.1

Let us check the logic of the Proposition through the example. Suppose x3 = 0.15 < 0.25 =

x4. Conjecture that µ ∈ (x3, x4). Then, per the logic in the previous paragraph, for δ large

enough, it must be that judges 1 through 3 choose y(δ) and judges 4 and 5 choose y(δ). It

follows that the equilibrium policy will be the asymmetric Nash Bargaining solution where

the the left decisive voter has weight 3
5

and the right decisive voter has weight 2
5
. This

solution is b3,4 = 0.2, which indeed lies between x3 = 0.15 and x4 = 0.25, as conjectured.

By contrast, suppose that x4 = 0.18, and conjecture again that µ ∈ (x3, x4). The same logic

would lead us to conclude that µ = b3,4 = 0.2. But this no longer satisfies the requirement

that x3 < µ < x4, since x4 = 0.18 < 0.2. Our conjecture is not equilibrium consistent. We

can similarly show that conjecturing µ ∈ (x4, x5) (or indeed, any other such interval) is not

consistent. Under this arrangement of ideal policies, judge 4 is pivotal. Conjecturing that

her ideal policy is below the limit expected policy causes us to conclude that it will, in fact,

be above. Instead conjecturing that his ideal policy is above the limit expected policy causes

us to conclude that it will be below. The only consistent alternative is that the limit policy

coincides with x4.

We note some features of the equilibrium mapping. First, for each judge between the decisive

judges, there is some arrangement of ideal policies for which they are pivotal. For example,

with 5-member majority coalition, the left and right decisive judges are judges 1 and 5,

respectively. Then, it is possible that equilibrium policy reflects the ideal policies of any

of judges 2, 3 and 4, as the cost of delay vanishes. In particular, the median judge in the

17The Nash bargaining solution is generically the weighted generalized mean of the ideal policies of the
left and right decisive voters — there exists some function f such that, whatever the ideal policies of the
decisive voters, the Nash bargaining solution satisfies: f(bi,i+1) = i

mf(xl) + m−i
m f(xr). In the special case

of the preferences in this example, the Nash bargaining solution is simply the weighted arithmetic mean of
the ideal policies. I.e. f(x) = x.
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majority (judge 3) is not generically privileged. Additionally, there are arrangements of ideal

policies under which no judge is pivotal, and the equilibrium policy is simply the solution to

the asymmetric Nash Bargaining problem between the decisive judges. Note that, although

the ideal policies of the remaining judges do not directly affect the equilibrium policy, they

matter in so far as they determine the weights attributed to each faction.

Second, bargaining pushes the equilibrium policy towards the ‘middle’ of the core. In Ex-

ample 3, the core is the interval [0, 0.5]. When the ideal policy of judge 3 (the median of the

dispositional majority) is in the middle of this interval (i.e. x3 ∈ [0.2, 0.3]), then the median

of the majority is indeed pivotal. However, as the median’s ideal policy becomes extreme,

the equilibrium switches to some other less extreme policy. For example, if x3 > 0.3, so that

the median is further to the right, then equilibrium policy switches to a policy below the

median’s ideal. Initially it switches to b2,3 —the policy that results from the judges dividing

into factions {1, 2} and {3, 4, 5}. However, this policy will cease to be equilibrium consistent

if judge 2’s ideal policy shifts too far to the right (i.e. if x2 > 0.3). If so, then the equilibrium

switches to judge 2’s ideal policy, and if this too becomes extreme (i.e. if x2 > 0.4), then the

equilibrium shifts to the Nash bargaining solution associated with blocs {1} and {2, .., 5}.
Hence, bargaining exerts a moderating force that keeps the equilibrium closer to the middle

of the core than would be the case under the median voter theorem.

In this paper, we do not take up the issue of nominations to the bench. However, in conclud-

ing this section, we briefly note the stark implications of Proposition 2 for the president’s

optimal nomination’s choice. An important implication of the proposition is that equilibrium

outcomes depend not only on the relative ordering of the ideal policies of the judges, but

their absolute location in policy space. The president’s nomination problem is, thus, not

simply a ‘move-the-median’ game. The president could nominate two different judges, both

occupying the same relative position in the ordering, but with different implications for the

equilibrium policies chosen.

4 The Adjudication Stage

We now analyze optimal behavior in the adjudication stage, at which each judge must cast

a dispositional vote.
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4.1 First Round Assignment

In the first stage, each judge must cast a dispositional vote, taking into account the equi-

librium policies that will result, given differently composed majority coalitions. This policy,

in turn, depends on which judge is selected by the chief justice (or the most senior judge

in the majority) to draft the initial proposal. For each majority coalition M ⊂ {1, ..., n},
let s (M,d, z) ∈ {1, .., n} denote the judge who is selected to make the first proposal. We

must have s ∈ M — the selected judge must be in the majority coalition. Moreover, let

γ (M,d, z) = ys(M,d,z) be the policy that the selected judge will propose in equilibrium.

The function s depends on the particular incentives faced by the chief (or most senior) judge.

In a naive model, we might suppose that the chief is purely motivated to maximize her

utility from the case. But this would imply that the chief judge always assigns the opinion

to herself – an assumption at odds with the actual practice of recent chiefs. Indeed, the

court has maintained a practice of trying to share the workload of opinion writing amongst

its members. Such a policy might be rationalized by noting that opinion writing is costly,

and so the chief makes her assignment choice taking into account the associated direct and

opportunity costs. Other factors may also be at play. Given the many additional incentives

that would need to be incorporated, it is clear that providing micro-foundations for the chief

justice’s selection is outside the scope of this paper.

Instead, we take a reduced form approach, taking the selection function s as given. We

assume s satisfies the following:

Assumption 1. Let M,M ′ ⊂ {1, ..., n} be majority coalitions.

1. Suppose j /∈M . Then s(M ∪ {j}) ∈ {s(M), j}.

2. Suppose for every i ∈ M , there exists j ∈ M ′, such that yi(z,M, δ) = yj(z,M ′, δ).

Then γ(M) = γ(M ′).

Assumption 1 is in two parts. The first part is essentially a rationality condition that appeals

to the independence of irrelevant alternatives (or Sen’s condition α). It says that introducing

a new member to the coalition shouldn’t affect the chief’s rankings amongst the previously

available members. As we show (in the proof of Lemma 2), an implication of the first

part of Assumption 1 is that, for any judge, joining the majority coalition cannot cause the

equilibrium policy to become worse, ceteris paribus.

21



The second part states that, when confronted with two different coalitions that induce the

same set of policy proposals, the chief should not make selections that cause different policies

to be induced in the different instances. If replacing judge i in the coalition with judge j

does not change the set of equilibrium proposals, then the chief should treat judges i and j

as perfect substitutes for one another. Thus, the outcome induced when one is included in

the coalition should be identical to the outcome when only the other is included.

Taken together, the two parts of Assumption 1 are intended to capture, in reduced form,

structurally sound decision-making problem by the chief. (Of course, as δ → 1, the chief’s

selection becomes inconsequential, as all judges in a given coalition will propose the same

policy.)

4.2 Optimal Dispositional Coalitions

Fix a case z. Let M0 (z) and M1 (z) denote the sets of judges who, if voting sincerely,

would choose dispositions ‘0’ and ‘1’, respectively (i.e. M0(z) = {i | z < xi} and M1(z) =

{i | z > xi}). Let (d∗,M∗) denote the adjudication equilibrium, where d∗ ∈ {0, 1} denotes

the disposition of the court, and M∗ denotes the equilibrium majority coalition.

Lemma 2. The majority coalition will include all judges who agree with the case disposition.

Formally, if (d∗,M∗) is an adjudication (Nash) equilibrium, then Md∗(z) ⊂M∗.

For a given equilibrium disposition d∗, Lemma 2 states that all judges who sincerely agree

with the disposition of the case will be in the majority coalition. The intuition is straight-

forward: Being in the majority coalition is always beneficial on the policy-utility dimension

in that it enables a judge to influence the equilibrium policy of the court, and pull the policy

(weakly) closer to her ideal. When the judge agrees with the disposition, her expressive and

policy motives are not in conflict. The benefit of voting to join the majority coalition comes

at no cost to expressive utility. Thus, it is a (strictly) dominant strategy for all such judges

to vote sincerely.

Judges who disagree with the disposition of the court face a more interesting trade-off. Voting

strategically enables them to influence the equilibrium proposal, but incurs the expressively

cost of voting insincerely. As we will see, the policy benefit of voting strategically (for each

judge) depends on whether (and how many) other judges are also voting strategically. This

gives rise to potentially multiple adjudication equilibria. To understand why, suppose the
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disposition of the court is d = 1. Let M be a coalition consisting of at least k judges, with

M1 ⊂ M , and γ(M) be the associated equilibrium policy proposal. Take two other judges,

i and j, who, if they voted sincerely, would find themselves in the minority. It follows that

γ(M) ≤ z < xi ≤ xj. We consider two scenarios that illustrate the sources of multiplicity.

First, suppose γ (M) = γ (M ∪ {i}) = γ (M ∪ {j}) < γ (M ∪ {i, j}). In this scenario,

adding one judge to coalition M has no effect on the equilibrium policy, whereas adding

both judges does. If α > 0, but is not too large, then the choices for judges i and j are

strategic complements. Judges i and j face a coordination game; they either both want to

vote sincerely, or both strategically. As long as the judges are coordinated, their choices are

Nash equilibrium consistent.

