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I. Introduction 

Social scientists have long recognized the principal-agent problem inherent in the delegation of 

authority by governments to bureaucratic officials (e.g., Mitnick, 1980; Wilson, 1989; Williamson, 

1996; Aghion and Tirole, 1997; and a large literature in public choice). In economics, there exists 

a rich theoretical literature outlining complicated contracts that align the principal’s and agent’s 

incentives (e.g., Laffont and Tirole, 1993; Bénabou and Tirole, 2006). An alternative and potentially 

more powerful solution is to find a technology that can greatly reduce the agent’s scope for hidden 

actions.  

The execution of environmental policy in China provides an appealing setting to explore these 

issues. A salient feature in China’s political system is that local officials are given high-powered 

incentives to achieve certain economic and social targets, which link their performance in these 

targets to their promotion as in a career concerns model (Holmström, 1999).1 While such an 

incentive system can be effective in achieving targets, it creates incentives to cheat. The case of air 

pollution data is an especially poignant example of this dilemma: in recent years, reducing air 

pollution became an important target of the central government (i.e. the principal), yet the power 

of collecting pollution information is designated to local officials (i.e. the agents). Due to the 

historically high cost to verify local information and the near-term benefits to high pollution in 

terms of economic growth, local officials have strong incentives to manipulate air pollution data 

before reporting them to the central government. The data quality problem is likely to impose 

significant costs, because it allows for inefficiently high ambient concentration of pollution, causes 

individuals and organizations to undertake inefficient levels of defensives investments, complicates 

government efforts to undertake international agreements to reduce emissions, 2  and, on the 

research side, raises questions about the credibility of linking pollution measures to key outcomes 

such as life expectancy and human capital (Chen et al. 2013; Ebenstein et al. 2017; Ebenstein and 

Greenstone 2020). 

This paper examines the introduction of automatic pollution monitoring as a key part of China’s 

extraordinarily successful “war on pollution” (Greenstone et al. 2020). The aims of monitoring 

automation were to provide reliable measurements of pollution to identify local officials’ success 

                                                 
1 For example, Li and Zhou (2005) document a positive correlation between economic growth and promotion 

probability of provincial leaders, which pioneers a growing empirical literature on the consequences of career concerns. 
Recently, He et al. (2019) show that political incentive plays an important role in China’s environmental regulation 
and local governments impose more stringent regulation on firms located closer to water quality monitoring stations. 

2 For example, it was reported that China was reluctant to allow other countries to verify its carbon emission data 
until the Paris Agreement where China signed on to an agreement that outlines a single transparent verification system 
for all countries: https://www.pri.org/stories/2017-11-08/china-really-stepping-world-s-new-climate-leader. 

https://www.pri.org/stories/2017-11-08/china-really-stepping-world-s-new-climate-leader
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at achieving their targets and where more stringent policy is necessary, as well as to close any gaps 

between reported concentrations and true concentrations.3 In this context, automatic monitoring 

enables real-time sharing of data with the central government and the public and improvements 

in quality assurance checks through cross-validation statistical tools. This change greatly increases 

the costs for local governments to influence or manipulate the data and provides a compelling 

context to investigate the efficacy of technology to limit the hidden actions of local officials. 

Our analysis exploits several appealing features of the setting. We collect the exact date that 

automatic monitoring was implemented in 123 different cities with 654 monitoring stations, which 

provides station-specific regression discontinuity (RD) designs to test for manipulation. Moreover, 

the implementation date varies across cities, allowing for event-study designs that provide a longer-

run test for manipulation.  

There are three key findings. First, there is striking evidence of the underreporting of air 

pollution concentrations before automation and improvement in data quality after automation. 

The station-level RDs based on city-level variation on the exact day that monitoring was automated 

indicate that reported PM10 concentrations increased by 35 μg/m3 or 35% (relative to the post-

automation mean of 99.5 μg/m3) on average, just after monitoring was automated. Moreover, the 

increase in reported PM10 concentrations post-automation is also evident in DiD designs that exploit 

the variation in the timing of automation across cities, indicating that the higher recorded 

concentrations were a longer-run phenomenon. In comparison, there is no discontinuity in 

Aerosol Optical Depth (AOD) around the automation date, suggesting that satellite-based measure 

of air quality did not change right after implementation. We also provide corrected pre-automation 

PM10 data that are derived from the application of an artificial neural network to post-automation 

data on PM10, AOD, and weather data, which we believe could be useful for other researchers.   

Second, the estimation of city-specific RD designs produces quantitative measures of the degree 

of government misconduct for 74 cities. It is rare to have such measures and the variation across 

cities is striking: under-reporting is indicated in 33 cities, because they have associated positive 

estimate that are statistically significant at the 5% level and 12 of these statistically significant 

estimates exceed 75 μg/m3. We explore several potential explanations for this variation and the 

most consistent findings are that city-level underreporting is negatively correlated with city-level 

GDP per capita and positively correlated with the true pre-automation PM10 concentrations. 

Third, we find that the introduction of automated monitoring likely increased investments in 

goods that protect individuals from air pollution. Specifically, we find a sharp increase in online 

                                                 
3 From our discussion with regulators, we learn that typical ways of manipulation include selected reporting and 

intentional misreporting. Public media often covers more colorful ways such as spraying water in front of a monitor, 
which may be less common in routine reporting. 
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searches for air filters and anti-haze face masks right after automation and this increase was 

sustained. Since automation was accompanied by increased efforts to inform the public about air 

pollution, it is not possible to isolate whether the changes in internet search behaviors were due to 

individuals updating their estimates of air pollution concentrations or learning about air pollution 

more generally or some combination of both. Regardless, it seems apparent that individuals’ 

investments in defensive measures were below their optimum before automation, suggesting that 

biased and imperfect information imposed meaningful welfare costs. 

This paper contributes to several strands of literature. First, the Chinese government has been 

adopting new monitoring and surveillance technologies in many sectors, but little is known about 

the consequences. While an extensive literature exists on the impacts of technology adoption on 

economic development, only a few of them have investigated how information and monitoring 

technology affect public sector governance and efficiency (e.g., Orphanides 2001; Duflo et al., 

2012; Muralidharan et al., 2016). Our study provides one example in environmental regulation and 

the implications are likely to matter in other areas of monitoring and regulation as well.  

Second, we contribute to a growing literature on environmental monitoring and regulation (e.g., 

Duflo et al., 2013, 2018; Shimshack, 2014; Greenstone and Hanna, 2014; Browne et al., 2019). We 

find that technology can play an important role in environmental regulation, which matters for 

researchers, policymakers, as well as citizens. In a concurrent study, Barwick et al. (2019) focus on 

the aspect of information sharing with the public in the new air quality monitoring system in China 

and documents that information disclosure increased people’s avoidance behaviors. Our study 

complements theirs in that we reveal that the system also significantly improved the air pollution 

data quality, without which disclosure would be less effective in shaping people’s behaviors.  

Third, our study is also related to the literature that assesses the reliability of data from China. 

In particular, Chen et al. (2012) and Ghanem and Zhang (2014) document the unsmoothness in 

the distribution of air quality data and reveal that the data are manipulated at a critical threshold 

(Air Pollution Index=100). One challenge for these studies is that it is unclear whether data 

manipulation is local and only exists around the threshold. Our findings suggest that this concern 

is more general and is closely related to city characteristics. Researchers should be cautious about 

China’s pre-automation air pollution data, particularly in less developed and more polluted cities.  
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II. Automating the Air Quality Monitoring System  

A. Policy Motivation 

As China has experienced rapid economic growth over the last several decades, the demand for 

better air quality and better data on air pollution has increased. As recently as the early part of this 

century, China only provides readings of the opaque Air Pollution Index (API), rather than 

individual readings on PM10, SO2, and NO2. A sea change in air pollution reporting was set off 

when in 2008 the U.S. Embassy in Beijing, and later Consulates in four large Chinese cities (i.e., 

Shanghai, Guangzhou, Chengdu, and Shenyang) started tweeting hourly fine particulate matter 

(PM2.5) concentrations readings. These readings were more detailed and typically higher than 

official Chinese statistics, which led to public doubts about the official readings and elevated 

concerns about air quality. Further, the Beijing Olympic Games in 2008 and celebrity posts of air 

quality information and measurement on Weibo (Chinese Twitter) raised public concerns over air 

pollution and information in China (He et al., 2016; Ito and Zhang, 2020).  

To meet the public need and gain public trust, the Chinese government revised the air quality 

standards in 2012 and later launched the “war on pollution.” The Air Quality Index (AQI) was 

established to replace the API with a stricter standard on PM10. Three more pollutants, including 

PM2.5, O3, and CO, were added in the determination of the AQI. An automated nationwide 

monitoring network was established to collect and report pollution information.  

