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Abstract

We provide a model-free framework to study the global factor structure of exchange rates. To
this end, we propose a new methodology to estimate model-free global stochastic discount factors
(SDFs) pricing large cross-sections of international assets, such as stocks, bonds, and currencies,
independently of the currency denomination and in the presence of trading frictions. We derive
a unique mapping between the optimal portfolios of global investors trading in international
markets with frictions and international SDFs, which allows us to recover global SDFs from
asset return data alone. Trading frictions shrink portfolio weights of some assets to zero, leading
to endogenously segmented markets and robust properties of international SDFs. From the
cross-section of numéraire invariant SDFs, we extract global exchange rate factors and show that
they are strongly related to dollar and carry. Using these factors, we obtain an excellent in- and
out-of-sample fit of up to 80% for the cross-section of international asset returns, significantly
improving upon the performance of benchmark factor models. Finally, we estimate the cost to
obtain the portfolio home bias observed in the data and find it to be small.
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Canonical models in international finance, which match salient features of international asset

returns, posit that stochastic discount factors (SDFs) are driven by both global and country-specific

shocks.1 The consensus view is that two global factors, dollar and carry, account for a significant

fraction of the systematic variation of exchange rates, see, e.g., Verdelhan (2018). One common

feature of this literature is that the nature of global risks is imposed ex ante into the construction of

international SDFs, with global risks that enter all SDFs of all investors in all countries. In this paper,

we take an agnostic view and develop a new model-free framework to study the nature and source

of global exchange rate factors which emerge endogenously in a setting where investors face trading

frictions.

One common assumption underlying the literature studying global factor structures of exchange

rates is that markets are complete and agents can trade without frictions in global international

markets. Under this assumption, the rate of appreciation of the exchange rate (X) is uniquely

recovered from the ratio of the foreign (Mf ) and the domestic SDF (Md): X = Mf/Md. This identity

is called the asset market view of exchange rates (AMV) and implies that exchange rate shocks always

reflect corresponding foreign or domestic SDF shocks. Validity of the AMV is convenient for studying

global factor structures of exchange rates because of at least two reasons. First, it is well known that in

order to address the volatility puzzle in exchange rates, international SDFs need to be almost perfectly

correlated, which gives rise to a strong and parsimonious factor structure.2 Second, if one assumes

that the AMV holds, a factor that explains a significant part of the SDF variation in one currency is

by construction, a global exchange rate factor that explains a significant part of the SDF variation

in all other currencies. By triangular arbitrage, such SDF factors will explain bilateral exchange rate

movements with respect to any currency numéraire.

There are various important aspects to consider when relying on the AMV to understand global

factor structures of exchange rates. First, as we deviate from the complete market assumption

and allow markets to be incomplete, most domestic and foreign SDFs do not satisfy the AMV, see,

e.g., Backus, Foresi, and Telmer (2001). Second, SDF properties, and hence, the factor structure of

exchange rates depend crucially on the underlying assumptions about the menu of assets available

to investors for trade. For example, as we increase the degree of segmentation across countries,

SDFs become less correlated, and hence the factor structure weaker. In this case, the importance

of global factors decreases whereas local factors may matter more. These issues, however, make

the ensuing global factor structures dependent on ad hoc assumptions about the degree of financial

market integration, which in most cases may be economically hard to justify.

In this paper, we study global factor structures of exchange rates by means of a new model-

1For example, while exposure to country-specific risk factors can explain the negative coefficient in uncovered interest
rate parity regressions, it cannot explain the cross-section of carry trade returns. Lustig, Roussanov, and Verdelhan (2011)
find that the carry factor, a high minus low interest rate sorted currency portfolio, is a direct measure of a global common risk
factor. This factor can explain two thirds of the cross-sectional variation of exchange rates. Lustig, Roussanov, and Verdelhan
(2014) extend this work and find that US specific exposure to global risk, a dollar factor, is the main driver of currency return
predictability. While the carry is linked to changes in global equity volatility, the dollar factor returns are correlated with
the average growth rate of consumption across countries and the rate of US-specific component of industrial production
growth.

2Recall from the AMV that (log) exchange rate changes are equal to the difference in (log) foreign and domestic SDFs.
Taking variances on both sides and assuming exchange rate volatilities around 15% per year implies an almost perfect
correlation for international SDFs; see, e.g., Brandt, Cochrane, and Santa-Clara (2006).
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free methodology, which allows SDFs to price large cross-sections of international assets, such as

stocks, bonds, and currencies, in presence of real-world frictions and independent of the currency

denomination. We contribute to the literature in three ways. First, incorporating frictions allows us to

endogenize the optimal set of assets selected by global investors for trading, because barriers to trade

can induce optimal portfolio weights on some assets to shrink to zero. This produces endogenous

international market segmentation without imposing any assumptions.

Second, we theoretically identify market structures under which model-free SDFs satisfy the AMV

and are numéraire invariant even in the presence of market frictions. The numéraire invariance

makes these SDFs uniquely suited to estimate global exchange rate factors. We then show that SDFs

can always be decomposed into two factors: one that pertains to the common global factor given by

the average negative log return of the global optimal portfolio across all currency denominations and

second, by a currency basket which measures the average appreciation of any currency. In case of

symmetric markets, this representation is exact.

Third, from the cross-section of these model-free international SDFs, we extract global SDF factors

and currency baskets and show that they are directly related to dollar and carry, thus providing

model-free support to the model-based evidence in Lustig, Roussanov, and Verdelhan (2011, 2014)

and Verdelhan (2018). This is important as our SDFs are estimated from stocks and bonds and

not currencies. As we argue, the two factor structure proposed in these papers has wider appeal

beyond just explaining exchange rate changes. Indeed, using our two factors we then price the cross-

section of international asset returns and find that they substantially improve upon the performance

of benchmark factor models of exchange rates, especially out-of-sample.

As it is well-known that standard methods to estimate SDFs using cross-sections of assets can lead

to spurious estimates when the size of the cross-section increases, we rely on a new methodology

for estimating model-free SDFs, which can endogenously produce sparse SDFs and sparse optimal

portfolios. For instance, Kozak, Nagel, and Santosh (2019) shrink the coefficients of low variance

principal components of characteristics-based factors using various penalization techniques from

the machine learning literature. Different from this literature, we endogenously obtain sparse SDFs

by imposing various forms of economically relevant financial market frictions.3

Our framework is general as it can incorporate various forms of frictions, such as proportional

transaction costs, margin or collateral constraints, and short-sell constraints, while at the same time

ensuring that model-free SDFs are consistent with the absence of arbitrage in asset markets with

frictions. It is well-known that in frictionless and arbitrage-free markets, asset prices can be fully

characterized by an SDF that only depends on asset returns, which at the same time prices all assets

exactly, see, e.g., Ross (1978) and Hansen and Richard (1987), among many others. However, in

the presence of frictions, linear SDF pricing implies in general non zero pricing errors that reflect

the underlying structure of market frictions.4 Earlier literature has often treated pricing errors as

evidence of SDF misspecification, by expressing them in terms of the least squares distance between

3This approach is particularly appealing in the context of international financial markets, given the evidence of currency-
biased portfolios of international investors; see, e.g., Maggiori, Neiman, and Schreger (2019).

4Non zero pricing errors may also emerge in frictionless arbitrage-free market settings under the notion of “asymptotic
arbitrage” as in Ross (1976)’ Arbitrage Pricing Theory (APT). Such settings are also compatible with our methodology.
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an SDF and the family of SDFs that price correctly all assets. We instead explicitly work under the

assumption of arbitrage-free markets with frictions and the resulting pricing error structures. In this

setting, we characterize model-free SDFs that minimize established notions of dispersion in terms of

the optimal portfolios of global investors constrained by market frictions, which allows us to recover

global model-free SDFs from asset return data alone.

When relaxing the assumptions of complete and frictionless markets, violations of the AMV

arise for the vast majority of international SDFs, which implies factor structures of exchange rates

that are not exact. While this is expected, we theoretically show that there exist model-free SDF

families which satisfy the AMV in international asset markets even in the presence of frictions as

long as these frictions are symmetric. Market symmetry in frictions means that frictions are identical

across currency denominations.5 The family of model-free SDFs satisfying the AMV in symmetric

international asset markets with frictions is the family of minimum entropy SDFs. We establish two

powerful properties for these SDFs. First, we show that these SDFs are by construction numéraire-

invariant, meaning that an optimal SDF pricing assets well in one currency also prices assets well in

any other currency (after a simple multiplication with the exchange rate). Second, as long as markets

are symmetric, optimal portfolios of global investors are identical leading to an exact factor structure

of exchange rates. Therefore, in symmetric markets, the family of minimum entropy SDFs establish

a benchmark to understand both the nature of global exchange rate risks and the implications of

market friction asymmetries for the properties of these risks.

We study the global factor structure of exchange rates using a large cross-section of bonds and

equities on developed countries, and we extract numéraire invariant minimum entropy SDFs under

different market setting assumptions with varying transaction costs. When we assume that investors

can trade internationally the full menu of assets in frictionless markets, we find that the ensuing SDFs

are volatile and that they satisfy a virtually perfect single-factor structure with perfectly correlated

SDFs. Moreover, the numéraire invariant optimal portfolio of global investors also implies positions

in single assets that may be hard to maintain in practice without taking massively levered long and

short positions. When we impose symmetric international market frictions instead, it already implies

a number of zero portfolio weights on some assets and segmentation arises endogenously. Similar to

the frictionless case, international cross-country SDF correlations are still almost perfect, indicating

once more a very strong factor structure.

When we move from symmetric to asymmetric market settings, we find that SDF volatilities drop

by 20% relative to the symmetric frictions case and that the ensuing optimal portfolios of global

investors become more sparse. While lower than under the symmetric market setting, minimum

entropy SDF correlations are still very high and common factor structures very strong. The optimal

portfolios of global investors in markets with frictions typically further shrink average international

portfolio weights and reveal an interesting factor composition: Global investors always trade a

carry, i.e., go long in high interest rate currencies and go short in low interest rate currencies, and

they go long in US equity, while virtually completely ignoring long-term bonds. These findings

5For instance, when we assume a symmetric market, we either impose no frictions at all or we impose the exact same
friction across all countries. Asymmetric markets, on the other hand, imply differences in the friction structure of some
countries, such as, e.g., lower trade barriers for investing in local assets than in foreign assets.
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connect to a larger literature in international finance documenting priced systematic dollar and

carry risks. However, different from this literature our approach is completely model-free, it extracts

SDFs directly from a broad cross-section of international asset returns (not only from a cross-section

of exchange rates) and it allows us to interpret global factor compositions economically from the

optimal portfolios of global investors.