Second, suppose γ (M) < γ (M ∪ {i}) = γ (M ∪ {j}) = γ (M ∪ {i, j}). In this scenario,

adding either judge to coalition M favorably affects the equilibrium policy offered during

the policy stage. However, having added one judge, the marginal effect of the adding the

second judge is zero. The judges choices are now strategic substitutes (for α > 0 not too

large). They are playing a game of chicken; each wants to vote strategically if and only if

the other votes sincerely.

The following example illustrates both of these situations, and demonstrates the possibility

of multiple Nash equilibria:

Example 4. Consider a case z = 0.6. Policy utility is bell-curve shaped:

uP (y, x) = e−
1
2

(z−x)2 − 1, and the vector of ideal policies is: (x1, ..., x9) =

(0, 0.1, 0.3, 0.5, 0.5, 0.7, 0.8, 0.9, 1). The disagreement payoff is uP (D, x) = −1, and δ = 1

so that all judges make the same proposal.

Suppose the equilibrium disposition is d∗ = 1. Judges 1-5 will always be in the majority.

The equilibrium policies are γ(M1) = 0.3 = γ(M1 +1), γ(M1 +2) ≈ 0.414, and γ(M1 +3) =

0.5 = γ(M1 + 4), where γ(M1 + p) is the equilibrium offer when the majority coalition

contains judges 1-5 (i.e. M1) and any p ∈ {1, 2, 3, 4} of the remaining judges. (Judges in the

sincere minority are perfect substitutes for one another, so it doesn’t matter which of the

judges join the dispositional majority; just how many.) The adjudication Nash equilibria (in

which d∗ = 1) are given Table 2:

As example 4 demonstrates there may be many Nash equilibria of the adjudication game.

For ease of exposition, suppose α is very slightly positive, so that strategic voting is costly,
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Figure 2: Equilibrium policies for differently sized dispositional coalitions. See Appendix for
details.

Salience α < 0.117 α ∈ (0.11l7, 0.129) α ∈ (0.129, 0.273) α > 0.273
# Equilibria 5 2 2 1

Sincere M1 M1 M1 M1

Strategic M1 ∪ {6, 7, 8} M1 ∪ {6, 7, 8} M1 ∪ {6, 7} None
M1 ∪ {6, 7, 9}
M1 ∪ {6, 8, 9}
M1 ∪ {7, 8, 9}

Table 2: Equilibrium coalitions that implement disposition d∗ = 1. Equilibria with sincere
voting (i.e. the dispositional coalition is M1) always exist. For α < 0.273, there are also
equilibria in which judges in the sincere minority vote strategically. For α < 0.117, there
can be many such equilibria with strategic voting.
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but this cost will be small relative to the policy gains whenever strategic voting causes the

equilibrium policy to shift. Note that if all judges vote sincerely, then there is no benefit to

any one of the judges in the minority in switching her vote and joining the majority; the

equilibrium policy will be unchanged. Thus, sincere voting is an equilibrium (and this only

becomes more true as alpha increases). However, if at least two judges voted strategically,

then this would cause the resulting policy to shift, and for α sufficiently low, this joint

deviation would be beneficial to each defecting judge. The fact that equilibria with strategic

voting exist alongside the sincere equilibrium is a consequence of strategic complementarities.

Next, note that if three judges (in the sincere minority) vote strategically, there is no policy

benefit to the fourth judge also joining the coalition. For α low enough, any dispositional

majority containing judges 1-5 and three of the remaining four judges is equilibrium consis-

tent. Here, the multiplicity is a consequence of strategic substitutes —equilibrium requires

any three of the four judges is the sincere minority to vote strategically; it doesn’t matter

which ones.

Of course, as α increases, the cost of voting strategically increases, and so the possibility of

sustaining various equilibria with strategic voting decreases. By the single-crossing property,

the expressive cost of voting strategically becomes higher as judges’ ideal policies become

more extreme. Thus, as α increases, judge 9 is the first to cease voting strategically, then

judge 8, and so on.

The first type of multiplicity (strategic complements) is perverse, in the following sense: Both

judges i and j would prefer to coordinate on the equilibrium where they vote strategically.

Nevertheless, the equilibrium where they both vote sincerely can be sustained by beliefs

that that the other judge will vote sincerely. In the most extreme case, when α is sufficiently

small, we can have an equilibrium in which all judges sincerely believe that the disposition

should be 0, but all choose 1 believing that all others will do the same. On collegial courts, it

is not unreasonable to assume that such beliefs can be dispelled by communication between

the judges, and that a coalition of judges can conspire to jointly affect a favorable deviation.

To rule out perverse equilibria of this sort, we focus on equilibria that are coalition-proof (see

Bernheim, Peleg and Whinston (1987)).18 An equilibrium is coalition-proof if it is immune

18In standard bargaining models, the usual refinement is to require that strategies are weakly dominant.
This, in effect, requires each player to vote as though they were pivotal. Such a refinement is reasonable in
so far as the players’ payoffs are constant under any scenario in which their vote is not pivotal. However, in
our model, the agents will generically have a strict preference between their choices, even if their vote does
not change the ultimate dispositional outcome. Hence, the weak-dominance criterion has no bite if applied
to overall utilities, and is too strong if applied to dispositional outcomes alone.
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to self-enforcing joint deviations by groups of players (i.e. some of the deviating players

should not subsequently seek to deviate from their deviation). Whereas Nash equilibria

need only survive unilateral deviations, Coalition-proof Nash equilibria (CPNE) must also

survive joint deviations by stable coalitions. The notion of coalition-proofness thus refines

the set of Nash Equilibria, by ruling out equilibria in which a subset of agents are trapped in a

situation that is inferior, but from which they could jointly and stably escape. When strategic

complementarity creates multiple equilibria, coalition-proofness selects the equilibrium that

is ‘most plausible’, in the sense of ensuring that those complementarities are exploited as far

as possible.

Lemma 3. Let (d,M) and (d,M ′) both be adjudication (Nash) equilibria, and suppose M ⊂
M ′. Then (d,M) is not coalition-proof.

Lemma 3 shows that, whenever multiple equilibria arise (that implement the same dispo-

sitional outcome) because of strategic complementarities, the smaller coalitions cannot be

coalition-proof. The CPNE refinement thus selects the adjudication equilibrium with the

‘largest’ coalitions, pushing the court towards greater (apparent) cohesion in its decision

making.

Selecting a focal equilibrium from amongst the multiplicity that might arise when judges’

choices are strategic substitutes is less straight-forward. Our approach is motivated by the

following result:

Lemma 4. Let (d,M) be an adjudication (Nash) equilibrium. There exists a connected

coalition M ′ with |M ′| = |M | and such that (d,M ′) is also an adjudication (Nash) equilibrium

coalition. Moreover, (d,M ′) can be sustained as an adjudication equilibrium over a (weakly)

larger range of values of α than (d,M).

To make sense of Lemma 4, first note that, by the single crossing property, the net benefit of

voting strategically decreases as a judge’s ideal policy moves further away from the equilib-

rium policy. (This is evident in Example 4, and by examining equations (A3) and (A4) in the

Appendix.) Hence, more extreme judges should be less inclined to vote strategically than

moderate judges. If a majority coalition is disconnected, then a relatively extreme judge

finds it optimal to vote strategically, whilst a relatively moderate judge finds it optimal to

vote sincerely. Lemma 4 formalizes the intuition, that if this true, the moderate judge must

be willing to vote strategically if the extreme one does not. Moreover, the moderate judge

should be more willing to do so, in the sense that he would continue to vote strategically

even if the cost of insincerity (i.e. salience of expressive utility) somewhat increased.
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Disconnected coalitions arise when judges’ choices are strategic substitutes. For the remain-

der of this paper, we will focus attention on equilibria where both majority and minority

coalitions are connected. Since for every equilibrium coalition that is disconnected, there is

a corresponding connected coalition that induces the same disposition and the same equi-

librium policy, limiting attention to connected coalitions is not substantively restrictive.

Additionally, this equilibrium selection mechanism has two desirable features. First, as the

second part of Lemma 4 tells us, connected coalitions are equilibrium consistent over a larger

range of the salience parameter α than a corresponding disconnected coalition. It follows

that connected coalitions are ‘robust’, in the sense that they are least brittle to perturbations

in the salience of expressive utility. Second, as an empirical matter, coalitions appear for the

most part to be connected.

We are now ready to characterize the main results in this section.

Proposition 3. There exists a Connected Coalition-Proof Adjudcation Equilibrium (CC-

PAE). Moreover:

1. For any CCPAE (d,M):

• If d = 1, then M = {1, ..., j1}, where j1 ≥ n+1
2

.

• If d = 0, then M = {j0, ....n}, where j0 ≤ n+1
2

.

2. There exist at most two CCPAE. Moreover, if (d,M) and (d′,M ′) are distinct CCPAE,

then d 6= d′.

3. For each z ∈ [0, 1], there exists α(z) ≥ 0, such that if α > α(z), then the CCPAE is

unique.

Proposition 3 makes several claims. First, it shows that a connected coalition-proof adjudi-

cation equilibrium always exists. Although, it is trivial to show that a Nash equilibrium of

the adjudication game exists, the Proposition shows that there is at least one that survives

the refinements that we impose. In fact, as part 2 of Proposition shows, our refinements

admit at most two equilibria – one for each dispositional outcome. Moreover, part 3 of the

Proposition shows that when expressive utility becomes sufficiently salient, there can only

be one adjudication equilibria that is connected and coalition-proof.

Parts 2 and 3 of Proposition 3 taken together imply the following: When α is sufficiently

high, the expressive component of preferences disciplines sufficiently many judges from voting
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strategically as to prevent one dispositional outcome or the other from arising in equilibrium.