B. What Does Automation Do? 

The automation of the national air quality monitoring network consists of purchasing new 

monitoring equipment and establishing a new real-time reporting system, which was expected to 

cost over 2 billion RMB (International Finance News, 2011). Most of the funding was spent on 

purchasing and installing new equipment to monitor PM2.5, CO, and O3, whose information was 

not available in the past. Importantly, the equipment measuring PM10 is unchanged, assuring that 

differences in PM10, if any, are not due to changes in equipment. Instead, the existing equipment 

was integrated into the new monitoring system. The primary feature of the new approach to 

monitoring is real-time reporting, which enables online validation and higher-standard 

requirements on measurement.  

Before automation, local environmental bureaus collected data and submitted them to the 

central authority without validation. This created possibilities for local governments to manipulate 

the air quality data by, for example, excluding readings from very polluted hours and days, or 

simply reporting a lower number than was accurate. In the new monitoring system, opportunities 
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for selective reporting are greatly mitigated as air quality data are sent to the central government in 

real time. The introduction of the Internet of Things and the improvement in surveillance 

technology further allow remote control of data measurement and transmission, as well as quality 

assurance and quality control. For example, with the new system, inconsistencies across different 

monitoring sites that are geographically close would trigger alerts automatically, allowing the 

central government to further investigate the causes. In addition, with the availability of real-time 

data, a higher standard also applies to how to measure pollutants. The minimum requirement for 

calculating daily PM10 increased from 12 hours per day to 20 hours per day, from 5 days to 27 days 

for monthly PM10, and from 60 days to 324 days for annual PM10. 

With the new system, the concentrations of different air pollutants from more than 1,600 

monitoring stations are updated on an hourly basis and are available simultaneously on the Ministry 

of Ecology and Environment’s website, provincial and municipal environmental bureaus websites, 

as well as a large number of mobile apps and third-party websites.  

C. Implementation across Cities 

The automated monitoring system was introduced into different prefectural cities in three waves, 

as planned by the central government (see the map in Appendix A1). In the first wave, 74 key 

polluting cities (with 496 stations) were required to finish the upgrade by January 1st, 2013. In the 

second wave, another 116 cities (with 449 stations) were ordered to join by January 1st, 2014. The 

third wave further required the remaining 177 cities to build 552 stations by November 2014. Since 

the stations in the third wave were newly built, no official air quality (daily) data were available 

before the automation.  

This study focuses on 123 cities (with their 654 monitoring stations) – 60 cities in the first wave 

and 63 cities in the second wave – with pollutant data available both before and after automation. 

Since the automation policy was implemented at the city level, different stations within a city were 

automated on the same day, giving us power to conduct RD analysis separately for each city.  

III. Data and Summary Statistics 

Station-Daily Data on Pollutants and Weather 

The station-level air pollution data are published by the Ministry of Ecology and Environment 

and local environmental departments and were continuously collected by us between 2011 and 

2016. We geocode the exact location of each monitoring station using Google Map. We also collect 

meteorological data from 403 weather stations, which include daily average temperature, 
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precipitation, relative humidity, and wind speed. We match each pollution station with its closest 

weather station.  

Station-Monthly Data on AOD 

AOD data were obtained from two NASA satellites, TERRA, and AQUA with Moderate 

Resolution Imaging Spectroradiometer (MODIS). AOD measures the total vertical distribution of 

particles and gases within a grid according to the light extinction coefficient. It indicates how much 

direct sunlight is prevented from reaching the ground by aerosol particles and can be used to infer 

ground-level pollution, particularly for fine particles such as PM2.5, a subset of PM10.4 The state-

of-the-art remote sensing techniques find better correlations between AOD and ground-level PM 

with coarser spatial and temporal resolutions by month or year (Hoff and Christopher, 2009). 

Automation Dates across Cities 

We collect news reports on the automation date for each city. The deadline for automation dates 

was assigned by the central government, however, cities were allowed to implement the policy 

before the deadline. In practice, 50% of the Wave 1 cities implemented it before the deadline and 

the comparable figure for the Wave 2 cities is 14% (see Appendix A2). One concern is that the 

local governments might strategically choose the automation dates to hide pre-automation 

underreporting by choosing a time of year when pollution concentrations decline for seasonal 

reasons. To address this, we also report results using the subgroup of cities that automate on their 

deadlines, under the presumption that this was not a strategic choice to hide manipulation. 

Behavioral Responses  

We measure individuals’ behavioral responses through online searches. We focus on Baidu’s 

search indices for “anti-haze face masks” and “air filters.” Baidu is the biggest search engine in 

China and provides search indices for specific keywords that are analogous to Google Trends. The 

search indices are available from both PC and mobile terminals. We focus on the indices from PCs 

as the mobile data were not available before May 2013. 

The Baidu index measures city-level search volume for a specific keyword during a specific 

period. Although high-frequency purchase data were unavailable prior to automation, we find the 

Baidu search indices are highly correlated with actual sales data post automation.5 We thus believe 

                                                 
4 PM10 is particulate matter 10 micrometers or less in diameter, while PM2.5 is particulate matter with a diameter of 

2.5 micrometers or less. For context, a human hair is about 100-200 micrometers in width. 
5 We have sales data from China’s largest e-commerce platform (Taobao) from April 2013 to April 2014 in 34 Wave 

1 cities. We show later in the paper that Baidu search indices for “face mask” and “air filter” are stronger predictors 
for actual sales of face mask and air filter.  
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that it is reasonable to assume that online searches predict purchases. In fact, the internet search 

advertising business model is built on this idea.  

Descriptive Patterns 

The summary statistics are presented in Appendix A3. Even in the yearly data, we see that the 

reported PM10 concentrations significantly increased in 2012 and 2013. In comparison, there is a 

downward trend in AOD during the entire sample period, suggesting an overall improvement in 

air quality. In Appendix A4, we provide additional descriptive evidence that the reported PM10 

readings could be systematically different before and after automation in the yearly data. We also 

present four case studies illustrating PM10 readings at the monitor level (Appendix A5). 

IV. Evidence on the Improvement of Air Quality Data 

A. Short Rum Changes in PM10: Evidence from RD Designs 

We use an RD design based on the exact dates of air quality monitoring automation to detect 

air quality data manipulation: 

            𝑃𝑃𝑖𝑖,𝑐𝑐,𝑡𝑡 = 𝛽𝛽1𝐼𝐼�𝑡𝑡 ≥ 𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝑖𝑖,𝑐𝑐,𝑡𝑡� + 𝛽𝛽2f�𝑡𝑡 − 𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝑖𝑖,𝑐𝑐,𝑡𝑡� +  𝛽𝛽3I ∗ f�𝑡𝑡 − 𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝑖𝑖,𝑐𝑐,𝑡𝑡�    

                                                          +β4Wi,c,t + 𝛼𝛼𝑖𝑖 + 𝑚𝑚𝐴𝐴𝑚𝑚𝑡𝑡ℎ𝑡𝑡 + 𝐴𝐴𝑖𝑖,𝑐𝑐,𝑡𝑡                               (1) 

where 𝑃𝑃𝑖𝑖,𝑐𝑐,𝑡𝑡 indicates the pollution levels reported by station i of city c at time t (daily/ monthly). 

𝐼𝐼(𝑡𝑡 ≥ 𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝑖𝑖,𝑐𝑐,𝑡𝑡) is an indicator variable that equals one if station i at time t is automated. 𝑡𝑡 −

𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝑖𝑖,𝑐𝑐,𝑡𝑡 represents the number of days from the automation and is the running variable. The 

specification includes a function f�𝑡𝑡 − 𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝑖𝑖,𝑐𝑐,𝑡𝑡� and allows its effect to differ pre and post 

automation, which is the basis of the “control function” style approach of the RD design. The 

station-specific effects, 𝛼𝛼𝑖𝑖, account for time-invariant confounders that are specific to each station. 

Month fixed effects, 𝑚𝑚𝐴𝐴𝑚𝑚𝑡𝑡ℎ𝑡𝑡 , can be used to control for seasonality. Weather conditions, Wi,c,t, 

include temperature, precipitation, relative humidity, and wind speed.  𝐴𝐴𝑖𝑖,𝑐𝑐,𝑡𝑡 is the error term. Since 

a city can have multiple stations, we cluster our standard errors at the city level.  

The parameter of interest is 𝛽𝛽1, which provides an estimate of whether there is a discontinuity 

in air pollution levels immediately post automation after flexible adjustment for the days 

before/after automation and the covariates. The discontinuity can be estimated by both parametric 

and non-parametric methods. We emphasize the results from the non-parametric method and use 

the parametric method to as a robustness check. 