From the cross-section of model-free international SDFs, we extract a global factor and a country

level currency basket factor by estimating (i) the global factor as the average SDF calculated from the

cross-section of model-free SDFs and (ii) the currency basket factor as the average appreciation of a

currency relative to a basket of the remaining currencies. Using these two factors, we price the cross-

section of international asset returns, including stock, bond, and currency returns, both in- and out-

of-sample. The out-of-sample analysis is useful to control for overfitting effects, as we know, e.g., that

in a market setting with no frictions in-sample model-free SDF pricing errors are zero by construction.

Using rolling training periods of ten years for SDF estimation and one year rolling windows for testing,

we find that the out-of-sample performance of model-free SDFs is excellent. Indeed, our out-of-

sample global SDFs explain up to 80% of the variation in the cross-section of currencies and more

than 80% of the variation in the cross-section of stock and bond returns.

Our theoretical framework posits a two factor structure for global SDFs which in case of symmetric

markets is exact. This naturally relates our framework to the findings of Verdelhan (2018) who argues

that two factors, carry and dollar, explain a significant fraction of the systematic share in exchange

rate changes. Indeed, we find that our two factors, global SDF and currency basket are almost

perfectly correlated with dollar and carry. Prima facie this may seem surprising given that our SDFs

are estimated from bonds and stocks and not currencies as in earlier literature. This, however, implies

that carry and dollar may have appeal beyond explaining just currency risk premia but international

asset returns more generally.

As a last exercise, we use our framework to study the effects of trading frictions on currency

home bias. Maggiori, Neiman, and Schreger (2019) argue, that currency home bias may reflect a

combination of financial frictions but also behavioral biases such as inattention that effectively

segment financial markets. Since the latter cost are usually hard to quantify, we take our framework

and ask how much asymmetry in frictions do we have to impose in order to match the almost perfect

home bias that we observe in the data?6 To this end, we take our asymmetric market friction setting

and increase the cost to trade foreign assets. We find that in order to achieve almost perfect home

bias, trading foreign assets needs to be around eight times more expensive than trading local assets.

Given that the average bid ask spread is around 2bps, this implies that trading foreign assets entails a

transaction cost of around 14bps in unobservable costs. Overall, different from earlier literature that

has argued that transaction costs need to be unrealistically high to explain the home bias in the data,

we conclude that these costs can be relatively small.

Literature Review: Our paper contributes to a growing literature in international finance studying

global factors. The seminal work of Lustig, Roussanov, and Verdelhan (2011, 2014) and Verdelhan

6See Coeurdacier and Rey (2013) for a discussion of the implied costs.
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(2018) documents that two factors, carry and dollar, explain a significant share of the systematic

variation in exchange rates. Panayotov (2019) studies global risk in an extended version of Lustig,

Roussanov, and Verdelhan (2014), in which the US SDF has a larger exposure to global risk than

all other international SDFs. Maurer, Tô, and Tran (2019) extract two principal exchange rate

components from the cross-section of all cross-currency returns related to dollar and carry, in order

to construct country specific SDFs. These SDFs are shown to price international equity returns well

in sample. Aloosh and Bekaert (2019) reduce the cross-section of currencies by means of currency

baskets that measure the average appreciation of each currency against all other currencies. They

then apply clustering techniques to the cross-section of currency baskets and identify two clusters,

one related to the dollar and another related to the Euro. Lustig and Richmond (2019) model gravity

in the cross-section of exchange rates and find factor structures related to physical, cultural, and

institutional distances between countries. Jiang and Richmond (2019) link trade networks between

countries to exchange rates comovement in order to explain the existence of the global dollar and

carry factors.

Our paper is different from this literature along several dimensions. First, it relies on common

SDF factors that are extracted from a family of model-free, numéraire invariant SDFs, which satisfy

the AMV in arbitrage-free international asset markets with frictions. Second, our methodology allows

us to extract global factors jointly from a cross-section of returns including international equities and

bonds, in addition to exchange rate returns. Third, our factors are directly related to the optimal

portfolios of global investors in international asset markets with frictions, which provide additional

unique insights into the factor composition, in terms of the portfolio exposure of global investors

to various international assets. Fourth, the generality of our methodology allows us to incorporate

into our analysis several economically relevant forms of market frictions and endogenous market

segmentation features, and to study their implications for global factor structures. In this context, we

find that our two factors which are extracted from the cross-section of SDFs are related to carry and

and dollar, in line with the findings of Lustig, Roussanov, and Verdelhan (2011, 2014). Finally, we show

that our common factors jointly price cross-sections of returns including international equities and

bonds, in addition to exchange rate returns, not just in- but also out-of-sample.

Our paper is related to another important recent literature which studies how to extract

regularized SDFs from a large cross-section of asset returns. A common denominator of the various

approaches in this literature is the introduction of different penalization devices that shrink the in-

sample exposures of extracted SDFs to assets returns. These penalizations are designed to mitigate

in-sample overfitting and to improve the out-of-sample pricing performance. Moreover, depending

on the chosen penalization structure, they can induce different degrees of sparsity in extracted SDFs,

in order to reduce the number of relevant factors an SDF depends on. For example, Kozak, Nagel, and

Santosh (2019) use an elastic net penalization to shrink the contributions of low-variance principal

components of characteristics-based factors. This technique induces sparse linear SDFs, which

depend on a small number of characteristics-based principal components, and is shown to produce

a more robust out-of-sample pricing performance. Freyberger, Neuhierl, and Weber (2019) study the

cross-section of expected stock returns, by means of an adaptive group lasso technique enclosing
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an additive nonparametric specification of nonlinear dependencies between expected returns and

characteristics. Using this technique, they show that a small set of characteristics can explain the

cross-section of out-of-sample expected returns. None of these papers makes use of penalizations

directly motivated from corresponding transaction cost specifications as we do in our paper.7

A small but important literature studies model-free SDFs in markets with frictions. He and Modest

(1995) and Luttmer (1996) extend the Hansen and Jagannathan (1991) minimum variance SDF setting

by incorporating various specifications of sublinear transaction costs that give rise to generalized

diagnostics for asset pricing models. Hansen, Heaton, and Luttmer (1995) provide the econometric

tools for the evaluation of asset pricing models in such settings. A key theoretical finding in this

literature is that the pricing functional sublinearity gives rise to SDFs with non zero pricing errors,

which are tightly constrained by the given transaction cost structure. Korsaye, Quaini, and Trojani

(2018) extend this theory to address minimum dispersion SDFs resulting from general convex pricing

errors structures, which are uniquely characterized in terms of optimal portfolios of investors in

markets with convex transaction costs.8 We make use of this theory in order to identify financial

market structures that deliver numéraire invariant model-free SDF families which satisfy the AMV.

This result is key to identify parsimonious global exchange rate factors structures. Second, we exploit

the theoretical relation between numéraire invariant model-free SDFs and the optimal portfolios of

investors in markets with frictions in order to study economic factor compositions in terms of the

SDF exposures to international asset returns.

Our work is also related to the literature documenting that even small transaction costs can induce

substantial market segmentation. For instance, Bhamra, Coeurdacier, and Guibaud (2014) show in a

two country economy with transaction costs that any cost bearing on foreign equity holdings has

two opposite effects on portfolios. A direct effect, which reduces cross-border holdings via lower

expected returns on foreign assets, and an indirect effect, which reduces the substitutability between

national assets because of a lower return correlation, thus increasing the willingness to diversify

internationally. Since the latter effect is negligible, the authors show that a large home bias can arise

also from small frictions.

Outline of the paper: The rest of the paper is organized as follows. Section 1 provides the theoretical

framework for studying model-free SDFs in international financial markets with frictions. Section 2

presents our main empirical findings. Section 3 concludes. All proofs are gathered in a separate

appendix.

7DeMiguel, Martin-Utrera, Nogales, and Uppal (2019) extend a mean-variance portfolio problem with lasso penalization
by an explicit additional penalization for characteristics-dependent proportional transaction costs. Their findings show that
the resulting optimal portfolio depends on a larger number of characteristics, because combining characteristics reduces
transaction costs involved with portfolio adjustments that often cancel out.

8These authors also develop the econometric theory for the empirical analysis of minimum dispersion SDFs with convex
pricing errors and study the empirical properties of these SDFs in an APT context.

6



1 Global Stochastic Discount Factors and Market Frictions

In this section, we develop a model-free framework that allows us to study international SDFs

in the presence of various forms of frictions, such as bid-ask spreads, short-selling, margin, or

collateral constraints. In this framework, we obtain a unique one-to-one relation between minimum

dispersion SDFs and the optimal portfolio returns of a corresponding portfolio choice problem with

penalized portfolio weights. This mapping between SDFs and optimal portfolio returns allows us to

systematically pin down the optimal portfolios of global investors when there are barriers to trade. We

then characterize international frictions structures that give rise to families of numéraire invariant

model-free SDFs satisfying the AMV. We show that these SDF families are naturally suited to study

global factor structures and detail their tight links to the cross-section of exchange rates.

1.1 Model-Free SDFs in the Presence of Frictions

To keep notation simple, for the time being, we drop all references to particular countries and we

will relax this later on. We consider a two period incomplete market economy in which investors can

trade a set of N basis assets with payoff vector Z := (Zn)n=1,...,N at time 1, and a corresponding price

vector P := (Pn)n=1,...,N at time 0. We assume that each payoff Zn belongs to the space Lq(Ω,F ,P)

of random variables on (Ω,F ,P) with finite q-th moment, for some 1 < q ≤ ∞. We partition the set

of assets into two subsets indexed by D ⊂ {1, . . . , N}, and S := {1, . . . , N} \ D, of size ND and NS ,

respectively, and we denote by (ZD,PD) and (ZS ,PS) the payoff and price vectors of assets subject to

market frictions and assets not subject to any market friction. All prices and payoffs are denominated

in a common currency (or numéraire).