(In many case, but not always, the prevailing outcome will be the one that would arise if all

judges cast their dispositional votes sincerely.) By contrast, when α is low enough, policy

preferences dominate the decision-making of enough judges, that both outcomes can be

sustained as equilibria. Judges are strongly motivated to be in the dispositional majority

so that they can pull the equilibrium policy towards their ideal. The adjudication game

resembles a dispositional coordination game. Most judges care less about which disposition

prevails, than ensuring that they are part of the majority coalition. In particular, there will

be equilibria in which a strong majority of judges favor one disposition, and yet the chosen

disposition is the other.

An immediate corollary to Proposition 3 is that the court will (generically) be unanimous

in any CCPAE when α = 0. In practice on the Supreme Court, dissents by at least one

judge are common, and 5-4 dispositional votes are not uncommon. Thus, we highlight the

important role that expressive preferences play in describing behavior on the Court. Neither

our model, nor any that is broadly similar, would be able to explain dissents if limited to

judicial preferences that were purely consequentialist.19

Although, when α is sufficiently low, our refinement procedures may fail to select a unique

equilibria, in practice, there might be other mechanisms that determine which of these

equilibria prevail. For example, our modelling of the adjudication game assumed that dispo-

sitional voting occured simultaneously. The recent practice on the U.S. Supreme Court, by

contrast, is for each justice to cast their vote in order of seniority. If there is a unique CC-

PAE, it shouldn’t matter whether voting is simultaneous or sequential. By contrast, when

there are multiple equilibria and voting is sequential, the order in which judges cast their

votes may determine which equilibrium is selected.

Proposition 3 also describes the features of equilibrium coalitions. In any connected,

coalition-proof adjudication equilibrium, the proposition shows that the majority coalition

will contain all but (possibly) the most extreme right judges, if the disposition is ‘1’, or all but

(possibly) the most extreme left judges, if the disposition is ‘0’. An immediate implication

of Proposition 3 is that the median judge will always be in the dispositional majority and so,

the median justice is ‘pivotal’ over the case disposition. We stress, however, that whilst the

19A model in search of a consequentialist account would by necessity be dynamic, where the role of the
dissent is to increase the likelihood of the current policy being over-turned in the future. Whilst we do not
deny the merits of such an argument, we do note the many complexities such a model invites. For example,
in any such model, by construction, judges will not be able to commit to implement currently chosen policies
in the future. This would significantly dampen the import of policy-making today, and thus diminish the
value of the dissent.
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Salience α < 0.118 α ∈ (0.118, 0.585) α ∈ (0.585, 1.285) α > 1.285
No. CCPAE 2 2 1 1

d = 1 M = {1, ..., 9} M = {1, ..., 9} None M = {1, ..., 5}
d = 0 M = {1, ..., 9} M = {5, ..., 9} M = {5, ..., 9} None

Potentially All {5, ..., 9} {5} None
Strategic?

Table 3: CCPAE Equilibria in Example 5

median justice is pivotal, it need not follow that the disposition of the court coincides with

the median judge’s sincere assessment of the case; she may vote strategically. We illustrate

this in Example 5, below.

A related implication of Proposition 3 is that the median judge will always be one of the deci-

sive judges in the policy-making stage. However, unless the dispositional vote is unanimous,

some other judge will also be decisive. To the extent that opinion-writers have agenda-setting

power, the median judge may still be able to implement her ideal policy if she is assigned to

write the opinion. However, as this agenda-setting privilege disappears (i.e. as δ → 1, and

the equilibrium policy stems from ’median-voter-like’ logic), the median voter’s ideal policy

will generically not be implemented. Instead, the equilibrium policy will either be to his

left or right, depending on whether the majority coalition contains mostly leftist or rightist

judges.

Example 5. Consider a case z = 0.55. Suppose again that policy preferences are bell-curve

shaped: uP (y, x) = e−
1
2

(y−x)2 − 1, and let the disagreement payoff be uP (D, x) = −1. Let

the ideal policies be: x1 = x2 = x3 = x4 = 0 < x5 = 0.5 < 0.7 = x6 = x7 = x8 = x9

(i.e. there is a relative extreme homogeneous left bloc of 4 judges, a relatively moderate

right bloc of 4 judges, and a centrist median judge). The median judge’s ideal disposition

is d∗ = 1. Again, for simplicity, suppose δ = 1, so that all judges make the same proposal

in equilibrium. Figure 3 illustrates this setup, and the equilibrium policies that will result,

for each dispositional outcome, depending on whether the minority bloc votes strategically

or not. The CCPAE are described in Table 3.

x

x1 = x2 =
x3 = x4

0 0.2 0.4

x5 z

0.6

x6 = x7 =
x8 = x9

0.8 1

γ({1, .., 5})
d = 1

γ({1, .., 9})
d = 1

γ({5, .., 9})
d = 0

γ({1, .., 9})
d = 0

Figure 3: Equilibrium policies chosen for differently composed dispositional majorities.

It follows that α(z) = 0.5848. We note that even when equilibria are unique and the median

judge is dispositionally pivotal, the outcome need not comport with the median judge’s ideal
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disposition. There will be strategic voting unless α > 1.2848. Moreover, as α increases, more

extreme judges become less likely to vote strategically. Thus, the median judge potentially

votes strategically over the largest range of α, whereas the left bloc of judges vote strategically

over the smallest range of α.

As Example 5 illustrates, when α is low, regardless of their actual preferences, there is a

CCPAE in which all judges choose disposition d = 1, and a CCPAE where they all choose

disposition d = 0. A similar result arises in Fischman (2008), although the mechanism is

different. In Fischman’s model, unanimity arises because it is costly to dissent (for example,

because it would require the judge to expend resources writing a dissenting opinion). In our

model, unanimity arises because the hedonic cost of voting insincerely is low relative to the

policy gains.

4.3 Comparative Statics

4.3.1 Effect of Salience of Expressive Utility

As Example 5 demonstrates, the incentives for judges to vote strategically vary with the

salience of expressive preferences α, and the distance of the case from each judge’s ideal

threshold. Intuitively, as expressive concerns become more salient, strategic voting becomes

harder to sustain, and so the majority coalition shrinks in size. In fact, if expressive concerns

are sufficiently large, then no judge will vote strategically, and equilibrium coalitions and

case dispositions will reflect the sincere preferences of the judges.

Fix a case z. Let d(z) ∈ {0, 1} denote the sincere disposition, which is the disposition that

would prevail if all judges voted sincerely. We have d(z) = 1[|M1(z)| > |M0(z)|]. Similarly,

let M(z) denote the sincere majority coalition: M(z) = Md(z)(z). The above ideas are

reflected in the following Lemma:

Lemma 5. The following are true:

1. The size of equilibrium coalitions (with the same disposition) is decreasing in expressive

concerns. (Formally, let (d,M) and (d′,M ′) be CCPAE associated with salience levels

α and α′, with α > α′. If d = d′, then M ⊆M ′.)

2. When expressive concerns are sufficiently large, there is unique CCPAE characterized

by sincere voting. (Formally, for a given case z, there exists α(z) > 0 s.t. for α > α(z)

there is a unique CCPAE (d,M) with d = d(z) and M = M(z).)
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The features described in Lemma 5 are evident in Figure 4.3.2, below.

4.3.2 Effect of Case Location

One of the key insights of this paper is that rule-making by the court cannot be divorced from

the specific facts of the case being adjudicated. (This stands in contrast to ‘legislature-like’

models of the judiciary, where the court purely focuses on choosing a policy, to which end

the facts of the instant case are purely incidental.) Example 2 demonstrated that the case

facts directly affected the set of feasible policies that the Court could implement, and that

the consistency requirement might be binding.

The location of the case also affects the composition of the dispositional majority, and this

will likely affect the equilibrium policy, even when the consistency constraint is non-binding.

This occurs for two reasons. First, suppose all judges cast dispositional votes sincerely.

Then, starting from the median judge’s ideal threshold, as the case becomes more and more

extreme, the number of judges who find themselves in the majority will increase. (This is

rather obvious.)

Second, and more subtly, changing the case location can change the incentives for judges to

vote strategically, and thus affect the composition of the dispositional majority. To see this,

consider the example below, whose setup is identical to Example 5. We now two cases that

would both result in the same dispositional majority if judges voted sincerely:

Example 6. Suppose that policy preferences and ideal policies are as in Example 5. Let

α = 0.3. Consider two cases: z1 = 0.1 and z2 = 0.4. In both scenarios, the case is

located between the ideal policy of the left bloc and the median judge, so that the sincere

disposition and sincere majority coalition would be d(zi) = 0 and M(zi) = {5, .., 9}. Both

scenarios admit a unique CCPAE, with disposition d = 0.

• When z = 0.1, the majority coalition will be the entire bench M = {1, .., 9}, and the

equilibrium policy will be γ = 0.5. There is strategic voting by the left bloc.

• When z = 0.4, the majority coalition will consist of a bare majority M = {5, .., 9},
and the equilibrium policy will be γ = 0.66. There is no strategic voting.

We stress that, in both scenarios, each judge would ideally decide both cases the same way.

However, when z is close to the left bloc’s threshold, the cost of strategic voting is lower,
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and thus the judges are more inclined to vote strategically, to pull the ideal policy closer to

their ideal.

Although the set-up in the previous example is stark, it reflects a more general relationship

between case location, the composition of dispositional majorities and the policy of the court.