In the simplest form, we do not include any fixed effects or control variables in the regression, 

as the dates of automation are arguably exogenous. To include covariates in the non-parametric 
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RD, we first “residualize” the dependent variable — subtract from 𝑃𝑃𝑖𝑖𝑡𝑡 a prediction of 𝑃𝑃𝑖𝑖𝑡𝑡 based 

on the available covariates — and then conduct and RD analysis on the residuals. This procedure 

provides a consistent estimate of the same RD parameter of interest (Lee and Lemieux, 2010).6 
We start by visualizing the patterns in the data. In Figure 1(A), the X-axis indicates the number 

of days before and after automation. The Y-axis indicates the reported daily PM10 concentrations 

after adjustment for monitoring station fixed effects, month fixed effects and meteorological 

conditions (the unadjusted data are plotted in Appendix B1). The residualized concentrations are 

estimated from running an OLS regression in which the dependent variable is daily reported PM10 

and the explanatory variables are station fixed effects, month fixed effects, and weather controls. 

We observe a striking increase in PM10 immediately after automation. 

We present RD estimates from equation (1) in Panel A of Table 1. Columns (1) and (2) report 

the results from the local linear RD with and without covariates (i.e. Wi,c,t,𝛼𝛼𝑖𝑖 ,𝑚𝑚𝐴𝐴𝑚𝑚𝑡𝑡ℎ𝑡𝑡 ). The 

bandwidths are 109 days and 263 days for PM10 in the two columns, respectively, which are the 

optimally selected according to the Calonico et al. (2014)’s method. Both use a triangle kernel 

weighting function. The estimated discontinuity is around 35 µg/m3, which is a 35% increase, 

relative to the overall post-automation mean (99.5 µg/m3). The magnitudes of the estimates are 

also economically meaningful. Based on Ebenstein et al. (2017), for example, a permanent 35 

µg/m3 difference in PM10 concentration implies a loss in life expectancy by 2.24 years for an 

average person living in China.  

The remaining columns analyze subsets of the monitors. In columns (3) and (4), the PM10 levels 

increased 28 µg/m3 (or 33%) for Wave-1 cities and 65 µg/m3 (or 76%) for Wave-2 cities. In column 

(5), we restrict the sample to the 84 cities that implemented the policy upon the deadline (drawn 

from both waves), so the possibility that the automation date was chosen strategically is less of a 

concern. We find an increase of 57 µg/m3 for this subgroup, implying that automation indeed 

increased reported PM10 concentration.  

We provide several sets of results that together lend additional credibility to the baseline findings. 

First, we fit equation (1) for AOD, with the time being measured in months instead of days, to 

investigate whether there is a discrete change in AOD after automation. We find no discontinuity 

in AOD levels after automation (Figure 1(B) and Table 1(A)), confirming that this measure of true 

air quality did not deteriorate after the automation. In fact, after adjustment for seasonality and 

                                                 
6 Alternatively, we include covariates in the non-parametric RD analysis using the methodology developed by 

Calonico et al. (2019) and obtain similar results. 
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weather, the estimated RD coefficient is precisely zero (column (2)).7  Second, we find that all the 

weather variables are continuously distributed across the threshold (reported in Appendix B2), 

suggesting that the dramatic changes in the reported PM10 levels were not driven by weather 

conditions. Finally, we use alternative kernel weighting methods and the parametric approach to 

check the sensitivity of our findings. As reported in Appendix B3, both exercises yield similar 

estimates.  

B. Medium-run Changes in PM10: Evidence from Difference in Differences (DiD) Designs 

The RD approach offers a demanding test of the effect of automation immediately after its 

implementation. We complement the main analysis by estimating a set of difference in differences 

(DiD) models that provide less strict tests but offer the potential to estimate the effect of 

automation on PM10 levels in the medium run. Specifically, we conduct “event-study” type analyses 

and compare reported PM10 levels one year before and one year after automation using the 

following equation: 

𝑃𝑃𝑖𝑖,𝑐𝑐,𝑡𝑡 = 𝛾𝛾𝜏𝜏 ∑ 𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝑖𝑖,𝑐𝑐,𝜏𝜏
𝜏𝜏=+3
𝜏𝜏=−4 + β𝑊𝑊𝑖𝑖.𝑐𝑐.𝑡𝑡 + αi + 𝑚𝑚𝐴𝐴𝑚𝑚𝑡𝑡ℎ𝑡𝑡 +  𝜖𝜖𝑖𝑖,𝑐𝑐,𝑡𝑡  (2) 

where 𝑃𝑃𝑖𝑖,𝑐𝑐,𝑡𝑡 indicates the pollution levels reported by station i of city c on day t, 𝑊𝑊𝑖𝑖.𝑐𝑐.𝑡𝑡 are weather 

variables similar to our RD setup above. αi are the station fixed effects and 𝑚𝑚𝐴𝐴𝑚𝑚𝑡𝑡ℎ𝑡𝑡 are the month 

or year-by-month fixed effects (we will show results for both specifications). 𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝑖𝑖,𝑐𝑐,𝜏𝜏 indicate 

different periods before and after the automation, and we set the pollution readings 1–2 months 

before the automation date as the reference group (τ=-1). Then, τ ∈{-4, -3, -2, 0, 1, 2, 3} 

respectively refers to 7–12 months, 5–6 months, and 3–4 months before automation, and 1–2 

months, 3–4 months, 5–6 months, and 7–12 months post automation.  

The coefficients of 𝛾𝛾0, 𝛾𝛾1, 𝛾𝛾2, and 𝛾𝛾3 allow us to examine whether the automation increases 

PM10 readings in the short and medium runs (relative to the PM10 readings 1-2 months just before 

automation). The coefficients of 𝛾𝛾−4 , 𝛾𝛾−3 and 𝛾𝛾−2 further tell us if the reported PM10 readings 

months ago were comparable to the baseline readings (PM10 levels 1-2 months before automation).  

To avoid any composition change this dynamic analysis, we restrict the sample to cities that 

automated their monitoring stations only at the deadline of their respective wave and use data 

from 2012 January 1 to 2013 December 31. Thus, the “treatment” monitors are from cities where 

automation occurred on 2013 January 1 and the “control” monitors are from cities where 

automation never occurred during this two-year period. With this set-up, the “control” monitors 

                                                 
7 We also aggregate PM10 concentrations to the station-month level and find a significant discontinuity using 

monthly data. The RD plots using monthly PM10 data are presented in Appendix B1 and the corresponding estimates 
are reported in Appendix B3.  
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are never treated during this period and provide a plausibly credible counterfactual for the 

“treatment” monitors. Further, this is one approach to confronting the challenges associated with 

the staggered assignment of treatment. 8 

The results are reported in Panel B of Table 1. We find that reported PM10 concentrations are 

substantially higher post-automation. While the increase in levels generally declines over time (see 

columns (1)–(4)), it is relatively stable when the natural logarithm of PM10 is the dependent variable, 

in which the coefficients are approximations to percentage changes (24% to 32% in column (5)). 

This difference in results is largely due to seasonality in China’s pollution concentrations: 1–2 

months post automation occur during the winter, which is the time of year when pollution 

concentrations are the highest in China. Overall, we conclude that automation led to sustained 

increases in reported PM10 levels.  

We note that columns (1) and (2) exhibit some pre-automation differences in pollution 

concentrations although it is difficult to discern a clear trend. Nevertheless, the columns (3)–(5) 

specifications aim to mitigate the possibility of confounding using nearest neighbor matching. 

Specifically, we match each monitoring station in the Wave 1 (deadline) cities to its (geographically) 

nearest monitoring station in the Wave 2 (deadline) cities with replacements and re-estimate 

equation (2) using the paired sample. The idea is that geographically adjacent pairs of monitors 

should have similar pre-automation trends in their reported PM10 levels. Indeed, after matching, 

the coefficients for all the “lead” variables become small in magnitude and statistically insignificant 

(as plotted in Appendix B4). However, the finding that reported PM10 concentrations increased 

post-automation remains unchanged.  

C. Additional Evidence and Correcting Pre-automation PM10 Data 

We provide additional evidence that data quality improved after automation. First, we examine 

the variability of PM10 under the presumption that manipulated measures are likely to exhibit less 

variability than true realizations. Indeed, we find that the standard deviation of monthly PM10 data 

increased by around 42% after automation (as presented in Appendix B5).  