We model transaction costs in our economy using a closed and sublinear transaction cost function

h that quantifies the costs associated with any portfolio in our economy, based on the same common

numéraire for payoffs and prices.9 Intuitively, sublinear transaction costs reflect the fact that (i) the

cost of a portfolio implemented in a single execution is no greater than the cost when the same

portfolio is implemented in more than one execution; and (ii) investing in a portfolio A, which is

a multiple of a portfolio B with a certain factor, entails a cost equivalent to the cost of portfolio B

multiplied by the same factor. This specification of transaction costs encompasses all transaction

cost structures relevant for our analysis, such as, e.g., short selling constraints, bid-ask spreads, and

proportional transaction costs, such as leverage constraints.

Following Harrison and Kreps (1979), we introduce a price system (Y, π), consisting of traded

payoff space Y and a price functional π defined on Y . We define Y as the set of portfolio payoffs

that can be traded with finite transaction costs, out of the set of all portfolio payoffs generated by

portfolios of payoffs in vectorZ:

Y := {Y = θ′Z : h(θD) <∞, θ ∈ RN}, (1)

where θ is the vector of portfolio weights of all assets and θD the sub-vector of portfolio weights in

assets subject to market frictions. The pricing functional in this economy with frictions is then simply

9A real valued function f on a real vector space V is called sublinear, if f(x + y) ≤ f(x) + f(y) for all x, y ∈ V and
f(λx) = λf(x) for all λ ≥ 0 and x ∈ V . f is called closed if its sublevel set {x ∈ dom(f) : f(x) ≤ α} is closed for any α ∈ R.
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given by the payoff minimum replicating cost when accounting for transaction costs:

π(Y ) := inf
θ∈RN

{
θ′P + h(θD) : Y = θ′Z

}
. (2)

We work under the assumption of an arbitrage-free price system (Y, π), where as usual, we define an

arbitrage portfolio as a traded payoff Y ≥ 0 such that π(Y ) ≤ 0 and P(Y > 0) > 0.

The next Proposition provides the foundation to our approach based on SDFs with non-zero

pricing errors, by showing that the assumption of absence of arbitrage in such market of is equivalent

to the existence of such SDFs in our setting.

Proposition 1. Price system (Y, π) defined in equations (1) and (2) is arbitrage-free if and only if there

exists a strictly positive SDF M ∈ Lp that satisfies the (unconditional) pricing conditions:

E[MRS ]− 1NS
= 0 and E[MRD]− 1ND

∈ Ch , (3)

with

Ch := {y ∈ RND : y′w ≤ h(w) for allw ∈ RND} , (4)

and the gross return vectorsRS ,RD associated with payoff vectorsZS ,ZD.

Proposition 1 is akin to the well-known Fundamental Theorem of Asset Pricing and it characterizes

the existence of strictly positive SDFs in markets with frictions by a standard no-arbitrage condition.

According to pricing relation (3), such SDFs price exactly all assets not subject to trading frictions,

while they imply non zero pricing errors constrained by the closed convex set Ch for assets subject

to trading frictions. Intuitively, constraining the pricing error in the set Ch implies that the profit

with any portfoliow due to mispricing is lower or equal to the transaction cost of implementing such

portfolio.

Notice that Proposition 1 extends earlier results in the literature for markets with pricing errors

constrained by a convex cone; see, e.g., Cvitanić and Karatzas (1992), Hansen, Heaton, and Luttmer

(1995), and Luttmer (1996), among others. Moreover, it also naturally contains the standard case

of arbitrage-free markets with no frictions on any asset, which arises whenever Ch = {0ND
}, i.e.,

transaction costs on all assets are zero.

Proposition 1 constrains the set of relevant SDFs in our economy with frictions and it implies that

the following set of non-negative SDFs contains at least one strictly positive SDF:

Mh := {M ∈ Lp : M ≥ 0 , E[MRS ]− 1NS
= 0 and E[MRD]− 1ND

∈ Ch} . (5)

Recall that since markets are incomplete, there exist many possible SDFs. In particular, set Mh

can usually contain several non negative SDFs and we are interested in SDFs out of this set that

minimize established notions of dispersion in the literature. To this end, we measure SDF dispersion

by standard integral functionals of the form E[φ(·)] : Lp → (−∞,∞], where φ is a closed and convex

function. This setting contains several well-known minimum dispersion SDFs in the literature, e.g.,

Hansen and Jagannathan (1991) minimum variance SDFs, minimum Kullback-Leibler divergence,

and minimum entropy SDFs. We next define minimum dispersion SDFs in our economy with

frictions.
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Definition 1. Minimum dispersion SDFs. Given transaction cost function h, convex and closed

dispersion function φ, and partition S ∪ F into assets subject and not subject to trading costs, a

minimum dispersion SDF is the solution to following optimization problem:

Πh := inf
M∈Mh

E[φ(M)] . (6)

By definition, a minimum dispersion SDF is the solution to an optimization problem of the form

(6). Working directly with such optimization problems is difficult, however, as they represent infinite-

dimensional optimization problems that depend on unobservable random variables. Therefore,

we follow Korsaye, Quaini, and Trojani (2018) and first characterize minimum dispersion SDFs via

the solutions of a penalized portfolio problem in RN , in which the portfolio payoff dispersion is

minimized in presence of transaction costs. To this end, let:

∆h := min
θ∈RN

{
E[φ∗+(−θ′R)] + θ′1N + h(θD)

}
, (7)

where φ∗+ is the convex conjugate of the restriction of φ to the nonnegative real line.10 From portfolio

problem (7), we obtain the following explicit characterization of minimum dispersion SDFs in our

economy with frictions.

Proposition 2. Given the convex and closed transaction cost function h, strictly convex and closed

dispersion function φ, and arbitrage-free price system (Y, π), it follows:

1. Πh = −∆h.

2. If θ0 is the solution to problem (7), then the unique solution M0 to problem (6) is given by

M0 = (φ∗+)′(−θ′0R) , (8)

where (φ∗+)′(y) is the derivative of φ∗+ at y.

In Proposition 2, the unique SDF solving problem Πh, as a function of the optimal portfolio payoff

solving the alternative problem ∆h, is completely determined by the shape of φ∗+, via its derivative at

the solution of problem (7). On the other hand, the transaction cost function h impacts the structure

of the optimal portfolio in problem ∆h. Importantly, with Proposition 2 we are now able to directly

estimate model-free minimum dispersion SDFs in markets with frictions from asset return data alone,

since from equation (8) the minimum dispersion SDF can be directly estimated from the return vector

R using the optimal portfolio weight θ0 from problem (7).11 For the class of dispersion functions φ

10 Function φ+ is defined by φ+(y) = φ(y) for y ≥ 0 and by φ+(y) = 0 otherwise. Given a function f defined on Rm, its
convex conjugate is defined for y ∈ Rm by f∗(y) := supw∈Rm{w′y − f(w)}. The assumption that f is closed and convex
insures a one to one relation between f and f∗.

11Korsaye, Quaini, and Trojani (2018) formally address the consistent estimation of parameter θ0, which can be achieved
with an extremum estimator that incorporates the penalization term h(θD) from equation (7). More specifically, given a
stationary return process {Rt+1}t∈N, the empirical version of (7) defines the following estimator:

θ̂ := arg min
θ̂∈RN

{
1

T

T∑
t=1

φ∗+(−θ′Rt+1) + θ
′1N + h(θD)

}
. (9)
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studied in this paper and for a large class of penalizations h(θD), including penalizations generated

by market frictions as in this paper, estimator θ̂ consistently estimates parameter θ0. In the context of

our applications, Proposition 2 provides us with a consistent estimator for minimum dispersion SDF

M0 which is given by

M̂t+1 := (φ∗+)′(−θ̂′Rt+1) . (10)

Equation (10) will serve as the basis to estimate international model-free SDFs in our empirical

analysis of global exchange rate factors in Section 2.

Finally, notice that Proposition 2 allows for a fairly general dispersion function φ in the

specification of the SDF dispersion E[φ(M)]. However, in the following, we focus on negative entropy.

More specifically, negative entropy SDF-dispersion is obtained for φ(x) = − ln(x) when x > 0 and

φ(x) = +∞ when x ≤ 0. This corresponds to a convex conjugate portfolio dispersion function

given by φ∗+(y) = − ln(−y) for y < 0 and φ∗+(y) = +∞ otherwise. The minimum entropy SDF from

Proposition 2 reads explicitly:

M0 =
1

θ′0R
. (11)

The relevance of the negative entropy SDF-dispersion for our analysis comes from the fact that it

defines a numéraire invariant optimization criterion in Definition 1 and hence a numéraire invariant

minimum entropy SDF. This property makes minimum entropy SDFs particularly useful to study

factor structures since the particular currency denomination does not matter.

1.2 Examples of Market Frictions

While our setup can potentially incorporate a large variety of market frictions, we focus on three such

frictions: short-selling constraints, bid-ask spreads, and proportional transaction costs, where the

latter can equivalently be interpreted as leverage restrictions.

1.2.1 Short-Sell Constraints

Earlier literature explores the effect of short-sell constraints on SDFs; see Luttmer (1996) and Hansen,

Heaton, and Luttmer (1995), among others. Incorporating such constraints into our setup is very

straightforward, as it is sufficient to specify as a transaction cost function the characteristic function

of RND

+ = {w ∈ RND : w ≥ 0, k = 1, . . . , ND}:

h(θD) = δRND
+

(θD) :=

{
0 θD ∈ RND

+
∞ else

. (12)

Under such a specification of transaction costs, setCh in equation (4) of Proposition 1 is equal to RND

−

and all pricing errors on returns of assets subject to trading frictions are negative:

E[MRD]− 1ND
≤ 0 . (13)
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1.2.2 Proportional Transaction Costs

Proportional transaction costs are trading costs proportional to portfolio positions such as leverage

constraints. We model such market frictions in a straightforward manner by applying portfolio weight

norms. In particular, let h(·) := λ||·||, for some λ ≥ 0 and a norm ||·||. Under such a specification of

transaction costs, set Ch in equation (4) of Proposition 1 is given by:

Ch =
{
y ∈ RND : ||y||∗ ≤ λ

}
, (14)

where ||·||∗ is the dual norm of ||·||.12 Hence, in the arbitrage-free economy with proportional

transaction costs, the following pricing error inequality holds:

||E[MRD]− 1ND
||∗ ≤ λ . (15)

One possible specification of proportional transaction costs relies on a l1−norm, defined by ||y||1 :=∑ND

i=1 |yi|. This specification gives rise to a lasso-type penalty in optimal portfolio problem (7) and to

a bounded maximum pricing error in equation (15).13 It is well-known from the machine learning

literature that a lasso penalization produces sparse solutions in a corresponding optimization

problem. In our setting, this feature leads to optimal portfolios and minimum dispersion SDFs that

depend only on a strict subset of asset returns.