We see this relationship in Figure 4 below:

Figure 4: Impact of case location and the salience of the expressive component of utility on
the composition of the dispositional majority, and the resulting policy. Policy preferences are
bell-curve shaped: uP (y, x) = e−

1
2

(z−x)2 − 1, and the disagreement payoff be uP (D, x) = −1.
The vector of ideal policies be (x1, ..., x9) = (0.1.0.15, 0.3, 0.35, 0.5, 0.85, 0.9, 0.95, 1). As
usual, δ = 1, so that all judges make the same proposal in equilibrium. The left panel shows
actual CCPAE dispositions and majority coalitions. The right panel shows dispositions and
coalitions if the judges voted sincerely.

The left panel of Figure 4 shows how the equilibrium dispositions and coalitions vary as

a function of case location and the salience of expressive utility. The blue and red areas

represent regions where the majority disposition is d = 1, and d = 0, respectively. Darker

regions indicate larger coalitions. The right panel represents the disposition and majority

coalitions if judges voted sincerely. These regions would be vertical bands, since the outcome

under sincere voting is independent of α.

One way to observe the extent of strategic voting is to see how ‘sloped’ or ‘curved’ the

boundaries of the regions are. Naturally, as α becomes sufficiently large and sincere voting

dominates, the lines demarking the coalitions become more vertical. Moreover, fixing any

α, we notice that as the case becomes more extreme, equilibrium coalitions are more likely

to be larger, and the likelihood of strategic voting increases. Indeed, since x9 = 1, if judges
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voted sincerely, judge 9 would always choose d9 = 0. However, allowing for strategic voting,

judge 9 potentially chooses d = 1 over a large range of cases, when α is low.

Tying the results from sections 3 and 4 together, then, yields the following insight. When

the case is ‘moderate’ (in the sense of being close to the median judge’s ideal threshold),

then majority coalitions are likely to be smaller, and the resulting equilibrium policy is likely

to be more extreme (in the sense of being farther from the median judge’s ideal). As the

case becomes more ‘extreme’ (i.e. farther from the median judge’s threshold), then majority

coalitions will become larger, and the resulting policy will likely be more moderate (i.e. closer

to the median judge’s ideal).

5 Extension

In this section, we consider the implications of relaxing some of the uniformity assumptions

in the analysis.

5.1 Non-uniform Recognition Probabilities

In the baseline model, we assumed that, during the policy bargaining stage, each judge in the

dispositional majority would be recognized with equal probability to make counter-proposals.

The uniformity assumption is not at all crucial in the policy bargaining stage, and our results

are robust to allowing that different judges to be recognized with the different probabilities

(perhaps reflecting differences in judges areas of expertise or interest). Indeed, we prove the

version of Proposition 1 with generic recognition probabilities in the Appendix. The only

change is that, the bargaining weights used to define the Nash bargaining solution depend

on the recognition probability weighted size of each faction – rather than simply the number

of members in each faction. Our focus on uniform recognition probabilities is thus, in part,

motivated to keep the model simple.

However, the assumption does play an important role in our analysis of dispositional voting.

An implication of uniformity (along with Assumption 1) was that by joining the dispositional

majority, a judge could pull the equilibrium policy (weakly) towards her ideal. If we enter-

tained arbitrary recognition probabilities for every dispositional majority coalition, then by

joining the majority coalition, a judge may cause the policy to become worse from their

perspective, by skewing (counter)-proposal power towards judges whose ideal policies are far
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from the contemplating judge’s ideal. Thus, absent sufficient structure on the behavior of

recognition probabilities across coalitions, we could neither conclude that coalitions would

be connected, nor that the dispositional majority contains every judge who sincerely agrees

with the outcome (i.e. Lemma 2 would no longer hold).20

5.2 Different Salience of Expressive Utility

In the baseline model, we also assumed that all judges trade-off the policy and expressive

components of utility at the same rate α. Obviously, this assumption has no bearing on

judges decisions during the policy bargaining phase. However, loosening this assumption

will affect the nature of the judges’ dispositional choices. In particular, there is no longer

any guarantee that an equilibrium will exist in which the dispositional coalition is connected

(i.e. Lemma 4 will not obtain). (Similarly, weakening part 2 of Assumption 2 will cause

judges voting strategically to no longer be perfect substitutes for one another. This may

result in disconnected coalitions.)

Although the implication is qualitatively similar to the effect of allowing non-uniform recog-

nition probabilities, the mechanism is quite different. In that scenario, the result stemmed

from the effect on equilibrium policy. The fact of changing recognition probabilities had

the effect of potentially worsening policy outcomes for a given judge by virtue of his joining

the dispositional majority. Here, policy outcomes are unaffected. The effect arises simply

because judges are trading-off the same expressive losses and policy gains, differently. (Note

importantly, that unlike the previous subsection, when α can vary, Lemma 2 will still ob-

tain —all judges who sincerely agree with the outcome will definitely join the dispositional

majority. The problem only arises for judges who disagree with the outcome, and therefore

face a trade-off between policy and expressive utility.)

20Of course, the uniform structure that we impose is stronger than is necessary. For example, Lemma
2 would still obtain under the following structure: There are arbitrary recognition probabilities for the
unanimous coalition (pN1 , ..., p

N
n ) where N = {1, ..., n}. For any smaller coalition C ⊂ N , the recognition

probabilities of non-member judges is reduced to 0, and the probabilities for all member judges is scaled
proportionally i.e.

pCi =

{
pN
i∑

j∈C pN
j

i ∈ C

0 i /∈ C
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5.3 Reversion to Status Quo

A legislature may propose changes to a given law repeatedly, however, unless one of those

proposals is accepted, it is understood that the existing law continues to be in effect. The

same cannot be said of courts. As we argued in Section 2, the mere fact that the court agrees

to hear a case signals to the community that the legal landscape is apt to change, even if

the court fails to implement that change in deciding the instant case. Thus, our preferred

model specification does not include a status quo policy and instead requires that the court,

through the bargaining process, eventually settle on a new policy for the court.

Nevertheless, one might ask how our results would change if we instead assumed that failure

to agree resulted in reversion to the status quo ante. The bargaining procedure would

be amended as follows: in the event that a proposal is rejected, with probability δ a new

proposer is selected and bargaining continues; however, with probability 1−δ, the bargaining

terminates (exogenously), and the policy reverts to the status quo. This might represent the

rare set of cases where no majority can be found to support any given opinion.

With this re-interpretation of the bargaining process, Proposition 1 (and all of the subsequent

results) continue to hold true, replacing the disagreement utility with the utility of the status

quo policy. Thus, our analysis is perfectly compatible with this alternative formulation.

Of course, reversion to a status quo imposes different costs on different judges, depending

on where the status quo stands in relation to their ideal policy. As such, the equilibrium

policies will be different, even if the essential structure of the equilibrium is unchanged.

One can show (see Banks and Duggan (2006)) that, if the status quo lies outside the core

(i.e. ysq /∈ [xl, xr]), then with δ < 1, there will be a range of equilibrium policies that

are proposed in equilibrium, and that the social acceptance set becomes narrower as the

likelihood that bargaining fails gets smaller (i.e. δ becomes larger). Moreover, as δ → 1,

equilibrium proposals converge to a unique policy, characterized by the asymmetric Nash

bargaining solution, as in Proposition 2. The analysis from section 3 carries through exactly

as described.

However, if the status quo lies within the core (i.e. ysq ∈ [xl, xr]), then for any δ, the only

policy that is equilibrium consistent is the status quo itself. (It turns out that, in this case,

the status quo policy exactly coincides with the asymmetric Nash bargaining solution, by

construction, so Proposition 2 continues to hold, albeit trivially.)

Although we do not take up the issue of certiorari decisions in this paper, this last point may

shed some light on the issue. Since whenever the status quo lies within the core, the court
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will fail to amend the existing rule, we should not expect the court to hear cases where such

an outcome is likely to obtain. Moreover, since the core consists of the interval between the

median judge’s ideal, and the ideal policy of the other decisive judge (which, in the event

of a unanimous dispositional vote, is also the median judge), it would be improvident for

the court to grant cert on cases that where the status quo ante lies too close to the median

judge’s ideal policy.

Even when the status quo policy lies outside of the core (so that policies are chosen through

a genuine process of bargaining), its location affects the policies that will be chosen in

equilibrium. Interestingly, as the status quo policy becomes more extreme, the policy that

is implemented is likely to be more moderate (in the sense of being closer to the ‘middle’ of

the core), ceteris paribus. (See Parameswaran and Murray (2018).) Thus, policy-making by

the court exhibits path dependence, with existing rules shaping the sorts of rules that courts

can implement in the future.

6 Conclusion

In this paper, we presented a new model of judicial decision-making on multi-member appel-

late courts like the U.S. Supreme Court. Such courts undertake two interconnected tasks:

they must render judgment, i.e. announce a disposition of the case, and formulate a legal

rule that rationalizes the chosen disposition. In our model, these decisions are made se-

quentially, by majority rule. In the first stage, the judges cast dispositional votes, with a

majority deciding the disposition of the case. The dispositional vote also determines the

subset of judges who participate in the second stage that decides the legal rule governing

the case. The policy of the court is determined by bargaining among the members of the

dispositional majority, and requires endorsement by a majority of the full bench rather than

a majority of the dispositional majority. The model treats the bargaining process as an

infinite horizon game of sequential offers in which bargaining can be very intense or rather

perfunctory, depending on parameter values. Judges are assumed to have preferences over

both case dispositions and policy rules, and those preferences are required to be consistent

with one another (in the sense that the latter may be derived from the former).