Second, we examine changes in SO2 and NO2, the other two pollutants being monitored before 

and after automation. The underreporting of SO2 and NO2 is likely less rewarding because the 

central government uses the API to measure local environmental performance and PM10 

determines the level of the API more than 90% of the time. In Appendix B6, we find a statistically 

                                                 
8  An emerging literature shows that estimates from two-way fixed effects models with staggered treatment 

assignment are difficult to interpret. More discussions can be found in de Chaisemartin and D’HaultfŒuille (2018, 
2019); Goodman-Bacon (2018); Imai and Kim (2018). 
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significant post-automation discontinuity of 3.0 ppb or 6.0% in NO2 concentrations and a 

statistically insignificant effect on reported SO2 concentrations. These results are consistent with 

the hypothesis that underreporting of pollution readings was governed by local officials’ incentives.  

Finally, we examine the correlation between PM10 and the AOD data, treating the latter as an 

unbiased measure. We find that the correlation/partial correlation between PM10 and AOD indeed 

became stronger after automation, confirming the improvement in data quality. These results are 

discussed in Appendix B7. 

As a by-product of this paper, we attempt to correct the pre-automation PM10 data by exploiting 

the relationship between PM10, AOD, and weather conditions. Specifically, we train an artificial 

neural network (ANN) and predict the pre-automation PM10 levels, assuming that the post-

automation relationships between PM10, AOD, and weather conditions can be carried to the pre-

automation period (see Mullainathan and Spiess (2017) for method discussion). The ANN is able 

to explain 81% of PM10 variation post automation. The mean of the corrected PM10 concentration 

is 24.4 µg/m3 or 29% higher than the pre-automation reported mean and the correction shifts the 

distribution of the pre-automation PM10 data to the right. These corrected PM10 data are available 

to other researchers and are provided as an online appendix (see Appendix B8 for details).  

V. Variation in Data Quality and Welfare Implication 

A. Data Quality in Different Cities 

This section explores the heterogeneity in data quality across different cities. We estimate 

equation (1) city by city using the non-parametric approach, with the unit of observation being a 

monitor by day. Before proceeding, we note a change in the sample. Some cities suspended data 

reporting while they installed and tested the new automatic monitors for PM2.5, CO, and O3. As a 

result, 49 cities did not report PM10 readings for more than two months preceding the initiation of 

automatic monitor reporting and it is challenging to credibly apply the RD approach to these cities 

individually. Among them, 5 cities did not report PM10 readings for over six months and are 

dropped from the analysis in this section. Below we start with the 74 cities without missing data 

problem, although we include the other 44 cities in a robustness check. The results presented in 

the previous section are robust to including or excluding these cities.  

Figure 2 plots the estimated city-specific RD coefficients and their 95% confidence intervals. 

The RD coefficient is positive for more than 70% of these cities. Among them, 33 cities’ estimates 

are statistically significantly positive at the 5% level. The average of all the RD coefficients is 28.9 

μg/m3.  If we weight the RD coefficient by the inverse of the standard error, the weighted average 
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is 17.1 μg/m3, as denoted by the red horizontal line. We observe substantial variation in these 

estimated effects of automation. Particularly noteworthy findings are that there are 12 cities with 

the estimated discontinuities greater than 75 μg/m3 and 11 of them would be judged statistically 

significant at the 1% level. The spatial variation in manipulation by city is plotted in Appendix C1.  

Why were some cities more likely to manipulate the air pollution data than other cities? Our 

quantitative city-specific RD estimates provide an opportunity to investigate the underlying 

incentives of such hidden actions, which we will link to city and leader characteristics. 

Here we do not attempt to identify a causal impact but to provide cross-sectional correlations 

between city-leader characteristics and manipulation. We define manipulation in three ways. The 

first is a binary indicator of manipulation if the RD estimate is positive and significant at 5% level 

for the 74 cities in Figure 2. The second is also a binary indicator, but we extend it to include 49 

cities that have missing data issues. For these cities, we compare PM10 levels between January–June 

2013 and January–June 2014: if the reported average increased by 35 μg/m3 in the city (the average 

discontinuity in Table 1), we define it a data manipulating city (13 cities meet this criterion).9 For 

the other 31 cities, 10 cities have positive RD estimates that are significant at 5% level, and we 

treat them as data-manipulating cities. Following the second definition, 56 cities are defined as 

data-manipulating. The third is to directly use the RD coefficients as the measure of manipulation 

in the 74-city sample, and we weight the regression by the inverse of the standard errors to assign 

heavy weights to cities with more accurate RD estimates.  

We focus on three explanatory variables and examine their correlation with the manipulation 

measures in Table 2. The first is GDP per capita measured in 2012, as this is likely to capture both 

the demand and supply of transparency and hence mitigates the hidden action problem of local 

officials. We expect to see a negative correlation between GDP per capita and our manipulation 

measure. This is indeed the case in Table 2, regardless of how we define manipulation (Panels A 

to C). So, for example, a 1 standard-deviation (SD) increase in the logarithm of GDP per capita is 

associated with a 12% decrease in the probability of manipulation (column (1) of Panel A and 

Panel B) and a decrease in the magnitude of the RD estimate of roughly 12 μg/m3 (column (1) of 

Panel C). The second is the city’s corrected PM10 concentration in 2012 derived from the ANN 

prediction. It is apparent that true pre-automation pollution concentrations are strongly and 

positively correlated with manipulation, which is consistent with local leaders facing sanctions for 

allowing high pollution concentrations. The third variable is a corruption index that measures the 

share of a city’s civil servants that were convicted for corruption during China’s anti-corruption 

campaign (Nie et al. 2018). We standardize the index so that a higher value indicates more 

                                                 
9 Using slightly different thresholds (20, 30, or 40 μg/m3) yields qualitatively similar results. 
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corruption. We do not find the corruption index to be correlated with any measures of 

manipulation.  

Column (4) reports on “horse race” style regressions that include all three covariates. The 

findings that GDP per capita and pre-automation PM10 concentrations are negatively and 

positively, respectively, correlated with manipulation remain unchanged. Cities with more corrupt 

officials seem to be more likely to underreport data, but the evidence is not strong. In Appendix 

C2, we further present additional results on the correlation between the manipulation measures 

and the personal characteristics of the city leaders (Party secretaries and mayors). Overall, city 

characteristics appear to have more explanatory power than leader characteristics.  

B. Welfare Implications 

This subsection examines whether the improvement in the quality and availability of pollution 

information had any welfare implications. Specifically, we test whether the number of online 

searches for “anti-haze face masks” and “air filters” change immediately after automation. We 

focus on people’s online searching behaviors because such data are available in all our sampled 

cities during the study period and are strong predictors of actual purchases (Appendix D). 

The graphical RD estimates are presented in Figures 1(C) and 1(D) for face masks and air filters, 

respectively. Panel A of Table 3 reports on the fitting of the non-parametric RD version of 

equation (1). The estimates indicate that monthly online searches for “face masks” immediately 

tripled (columns (1)–(2)) after automation and searches for “air filters” increased by 17–20%. 

Column (3) limits the sample to “normal” cities where we fail to detect underreporting and column 

(4) focuses on data-manipulating cities according to the second definition from the previous 

subsection (Panel B of Table 2). We find that in data-manipulating cities, the post-automation 

increase in searches was even larger, more than three times for “anti-haze face masks” and 26% 

higher for “air filters.” It is tempting to interpret these larger estimates in column (4) as being 

entirely due to individuals’ learning that PM10 concentrations were higher than they had believed, 

but it is also possible that the increase in news about air pollution disproportionately increased in 

these cities at the same time.  

Panel B of Table 3 reports on the estimation of equation (2). We find that the higher rates of 

searches for these two terms were sustained and still event 7-12 months after automation. Based 

on these results and the positive correlation between searches and purchases, it seems reasonable 

to assume that automation led to an immediate and sustained increase in the purchases of goods 

that protect individuals from PM10.  
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We do not believe that it is possible to isolate whether the post-automation behavioral changes 

were due to individuals updating their estimates of air pollution concentrations or learning about 

air pollution more generally or some combination of both. Regardless, it is evident that the biased 

and imperfect information about air pollution imposed meaningful welfare costs prior to 

automation.  

VI. Conclusion 

Governments delegate authority to bureaucratic officials, which makes the principal-agent 

problem inherent to government organizations. The case of pollution data quality in China shows 

that high-powered incentives in the public sector can be a double-edged sword: when local officials 

obtain a strong incentive to perform better, they also have incentives to manipulate data.  

