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Policy Uncertainty and Investment

@ Policy uncertainty affects firm investment:
o Baker, Bloom, and Davis, 2016; Hassett and Metcalf, 1999; Rodrik, 1991 — building on
Arrow, 1959; Bernanke, 1983; and others.

@ Distinguish between two types of policy uncertainty:

e Uncertainty over policy design
e Uncertainty inherent to policy instrument

@ Inherent uncertainty differs under price vs. quantity instruments for correcting Pigouvian
externalities.
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Inherent Policy Uncertainty

Price-Based Instrument:

Firm learns 7 Firm makes compliance decision Compliance period
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Inherent Policy Uncertainty

Price-Based Instrument:

Firm learns 7 Firm makes compliance decision Compliance period

I Il |

Period 0 Period 1/2 Period 1

= Firm knows Pigouvian tax 7 with certainty.
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Inherent Policy Uncertainty

Price-Based Instrument:

Firm learns 7 Firm makes compliance decision Compliance period

I Il |

Period 0 Period 1/2 Period 1

= Firm sets marginal abatement cost equal to 7.
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Inherent Policy Uncertainty

Price-Based Instrument:

Firm learns 7 Firm makes compliance decision Compliance period

I Il |

Period 0 Period 1/2 Period 1

= Regulator enforces firm compliance.
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Inherent Policy Uncertainty

Quantity-Based Instrument:

Firm learns Q Firm makes compliance decision Compliance period

I Il |

Period 0 Period 1/2 Period 1

J. Aldy & S. Armitage (Harvard) NBER Spring Workshop February 27, 2020 4/32



Inherent Policy Uncertainty

Quantity-Based Instrument:

Firm learns Q Firm makes compliance decision Compliance period

I Il |

Period 0 Period 1/2 Period 1

= Firm knows Q with certainty, but not resulting market price.
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Inherent Policy Uncertainty

Quantity-Based Instrument:

Firm learns @ Firm makes compliance decision Compliance period

I Il |

Period 0 Period 1/2 Period 1

= Firm must form expectation over all other firms’ marginal abatement cost curves, output
levels, and overlapping policies to estimate market-clearing price.

= Firm then sets marginal abatement cost equal to expected price.
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Inherent Policy Uncertainty

Quantity-Based Instrument:

Firm learns @ Firm makes compliance decision Compliance period

I

Period 0 Period 1/2 Period 1

= Regulator enforces firm compliance, and market for allowances clears. In general, realized
market price does not equal a firm's expected price.
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Long-Lived Abatement Investments

Cost-effective abatement options are often long-lived capital investments:

Allowance Market ~ Abatement Option

SO, installing scrubbers, retrofitting plants for low-sulfur coal
NO, installing selective catalytic reduction

CO, investing in renewables, installing carbon capture and storage
RPS, EEPS investing in renewables, retrofitting built environment

RFS investing in biorefineries

Vehicle efficiency developing new vehicle models
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Allowance Price Volatility

High historical price volatility in allowance and credit trading markets:
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Allowance Price Volatility
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Allowance Price Volatility

Impact of price volatility is not entirely resolved via financial instruments:
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Allowance Price Volatility

Impact of price volatility is not entirely resolved via financial instruments:

@ Firms do not hedge completely even when financial instruments are available and volatile
prices represent substantial business expense.

e On average U.S. airlines hedged 20% of expected jet fuel expenses over 1996-2003 (Rampini
and Viswanathan, 2014).
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Allowance Price Volatility

Impact of price volatility is not entirely resolved via financial instruments:

@ Firms do not hedge completely even when financial instruments are available and volatile
prices represent substantial business expense.

e On average U.S. airlines hedged 20% of expected jet fuel expenses over 1996-2003 (Rampini
and Viswanathan, 2014).

@ Firms may not know total hedging requirement with certainty, where Total Hedging =
p-q(p,b)

@ Large markets created by regulation face start-up problem.
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-
Evidence of Cost Inefficiency in Cap & Trade

Empirical literature suggests inefficiencies in cap-and-trade programs:

o Carlson et al. (2000): One-half of Phase | units in SOy C&T program deviated at some
point from least-cost compliance strategies.

e Fowlie (2010), Cicala (2015): Deregulated firms may underinvest in capital-intensive
compliance strategies for SO, and NO, C&T programs, paired with overinvestment by
regulated firms.

e Frey (2013), Chan et al. (2018): Overlapping policies further lead to compliance
strategies inconsistent with cost minimization.
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Revealed Preference in Environmental Policy Design

Global Carbon Emissions Covered by Policy

0.15-
< 0.10-
o .
(Y Policy Type
o
O B Price-Based
g . Quantity-Based
& 0.05-

0.00- _..............JJJJJJ]i I

1990 2000 2010 2020
Year

Source: World Bank, State and Trends of Carbon Pricing

J. Aldy & S. Armitage (Harvard) NBER Spring Workshop February 27, 2020 10/32



Revealed Preference in Environmental Policy Design

Allowance and credit trading programs in U.S. energy markets:
State CO, Cap-and-Trade Programs

State Renewable Portfolio Standard

Gasoline Sulfur and Benzene Credit Trading

Renewable Fuel Standard

Cross-State Air Pollution Rule

Low-Carbon Fuel Standard
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Revealed Preference in Environmental Policy Design