Our framework highlights several important features of the logic of decision making in in-

stitutions that employ joint case disposition-rule making procedures. In turn, that logic has

strong implications for observed votes, dispositional and policy coalitions, and policy out-

comes. Many are new to the literature on apex appellate courts and are testable empirically.
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Several aspects of the logic of decision making stand out. First, in order to join the bargainers

who select the policy, each judge may have an incentive to vote strategically in the first stage

determination of the disposition. Moreover, the costs and benefits of voting strategically

may vary along two dimensions of the nature of the case to be decided: (a) since the court’s

announced policy must be consistent with its disposition, there are limits on how much

a strategically voting judge can ‘moderate’ the court’s policy; (b) because dispositional

preferences satisfy the property of increasing differences in dispositional value, the immediate

cost of voting strategically depends on the location of the case relative to the rule cut-point.

Judges may more profitably vote strategically if the case appears ‘contestable’ from their

perspective, than if it appears clear cut.

We show that, despite incentives for strategic voting, in equilibrium the median judge is

pivotal over case dispositions. Furthermore, we show that equilibrium dispositional coali-

tions are connected – meaning that the most extreme judges are the least likely to vote

strategically. By contrast, moderate judges face strong incentives to vote contrary to their

preferred outcome, in order to affect the court’s policy outcome. In particular, although the

median judge is dispositionally pivotal, she may nevertheless vote strategically; the majority

disposition does not always coincide with the median judgeâs ideal.

Second, because rules require majority endorsement from the entire court, the dispositional

majority faces an effective super-majority requirement if dispositional majorities are non-

unanimous. We characterize the equilibria of unidimensional sequential spatial bargaining

games for any (super)-majority condition. These equilibria generically depend upon the ideal

policies of the agents in the dispositional majority as well as the location of the case. An

analytic contribution of this paper is in characterizing the limit equilibria of such bargaining

games as the discount parameter δ approaches 1, which we interpret as the limit as the cost

of proposing counter-proposals becomes arbitrarily small – in other words, as bargaining

becomes intense. We believe this situation is particularly interesting given the institutional

setting of an apex court. We show that, in the limit, the dispositional majority endogenously

separates into two factions. The announced rule is either the ideal policy of some pivotal

judge (not necessarily the median of the dispositional majority), or the result of asymmetric

Nash Bargaining between representative leaders of the factions, with bargaining weights

proportional to factional size. Importantly, in the limit, the chosen policy will never coincide

with the ideal policy of the median judge – and so whilst the median judge decides the

disposition of the court, she does not determine the policy of the court. This result stands

in contrast to both median voter results and median-of-the-majority results that have been

proposed in the existing literature.
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The model makes testable predictions in three areas: 1) the size and composition of disposi-

tional voting coalitions, including strategic dispositional voting, 2) the size and composition

of policy coalitions (join coalitions) formed around the majority opinion; and 3) the con-

tent (spatial location) of majority opinions. As some empirical implications are both novel

and subtle, an extended discussion might better be undertaken in tandem with data. Some

predictions, however, flow straight-forwardly from the basic logic of decision-making. For

example, the model predicts that the extent of author influence over majority opinion con-

tent is inversely related to bargaining intensity. In other words, the majority opinions of

cases that engender less intense bargaining will tend to be located near the ideal point of

the opinion author, while cases that engender intense bargaining will tend to be driven

toward a (weighted) center of the dispositional majority. The difference in the respective

opinion locations can be substantial when dispositional majorities are large. As an example

of a more subtle but easily testable prediction, the model indicates that policy coalitions

(join coalitions within the dispositional majority) will be built from one side or other of the

dispositional majority; they will not involve both-sides-against-the-middle voting. Finally,

searching for evidence of strategic dispositional voting is apt to require empirical ingenuity

but is far from impossible.

As mentioned in the Introduction, the model applies not only to the U.S. Supreme Court

and state supreme courts but to many independent regulatory commissions. The model thus

affords a new lens for understanding decision making on those bodies, which in turn present

rich opportunities for new empirical analyses in light of the model’s predictions.

7 Appendix

Proof of Proposition 1. The proof is similar to that in Parameswaran and Murray

(2018). Since uP is non-concave, we must first establish that equilibria must be in no-delay

pure strategies. Let

vP (F (y);F (x)) = uP
(
F−1(F (y));F−1(F (x))

)
= uP (y, x)

= −

∣∣∣∣∣
∫ F−1(F (y))

F−1(F (x))

l(z − x)dF (z)

∣∣∣∣∣
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be the policy utility after re-scaling the policy space. Notice that vP is concave in F (y):

∂2vP
∂F (y)2

= −
∣∣∣∣l′ (y − x)) · 1

f(F (y))

∣∣∣∣ < 0

Now, take any (possibly mixed) profile of strategies in the continuation game. Let σ(y, t) be

the implied distribution over outcomes, where σ(y, t) is the probability that policy y is agreed

to at time t. Let ∆uP (y, x) = uP (y, x) − uP (D, x) be the utility gain over disagreement of

policy y for a judge with ideal policy x. Similarly, define ∆vP (F (y), F (x)). Let ŷ be the

policy defined by: F (ŷ) =
∑∞

t=0

∫ F (x)

F (x)
σ(F (y), t) · δtF (y)dy.

Then, the judge i’s continuation payoff (over disagreement) if the current proposal is rejected

is:

δ∆U(xi) = δ
∞∑
t=0

∫ x

x

σ(y, t) · δt∆uP (y, xi)dy

= δ

(
∞∑
t=0

∫ F (x)

F (x)

σ(F (y), t) · δtdy

)
·
∞∑
t=0

∫ F (x)

F (x)

σ(F (y), t) · δt(∑∞
t=0

∫ F (x)

F (x)
σ(F (y), t) · δtdy

)∆vP (F (y), F (xi))dy

≤ δ

(
∞∑
t=0

∫ F (x)

F (x)

σ(F (y), t) · δtdy

)
·∆vP (F ((̂y)), F (xi))

< ∆uP (ŷ, xi)

where we use the facts that vP is concave, and that δ
∑∞

t=0

∫ F (x)

F (x)
σ(F (y), t) · δtdy ≤ δ < 1.

Hence, there is a policy ŷ that is strictly preferred by every judge to the continuation game.

It is immediate, then, that there is a proposal for every judge that is socially acceptable and

preferable to the continuation game. Moreover, since uP is strictly quasi-concave, this policy

is unique. Hence, every equilibrium must be in pure strategies and no-delay.

The acceptance set for any judge i is Ai = {y ∈ [x, x |∆uP (y, xi) ≥ δ∆U(xi)}. Since uP (y;xi)

is strictly quasi-concave in y, each individual acceptance set is an interval Ai = [y
i
, yi].

Let C ⊂ {1, ...,m} be any coalition containing at least k members. Then, the coalitional

acceptance set AC = ∩i∈CAi is also an interval. Moreover, since each Ai (and thus each AC)

contains ŷ, the social acceptance set A = ∪CAC must be an interval as well. Denote A be[
y, y
]
.
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Given this social acceptance set, the optimal offers for each agent are:

yi =


y xi ≤ y

xi xi ∈
(
y, y
)

y xi ≥ y

For notational convenience, we often denote uP (y, xi) by ui(y). For any x ∈ X, let P (x) =∑
xi<x

pi. (The proof allows for pi’s to be different, although we typically focus on the case

of pi = 1
m

.) Then, given acceptance set
[
y, y
]
, the expected utility of each judge i is:

Ui
(
y, y
)

= P
(
y
)
ui
(
y
)

+
∑

j:xj∈(y,y)

pjui
(
xj
)

+ (1− P (y))ui (y)

The remainder of the proof proceeds in two steps. First, we show that in any equilibrium,

y = y
r

and y = yl. Next, using this fact, we show that the equilibrium is a fixed point

of a mapping, and that the mapping admits a unique fixed point. This suffices to prove

uniqueness of the equilibrium.

Step 1. For any player i, suppose ui
(
y
)
≤ (1− δ)u + δUi

(
y, y
)

— i.e. that ∆ui(y) <

δ∆Ui(y, y). Since policy preferences satisfy the Spence-Mirlees condition, it must be that:

∆uj
(
y
)
< δ∆Uj

(
y, y
)
. To see this, suppose not; i.e. suppose uj

(
y
)
≥ (1− δ)u+ δUj

(
y, y
)
.

Then:

∆ui(y)−∆uj(y) < δ[∆Ui
(
y, y
)
−∆Uj

(
y, y
)
]

Recall, that policy preferences satisfy the Spence-Mirlees condition, and so xi < xj implies
∂
∂y

(∆ui −∆uj) ≤ 0 (see footnote 8). Then:

∆Ui
(
y, y
)
−∆Uj

(
y, y
)

= P
(
y
) [

∆ui
(
y
)
−∆uj

(
y
)]

+
∑

j:xj∈(y,y)

pj
[
∆ui

(
xj
)
−∆uj

(
xj
)]

+ (1− P (y)) [∆ui (y)−∆uj (y)]

≤ ∆ui
(
y
)
−∆uj

(
y
)

But by assumption, ui
(
y
)
−uj

(
y
)
≤ δ [Ui − Uj] < Ui−Uj, which is a contradiction. Hence,

∆ui
(
y
)
≤ δ∆Ui

(
y, y
)

implies that ∆uj
(
y
)
< δ∆Uj

(
y, y
)

whenever xj > xi. We can

similarly show that ∆ui (y) ≤ δ∆Ui
(
y, y
)

implies ∆uj (y) < δ∆Uj
(
y, y
)

whenever xj < xi.

Suppose y < y
r
, then any proposal y ∈

[
y, y

r

)
will be rejected by agent r and all agents
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j > r. But since r = k, this implies that fewer than k agents will accept the proposal,

which means it cannot be in the acceptance set. Hence y ≥ y
r
. Suppose y > y

r
. Take any

proposal y ∈
(
y
r
, y
)

. By construction ∆ur (y) > δ∆U
[
y, y
]

, and so uj (y) > δ∆U
[
y, y
]

for

all agents j < r. But since r = k, this implies that at least k agents will accept proposal y.