The advancement of information technology and the adoption of real-time monitoring offers a 

possible tool to address this downside. We show that automating the monitoring system 

significantly improves data quality. The improvement of data quality is an important underlying 

factor to explain China’s success in its “war on pollution” in recent years – it is difficult to imagine 

an effective policy without reliable information. Besides, we show that the more reliable 

information post automation appears to have induced more people to take avoidance behaviors 

against pollution, which implies welfare gains that are of a potentially significant magnitude. That 

said, new monitoring and surveillance technologies are likely to have other important implications 

for governance about which there is much to learn. Our study is just one example of the 

consequences of technological advancement for governance and we believe that this is a rich area 

for research going forward. 
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Figure 1. RD Plots for PM10, AOD and Online Search 

 
(A). Daily Residual PM10 

 
(B). Monthly Residual AOD 

 
(C). Monthly Residual Face Mask Search 

           
 (D). Monthly Residual Air Filter Search 

Notes: Panel (A) shows the increase in PM10 immediately after automation using daily data. Panel (B) shows no significant change in monthly AOD 
data. Panels (C) and (D) show the increase in monthly online search data for anti-haze face masks and air filters. Location (station or city) fixed effects, 
month fixed effects, and weather conditions are absorbed before plotting these discontinuities.  
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Figure 2. Manipulation Status in Chinese Cities 

 

Notes: The RD estimates for PM10 (µg/m3) for the 74-city sample are plotted with 95% confidence intervals. The weighted average RD estimate is denoted by the 
red dashed line, with the weights being the inverse of the standard errors of the RD coefficients.
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Table 1. Automating Air Quality Monitoring System and PM10 Concentrations 
    (1) (2) (3) (4) (5) 
Panel A. RD Estimates           
  RD in PM10 (Daily) 34.7*** 34.9*** 27.5*** 64.7*** 57.1*** 
   (10.7) (5.8) (9.8) (9.9) (8.6) 
  RD in AOD 0.065 -0.005 0.026 -0.030 -0.003 
   (0.044) (0.021) (0.031) (0.029) (0.025) 
 Sample All All Wave 1 Wave 2 Deadline 
  Station FE   Y Y Y Y 
  Month FE  Y Y Y Y 
  Weather Controls  Y Y Y Y 
  Obs. (Daily) 91,470 232,326 81,950 68,456 86,042 
 Bandwidth (Days) 109 263 140 234 184 
  Obs. (Monthly)  5,057   5,851   3,173   2,316   4,894  
 Bandwidth (Months) 6 7 7 6 10 
Panel B. Event-Study Estimates  
    PM10 PM10 PM10 PM10 Log(PM10) 
  7-12 Months before -8.5* -17.2** -10.7 -10.8 -0.13* 
    (4.7) (6.7) (7.7) (9.7) (0.07) 
  5-6 Months before 6.8 -19.2** 10.5 -2.2 0.02 
    (6.0) (9.3) (8.5) (12.1) (0.11) 
  3-4 Months before -6.4 -12.0* -2.8 -5.2 -0.03 
    (5.6) (6.9) (7.3) (9.2) (0.09) 
  1-2 Months after 60.3*** 31.4*** 66.5*** 45.6*** 0.24*** 
    (11.0) (11.1) (14.3) (16.3) (0.09) 
  3-4 Months after 45.0*** 33.6*** 47.2*** 32.5** 0.32** 
    (7.8) (8.8) (10.7) (14.2) (0.12) 
  5-6 Months after 28.1*** 22.2*** 33.4*** 29.0** 0.29** 
    (6.7) (8.0) (9.7) (13.7) (0.12) 
  7-12 Months after 40.0*** 9.8 42.9*** 15.8 0.24* 
    (6.1) (8.8) (7.7) (14.0) (0.15) 
  Sample Deadline Deadline +Matching +Matching +Matching 
  Weather Controls Y Y Y Y Y 
  Station FE Y Y Y Y Y 
  Month FE Y  Y   
  Year-Month FE  Y  Y Y 
  R-Squared 0.34 0.35 0.33 0.34 0.38 
  Obs. 176,426 176,426 186,499 186,499 186,469 
Notes: In Panel A, each cell represents a separate non-parametric RD estimate. Triangle 
kernel is used and optimal bandwidth is selected by Calonico et al. (2014)’s method. 
Columns (1) and (2) use the entire sample to estimate the discontinuities; there are 
1,049,325 daily observations before bandwidth selection. Columns (3) and (4) use the 
Wave 1 and Wave 2 cities. Column (5) uses cities that automated the monitoring system 
at their deadlines. In Panel B, event-study estimates are reported and “1-2 months before 
automation” is the reference group. In columns (1) and (2), there are 242 Wave-1 
(deadline) stations and 123 Wave-2 (deadline) stations. In columns (3) to (5), each Wave-
1 (deadline) station is matched with its nearest Wave-2 (deadline) station (with 
replacement). Weather controls include temperature, relative humidity, precipitation and 
wind speed. Standard errors clustered at the city level are reported in parentheses below 
the estimates. * significant at 10% ** significant at 5% *** significant at 1%. 
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  Table 2. Correlations b/w Data Quality and City Characteristics 
    (1) (2) (3) (4) 
Panel A. Manipulation = 1 if RD > 0 (P < 0.05) 
  ln(GDP per capita) -0.12**     -0.08 
  (per 1 SD) (0.06)     (0.06) 
  Corrected PM10   0.18***   0.22*** 
  (per 1 SD)   (0.04)   (0.06) 
  Corruption Index     -0.04 0.11** 
  (per 1 SD)     (0.06) (0.05) 
  Observations 74 74 74 74 
  R-squared 0.05 0.15 0.01 0.19 
            
Panel B. Manipulation = 1 if RD > 0 (P < 0.05) or Diff  ≥ 35μg/m3 (P < 0.05) 
 ln(GDP per capita) -0.12**     -0.10*** 
 (per 1 SD) (0.04)     (0.04) 
 Corrected PM10   0.15***   0.17*** 
 (per 1 SD)   (0.04)   (0.04) 

 Corruption Index     -0.01 0.06 
 (per 1 SD)     (0.05) (0.05) 
 Observations 118 118 118 118 
 R-squared 0.06 0.09 0.00 0.15 
            
Panel C. Y = City Specific RD Estimates Weighted by the Inverse of Std. Err. 
 ln(GDP per capita) -11.66***     -7.94** 
 (per 1 SD) (3.56)     (3.79) 
 Corrected PM10   20.51***   20.95*** 
 (per 1 SD)   (4.02)   (4.49) 

 Corruption Index     -6.68 4.19 
 (per 1 SD)     (8.22) (4.54) 
 Observations 74 74 74 74 
  R-squared 0.09 0.29 0.03 0.34 
Notes: In Panel A, the dependent variable is a dummy variable indicating manipulation 
for 74 cities that do not have missing data issues. If the city-specific RD estimate is 
positive and statistically significant at 5%, manipulation equals to 1. City-level GDP per 
capita in 2012 is used. The corrected PM10 data are obtained from ANN predictions 
and we also use the average predicted values in 2012 in the regression. The corruption 
index is standardized based on Nie et al (2018) to reflect the corruption level in a city. 
In Panel B, we further include 44 cities that have missing data issues. For these cities, 
we compare PM10 levels between January–June 2013 and January–June 2014: if the 
reported average increased by 35 μg/m3 in the city, or if the city’s RD estimate is 
positive and significant, we define it a data manipulating city. In Panel C, the dependent 
variable is the city-specific RD estimate weighted by the inverse of the standard error. 
Robust standard errors in parentheses. * significant at 10% ** significant at 5% *** 
significant at 1%. 
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Table 3. Automating Air Quality Monitoring System and Avoidance Behaviors 
    (1) (2) (3) (4) 
Panel A. RD Estimates 
  RD in Face Masks Searches 10.10*** 11.03*** 7.18*** 15.43*** 
  (pre-automation mean =0.62 ) (1.58) (1.66) (2.41) (2.29) 
  RD in Air Filter Searches 7.36** 8.73*** 6.02** 13.44*** 
  (pre-automation mean =35.5 ) (3.60) (1.86) (3.00) (2.15) 
  RD in Log (1+ Face Mask Searches) 1.06*** 1.15*** 0.96*** 1.43*** 
  (pre-automation mean =0.16 ) (0.17) (0.17) (0.24) (0.22) 
  RD in Log (1+ Air Filter Searches) 0.18* 0.16*** 0.12*** 0.23*** 
  (pre-automation mean =3.30 ) (0.10) (0.04) (0.06) (0.05) 
  Sample All All Normal Manipulate 
  City FE    Y Y Y 
  Month FE   Y Y Y 
  Weather Controls   Y Y Y 
Panel B. DiD Estimates 