1.2.3 Bid-Ask Spreads

A natural way to incorporate bid-ask spreads in our framework is to consider long positions θL, when

one buys an asset at ask price at time 0 and sells it at bid price at time 1, and short positions θS ,

when one buys an asset at bid price at time 0 and sells at ask price at time 1. This corresponds to a

setting with (i) no short-selling constraints on long position θL and (ii) no buying constraints on short

positions θS . Denoting by θD = [θLD
′
,θSD

′
]′ the extended portfolio vector of long and short position on

each asset, we can easily incorporate these market frictions with following transaction cost function:

h(θD) := δRND
+

(θLD) + δRND
−

(θSD) . (16)

Under this specification of transaction costs, set Ch in equation (4) of Proposition 1 is given by the

Cartesian product of RND

+ and RND

− (Ch := RND

− ×RND

+ ). Hence, pricing errors on long (short) positions

are negative (positive):

E[MRL
D]− 1ND

≤ 0 ; E[MRS
D]− 1ND

≥ 0 , (17)

where RL
D and RS

D are the gross return vectors for long and short positions, respectively.

12The dual norm of norm ||·|| is defined by ||y||∗ = supw{w′y : ||w|| ≤ 1}.
13If ||·|| is an lp norm then ||·||∗ is an lq norm, and viceversa, with p, q in (1,∞) and 1/p + 1/q = 1. Moreover, l1 and l∞

norms are dual to each other. Finally, the l2 norm is the only self-dual norm.
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1.2.4 Combination of Frictions

It is straightforward to introduce different types of trading frictions for different subsets of assets. For

example, one could introduce short-sell constraints for equities and at the same time impose bid-

ask spreads on the carry trade. In such settings, set Ch in equation (4) of Proposition 1 for the global

transaction cost constraints just becomes the Cartesian product of the individual sets reflecting the

trading frictions applied to each subset of assets.

1.3 International SDFs

Our setting above can be naturally extended to account for the fact that global investors trade assets

internationally in markets with possibly different currency denominations. To this end, consider an

economy consisting ofM countries, in which investors in each country can tradeN assets, consisting

of both local and foreign assets, denominated in the country’s own currency. We denote withR(i) the

vector of gross returns denominated in country i’s currency, i.e.,

R(i) := {R(i)
k }k=1,...,N , (18)

whereR(i)
k is the gross return of asset k in country (currency) i. Denoting withX(i)

j the gross exchange

rate return, with the exchange rate defined as the price in country i currency of one unit of country j’s

currency, it then follows:

R(i) = X
(i)
j R

(j). (19)

We partition the assets available to an investor in country i into two groups: assets not subject to any

market frictions, with gross return vectorR(i)
S , and assets subject to possibly different types of market

frictions, with return vector R(i)
D . Market frictions in market i are specified as h(i)(θ(i)D ), based on a

sublinear transaction cost function h(i) applied to the sub-vector θ(i)D of portfolio weights on assets

subject to market frictions, within global portfolio vector θ(i)D of country i.

We work under the assumption of arbitrage-free markets with respect to each currency

denomination. This implies from Proposition 1 that the following sets of admissible SDFs in

economies denominated in country i’s currency (i = 1, . . . ,M ) contain at least a strictly positive SDF:

M(i)
h :=

{
M ∈ Lp : M ≥ 0 , E[MR

(i)
S ]− 1NS

= 0 and E[MR
(i)
D ]− 1ND

∈ C(i)
h

}
, (20)

whereC(i)
h is the pricing error constraint set for investors in country i, defined in equation (4). Model-

free minimum dispersion SDFs are then defined by:

Π
(i)
h := inf

M∈M(i)
h

E[φ(i)(M)] , (21)

for corresponding closed and strictly convex dispersion functions φ(i). Furthermore, Proposition 2

applies and minimum dispersion SDFs are uniquely pinned down as

M
(i)
0 = (φ

(i)∗
+ )′(−θ(i)

′

0 R(i)) ,
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where θ(i)0 presents the solution to the following optimal global portfolio problem for country i

investors:

∆
(i)
h := min

θ∈RND

{
E[φ

(i)∗
+ (−θ′R(i))] + θ′1N + h(i)(θD)

}
. (22)

By construction, our setting allows us to consider potentially country-specific transaction cost

specifications h(i) that can vary along different dimensions, such as the type of assets subject to

transaction costs in each country or the type of transaction costs applied to each asset in a particular

country. The resulting SDF can then be estimated from a stationary time series {R(i)
t+1}t∈N of returns

in currency denomination i, using the estimator provided in equation (10).

Country-specific transaction costs induce asymmetries in investors’ behavior across countries.

In contrast, identical specifications of transaction cost functions, identical dispersion metric and

identical definitions of assets subject to transaction costs in each country lead to identical optimal

portfolios across countries or market symmetry. To clarify these concepts, we define market

symmetry as follows:

Definition 2. An international economy consisting of M countries with sets of assets subject to

transaction costs indexed by {D(1), . . . , D(M)} and transaction cost specification {h(1), . . . , h(M)} is

called symmetric if:

D(1) = . . . = D(M) and h(1) = . . . = h(M) . (23)

As we show later on, assumptions about the symmetry of international markets have significant

implications for the factor structure of exchange rates.

1.4 Asset Market View of Exchange Rates in the Presence of Frictions

A key assumption of many asset pricing models in international finance is the Asset Market View

(AMV) of exchange rates, which stipulates that the exchange rate between domestic and foreign

currencies is uniquely pinned down by the ratio of foreign and domestic SDFs. It is well-known that

under the assumption of complete frictionless markets, the AMV holds with respect to a unique pair

of international SDFs. This results holds also more generally in incomplete frictionless markets for the

pair of minimum entropy domestic and foreign SDFs as long as markets are integrated, meaning that

investors can trade all assets internationally via the exchange rate market, see Sandulescu, Trojani,

and Vedolin (2019).

In a quest to describe the factor structure of exchange rates, the AMV comes in very handy.

Intuitively, validity of the AMV directly implies that a cross section of (log) exchange rates is exactly

reproduced by a simple linear transformation of (log) international SDFs, meaning that factor

structures in the cross-section of exchange rates are naturally explained by the factor structure in the

cross section of SDFs. In addition, the fact that SDF pairs which satisfy the AMV need to be strongly

correlated to explain the low exchange rate volatilities makes such SDF factor structures potentially

parsimonious and hence economically insightful.

Notice, however, that even under the assumption of the AMV, many exact exchange rate

factor representations are possible. Intuitively, since optimal SDFs are uniquely linked to the
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optimal portfolios of international investors, various market frictions may impact these portfolios

differentially. Unfortunately, this feature makes the estimated factor structures dependent on ad hoc

assumptions on the set of common assets traded internationally.14

The theory developed in Section 1.1 allows us construct model-free minimum dispersion SDFs

that (i) naturally endogenize the choice of the common assets traded internationally in markets with

frictions and (ii) are sufficiently regularized by the imposed frictions to produce an accurate pricing

performance not just in- but also out-of-sample. Therefore, this theory is a natural starting point

to construct exchange rate factor structures with commonly traded international assets returns that

are selected endogenously, based on economically plausible specifications for frictions. The missing

link, in order to obtain exact exchange rate factor representations using minimum dispersion SDFs, is

a result on the validity of the AMV in international asset markets with frictions. This result is provided

next.

Proposition 3. Consider a symmetric international economy consisting of M countries. Moreover, let

φ(1)(·) = . . . = φ(M)(·) = − ln(·) and denote byM (1)
0 , . . . ,M

(M)
0 the resulting family of minimum entropy

SDFs solving problem (21). It then follows, for any i, j ∈ {1, . . . ,M}:

X
(i)
j = M

(j)
0 /M

(i)
0 , (24)

i.e., the AMV holds with respect to all ensuing minimum entropy SDFs.

In Proposition 3, the key condition for the validity of the AMV with respect to all minimum entropy

SDF pairs in international asset markets with frictions, is that international frictions are symmetric.

Together with Proposition 1, this condition also immediately implies that pricing error constraints

are as well symmetric across markets: C(1)
h = . . . = C

(M)
h . Another hidden implication of Proposition

3 is that the optimal portfolio returns are symmetric as well across markets, i.e.: θ(1)0 = . . . = θ
(M)
0 ,

where θ(i)0 is the solution of problem (22) for market i under the conditions of Proposition 3. This

feature is a consequence of the numéraire invariance of minimum entropy SDFs and it follows from

the particular choice of the convex conjugate of dispersion function φ(·) = − ln(·) in Proposition 2

and implies for any i, j ∈ {1, . . . ,M}:

X
(i)
j =

(θ
(j)
0 R

(j))−1

(θ
(i)
0 R

(i))−1
=

(θ
(j)
0 R

(j))−1

(θ
(i)
0 R

(j))−1
X

(i)
j , (25)

i.e., θ(j)0 R
(j) = θ

(i)
0 R

(j) state by state, and hence θ(i)0 = θ
(j)
0 .

One key implication of Proposition 3 for our analysis of the global factor structures of exchange

rates is that the cross-section of M × (M − 1) distinct exchange rates is always exactly described by a

simple log linear transformation of the cross-section of M minimum entropy SDFs computed under

symmetric international transaction cost structures.

1.5 The Global Factor Structure of Exchange Rates

We now turn to the main focus of our paper and study the relation between exchange rate factors and

the AMV for our families of global minimum dispersion SDFs {M (i)
0 }i=1,...,M .