But this contradicts the assumption that y is outside the acceptance set. Hence y = y
r
. We

can similarly show that y = yl.

Step 2. We now show that the equilibrium exists and is unique. For each i, define ζ
i
(z) =

miny∈X {y ≤ xi|∆ui (y) ≥ δ∆Ui (y, z)} and ζ i (z) = maxy∈X {y ≥ xi|∆ui (y) ≥ δ∆Ui (z, y)}.
Since ui is continuous and X compact, then ζ

i
and ζ i are both continuous. Note also that:

ζ ′
j
(y) =


δ(1−P (y))

1−δP
(
ζ
j
(y)

) · u′j(y)

u′j

(
ζ
j
(y)

) ζ
j
(y) > x

0 ζ
j
(y) = x

and:

ζ
′
i (y) =


δP (y)

1−δ+δP(ζi(y))
· u′i(y)

u′i(ζi(y))
ζ i (y) < x

0 ζ i (y) = x

By the previous step, we know that y = yl and y = y
r
. Hence, y = ζ l

(
y
)

and y = ζ
r

(y).

Let H (y) = ζ l

(
ζ
r

(y)
)

. H is continuous since ζ
r

and ζ l are both continuous. It follows that

if
[
y, y
]

is an equilibrium acceptance set, then y is a fixed point of H, and y = ζ
r

(y). Since

X is compact and H is continuous and onto X, it follows by Brouwer’s fixed point theorem

that H admits a fixed point y. Hence, an equilibrium of the bargaining exists.

To establish that H has a unique fixed point, it suffices to show that H ′ (y) < 1 for any y

that is a fixed point. (If there exist multiple fixed points, then H ′ ≥ 1 for at least one fixed

point.) By construction:

H ′ (y) =

A (y) · u
′
l(y)
u′l(y)

· u
′
r(y)

u′r(y)
x < y ≤ y < x

0 y = x or y = x

where y = ζ
r

(y) < min {xr, y}, and A (y) =
δP(ζr(y))
1−δ+δP (y)

δ(1−P (y))

1−δP(ζr(y))
∈ (0, 1).

Suppose H (y) ≥ 1. Then at least one of

∣∣∣∣u′l(y)u′l(y)

∣∣∣∣ > 1 or

∣∣∣∣ u′r(y)

u′r(y)

∣∣∣∣ > 1. There are several cases
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to consider. First, suppose

∣∣∣∣ u′r(y)

u′r(y)

∣∣∣∣ > 1. Since y < min {xr, y} then u′r
(
y
)
> 0. If y ≤ y ≤ xr,

then 0 ≤ u′r (y) ≤ u′r
(
y
)
, which contradicts

∣∣∣∣ u′r(y)

u′r(y)

∣∣∣∣ > 1. Hence y < xr < y, and so u′r (y) < 0.

Suppose additionally xl ≤ y < y. Then u′l
(
y
)
< 0 and u′l (y) < 0. Hence u′r(y)

u′r(y)
< −1, and

u′l(y)
u′l(y)

> 0, and so H < 0, which cannot be. Hence y < xl ≤ xr < y, and so:

u′l
(
y
)

u′l (y)
· u
′
r (y)

u′r
(
y
) =
−l
(
y − xl

)
l (y − xl)

· l (y − xr)
−l
(
y − xr

) ≤ 1

since l (z) is weakly increasing for z < 0 and weakly decreasing for z > 0. Hence H < 1,

which cannot be, and so

∣∣∣∣ u′r(y)

u′r(y)

∣∣∣∣ ≤ 1.

Next, suppose that

∣∣∣∣u′l(y)u′l(y)

∣∣∣∣ > 1. Since y > max
{
xl, y

}
, then u′l (y) < 0. If xl ≤ y ≤ y, then

u′l (y) ≤ ul
(
y
)
≤ 0, which contradicts that

∣∣∣∣u′l(y)u′l(y)

∣∣∣∣ > 1. Hence y < xl < y, and so u′l
(
y
)
> 0.

Suppose additionally that y < y ≤ xr. Then u′r
(
y
)
> 0 and u′r (y) > 0. Hence u′r(y)

u′r(y)
> 0,

and
u′l(y)
u′l(y)

< −1, and so H < 0, which cannot be. Hence y < xl ≤ xr < y. But we know

that this implies H < 1, which also cannot be. Hence our initial supposition was wrong;

H ′ (y) 6≥ 1. Hence, H ′ < 1 and so H admits a unique fixed point.

Proof of Lemma 1 . Recall, the acceptance set is A = [yr, yl], where yr = min{y ≥
x |∆ur(y) ≥ δ∆Ur(y, yl)}, and yl = max{x ≤ x |∆ul(y) ≥ δ∆Ul(yr, y)}. Now, by con-

struction ∆ul(yr) ≥ ∆ul(xl), since l will accept xr. Then, since u is strictly quasi-concave,

∆ul(y) > ∆ul(yl) for all y ∈ (yr, yl). Similarly, ∆ur(y) > ∆ur(yr) for all y ∈ (yr, yl). Hence

∆Ul(yr, yl) > ∆ul(yl) and ∆Ur(yr, yl) > ∆ur(yr) whenever yr < yl.

Now, for every δ < 1, ∆ul(yl)
∆Ul(yr,yl)

= δ =
∆ur(yl)

∆∆Ur(yr,yl)
, and so as δ → 1, we need ∆Ul(yr, yl) −

∆ul(yl) → 0 and ∆Ur(yr, yl) − ∆ur(yr) → 0. But this requires yl − yr → 0. Hence A =

[yr, yl]→ [µ, µ] as δ → 1.

Proof of Proposition 2 . Take any i ∈ {1, ...,m}, and suppose µ ∈ (xi−1, xi). Then,

by Lemma 1, there exists δ̄ < 1 s.t. for δ > δ̄, xi−1 < yr (δ) < yl (δ) < xi. (For clarity,

we make explicit the dependence of yr and yl on δ.) Then, by Proposition 1, all judges

j ∈ {1, .., i− 1} will propose yr and all judges j ∈ {i, .., n} will propose yl. Again by
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Proposition 1, this implies that:

∆ur
(
yr
)

= δ
[
(1− Pi) ∆ur

(
yr
)

+ Pi∆ur (yl)
]

(1)

∆ul (yl) = δ
[
(1− Pi) ∆ul

(
yr
)

+ Pi∆ul (yl)
]

(2)

where Pi =
∑

j≥i pj. By the implicit function theorem, this system of equations pins down

yr and yl in terms of the model parameters.

Now, let E [y] = (1− Pi) yr + Piyl. Note, by construction, that yr < E [y] < yl. Then

yl−E [y] = 1−Pi
Pi

(
E [y]− yr

)
. We affect the following change of variables: Let ε = E [y]−yr.

Then, we have: yr = E [y]− ε and yl = E [y] + 1−Pi
Pi
ε. Equations (1) and (2) become:

(1− δ (1− Pi)) ∆ur (E [y]− ε) = δPi∆ur

(
E [y] +

1− Pi
Pi

ε

)
(3)

(1− δPi) ∆ul

(
E [y] +

1− Pi
Pi

ε

)
= δ (1− Pi) ∆ul (E [y]− ε)(4)

By the implicit function theorem, and since u is continuously differentiable, we have: (1− δ (1− Pi))u′r
(
yr
)
− δPiu′r (yl) − (1− δ (1− Pi))u′r

(
yr
)
− δ (1− Pi)u′r (yl)

(1− δPi)u′l (yl)− δ (1− Pi)u′l
(
yr
) (

1−Pi
Pi
− δ (1− Pi)

)
u′l (yl) + δ (1− Pi)u′l

(
yr
)
( ∂E[y]

∂δ
∂ε
∂δ

)
=

(
(1− Pi) ∆ur

(
yr
)

+ Pi∆ur (yl)

Pi∆ul (yl) + (1− Pi) ∆ul
(
yr
) )

Taking limits as δ → 1, we have:[
0 −u′r (µ)

0 1−Pi
Pi
u′l (µ)

](
limδ→1

∂E[y]
∂δ

limδ→1
∂ε
∂δ

)
=

(
ur (µ)

ul (µ)

)

These imply that:

lim
δ→1

∂ε

∂δ
= −ur (µ)

u′r (µ)
=

Pi
1− Pi

ul (µ)

u′l (µ)

The second equality provides an equation that uniquely defines the limit equilibrium.

Next, we note that equation defining µi coincides with the first order condition of the ith

Nash Bargaining problem. Recall, that problem was: maxy∈X u
l
P (y)1−Pi urP (y)Pi . Since

utilities are concave, the maximizer must be the solution to the first order condition:

(1− Pi)
ulP,y(bi−1,i)

ulP (bi−1,i)
+ Pi

urP,y(bi−1,i)

urP (bi−1,i)
= 0. Re-arranging gives the desired result.

Notice that bi−1,i is increasing in Pi. (To see this, re-arrange the first order condition to give:
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u′l(bi−1,i)

u′r(bi−1,i)
· ur(bi−1,i)

ul(bi−1,i)
= − Pi

1−Pi . We know that b ∈
[
xl, xr

]
. By single-peakedness, over this region

we know that ulP (b) is strictly decreasing in b and ur (b) is strictly increasing in b, and so
ur(b)
ul(b)

is strictly decreasing in b. Similarly, by concavity (after transformation) of u, u′l (b) is

decreasing in b and u′r (b) is increasing in b, and so u′r(b)
u′l(b)

is weakly decreasing in b. Hence, the

left hand term is strictly decreasing in b. The right hand term is also strictly decreasing in

P . Hence, as P increases, so must b.) Then, since Pi is decreasing in i, it follows that bi−1,i

is decreasing is as well.