    
Mask 

Searches 
Mask 

Searches 
Filter 

Searches 
Filter 

Searches 
  7-12 Months before 0.00 -0.05 -0.15 -0.14 
    (0.00) (0.09) (1.31) (1.31) 
  5-6 Months before 0.00 0.12 0.62 0.86 
    (0.00) (0.20) (1.16) (1.23) 
  3-4 Months before 0.00 0.17 0.91 1.16 
    (0.00) (0.11) (1.12) (1.15) 
  1-2 Months after 18.60*** 18.52*** 2.87 2.80 
    (2.78) (2.75) (1.90) (1.87) 
  3-4 Months after 17.39*** 17.31*** 6.11*** 6.10*** 
    (2.86) (2.85) (1.78) (1.77) 
  5-6 Months after 5.43*** 5.37*** 2.48 2.58 
    (1.19) (1.16) (1.64) (1.64) 
  7-12 Months after 14.45*** 14.62*** 6.00*** 6.22*** 
    (2.31) (2.29) (1.72) (1.74) 
  Sample Deadline Deadline Deadline  Deadline 
  City FE Y Y Y Y 
  Year-Month FE Y Y Y Y 
  Weather Controls   Y   Y 
  R-Squared 0.32 0.32 0.53 0.53 
  Obs. 51,901 51,900 51,170 51,169 
Notes: In Panel A, each cell represents a separate RD estimate. Triangle kernel is used in 
all RD estimations. Columns (1) and (2) use the entire sample from the 123 cities, 
consisting of 8,661 mask search observations and 8,590 filter search observations before 
bandwidth selection. Column (3) limits the sample to "normal" cities where we fail to 
detect manipulation and column (4) focuses on data-manipulating cities according to the 
second definition in Panel B of Table 2. In Panel B, each column represents a separate 
fixed-effects regression. There are 39 Wave-1 (deadline) cities (treatment group) and 32 
Wave-2 deadline cities (control group).  Weather controls include temperature, relative 
humidity, precipitation and wind speed. Standard errors clustered at the city level are 
reported below the estimates. * significant at 10% ** significant at 5% *** significant at 
1%. 
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A. Background and Data 

A1. Map for Automation 

 

Figure A1. Waves in Automation 

 
Notes: Wave 1, Wave 2 and Wave 3 cities are plotted.  The dots represent PM10 monitoring 
stations where pre-automation data are available. 
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A2. Policy Dates Distribution 

 

Figure A2. Distribution of  Automating Dates 

 

Notes: This figure summarizes the distribution of  the automation dates across different 
cities. The majority of  them automated the air quality monitoring stations on January 1st, 
2013 and January 1st, 2014, which are the deadlines for the two waves. 
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A3. Summary Statistics 

 
Table A3. Summary Statistics 

   Mean and Std. Dev. 
  2011 2012 2013 2014 2015 2016 
    (1) (2) (3) (4) (5) (6) 
Panel A: Pollution and AOD       
  PM10 87.3 85.1 112.0 106.4 94.0 87.7 
  (μg/m3) (64.0) (60.7) (86.4) (69.7) (65.0) (64.2) 
  AOD 0.60 0.56 0.56 0.55 0.51 0.46 
    (0.28) (0.28) (0.27) (0.29) (0.26) (0.25) 
 SO2 16.0  14.6  15.3  13.3  10.6  8.9  
 (ppb) (16.6) (15.2) (17.2) (14.5) (12.6) (10.7) 
 NO2 19.6  20.0  22.8  21.4  20.0  19.7  
 (ppb) (13.8) (14.4) (14.6) (12.2) (11.7) (11.4) 
Panel B: Weather       
  Temperature 14.6  14.7  15.4  15.5  15.6  15.4  
  (ºC) (11.2) (11.5) (11.2) (10.6) (10.4) (11.0) 
  Precipitation 2.4  3.5  3.4  3.3  3.7  4.1  
  (mm) (7.4) (10.2) (11.0) (10.3) (11.4) (12.1) 
  Relative Humidity 63.8  65.5  64.4  64.9  67.2  67.2  
  (%) (18.1) (19.1) (18.7) (19.1) (19.1) (19.2) 
  Wind Speed 2.2  2.6  2.7  2.6  2.7  2.8  
  (m/s) (1.0) (1.5) (1.5) (1.4) (1.4) (1.4) 
Notes: Daily air quality data are collected from China's air quality monitoring platform. 
Weather data are collected from local meteorological stations. AOD data are collected 
from MODIS.  
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A4. Descriptive Patterns in the Yearly Data 

We describe two sets of empirical patterns as motivational evidence. First, even in the 

yearly data, we observe discontinuity in reported PM10 concentrations pre- and post-

automation. Second, we present data from a few stations to illustrate the variation in 

reported PM10 levels across stations/cities. 

In the yearly data between 2011 and 2016, there is a downward trend in AOD data during 

the entire sample period, suggesting an overall improvement in air quality in these cities 

(plotted in Figure A4). In comparison, the official reported PM10 concentrations significantly 

increased in 2013 and 2014, during which the central government automated the air quality 

monitoring system. For cities in the first wave, for example, reported annual PM10 levels 

increased by more than 30 µg/m3 from 2012 to 2013, which was about the same magnitude 

as the total improvement in PM10 reduction in the following four years (see Appendix A3 

for the summary statistics of key variables). 

Figure A4. Annual PM10 and AOD from 2011 to 2016 

 
(A). Wave 1 Cities: PM10 and AOD 
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(B) Wave 2 Cities: PM10 and AOD 

  Notes: Annual average PM10 concentrations (µg/m3) in Wave 1 and Wave 2 are plotted in 
black and red, respectively. Corresponding AOD levels are shown in dashed lines. 

 

A5. City-Level Cases 

This subsection takes an admittedly selective examination of the reported time series 

from four stations as a means of highlighting the high geographic and temporal variation 

of the data and qualitatively previewing the finding of extensive manipulation in some 

locations before automation. For instance, in the monitoring station in the development 

zone of Shijiazhuang city (the upper left panel of Figure A5), the reported PM10 

concentrations jumped from roughly 100 µg/m3 to a range of 200 µg/m3 to 800 µg/m3 

immediately after the automation; it seems implausible that changes in weather conditions 

are so sharp as to cause this increase in concentrations. In the monitoring station installed 

at Tower II of Tiantai Villa in Zhuzhou city (the upper right panel of Figure A5), the 

average PM10 concentrations were around 11 µg/m3 pre-automation with quite small 

variations over time. After the automation, in sharp contrast, the PM10 levels became 

several times higher with wider day-to-day and seasonal variation.  

These are the time series from just two monitoring sites and indeed not all cities exhibit 

the same pattern of sharp changes after automation. In the case of Gucheng station of 

Beijing and Beihai station of Guangxi (the lower panels of Figure A5), the PM10 levels did 
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not change much after the automation and, at least based on visual inspection, seasonal 

and day-to-day variation seems roughly unchanged.  

 
Figure A5. Times Series of PM10 Concentrations at Four Stations 

 
(A). Gaoxin District, Shijiazhuang City, 

Hebei 

 
(B). Tower II of Tiantai Villa, Zhuzhou 

City, Hunan 

 
(C). Gucheng, Beijing 

 
(D). Industrial Park, Beihai City, Guangxi 

Notes: The time series of PM10 during 2012–2016 at four representative stations in the 
city of Shijiazhuang, Zhuzhou, Beijing, and Beihai are plotted. Automation dates are 
denoted in red lines. 
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B. Additional Results on Data Quality pre-post Automation 

B1. RD Using Raw Daily PM10 and Monthly PM10 

Figure B1. RD Plots Using Raw PM10 Data 

 
(A). Daily PM10 

 
(B). Daily PM10 in Wave 1 

 
(C). Daily PM10 in Wave 2 

 
(D). Daily PM10 in Deadline 

 
(E). Monthly PM10  

 
(F). Monthly Residual PM10 

Notes: In Panels (A) – (D), the discontinuities are plotted using raw daily PM10 
concentrations (no controls are included). In Panels (E) and (F), the 
discontinuities for station-month PM10 and the residuals (absorbing station, 
month fixed effects and weather) are plotted. 
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B2. No Discontinuity in Weather Conditions 
We conduct additional checks on weather conditions, which lend additional credibility 

to our findings. Short-term variations in air quality are often driven by changes in 

weather conditions. It is thus instructive to examine whether there exist similar 

discontinuities in the meteorological measures right before and after the automation. 

This is not the case in our data. We find that all the weather variables (temperature, 

precipitation, relative humidity, and wind speed) are continuously distributed across the 

threshold (Figure B2 and Table B2), suggesting that the dramatic changes in the air 

pollution levels across the switching dates were not driven by weather conditions.  