14Moreover, under the assumption of frictionless markets, estimation of model-free SDFs tends to produce over-fitted
estimates and spurious results when the size of the cross-section of asset return increases.
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1.5.1 Asset Market View and Global Factors

In general, for an arbitrary choice of a family of minimum dispersion SDFs, the AMV is violated

and deviations from it can be captured by a family of Backus, Foresi, and Telmer (2001) stochastic

exchange rate wedges {η(i)j }1≤i,j≤M , defined by:

X
(i)
j =

M
(j)
0

M
(i)
0

eη
(i)
j . (26)

After taking logs on both sides of this identity yields:

x
(i)
j = m

(j)
0 −m

(i)
0 + η

(i)
j , (27)

where we denote with lower-case letters logs: x(i)j := lnX
(i)
j . It immediately follows that whenever

a family of minimum dispersion SDFs satisfies the AMV, all wedges are zero and log exchange rate

returns satisfy an exact linear model, in which exchange rate shocks are completely spanned by SDF

shocks:

x
(i)
j = m

(j)
0 −m

(i)
0 . (28)

From Proposition 3, this situation arises for all families of minimum entropy SDFs estimated under

the assumption of market symmetry. Accordingly, the cross section of M × (M − 1) log exchange

rate returns is completely explained by a cross-section of M such log minimum entropy SDFs.

Furthermore, these SDFs need to be highly correlated, in order to be consistent also with the low

exchange rate volatilities in the data. Such a feature naturally induces a parsimonious factors

structure in minimum entropy SDFs constructed under symmetric market frictions.

In the more general situation of asymmetric market frictions and/or SDF measures of dispersion

different from entropy, deviations from the AMV arise and log exchange rates in linear model (27) are

only approximately related to log minimum dispersion SDFs, because of the existence of non zero

stochastic wedges. In this case, an exact representation of the cross-section ofM × (M − 1) exchange

rates requires in principle information from the cross section of M minimum dispersion SDFs and

all M × (M − 1) stochastic wedges. In this representation, the factor structures in exchange rates

and SDFs depend on both the degree of variability of the wedges and possible factor structures in the

cross-section of wedges that are not spanned by factors in the cross-sections of SDFs.15 The last two

wedge properties are endogenously determined by the degree of asymmetry in the market frictions

assumed to construct minimum dispersion SDFs.

1.5.2 Two-Factor SDF Representation

Proposition 2 posits that global factors in the cross-section of minimum dispersion SDFs are directly

linked to the corresponding portfolios of global investors in markets with frictions. In this setting, the

15Since wedges need themselves to be consistent with the pricing constraints satisfied by minimum dispersion SDFs in
each currency denomination, wedges and SDFs are typically correlated.
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numéraire invariance of the portfolios of minimum entropy investors in symmetric markets plays a

particular role, implying that:

m
(i)
0 = − lnθ′0R

(i) = − lnθ′0R
(j) − x(i)j , (29)

for each currency denomination i ∈ {1, . . . ,M}. In other words, the cross-section of these SDFs is

exactly reproduced by the sum of the optimal return of a single global portfolio with respect to a

reference currency j, and the cross-section of log exchange rate returns with respect to the reference

currency. Therefore, the cross-section of these SDFs naturally contains a common factor − lnθ′0R
(j)

and additional potential factors reflecting common exchange rate factors not spanned by− lnθ′0R
(j).

A second representation of minimum entropy SDFs in symmetric markets directly follows from

identity (29), using weights w1, . . . , wM such that
∑M

j=1wj = 1:

m
(i)
0 =

M∑
j=1

−wj lnθ′0R
(j) +

M∑
j=1

−wjx(i)j =

M∑
j=1

−wj lnθ′0R
(j)

︸ ︷︷ ︸
Global SDF

+ CBi︸︷︷︸
Currency Basket

, (30)

where CBi :=
∑M

j=1,j 6=i−wjx
(i)
j .16 Here, every minimum entropy SDF is written as the sum of (i)

a common factor given by the average negative log return of the global optimal portfolio across

currency denominations and (ii) a currency basket factor CBi measuring the average appreciation

of currency i relative to currencies j 6= i.17 In this representation, the cross-section of SDFs naturally

contains a common factor, given by the average negative log return of the global optimal portfolio

across currencies, and additional potential factors reflecting common currency basket factors not

spanned by this average return. 18 Notice that the two factor structure is closely related to the models

of Lustig, Roussanov, and Verdelhan (2014) and Verdelhan (2018) who posit that country-level SDFs

are driven by two factors: carry and dollar where the latter measures the average appreciation with

respect to the dollar, similar to our currency baskets. In case of minimum entropy SDFs, this implies

that, given the Global SDF and currency basket factors, there cannot be any other factors since the

exchange rate representation is exact, i.e., the AMV holds.

2 Empirical Analysis

Proposition 2 and in particular equation (10) allows us to estimate minimum dispersion international

SDFs directly from returns data in the presence of trading frictions. We study two different market

settings with varying transaction costs in both symmetric and asymmetric markets and explore the

impact of frictions on the properties of SDFs. Using SDFs denominated in different currencies, we

16For SDFs minimizing dispersion measures beyond entropy or in presence of market asymmetry the factor model in (30)
becomes an approximation due to stochastic wedge and reads m(i)

0 =
∑

j wjm
(j)
0 +

∑
j −wj lnX

(i)
j .

17Our notion of currency baskets is also related to Aloosh and Bekaert (2019) who use equal weighted baskets of all possible
bilateral exchange rate with respect to a specific currency. Notice, however, that different from these authors, who focus
exclusively on currency pricing in the cross-section, we price also stocks and bonds in the time-series, moreover, our SDFs
are spanned by two distinct factors: the average negative log return and the common currency basket.

18Linear approximate factor model for SDFs can be extracted from equation (30), e.g. M
(i)
0 = exp

(∑
j wjm

(j)
0

)
+

exp
(∑

j wjm
(j)
0

)
∗
(∑

j −wj lnX
(i)
j

)
.
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then extract global and currency basket factors to price cross-sections of currencies and international

assets such as long-term bonds and stocks.

2.1 Data

In our empirical analysis, we use monthly data between January 1988 and December 2015. We focus

on the following developed markets: Australia, Canada, Euro Area, Japan, New Zealand, Norway,

Sweden, Switzerland, United Kingdom and United States.19 We collect data on exchange rates, short-

and long-term interest rates, and MSCI country equity indices’ prices from Datastream. When we

analyze a specific currency denomination, we treat the corresponding market as the domestic and

all other markets as foreign. Hence, we do not consider bilateral trades but a global economy where

global investors can trade all possible assets.

2.2 Market Settings

We study two different market settings, symmetric and asymmetric markets, and in each market

impose different types of transaction costs.

SYMMETRIC MARKETS: For the first symmetric market setting, we assume that global investors can

trade the full menu of assets and there are no frictions to trade. The second symmetric market

setting arises when investors face proportional transaction costs. We assume that investors incur

no transaction costs when trading short-term bonds globally (i.e., investors can borrow and lend at

the short-term interest rate without any frictions) but face transaction costs when trading long-term

bonds and equity. More specifically, we assume that transaction costs are proportional to their

positions and in line with the size of bid-ask spreads. To this end, the proportional transaction cost

parameter λ is chosen such that we have comparable pricing errors implied on the returns based

on mid-prices by (i) SDFs in an economy with proportional transaction costs and by (ii) SDFs in an

economy where market frictions are quantified by bid-ask spreads.

ASYMMETRIC MARKETS: In the first asymmetric market setting, we assume that investors face bid-ask

spreads when buying and selling international assets. To this end, we use average bid-ask spreads for

exchange rates directly available from Datastream which are in the order of 2bps. For the long-term

bonds, we also assume average bid-ask spreads of 2bps in line with Adrian, Fleming, and Vogt (2017)

for the US and Bank of International Settlement (2016) for Japan and Germany ten-year bonds. For

equity indices, we impose a 6bps spread.20 The second asymmetric market setting assumes that local

short-term bonds can be traded without any frictions whereas all foreign short-, as well as long-term

bonds and equities face proportional transaction costs which are again consistent with the size of the

bid-ask spread.

19Before the introduction of the Euro, we take the Deutsche Mark in its place.
20It is in general impossible to know the exact bid and ask spread of assets. Luttmer (1996) uses bid and ask spreads of

around 0.012% which corresponds to the tick size on the NYSE. Andersen, Bondarenko, Kyle, and Obizhaeva (2018) reports
that the bid and ask spread on E-Mini Futures on the S&P500, one of top two most liquid exchange traded futures in the
world, is around 0.25 index points.
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2.3 Properties of Model-Free Global SDFs

As a first exercise, we study the properties of international SDFs, their comovement, and the

corresponding optimal portfolio weights. To this end, we estimate equation (10) using the different

transaction cost functions discussed before. Table 1 provides summary statistics on SDFs for different

currency denomination for the four market settings.

[Insert Table 1 and Figure 1 here.]

Panel A in Table 1 reports summary statistics for SDFs in each currency denomination. While

average SDFs are the same across the different market settings, volatilities decrease significantly as

we impose market frictions. For example, while the average volatility in markets with no frictions is

around 0.33, the corresponding number in asymmetric markets with transaction costs is only around

0.185, a 20% drop.

The cross-country correlations in the four market settings are presented in the lower panels of

Table 1. Not very surprisingly, the correlations are almost perfect in symmetric markets. The intuition

for this is that under the assumption of market symmetry, the AMV holds and “enforces” a high

correlation among international SDFs, see Proposition 3. As we move to an asymmetric market

setting where transaction costs vary among the different countries, we notice that the correlations

are slightly lower but still all above 90%. This may be more surprising given that in this case, we have

violations of the AMV. This finding indicates that, (i) stochastic wedges are not very significant and (ii)

a strong factor structure of exchange rates emerges even in presence of market frictions.

Finally, Figure 1 plots the time-series of the average (across all currency denominations) SDF for

the four market settings.21 While we notice a much higher volatility for the SDF in market settings

without any frictions, especially during crises, there is overall a high comovement among the different

SDFs. They all increase during bad economic times such as recessions or during times of disruptions

in financial markets such as the dot com bubble burst or the Lehman default.

2.4 Optimal Portfolio Weights

In order to get a better understanding of the optimal SDFs for different currencies, we now study

optimal portfolios. Our theoretical framework allows us to exactly identify optimal portfolio weights

from agents’ Euler equations. Figure 2 plots the optimal portfolio weights for symmetric markets with

no frictions (left panel) and symmetric proportional transaction costs (right panel).