Since we conjectured µ ∈ (xi−1, xi), then the limit equilibrium policy coincides with ith Nash

Bargaining solution provided that xi−1 < bi−1,i < xi. Now, since xi is increasing and bi−1,i

is decreasing in i, then by the definition of i∗, xi < bi,i+1 for all i < i∗ and xi ≥ bi,i+1 for

all i ≥ i∗. Moreover, for i < i∗, xi−1 ≤ xi < bi,i+1 ≤ bi−1,i, which is inconsistent. Similarly,

for i > i∗, bi−1,i ≤ xi−1 ≤ xi, which is inconsistent. Hence, if bi−1,i ∈ (xi−1, xi), then i = i∗.

Note however, that the converse need not be true. Setting i = i∗ gives two possibilities:

(i) xi
∗−1 < bi∗−1,i∗ < xi

∗
, or (ii) xi

∗−1 ≤ xi
∗ ≤ bi∗−1,i∗ (with at least one inequality strict).

The former case is equilibrium consistent, and since the equilibrium is unique, we have

µ = bi∗−1,i∗ .

Suppose the latter case prevails. It follows that the limit equilibrium is not contained in any

of the open intervals (xi−1, xi), and so µ ∈ {x1, ..., xm}. (In fact, since yr < xr and yl > xl

for all δ, and since limδ→1 yr = µ = limδ→1 yl, then xl ≤ µ ≤ xr, and so µ ∈
{
xl, ..., xr

}
.)

Suppose µ = xi for some i ∈ {l, ..., r}. Let I = {j|xj = xi} and denote I = {i−, ..., i+},
where i− ≤ j ≤ i+ for all j ∈ I. (Obviously, I may be a singleton, in which case i− = i = i+.)

Let Π−i =
∑

j<i− pj and Π+
i =

∑
j>i+ pj and Πi =

∑
j∈I pj. Then, for δ sufficiently large, (1)

becomes:

urP (y
r
) = δ

[
Π−i u

r
P (y

r
) + Πiu

r
P (xi) + Π+

i u
r
P (yl)

]
Since y

r
< xi < yl, there exists γ ∈ (0, 1) s.t. xi = γyr + (1− γ)yl. We can write (1) as:

urP (yr) = δ
[
(Π−i + Πiγ)urP (yr) + (Π+

i + Πi(1− γ))urP (yl)
]

+ δ
[
Πiγ(urP (y

r
)− urP (xi)) + Πi(1− γ)(urP (yl)− urP (xi))

]
(5)

Notice (5) is the sum of two terms, with the first term being analogous to the expression in

(1), and the second term being a ‘correction’ term.

We repeat the procedure for equation (2), and then apply the change of basis method above,

and take limits as δ → 1. Since yr → xi and yl → xi, the ‘correction’ term in (5) goes to

zero. It follows that µ = b(ρ∗), where ρ∗ = Π+
i + Πi(1 − limδ→1 γ(δ)). Now, there must
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be some k s.t. bk,k+1 < b(ρ∗) = xi < bk−1,k. Moreover, it must be that k ∈ I, since

bi+,i++1 < b(ρ∗) < bi−−2,i−−1, by construction. But then, we can choose i appropriately s.t.

bi,i+1 < xi < bi−1,i. But this requires i = i∗.

Proof of Lemma 2. Let z be an arbitrary case. Suppose d∗ = 0. (The other scenario

is analogous.) Recall M0 = {j|xj > z}. Moreover, all feasible second stage policies must

satisfy y ≥ z. Suppose there is a j, such that j ∈M0 and j /∈M∗. Then

uj
(
dj = 1; d−j

)
− uj

(
dj = 0; d−j

)
> 0[

uP (γ(M), xj)− uP
(
γ(M ∪ {j}), xj

)]
+ αl(z − xj) > 0

By assumption 1, the term in square brackets is non-positive, since joining the coalition

cannot make the policy worse from j’s perspective. Moreover, the second term is negative

by construction. Hence the LHS is negative, which is a contradiction. Hence j ∈M∗.

Derivation of Example 4. Begin with the equilibrium proposals. First, we show that

for any bargaining weight φ ∈ [0, 1], the solution to the Nash bargaining problem

max [ul(y)− ul(D)]φ [ur(y)− ur(D)]1−φ is simply b(φ) = φxl + (1 − φ)xr. To see this, note

by the first order conditions, that the Nash bargaining solution satisfies:

φ
u′l(y)

ul(y)− ul(D)
+ (1− φ)

u′r(y)

ur(y)− ur(D)
= 0

Now, since ui(y) = e−
1
2

(y−xi)2 − 1 and ui(D) = −1, then
u′i(y)

ui(y)−ui(D)
= −(y − xi). The result

follows immediately.

Next, we find the equilibrium policy for each coalition size. Suppose none of the disagreeing

judges join the coalition. Then M = 1, .., 5, and since k = 5, then l = 1 and r = 5. It

is easily verified that b2,3 = 0.2 <= x3 = 0.3 ≤ b3,4, and so by Proposition 2 judge 3 is

pivotal. Now, suppose one of the disagreeing judges joins the coalition. No matter which

one does, the decisive judges will be l = 2 and r = 5. Again, it is easily verified that

judge 3 is pivotal. Suppose instead that two disagreeing judges join the coalition. Again,

no matter which two these are, the decisive judges will be l = 3 and r = 5. We can verify

that x3 = 0.3 < 29
70

= b3,4 < 0.5 = x4, and so by Proposition 2, no judges is pivotal, and

the equilibrium policy is determined as if the judges break into two coalitions, with judges

1, 2 and 3 on the left, and judges 4, 5, and the two disagreeing judges, on the right. If
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three disagreeing judges join, then l = 4 and r = 5. Since judges 4 and 5 share the same

ideal policy bargaining is trivial, and their ideal policy is implemented. Similarly if all four

disagreeing judges join, then l = 5 = r, and so judge 5 is pivotal. The median voter theorem

applies.

Now, we check for equilibria. *** Do this ***

Proof of Lemma 3. Suppose (d,M) and (d,M ′) are both adjudication (Nash) equilibria,

with M ⊂ M ′. Since M and M ′ are both equilibrium coalitions, it (generically) must be

that M ′ ≥ M + 2, where X denotes the cardinality of set X. (To see this, note that if

M ′ = M ∪ {i} where i /∈ M , then it must be that judge i is exactly indifferent between

joining the majority coalition or not; otherwise, i would have a strictly improving unilateral

deviation. This indifference is non-generic and requires an exact alignment of the case, the

equilibrium policies chosen by the respective coalitions, and the salience parameter α.)

Note by Lemma 2 that Md(z) ⊆ M ⊂ M ′. WLOG, suppose d = 1. Then, by part

1 of Assumption 1, γ(M) ≤ γ(M ′ \ {j}) ≤ γ(M ′) for every j ∈ M ′ \ M , since M ⊂
M ′ \ {j}. Moreover, for all j ∈ M ′ \ M , γ(M) ≤ γ(M ′) ≤ z < xj. Now, since M ′ is

a Nash equilibrium coalition, then uP (γ(M ′), xj) + αl(z, xj) ≥ uP (γ(M ′ \ {j}), xj) for each

j ∈M ′\M , and given the above ordering, we know that uP (γ(M ′\{j}), xj) ≥ uP (γ(M), xj).

Hence uP (γ(M ′), xj) + αl(z, xj) ≥ uP (γ(M), xj) for all j ∈ M ′ \ M , and this inequality

will generically be strict for some j. Hence, the joint deviation from M to M ′ is Pareto

improvement within the deviating coalition.

We must also show that this deviation is stable. Suppose not. Then there exists a (strict) sub-

coalition C ⊂M ′\M that would deviate back to voting sincerely. It must be that C contains

at least two judges, since otherwise it is a unilateral deviation, which cannot be, since M ′ is

a Nash equilibrium coalition. (This implies that M ′ \M contains at least 3 judges.) Take

some k ∈ C. By construction, M ′ \C ⊂M ′ \ {k} ⊂M ′, and so γ(M ′ \C) ≤ γ(M ′ \ {k}) ≤
γ(M ′). Since the deviation from the deviation is profitable, we have: uP (γ(M ′ \ C), xk) >

uP (γ(M ′, xk) +αl(z, xk) ≥ uP (γ(M ′ \ {k}, xk), where the second inequality follows from the

fact that M ′ is an equilibrium coalition. Hence uP (γ(M ′ \ C), xk) > uP (γ(M ′ \ {k}), xk),
which cannot be since γ(M ′ \ C) ≤ γ(M ′ \ {k}) < xk. Hence, the deviation is stable.

Proof of Lemma 4. Let (d,M) be an adjudication (Nash) equilibrium, and suppose M is

not connected. WLOG, suppose d = 1, so that, by Lemma 2, M1 (z) ⊂ M . Since M1 is a

connected coalition and M is disconnected, M must contain members of M0 (z). Then there
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exists i < j with i, j ∈M0 (z), i /∈M and j ∈M . Then z < xi ≤ xj. Let M ′ be identical to

M except that judge j is replaced by judge i. By part 2 of Assumption 1, it must be that

γ(M) = γ(M ′). (To see this, note that replacing judge i with j causes the social acceptance

set to be unchanged, and that both judges will make the same proposal (y).) Since M is an

equilibrium, it must be that:

uP (γ(M), xj) + αl(z − xj) ≥ uP (γ(M − {j}), xj)

and:

uP (γ(M ∪ {i}), xi) + αl(z − xi) < uP (γ(M), xi)

We seek to show that M ′ is also an equilibrium coalition. It suffices to show that:

uP (γ(M ′), xi) + αl(z − xi) ≥ uP (γ(M ′ − {i}), xi)

and:

uP (γ(M ′ ∪ {j}), xj) + αl(z − xj) < uP (γ(M ′), xj)

If xi = xj, it is trivial to do so, since i and j have identical preferences. Suppose xi < xj.