 

Figure B2. Weather Conditions Before and After the Automation 

 
(A). Daily Residual Temperature 

 
(B). Daily Residual Precipitation 

 
(C). Daily Residual Relative Humidity 

 
(D). Daily Residual Wind Speed 

Notes: Station fixed effects and month fixed effects are absorbed before 
plotting the discontinuities. 
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Table B2. Changes in Weather Conditions after Automation 
  All Sample  No Missing PM10 
    (1) (2) (3)  (4) (5) (6) 
         
 Temperature 0.92 0.90 0.97  0.55 0.50 0.52 
 (pre-automation mean =14.56) (0.65) (0.65) (0.66)  (0.77) (0.77) (0.78) 
 Relative Humidity 1.85 2.24* 2.22  2.81* 2.91* 2.00 
 (pre-automation mean =64.44) (1.32) (1.34) (1.40)  (1.66) (1.73) (1.75) 
 Precipitation -0.13 -0.13 -0.39*  0.36 0.29 0.23 
 (pre-automation mean =2.97) (0.22) (0.22) (0.22)  (0.26) (0.27) (0.33) 
 Wind Speed -0.09 -0.10 -0.11  -0.15* -0.14* -0.10 
 (pre-automation mean =2.41) (0.06) (0.06) (0.07)  (0.08) (0.08) (0.09) 
         
 Kernel Function Tri. Epa. Uni.  Tri. Epa. Uni. 
 Station FE Y Y Y  Y Y Y 
 Month FE Y Y Y  Y Y Y 
Notes: Each cell represents a separate non-parametric RD estimate. The optimal 
bandwidth is selected by Calonico et al. (2014)’s method. Columns (1) to (3) use all the 
weather sample. Columns (4) to (6) keep only the sample with PM10 data available. 
Standard errors clustered at the city level are reported below the estimates. * significant 
at 10% ** significant at 5% *** significant at 1%. 
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B3. Additional RD Specifications for the Levels of PM10 

We check the sensitivity of the RD estimates using alternative kernel weighting and higher-order global polynomial functions (see Table B3 below). 
For the local linear RD, using different kernel functions yield similar estimates. The results also remain similar when we use global polynomial RD. 

Table B3. RD Estimates Using Alternative Kernel Weightings and Polynomials  
    (1) (2) (3)   (4) (5) (6) (7) 
 LLR   Global Polynomial 
Panel A. Station-Day RD               
  PM10 34.9*** 36.0*** 35.7***   32.8*** 31.2*** 26.6*** 31.7*** 
    (5.8) (6.4) (6.6)   (4.1) (4.4) (4.6) (5.3) 
 Obs. (Daily) 232,326 172,417 131,778  1,049,325 1,049,325 1,049,325 1,049,325 
 Bandwidth (Days) 263 199 156  All All All All 

Panel B. Station-Month RD               
  PM10 38.2*** 37.6*** 35.3***   32.0*** 31.1*** 24.9*** 30.6*** 
    (5.2) (5.1) (5.1)   (4.0) (4.5) (5.0) (5.9) 
 Obs. (Monthly) 8,389 8,389 8,389  40,964 40,964 40,964 40,964 
 Bandwidth (Months) 7 7 7  All All All All 

  AOD -0.005 -0.007 -0.005   0.036*** 0.023** -0.020 -0.029 
    (0.021) (0.021) (0.024)   (0.007) (0.011) (0.016) (0.022) 
 Obs. (Monthly) 5,851 5,851 4,259  26,964 26,964 26,964 26,964 
 Bandwidth (Months) 7 7 5  All All All All 
  Station FE Y Y Y   Y Y Y Y 
  Month FE Y Y Y   Y Y Y Y 
  Weather Controls Y Y Y   Y Y Y Y 
  Kernel/Polynomial Tri. Epa. Uni.   Linear Quadratic Cubic Quartic 
Notes: Each cell represents a separate RD estimate. Optimal bandwidth is selected by Calonico et al. (2014)’s method 
in the non-parametric estimation. Weather controls include temperature, relative humidity, precipitation and wind 
speed. Standard errors clustered at the city level are reported below the estimates. * significant at 10% ** significant 
at 5% *** significant at 1%. 
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B4. DiD Plots for PM10 

 

Figure B4. Event-Study Estimates of Differences in PM10 pre-post Automation 

 
Notes: This figure corresponds to column (5) of Panel B of Table 1, and shows the 
estimated coefficients for Log(PM10) with 90% CI. The treatment group consists of  cities 
that automated their monitoring stations on January 1st, 2013. The control group consists 
of  cities that automated their monitoring stations on January 1st, 2014. We keep data from 
January 1st 2012 to December 31st, 2013 for this estimation and uses the PM10 levels 1–2 
months before automation as the reference group.  
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B5. Variability in PM10 

As another measure of data quality, we examine the variability of PM10 under the 

presumption that manipulated measures are likely to exhibit less variability than true 

realizations. We fit equations (1) and (2) by replacing the outcome variable with the 

monthly standard deviation of the PM10 levels. The monthly standard deviation of PM10 is 

calculated by SD = �∑ (Pit – P�)2𝑛𝑛
𝑖𝑖 /(𝑚𝑚 − 1) 

2
, where Pit  is the daily PM10 reading at 

station i on day t, P� is the monthly average, and n is the number of days in a month.  

The graphical presentation is illustrated by Figure B5.  Like the levels of PM10, we find 

that automation also significantly increased the variability of the reported PM10 

concentrations. 

Figure B5. RD Plots for PM10 Variability 

 
Notes: The discontinuities are plotted using residuals of PM10 monthly standard deviations 
after absorbing station fixed effects, month fixed effects and weather conditions. 

 

Table B5 reports the corresponding estimates. The effect is large in magnitude: when 

weather and seasonality are controlled, the standard deviation of PM10 increased by around 

42% after automation (the mean standard deviation before automation is 39.5). This 

finding adds more evidence on the change in pollution data quality change post-

automation. 
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Table B5. Automating Air Quality Monitoring System and PM10 Variability 
    All   Wave 1 Wave 2   Deadline 
    (1)   (2) (3)   (4) 
                
  Monthly SD in PM10 16.5***   14.5*** 27.6***   25.2*** 
    (2.8)   (4.3) (5.5)   (4.4) 
                
  Station FE  Y   Y Y   Y 
  Month FE Y   Y Y   Y 
  Weather Controls Y   Y Y   Y 
  Kernel Function Tri.   Tri. Tri.   Tri. 
  Obs. (monthly) 7,167   4,077 2,811   3,932 
 Bandwidth (months) 6  5 7  6 
Notes: Each cell in the table represents a separate RD estimate from local linear 
regression. The bandwidth is selected by applying Calonico et al. (2014)’s method to the 
full sample of 41,920 monthly observations (Column 1) or the relevant subsample. 
Weather controls include temperature, relative humidity, precipitation and wind speed. 
Standard errors clustered at the city level are reported below the estimates. * significant 
at 10% ** significant at 5% *** significant at 1%. 
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B6. Results for Other Pollutants 

Table B6. Automating Air Quality Monitoring System and Reported Pollutants 

  All  Wave 1 Wave 2  Deadline 
    (1)   (3) (4)   (5) 

        

 SO2 1.55  3.25 -0.70  2.40 

 (ppb) (2.08)  (2.97) (2.30)  (3.04) 

        

 NO2 2.98***  3.48*** 2.99**  4.68*** 

 (ppb) (0.87)  (1.11) (1.37)  (1.28) 

        

 Station FE Y   Y Y   Y 

 Month FE Y   Y Y   Y 

 Weather Controls Y   Y Y   Y 

 Kernel Function Tri.   Tri. Tri.   Tri. 

 SO2 Obs. 160,852   105,030 77,402  91,074 
 SO2 Bandwidth 177  169 250  182 

 NO2 Obs. 152,685  85,271 89,696  79,334 
 NO2 Bandwidth 169  137 284  161 
Notes: Each cell in the table represents a separate RD estimate from local linear 
regression. The bandwidth is selected by applying Calonico et al. (2014)’s method to the 
full sample of 1,106,783 (1,103,215) daily SO2 (NO2) readings or to the relevant 
subsample. Weather controls include temperature, relative humidity, precipitation and 
wind speed. Standard errors clustered at the city level are reported below the estimates. 
* significant at 10% ** significant at 5% *** significant at 1%. 
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B7. Correlation between PM10 and AOD pre-post Automation  

As a further test of whether the PM10 data quality improved post-automation, we 

examine the correlation between PM10 and the satellite AOD data, treating the latter as a 

non-manipulated measure. The observation is at the station-month level and we 

standardized both the PM10 and AOD data for this analysis.  