[Insert Figure 2 here.]

Recall that a direct consequence of Proposition 3 is that portfolio holdings have to be identical

in symmetric markets. Therefore, we only plot the USD denominated portfolio weights. We notice

that whenever investors can trade without frictions, portfolio weights can be very large both long and

short. The larger positions reveal that investors borrow in the lower interest rate currencies such as

JPY, USD and EUR and hold long positions in high interest rate countries such as NZD and AUD. Most

21We use a six month moving average in figures.
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positions in long-term bonds are short, with the exception of the EUR and JPY. Global investors hold

large long positions in USD, AUD, and CHF equity indices. The large positions indicate that without

taking large levered positions it may be hard to maintain this portfolio.

When we impose symmetric proportional transaction costs on investors, given by l1 norm, some

weights on assets are zero, portfolio selection is sparse, and the size of the positions shrink, see the

right panel in Figure 2. More specifically, most portfolio weights on the long-term bonds are zero. This

is not very surprising given that currency risk premia at the long-end of the term structure are small,

see, e.g., Lustig, Stathopolous, and Verdelhan (2019). Investors also drop most of the equity indices

except for a long position in the USD and CHF and a small short position in the JPY. Interestingly,

most of the wealth is held in short-term bonds. In particular, as in the no frictions case, global

investors trade a “carry”. Short positions are in typical funding currencies, whereas long positions

are in investment currencies. Overall, we conclude that even small transaction costs which restrain

the leverage that investors can take, can have big impacts on the optimal portfolios held for global

investors.

[Insert Figures 3 and 4 here.]

We can now study the asymmetric market settings. Figures 3 and 4 plot the cases where we assume

asymmetric bid-ask spreads and proportional transaction costs, respectively. Because in asymmetric

markets portfolio weights vary across the different currency denominations, we plot all currencies

separately. As in the symmetric proportional transaction cost case, portfolios are more sparse and

investors hold positions that resemble the carry and long equity. The most sparse portfolio is when

investors face asymmetric proportional transaction costs as also reflected in the low SDF volatility

in Table 1. Even though in asymmetric markets, portfolio weights are not enforced to be the same,

positions look highly similar. As in the previous symmetric market cases, investors engage in carry

trades: shorting the US dollar, EUR or CHF and go long in the NZD. In addition, investors trade long

USD and CHF equity.

2.5 Factor Analysis

We now turn to the main focus of our paper, the factor structure of exchange rates. Different from

earlier literature, which primarily estimates factors from the cross-section of currencies (or currency

portfolios) directly, we use SDFs which are estimated from international stock and bond data.

Moreover, in addition to pricing currencies, we also price stocks and bonds. As a first observation,

notice that the almost perfect correlation among international SDFs implies a very parsimonious SDF

factor structure. Second, recall that our SDF representation decomposes each SDF into two distinct

factors: the portfolio of optimal returns and a currency basket, defined in equation (30). We can

then use these two factors and price both time-series as well as cross-sections of international assets

both in- and out-of-sample. To extract a global factor, we estimate the average SDF of the log SDFs

denominated in all different currencies for the four market settings. To save space, in the following,

we only report results for the US dollar and defer currency by currency results to the online appendix.

Figure 5 plots the global SDFs together with the currency baskets for the various market settings.
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[Insert Figure 5 here.]

Global SDFs as well as currency baskets are highly correlated across the different settings and

display almost identical time-series behavior. Interestingly, we notice that global SDFs spike during

US specific bad events. For example, in all four market settings, we find that global SDFs exhibit a

massive spike in August 2011 during the US downgrade from AAA to AA+ by S&P. While also currency

baskets spike during bad times, they also exhibit negative correlations with global SDFs during certain

times.

Armed with these two factors, we now run two-step cross-sectional regressions both in- and

out-of-sample for the cross-section of currencies and international stocks and bonds separately. In

addition to the two factors, we also present regression results on the local country SDF.

2.5.1 Factor Premia: In-Sample

Tables 2 to 3 present in-sample estimated factor premia for the cross-section of currencies (Table 2)

and all assets (stocks, short- and long-term bonds), see Table 3.22 As by construction pricing errors

are zero (i.e., asset returns are perfectly matched) in symmetric market settings, R2 are 100% and

all estimated factor risk premia highly statistically significant. More interesting results arise in the

asymmetric market case where we find all estimated premia to be negative and highly statistically

significant.23 While not very surprising, we find local SDFs to explain almost all of the variation and

the global SDF explains similarly almost 100% of the variation withR2s between 86% and 92%. When

comparing the currency basket factor to the global SDF, we notice that while estimated factor premia

are all significant, the economic size is smaller compared to the global factor by several orders of

magnitude. Also notice that the majority of the high R2s is mainly driven by the global SDF while

currency baskets add on average an additional 8%.

[Insert Tables 2 to 3 here.]

2.5.2 Factor Premia: Out-Of-Sample

An economically more interesting exercise than in-sample pricing is whether our SDFs are able to

price the cross-section of international assets out-of-sample. To this end we use a 10 year window up

to say year y to estimate the optimal weight θ̂ solving problem (7) and the next year y + 1 to compute

the out-of-sample SDF as M̂y+1 = φ′∗(θ̂
′
yRy+1). We then evaluate the out-of-sample performance by

calculating cross-sectional R2s from out-of-sample returns and out-of-sample SDFs.

Tables 4 to 5 present the out-of-sample results for the four market settings. The results are mixed

for the cross-section of FX returns: While estimated factor premia are significant in some of the

specifications, they are insignificant in the no frictions case. This, however, is not very surprising

given the highly volatile nature of the SDFs documented in Table 1. As a comparison, we can gauge the

22One might be worried that our factors are only weakly identified and lead to spurious results not just in- but also out-of-
sample. To this end, we present estimated factor betas in the Online Appendix to save space. We note that their estimated
size is large and highly statistically significant.

23Recall that the currency basket factor for country i is the average appreciation of currency i with respect to all the other
currencies.
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estimated factor premia in the case where we impose proportional transaction costs in a symmetric

market setting. In this case, we significantly improve on the cross-sectional pricing abilities of the

local currency SDF as well as the global SDF and currency basket with significantly increased R2s.

We can further improve upon the pricing performance by imposing asymmetric market settings

as the ensuing SDFs feature more robust properties, i.e., lower volatilities. For example, when we

assume that markets are asymmetric and global investors face proportional transaction costs, the

global SDF is always significant. R2 are also high, around 80%. Pricing the full cross-section of assets

further improves R2: Global and currency basket factors explain between 70% to 80% of the cross-

sectional variation of international stocks and bonds. We can compare these numbers to those in the

literature. For example, Aloosh and Bekaert (2019) reportR2s of 60% with an associated RMSE of 0.11

when pricing the cross-section of currency returns. However, notice that their estimates are all in-

and not out-of-sample. Our out-of-sample R2s are 20% larger with a RMSE which is similar in size.

We overall conclude that global SDFs together with currency baskets are significant priced risk factors

with excellent out of sample performance.

[Insert Tables 4 to 5 here.]

2.6 Relation to Carry and Dollar

In our setting, SDFs are fully characterized by two factors: the average negative log return of global

optimal portfolios and a currency basket. It is natural to ask how these factors relate to standard risk

factors in the literature. To this end, we retrieve the dollar and carry risk factors from Verdelhan (2018).

Figure 6 plots the global SDF together with carry (upper panel) and the currency basket risk factor

together with dollar (lower panel) in a symmetric market with proportional transaction costs. We

notice the extremely high correlation between each pair of risk factors. This finding is important for

the following reasons: First, recall that in our SDF representation, the decomposition of the SDFs

into global SDF and currency basket is exact under the assumption of symmetric markets whenever

we use minimum entropy SDFs. This implies that, given the global SDF and currency basket factors,

there cannot exist any other factors. Therefore two factors are sufficient to describe risk premia not

only on currencies but also stocks and bonds. Second, in our framework, global investors can buy

and sell a broad menu of assets, stocks, as well as short- and long-term bonds. Hence, our risk factors

are not extracted from currencies but from international asset prices and in particular, the global SDF

can be interpreted as a function of the optimal portfolios of these global investors. This echoes the

interpretation in Lustig, Roussanov, and Verdelhan (2014) who argue that carry is highly correlated

with the changes in the volatility of world equity market portfolio returns. Despite these differences,

we find the factors to be highly correlated implying that the global factors in Verdelhan (2018) are not

just important drivers of bilateral exchange rates but international asset returns more broadly.

[Insert Figure 6 here.]
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2.7 Home Bias in Global Portfolios

Proposition 3 posits that portfolios are identical across different currency denominations as long

as markets are symmetric. This, however, is in strong contradiction to empirical evidence that

documents a strong currency home bias in international portfolios. For example, French and Poterba

(1991) and Lewis (1999), and more recently Camanho, Hau, and Rey (2019), show that the proportion

of domestic stocks invested in portfolios exceeds their country’s relative market capitalization in the

world. This home bias phenomenon extends to bonds and is found to be even more pronounced,

see, e.g., Maggiori, Neiman, and Schreger (2019). To rationalize home bias, Coeurdacier and Rey

(2013) review three explanations: (i) hedging motives in frictionless markets, (ii) asset trade costs

in international financial markets (such as transaction costs, differences in tax treatments between

national and foreign assets or differences in legal frameworks), and (iii) information frictions and

behavioral biases.24

While we can measure transaction costs such as bid-ask spreads, it is harder to quantify other

types of asset trade costs such as the cost to trade via an intermediary or the role of international

taxation. Intangible costs such as information frictions and behavioral biases are even harder to

quantify, see, e.g., Coeurdacier and Rey (2013) for a discussion.25 It is therefore natural to assume

that the observed costs such as bid-ask spreads represent a lower bound to the true costs of trading

foreign assets.

In the following, we can use our framework to estimate the unobservable cost of trading foreign

assets such that portfolio holdings line up with the home bias observed in the data. To this end, we

incrementally increase foreign transaction costs relative to local transaction costs and study its effect

on optimal portfolio weights.

[Insert Figure 7 here.]