Note that:

{[
uP (γ(M), xj)− uP (γ(M − {j}), xj)

]
+ αl(z − xj)

}
−
{[
uP (γ(M ′), xi)− uP (γ(M ′ − {i}), xi)

]
+ αl(z − xi)

}
=

(∫ γ(M)

γ(M−{j})
l(y − xj)dy + αl(z − xj)

)
−

(∫ γ(M)

γ(M−{j})
l(y − xi)dy + αl(z − xi)

)

=

∫ xj

xi

∂

∂x

[∫ γ(M)

γ(M−{j})
l(y − x)dy + αl(z − x)

]
dx

=−
∫ xj

xi

[∫ γ(M)

γ(M−{j})
l′(y − x)dy + αl′(z − x)

]
dx

≤0

where the final line follows from the fact that γ(M − {j}) < γ(M) ≤ z < xi < xj and that,

by the IDID property, l′(y−x) > 0 for all y < x. It follows that (7) implies (7). By a similar

argument, we can show that (7) implies (7). Hence, M ′ is an equilibrium coalition as well.

Moreover, if xi < xj, then the inequality above is strict, and continues to be so for some

α′ > α and even for some γ(M ′) < γ(M).

Proof of Proposition 3. Part (1) is straight-forward. Fix a case z. Suppose (d,M) is a
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CCPAE. By Lemma 2, Md ∈ M . Suppose Md 6= ∅. Then, by the ordering over judges,

1 ∈ Md if d = 1 and n ∈ Md if d = 0. Since M is connected and contains at least k = n+1
2

agents, then n+1
2
∈M . Hence either {1, ..., n+1

2
} ⊂M or {n+1

2
, ..., n} ⊂M . (If Md = ∅, then

the result follows provided that we rule out equilibria that relies upon a majority of judges

voting strategically, but not those judges with the lowest cost of doing so.)

To show part (3), let (d,M) and (d′,M ′) be distinct CCPAE, and suppose that d = d′. Then,

by Lemma 2, Md(z) ⊂ M and Md′(z) ⊂ M ′. Since M and M ′ are connected, this implies

(WLOG) that M ⊂ M ′. But then, by Lemma 3, M cannot be coalition-proof, which is a

contradiction. Hence, d 6= d′. Since distinct CCPAE must have distinct dispositions, and

there are only two possible dispositional values, then there can be at most two CCPAE.

The existence of an adjudication (Nash) equilibrium follows by standard game theoretic

results. We now establish the existence of a CCPAE. Let (d0,M0) be an adjudication (Nash)

equilibrium, and suppose it is a candidate to be a CCPAE. By Lemma 3, we know that

thereis no larger adjudication equilibrium with the same case disposition (i.e. there is no M ′

with M0 ⊂M ′ s.t. (d0,M
′) is an adjudication equilibrium. If (d0,M0) is not a CCPAE, then

there must exist some other coalition C0 and induced disposition d′0 s.t. all the members of

M0 ∩ C0 prefer to deviate from (d0,M0) to (d′0, C0). Moreover, no subset of the deviators

M0 ∩ C0 should have a strict incentive to deviate from C0. Immediately, this implies that

(d′0, C0) is an adjudication (Nash) equilibrium.

By construction, it cannot be that d′0 = d0, since any smaller coalition inducing the same

case disposition must be inferior for the deviating judges (by Lemma 3). Hence d′0 = 1− d0.

Using the same logic as in Lemma 4, if C0 is disconnected, we can always find some other

coalition C ′0 that is connected and which implies a strictly favorable deviation for the judges

in M0 ∩ C ′0. Hence, it is WLOG to focus on deviations by connected coalitions. Hence

(d1, C0) is a connected adjudication (Nash) equilibrium, where d1 = 1 − d0. Let (d1,M1)

be the largest connected coalition that implements case disposition d1 = 1 − d0. Clearly

C0 ⊆ M1. (d1,M1) is the only other candidate for a CCPAE. Suppose it is not. Then, by

the same argument, there must be some connected C1 ⊆M0, s.t. (d0, C1) is preferred by all

judges in the deviating coalition M1 ∩ C1, and this deviating coalition is stable.

Since each deviation flips the case disposition, and coalitions are connected, then the median

judge must be a member of the deviating coalition in each case. WLOG, suppose d0 = 0

and d1 = 1. We have:

(6) uP (γ(C0), xmed) + 1[z < xmed]l(z − xmed) > uP (γ(M0), xmed) + 1[z > xmed]l(z − xmed)
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and

(7) uP (γ(C1), xmed) + 1[z > xmed]l(z − xmed) > uP (γ(M1), xmed) + 1[z < xmed]l(z − xmed)

Suppose xmed < z. By assumption 1, γ(C0) ≤ γ(M1) ≤ z ≤ γ(M0) ≤ γ(C1). It cannot

be that xmed ≤ γ(M1), otherwise uP (γ(M1), xmed) > uP (γ(C1), xmed), which contradicts (6).

Hence: γ(C0) ≤ γ(M1) < xmed < z ≤ γ(M0) ≤ γ(C1). But then, by the strict quasi-

concavity of uP , uP (γ(M0), xmed) ≥ uP (γ(C1), xmed) > uP (γ(M1), xmed) ≥ uP (γ(C0), xmed).

But 6 implies that uP (γ(C0), xmed) > uP (γ(M0), xmed) (since 1[xmed < z]). We have a

contradiction. By a symmetric argument, we can show that a contradiction arises in the

scenario that xmed > z. Hence, it cannot be that both (d0,M0) and (d1,M1) are both not

CCPAE. Existence is established.

Finally, we establish part (2). Fix some case z. For j = {1, .., n−1
2
}, define:

αj(z) =
uP (γ({j + 1, ..., n}), xj)− uP (γ({j, ..., n}), xj)

l(z − xj)

If xj < z, so that j’s ideal disposition is d = 1, then whenever α > αj(z), there cannot be an

adjudication equilibrium in which j is the left-most judge who votes strategically. Similarly,

for j = {n+3
2
, ..., n} define:

αj(z) =
uP (γ({1, , ..., j − 1}), xj)− uP (γ({1, ..., j}), xj)

l(z − xj)

If xj > z, so that j’s ideal disposition d = 0, then whenever α > αj(z), there cannot be an

adjudication equilibrium in which j is the right-most judge who votes strategically. Finally,

define:

αn+1
2

(z) =
uP (γ({1, ..., n+1

2
}), xmed)− uP (γ({n+1

2
, ..., n}), xmed)

l(z − xmed
)

Recall M1(z) and M0(z) are the coalitions that arise if judges vote sincerely. Since n is odd,

one of these will be larger than the other. We refer to the larger coalition as the ‘sincere

majority coalition’ and the smaller coalition as the ‘sincere minority coalition’.

We consider two scenarios. First, suppose |M1(z)−M0(z)| ≥ 2. This implies that if judges

vote sincerely, the size of the majority and minority coalitions will differ by at least two.

Then, for all α ≥ 0, there exists an adjudication (Nash) equilibrium in which all members

of the sincere majority coalition vote sincerely. (To see why, note that if all judges in the
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sincere majority coalition vote sincerely, then no judge is pivotal over the case disposition.

The result is then an immediate consequence of Lemma 2. Note, of course, that judges in

the sincere minority might nevertheless have an incentive to vote strategically.)

We show that, for α sufficiently large, there cannot be an adjudication (Nash) equilibrium

which implements the opposite disposition. Suppose there is. By Lemma 4, we know that

it suffices to focus on connected equilibria. Suppose M1(z) > M0(z) + 1, so that the sincere

disposition is d = 1. The connected majority coalitions that implement the opposite dispo-

sition (d = 0) and satisfy Lemma 2 are of the form: {j, , , n}, where j ∈ {1, .., n+1
2
} ⊆M1(z).

Define α(z) = max{α1, ..., αn+1
2
}. By construction, if α > α(z), then none of these coalitions

is consistent with an adjudication equilibrium. Hence, if α > α(z), there cannot be any

adjudication equilibria that implement the sincere minority’s preferred disposition. Hence,

any adjudication equilibrium must implement the sincere majority’s preferred disposition.

By previous arguments, there is a unique CCPAE that achieves this.

Suppose instead that M0(z) > M1(z) + 1, so that the sincere disposition is d = 0. Then the

result obtains by defining α(z) = max{αn+1
2
, ..., n}.

Next, consider the scenario where |M1(z)−M0(z)| = 1, so that, if all judges vote sincerely,

the median is pivotal. This scenario differs from the previous one only insofar as the median

judge may have an incentive to vote strategically for α low enough, even if all other judges

in the sincere majority vote sincerely. Again, first suppose that xmed < z, so that the sincere

disposition is d = 1. Define:

α(z) = min
{

max{α1, ..., αn+1
2
},max{αn+3

2
, ..., αn}

}
Following the same logic, there is a unique equilibrium provided that α > α(z). Supposing

instead that xmed > z, then the result obtains by defining:

α(z) = min
{

max{α1, ..., αn−1
2
},max{αn+1

2
, ..., αn}

}

Proof of Lemma 5. [To do]
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