Table B7. Partial Correlation between AOD and Reported PM10 
    AOD 
    (1) (2) (3) (4) 
Panel A. Pre-Automation  
  Reported PM10 0.087 0.221 0.225 0.120 
  Obs.  8,972 8,972 8,972 8,972 
            
Panel B. Post-Automation         
  Reported PM10 0.138 0.407 0.389 0.121 
  Obs.  14,595 14,595 14,595 14,595 
            
  Increase in Explanatory Power 59% 85% 73% 1% 
  Weather Controls    Y Y Y 
  Year-Month FE      Y Y 
  Station FE        Y 
Notes: Column (1) reports the correlation coefficient between monthly AOD and PM10. 
Columns (2) to (4) report the partial correlation coefficients after the control variables 
are partialled out (weather and fixed effects). All correlations are significant at the 0.1% 
level. 

Table B7 summarizes the findings. In column (1), we present the correlations between 

PM10 and AOD. We find that the correlation became stronger after automation, suggesting 

an improvement in PM10 data. In columns (2) and (3), we further include weather controls 

and time fixed effects. Again, we find that the correlation between PM10 and AOD became 

significantly stronger after automation and the explanatory power increased by over 70% 

post automation.  

Column (4) includes station fixed effects, so this test relies on within-station variation in 

the AOD-PM10 relationship over time and is therefore more demanding. The R-Squared 

statistic increases dramatically, but the AOD-PM10 relationship is significantly attenuated 

both before and after automation. This statistical pattern is consistent with Fowlie et al. 

(2019), which also finds that the high correlations that are typically reported between 
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satellite-derived air pollution data and monitoring station data tend to weaken when 

moving from cross-sectional to panel variation. So although the results in the other 

columns reveal a strengthened post automation correlation between AOD and PM10, the 

limited variation in AOD within location over time provides an important caveat to these 

conclusions. It is also apparent that future research on the relationship between AOD and 

PM10 would be valuable. 

B8. Correcting the Pre-Automation PM10 

In light of the results in columns (1) to (3) of Table B7, we attempt to correct the pre-

automation PM10 data by exploiting the relationship between PM10, AOD and weather 

conditions (temperature, relative humidity, precipitation and wind speed). To increase our 

predictive power, we use an artificial neural network (ANN) to train the post-automation 

data set, assuming that the post-automation data on PM10, AOD, and weather conditions 

are reliable.  

Specifically, we implement a backpropagation algorithm to train a multi-layered neural 

network (Doherr, 2018). Neural networks are capable of performing input-output 

mapping of data without a priori knowledge of distribution patterns (see Mullainathan and 

Spiess (2017) for discussion of their applications in economics). Our inputs in the 

algorithm include polynomial functions of AOD and weather conditions aggregated at city 

level, as well as a rich set of dummies indicating location and month. We use two hidden 

layers with 20 nodes each, and train the model using a random 70% subset of the post-

automation data with 300 iterations.  

The trained neural network can explain 81% of the variation in PM10 in a held-out test 

subset of the post-automation sample. As a basis of comparison, this model outperforms 

polynomial regression models; a regression of PM10 on polynomial functions of AOD and 

weather conditions, conditional on city and month fixed effects, has an R-squared of 0.59 

on the same left-out test set. We thus use the trained network to predict PM10 

concentrations for each pre-automation month in each city. 
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The correction shifts the distribution of the pre-automation PM10 data to the right (see 

Figure F8 for data-manipulating cities following the second definition in Section V). The 

mean of PM10 in this corrected distribution is 24.4 µg/m3 or 29% higher than the mean of 

the reported pre-automation distribution. These corrected PM10 data are provided as an 

online appendix and can be used for academic or other research.  

 

Figure B8. Correction of  Pre-Automation PM10 Data 

 
Notes:  Figure shows daily PM10 before automated monitoring in data-manipulating cities 
as defined in Panel B of  Table 2. The distribution of  reported PM10 data before automation 
is plotted in black, and the corrected PM10 data using ANN are plotted in red. 
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C. Additional Results on City-level Variation in Manipulation 

C1. Map of Manipulation Status across Chinese Cities 

Figure C1. Manipulation Status across Chinese Cities 

 
Notes: The PM10 manipulation status in Chinese cities are plotted. For the 74-city sample, 
manipulation is defined by whether the local linear RD estimate is positive and statistically 
significant at 5% level. For the other 44 cities with some missing data: (1) if we are unable 
to obtain a RD estimate using Calonico et al. (2014)’s method, we define a city as a data-
manipulating city when the difference in average PM10 between January–June 2013 and 
January–June 2014 is greater than 35 µg/m3; if we are still able to obtain a RD estimate 
using Calonico et al. (2014)’s method, we define a city as a data-manipulating city if the 
RD estimate is positive and statistically significant at 5% level.  
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C2. Manipulation and City/Leader Characteristics 

Table C2. Correlations b/w Data Quality and City/Leader Characteristics 

  
Dummy: RD>0 

(p<0.05)   

Dummy: RD>0 
(p<0.05) or  

Diff  ≥ 35μg/m3   
RD Estimate: 

Weighted 
  (1) (2)   (3) (4)   (5) (6) 
         
ln(GDP per capita) -0.07 -0.11*   -0.11*** -0.12***   -6.83** -6.89 
(per 1 SD) (0.06) (0.07)   (0.04) (0.04)   (3.13) (4.35) 
Corrected PM10 0.24*** 0.21***   0.18*** 0.17***   23.33*** 22.75*** 
(per 1 SD) (0.06) (0.07)   (0.05) (0.05)   (4.17) (4.15) 
Corruption Index 0.12** 0.10*   0.06 0.06   4.13 3.68 
(per 1 SD) (0.05) (0.06)   (0.05) (0.05)   (3.70) (4.37) 
Local: Party Secretary -0.09 -0.08   -0.10 -0.11   -8.49 -3.93 
  (0.11) (0.12)   (0.09) (0.09)   (7.09) (8.63) 
Youth League: Party Secretary 0.08 0.10   0.08 0.07   10.38 9.82 
  (0.12) (0.12)   (0.10) (0.10)   (7.47) (7.37) 
Age: Party Secretary 0.01 0.01   0.01 0.01   0.13 0.02 
  (0.01) (0.01)   (0.01) (0.01)   (0.52) (0.60) 
Science: Party Secretary -0.21** -0.23**   -0.02 -0.05   -17.31** -20.39*** 
  (0.10) (0.10)   (0.09) (0.09)   (7.10) (7.17) 
Local: Mayor   0.14     0.12     -8.67 
    (0.12)     (0.10)     (9.74) 
Youth League: Mayor   0.00     -0.11     -6.78 
    (0.12)     (0.11)     (6.78) 
Age: Mayor   0.02     0.00     0.31 
    (0.02)     (0.01)     (0.94) 
Science: Mayor   -0.07     -0.01     -7.51 
    (0.13)     (0.10)     (9.46) 
Observations 74 74   118 118   74 74 
R-squared 0.23 0.28   0.11 0.14   0.38 0.40 
Notes: The dependent variables are dummy variables indicating manipulation in columns (1) to (4), and 
are the regression discontinuity (RD) estimates in columns (5) – (6). In correspondence to Figure 2, 
columns (1) and (2) define manipulation as cities with RD estimates that are significant at 5% or above. 
Columns (3) and (4) further include 44 cities that have missing data issues. For these cities, we compare 
PM10 levels between January–June 2013 and January–June 2014: if the reported average increased by 35 
μg/m3 in the city, or if the RD coefficient for the city is estimable, positive, and significant, we define it 
a data manipulating city. In columns (5) and (6), the dependent variable is the city-specific RD estimate 
weighted by the inverse of the standard error. Leader characteristics include if the Party secretary or 
mayor is born in the same province, has experience in the Youth League, has a science or engineering 
degree, and age. Robust standard errors in parentheses. * significant at 10% ** significant at 5% *** 
significant at 1%. 
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D. Association between Online Search and Sales 

Table D. Association between Baidu Search Index and Taobao Sales Index 
  (1) (2)   (3) (4) 

 
Log (Face Mask Sales 

Index+1)   
Log (Air Filter Face Mask Sales 

Index +1) 
            
Log (Search+1) 0.64*** 0.31**   0.82** 0.60* 
  (0.14) (0.13)   (0.33) (0.33) 
            
Observations 467 467   467 467 
R-squared 0.86 0.94   0.84 0.88 
Weather Y Y   Y Y 
City FE Y Y   Y Y 
Month FE   Y     Y 
Notes: The outcome variables are the log of monthly Taobao Sales Indices for face masks 
and air filters. The independent variables are the corresponding log of Baidu Search 
Index. Weather controls include temperature, relative humidity, precipitation and wind 
speed. Standard errors in parentheses are clustered by city. * significant at 10% ** 
significant at 5% *** significant at 1%. 
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