Figure 7 plots the optimal portfolio weights for each currency assuming that transaction costs

on the foreign assets are eight times as big as on the local assets.26 As we note, there is an almost

perfect home bias in equities and long-term bonds for each currency. For nearly all currencies, local

investors short the local long-term bond and have a long position in the local equity index. At the

same time, we notice that across all currency denominations, investors trade the carry. For example,

US investors short the US short-term bond while holding a long position in the Australian short-term

bond. Australian global investors, on the other hand, short the Japanese Yen and buy New Zealand

short-term bonds. This implies that independent of the foreign transaction cost, investors trade carry.

To get a sense of the implied cost to achieve home bias, recall that the average bid-ask spread

is around 2bps in our data sample which implies that the “hidden” costs are around 14bps. As

24Most studies that empirically explore the effect on asset trade costs conclude that the costs would need to be
unrealistically high to explain the level of home bias observed in the data. For example, French and Poterba (1991) argue
in a mean-variance framework that these costs must be several hundred basis points. However, a different strand of the
literature argues that if diversification benefits are small across countries, then these costs can be small and still explain
home bias, see, e.g., Martin and Rey (2004) and Bhamra, Coeurdacier, and Guibaud (2014).

25Van Nieuwerburgh and Veldkamp (2009) study a model of home bias with informational frictions in international
markets and link information asymmetry to earning forecasts, investors behavior, or pricing errors.

26To save space, we do not present the intermediate figures in the paper.
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mentioned earlier, these costs can include differences in taxation, behavioral or informational costs,

as well as intermediation costs. Overall, we conclude that even small transaction costs can lead to

highly currency biased portfolios.

3 Conclusions

This paper develops a theoretical model-free framework that allows us to identify global risk factors

from a large cross-section of international assets such as stocks, bonds, and currencies when

investors face barriers to trade. Intuitively, limiting the allocation of wealth that is invested into risky

assets leads to sparse portfolios, endogenously segmented markets, and hence robust properties of

international SDFs.

Our main theoretical contribution is twofold. First, under the assumption of market symmetry,

we show that we can always uniquely recover the exchange rate appreciation from the ratio of foreign

and domestic SDFs even in the presence of frictions. This result is very useful when studying the

global factor structure of exchange rates. Intuitively, the fact that the cross-section of (log) exchange

rate changes are exactly reproduced by the cross-section of (log) SDFs, directly implies that the

factor structure of exchange rates can be described by the factor structure of international SDFs. In

addition because our SDFs are numéraire-invariant, it does not matter whether exchange rates are

vis-à-vis one currency or another. Second, we characterize international SDFs using a two-factor

representation, one factor pertaining to the average optimal portfolio of global investors and one to

the average appreciation of any currency against the rest.

We then use this framework to estimate international SDFs from the cross-section of stocks, and

short- and long-term bonds for developed countries. When international agents face no barriers

to trade, SDFs need to exactly price all assets which leads to volatile SDFs and perfect correlation,

because the AMV holds. Imposing market frictions significantly reduces the volatility and we also

find correlations to be nearly perfect, the reason being that investors hold almost identical portfolios.

Closer inspection of these portfolios reveals that global investors take their biggest exposures in the

classical carry trade and long positions in USD equities. Long-term bonds, on the other hand, do not

enter international investors’ portfolios.

Using our two factor representation, we then extract a global factor and a currency basket factor

and assess their pricing ability for the cross-section of currencies and stocks and bonds. The highly

volatile SDFs in the no frictions setting lead to instable properties and therefore worse out-of-sample

pricing ability when pricing the cross-section of international assets. SDFs that incorporate frictions,

however, exhibit superb out-of-sample R2 of up to 80%.

Finally, we estimate the cost to obtain the currency home bias observed in the data and find it to

be very small.
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Figure 1. Average minimum entropy SDF. This figure plots the average SDF (across all currency
denominations) for the SDF estimated with no frictions, with proportional transaction costs and for
bid-ask spreads. Gray bars indicate recessions according to NBER. Data is monthly and runs from
January 1988 to December 2015.
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Figure 2. Optimal Weights: Symmetric Markets. The left panel plots the portfolio weights in each asset
denominated in USD assuming that investors face no trade barriers. The right panel plots the portfolio
weights in each asset denominated in USD assuming that investors face symmetric proportional
transaction costs. IRXXX is the short-term bond for currency XXX, BRXXX is the long-term bond for
currency XXX, ERXXX is the equity index for currency XXX. Data is monthly and runs from January
1988 to December 2015.
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USD : optimal weight GBP : optimal weight

AUD : optimal weight CAD : optimal weight

CHF : optimal weight EUR : optimal weight

JPY : optimal weight NZD : optimal weight

Figure 3. Optimal Weights: Bid-Ask Spreads. This figure plots the portfolio weights in each asset for
all currency denominations assuming that investors face bid-ask spreads. IRXXX is the short-term
bond for currency XXX, BRXXX is the long-term bond for currency XXX, ERXXX is the equity index for
currency XXX. Data is monthly and runs from January 1988 to December 2015.
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USD : optimal weight GBP : optimal weight

AUD : optimal weight CAD : optimal weight

CHF : optimal weight EUR : optimal weight

JPY : optimal weight NZD : optimal weight

Figure 4. Optimal Weights: Asymmetric Proportional Transaction Costs. This figure plots the
portfolio weights in each asset for all currency denominations assuming that investors face bid-ask
spreads. IRXXX is the short-term bond for currency XXX, BRXXX is the long-term bond for currency
XXX, ERXXX is the equity index for currency XXX. Data is monthly and runs from January 1988 to
December 2015.
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(b) Proportional Transaction Costs
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(c) Bid-Ask Spread
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(d) Proportional Transaction Costs

Figure 5. Global SDFs and Currency Baskets. This figure plots global SDFs and currency baskets for the
different market settings. The global factor SDF is the average SDF calculated from the cross-section
of all currency SDFs. The Currency Basket factor is from equation (30). Gray bars indicate recessions
according to NBER. Data is monthly and runs from January 1988 to December 2015.
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Figure 6. Dollar and Carry. This figure plots the global SDF and currency basket in the symmetric
market setting with proportional transaction costs together with the dollar and carry factors from
Verdelhan (2018). The global factor SDF is the average SDF calculated from the cross-section of
all currency SDFs. The Currency Basket factor is from equation (30). Gray bars indicate recessions
according to NBER. Data is monthly and runs from January 1988 to December 2015.
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Figure 7. Home Bias. This figure plots the optimal portfolio weights in an asymmetric market setting
where transaction costs on foreign assets are eight times larger than in local markets. Data is monthly
and runs from January 1988 to December 2015.
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Tables

Table 1. Summary Statistics Global SDFs

This table reports summary statistics for minimum entropy SDFs denominated in different currencies assuming for different market
structures: no market frictions, symmetric transaction costs, bid-ask spreads, and asymmetric transaction costs. Data is monthly and
runs from January 1988 to December 2015.

Symmetric Markets Asymmetric Markets
USD GBP AUD CAD CHF EUR JPY NZD USD GBP AUD CAD CHF EUR JPY NZD

Panel A: No Frictions Panel C: Asymmetric Bid-Ask Spreads

mean 0.997 0.996 0.995 0.996 0.998 0.997 0.999 0.995 0.997 0.996 0.995 0.996 0.998 0.997 0.999 0.994
std 0.338 0.328 0.326 0.328 0.335 0.338 0.345 0.316 0.252 0.244 0.235 0.241 0.248 0.251 0.257 0.235

Panel B: Symmetric Proportional Transaction Cost Panel D: Asymmetric Proportional Transaction Cost

mean 0.997 0.995 0.995 0.996 0.998 0.997 0.999 0.994 0.997 0.996 0.995 0.996 0.998 0.997 0.999 0.994
std 0.221 0.213 0.207 0.215 0.222 0.223 0.231 0.201 0.193 0.182 0.173 0.183 0.185 0.193 0.197 0.174

SDF Correlations No Frictions SDF Correlation Asymmetric Bid-Ask Spreads

USD GBP AUD CAD CHF EUR JPY NZD USD GBP AUD CAD CHF EUR JPY NZD
USD 1.00 1.00
GBP 1.00 1.00 0.98 1.00
AUD 0.99 0.99 1.00 0.98 0.99 1.00
CAD 1.00 0.99 0.99 1.00 0.98 0.98 0.98 1.00
CHF 0.99 0.99 0.99 0.99 1.00 0.98 0.99 0.99 0.98 1.00
EUR 0.99 1.00 1.00 0.99 1.00 1.00 0.97 0.99 0.99 0.97 1.00 1.00
JPY 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.97 0.98 0.98 0.97 0.98 0.97 1.00
NZD 0.99 0.99 0.98 0.99 0.98 0.99 0.99 1.00 0.98 0.98 0.97 0.99 0.97 0.97 0.97 1.00

SDF Correlation Proportional Transaction Cost SDF Correlation Proportional Transaction Cost

USD 1.00 1.00
GBP 0.99 1.00 0.97 1.00
AUD 0.99 0.98 1.00 0.97 0.98 1.00
CAD 0.99 0.99 0.98 1.00 0.94 0.95 0.94 1.00
CHF 0.98 0.99 0.98 0.98 1.00 0.96 0.98 0.98 0.94 1.00
EUR 0.99 0.99 0.99 0.98 1.00 1.00 0.94 0.98 0.97 0.92 0.98 1.00
JPY 0.99 0.99 0.98 0.98 0.99 0.99 1.00 0.95 0.96 0.96 0.93 0.97 0.94 1.00
NZD 0.99 0.98 0.97 0.99 0.97 0.97 0.98 1.00 0.96 0.97 0.97 0.97 0.96 0.95 0.96 1.00
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Table 2. Risk Prices FX: In-Sample

This table reports estimated risk prices of in-sample two-step Fama and MacBeth (1973) regressions of excess
returns of currencies, bonds, and equities on estimated factor loadings of the corresponding currency SDF, the
global, and currency basket factor. The global factor is the average SDF calculated from the cross-section of all
currency SDFs. The Currency Basket factor is from equation (30). t-statistics are in parentheses. Data runs from
January 1988 to December 2015.

Symmetric Markets

Panel A: No Frictions Panel B: Proportional TC
SDF Global CB R2(%) RMSE(%) SDF Global CB R2(%) RMSE(%)

−0.114∗∗∗ 100.000 0.000 −0.049∗∗∗ 100.000 0.000
−∞ −∞

−0.118∗∗∗ 96.094 0.034 −0.050∗∗∗ 96.377 0.032
(-13.304) (-13.910)
−0.112∗∗∗ −0.003∗∗∗ 100.000 0.000 −0.047∗∗∗ −0.002∗∗∗ 100.000 0.000
−∞ −∞ −∞ −∞

Asymmetric Markets

Panel C: Bid-Ask Spreads Panel D: Proportional TC
SDF Global CB R2(%) RMSE(%) SDF Global CB R2(%) RMSE(%)

−0.068∗∗∗ 98.783 0.016 −0.042∗∗∗ 95.199 0.031
(-28.427) (-14.590)

−0.071∗∗∗ 92.478 0.049 −0.043∗∗∗ 86.740 0.069
(-8.981) (-6.165)
−0.067∗∗∗ −0.002∗∗∗ 99.521 0.010 −0.041∗∗∗ −0.001∗∗∗ 97.814 0.022
(-38.935) (-38.992) (-18.084) (-16.307)
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Table 3. Risk Prices All Assets: In-Sample

This table reports estimated risk prices of in-sample two-step Fama and MacBeth (1973) regressions of excess
returns of currencies, bonds, and equities on estimated factor loadings of the corresponding currency SDF, the
global, and currency basket factor. The global factor is the average SDF calculated from the cross-section of all
currency SDFs. The Currency Basket factor is from equation (30). t-statistics are in parentheses. Data runs from
January 1988 to December 2015.

Symmetric Markets

Panel A: No Frictions Panel B: Proportional TC
SDF Global CB R2(%) RMSE(%) SDF Global CB R2(%) RMSE(%)

−0.114∗∗∗ 100.000 0.000 −0.052∗∗∗ 90.958 0.082
−∞ (-18.929)

−0.116∗∗∗ 99.012 0.030 −0.053∗∗∗ 92.150 0.081
(-53.840) (-19.318)
−0.112∗∗∗ −0.003∗∗∗ 100.000 0.000 −0.052∗∗∗ −0.001∗∗∗ 91.605 0.082
−∞ −∞ (-17.269) (-8.531)

Asymmetric Markets

Panel C: Bid-Ask Spreads Panel D: Proportional TC
SDF Global CB R2(%) RMSE(%) SDF Global CB R2(%) RMSE(%)

−0.065∗∗∗ 97.233 0.046 −0.041∗∗∗ 90.738 0.081
(-34.771) (-19.298)

−0.066∗∗∗ 96.816 0.054 −0.042∗∗∗ 92.778 0.081
(-29.512) (-19.329)
−0.064∗∗∗ −0.002∗∗∗ 97.513 0.045 −0.040∗∗∗ −0.001∗∗∗ 92.880 0.076
(-31.900) (-17.285) (-18.454) (-7.355)
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Table 4. Risk Prices FX: Out-of-Sample

This table reports estimated risk prices of out-of-sample two-step Fama and MacBeth (1973) regressions of
excess returns of currencies, bonds, and equities on estimated factor loadings of the corresponding currency
SDF, the global, and currency basket factor. The global factor is the average SDF calculated from the cross-
section of all currency SDFs. The Currency Basket factor is from equation (30). t-statistics are in parentheses.
Data runs from January 1988 to December 2015.

Symmetric Markets

Panel A: No Frictions Panel B: Proportional TC
SDF Global CB R2(%) RMSE(%) SDF Global CB R2(%) RMSE(%)

−0.376∗ 59.101 0.143 −0.232∗∗ 77.937 0.091
(-2.600) (-5.088)

-0.368 57.597 0.149 −0.233∗∗ 76.766 0.095
(-2.415) (-4.758)
−0.322∗ −0.002∗ 60.572 0.096 −0.191∗∗ −0.002∗ 78.343 0.073
(-3.230) (-3.380) (-4.622) (-3.877)

Asymmetric Markets

Panel C: Bid-Ask Spreads Panel D: Proportional TC
SDF Global CB R2(%) RMSE(%) SDF Global CB R2(%) RMSE(%)

−0.280∗∗ 80.221 0.083 −0.212∗∗∗ 85.103 0.068
(-5.673) (-7.112)

−0.278∗∗ 77.517 0.093 −0.216∗∗∗ 83.477 0.075
(-4.938) (-6.325)
−0.231∗∗ −0.002∗∗ 79.538 0.070 −0.184∗∗ −0.002∗∗ 83.376 0.064
(-4.914) (-4.201) (-5.444) (-4.413)
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Table 5. Risk Prices All Assets: Out-of-Sample

This table reports estimated risk prices of out-of-sample two-step Fama and MacBeth (1973) regressions of
excess returns of currencies, bonds, and equities on estimated factor loadings of the corresponding currency
SDF, the global, and currency basket factor. The global factor is the average SDF calculated from the cross-
section of all currency SDFs. The Currency Basket factor is from equation (30). t-statistics are in parentheses.
Data runs from January 1988 to December 2015.

Symmetric Markets

Panel A: No Frictions Panel B: Proportional TC
SDF Global CB R2(%) RMSE(%) SDF Global CB R2(%) RMSE(%)

−0.269∗∗∗ 73.951 0.150 −0.154∗∗∗ 80.068 0.120
(-8.362) (-11.067)

−0.269∗∗∗ 73.517 0.153 −0.154∗∗∗ 79.721 0.122
(-8.181) (-10.818)
−0.200∗∗∗ −0.002∗∗∗ 78.188 0.104 −0.122∗∗∗ −0.002∗∗∗ 81.197 0.096
(-7.689) (-5.560) (-8.625) (-5.126)

Asymmetric Markets

Panel C: Bid-Ask Spreads Panel D: Proportional TC
SDF Global CB R2(%) RMSE(%) SDF Global CB R2(%) RMSE(%)

−0.175∗∗∗ 80.821 0.117 −0.133∗∗∗ 81.798 0.112
(-11.417) (-12.005)

−0.175∗∗∗ 80.226 0.121 −0.133∗∗∗ 81.121 0.116
(-10.972) (-11.473)
−0.138∗∗∗ −0.002∗∗∗ 82.203 0.093 −0.107∗∗∗ −0.002∗∗∗ 82.180 0.094
(-8.967) (-5.454) (-9.070) (-5.377)
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Appendix A Proofs

Proof of Proposition 1

Proof. Sublinearity of the transaction cost function h implies that of the price function, π, and that the

set of payoffs,Y , is a convex cone. Hence, by Chen (2001, Theorem 5) and Clark (1993, Theorem 6), the

arbitrage-free condition is equivalent to the viability condition (Harrison and Kreps (1979)). By Chen

(2001, Theorem 1), there exists a strictly positive, continuous linear functional ψ defined on Lq, such

that ψ|Y ≤ π. Moreover, by the Riesz Representation Theorem, there exists a strictly positive element,

M , in the dual space of Lq, i.e. Lp, such that ψ(Y ) = E[MY ]. Hence, we have that E[MY ] ≤ π(Y ) for

all Y in Y . The definition of the price function, π implies that

θ′SE[MZS ] + θ′DE[MZD] ≤ θ′SPS + θ′DPD + h(θD) (A.1)

for any θ ∈ RN . Hence, for any θS ∈ RNS : θ′SE[MZS ] ≤ θ′SPS . Thus, E[MZS ] − PS = 0. Similarly,

inequality (A.1) implies that θ′SE[MZD] ≤ θ′DPD + h(θD) for all θD ∈ RND . This together with

Bauschke and Combettes (2011, Prop. 13.10 (i)) implies that h∗(E[MZD − PD]) ≤ 0, where h∗ is

the convex conjugate of the transaction cost function, h. Since h is closed and sublinear, by Hiriart-

Urruty and Lemaréchal (2012, Theorem 3.1.1), it is a support function of Ch. The convex conjugate of

a support function of Ch is given by an indicator function of the set Ch, i.e., h∗ = δCh
. This concludes

the proof.

Proof of Proposition 2

Proof. We define the linear operatorA : Lq → RN , withA(M) := E[MR], then the primal problem (6)

can be written as:

Πh = inf
M∈Lp

{E[φ+(M)] : A(M) ∈ P} , (A.2)

where the closed convex set P is defined as P := {1NS
} × ({1ND

} + Ch) and φ+ is the restriction to

the nonnegative real line of φ. Assuming no arbitrage, we know from Proposition 1 that there exists

a strictly positive element, M̄ , ofMh. Hence, A(M̄) is an element of the set ri(A(dom(φ+))) ∩ ri(P ),

where ri denotes the relative interior.27 By Borwein and Lewis (1992, Theorem 4.2), the following

duality relation then holds:

Π = − min
θ∈RN

{
E[φ∗+(ATθ)] + δ∗P (−θ)

}
, (A.3)

where AT is the adjoint map relative to the linear operatorA.28 Since δP (A(M)) = δ{1NS
}(A(M)|S) +

δ{1ND
}+Ch

(A(M)|D), its convex conjugate by Hiriart-Urruty and Lemaréchal (2012, Theorem 3.1.1)

reads:

δ∗P (−θ) = −θ′S1NS
− θ′D1ND

+ h(−θD) .

Hence, we obtain the first result. Now, under the condition that −θ′0R ∈ dom(φ∗+), the link between

the solutions of the primal and the dual problem becomes a direct result of Borwein and Lewis (1991,

Theorem 4.8). This concludes the proof.
27The relative interior of a set A is defined as the interior of the affine hull of set A.
28AT : RN → Lp such that E[AT (θ)M ] = θ′A(M).
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Proof of Proposition 3

Proof. Let M (i)
0 be the domestic minimum entropy SDF. It then follows:

M
(i)
0 = arg min

M∈M(i)
h

{E[− lnM ] : E[MR(i) − 1] ∈ C}

= arg min
M∈M(i)

h

{E[− ln(M)] : E[MX
(i)
j R

(j) − 1] ∈ C}

= X
(j)
i arg min

MX
(i)
j ∈M

(j)
h

{E[− ln(MX
(i)
j )] : E[MX

(i)
j R

(j) − 1] ∈ C}

= X
(j)
i M

(j)
0 .

This concludes the proof.
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