State CO, Cap-and-Trade Programs:

N
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Revealed Preference in Environmental Policy Design

State Renewable Portfolio Standards with Credit Trading:

W
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Revealed Preference in Environmental Policy Design

Cross-State Air Pollution Rule Allowance Trading:

W
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Revealed Preference in Environmental Policy Design

Renewable Fuel Standard Credit Trading:

W
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Revealed Preference in Environmental Policy Design

Gasoline Benzene Credit Trading:

W
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Revealed Preference in Environmental Policy Design
Gasoline Sulfur Credit Trading:
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Revealed Preference in Environmental Policy Design

Low-Carbon Fuel Standard:
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How does this inherent policy uncertainty affect firm behavior in
allowance and credit trading markets?
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Dynamic Model of Firm Investment in Abatement

Adapt Pindyck (1980), Rubin (1996), and Anderson, Kellogg, and Salant (2018) to model
emissions trading market:

.

maxEol [ e (—U(A(E) — PV (1)}e]
A(t): abatement investment
e

Y (t): allowances purchased

investment cost function

r: discount rate

P(t): current allowance price, which follows GBM with drift o and volatility o
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Model of Firm Investment in Abatement

Adapt Pindyck (1980), Rubin (1996), and Anderson, Kellogg, and Salant (2018) to model
emissions trading market:

.

maxEol [ e (—U(A(E) — POV (1)}e]
A(t): abatement investment
e

Y (t): allowances purchased

investment cost function

r: discount rate

P(t): current allowance price, which follows GBM with drift « and volatility o
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Model of Firm Investment in Abatement

)
maxEol [ e (—U(A(L) — POV (1)}el]

subject to:
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Model of Firm Investment in Abatement

)
maxEol [ e (—U(A(L) — POV (1)}el]
subject to:
K = A(t) — 0K(t)

A(t) > 0, Ko given K(t): abatement stock

d: depreciation rate
B(t): allowance bank

B=K(t)+Y(t)-E

B(T)>0, Bp=0 E: baseline emissions

R(t): remaining abatement
R =—A(t) + dK(t) opportunity
R(t) = E — K(t) > 0, Ry given
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-
Optimality Conditions

© Recover standard result that equilibrium allowance prices follow Hotelling Rule:

—Et[d(P( N=r-P
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-
Optimality Conditions

© Recover standard result that equilibrium allowance prices follow Hotelling Rule:

—Et[d(P( N=r-P

Compare to optimality condition when abatement is variable input (Rubin, 1996):

P=r.-P
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-
Optimality Conditions

@ However, optimal abatement is now dynamic decision. Assuming firm chooses some
unconstrained A* > 0:

(r+ )0/ (A) =P+ w”(A*) E¢[dA™] + W(A*) E¢[(dA™)’]
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-
Optimality Conditions

@ However, optimal abatement is now dynamic decision. Assuming firm chooses some
unconstrained A* > 0:

(7 4+ ) (A7) = P 0/ (A%) J BldA"] 0 (A%) S Rl (@A"))

Firm sets amortized marginal cost of abatement investment equal to:
@ Avoided allowance payment;

@ Value of smoothing investment over time.
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Optimality Conditions

@ However, optimal abatement is now dynamic decision. Assuming firm chooses some
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Value of smoothing investment depends on price volatility:
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Optimality Conditions

@ However, optimal abatement is now dynamic decision. Assuming firm chooses some
unconstrained A* > 0:
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-
Optimality Conditions

@ However, optimal abatement is now dynamic decision. Assuming firm chooses some
unconstrained A* > 0:

(r+0)¢'(A") = P+w”(A*) E[dA" ]+¢’”(A*) Ee[(dA)?]

Compare to optimality condition when abatement is variable input (Rubin, 1996):

V(A = P
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Model Interpretation

@ Banking activity pins down expected price path in equilibrium.

@ Current and expected future prices may jump to higher or lower equilibrium path given
outside shocks such as:
e Overlapping policies
o Anticipated cap-and-trade policy reform
o Changes in economic output
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Model Interpretation

@ Banking activity pins down expected price path in equilibrium.
@ Current and expected future prices may jump to higher or lower equilibrium path given
outside shocks such as:

e Overlapping policies
o Anticipated cap-and-trade policy reform
o Changes in economic output

@ Modeling long-lived, dynamic investment illuminates impact of price volatility:

e Firms may have forecast errors in estimating future stream of prices.
o Firms take into account price volatility in value of smoothing.
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How does this inherent policy uncertainty affect the cost of
achieving an emissions target?
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Simulations

@ Model compliance decisions of representative firm given simulated price trajectory:

e Scenario 1: Firm makes abatement investment decisions given stochastic prices.
e Scenario 2: Firm faces smoothly increasing Hotelling prices.
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@ Both scenarios produce same total emissions reductions, but costs are higher with
stochastic prices.

J. Aldy & S. Armitage (Harvard) NBER Spring Workshop February 27, 2020 20/32



Simulations

@ Model compliance decisions of representative firm given simulated price trajectory:

e Scenario 1: Firm makes abatement investment decisions given stochastic prices.
e Scenario 2: Firm faces smoothly increasing Hotelling prices.

@ Both scenarios produce same total emissions reductions, but costs are higher with
stochastic prices.

@ Price volatility alters effective abatement cost function for quantity-based instruments
relative to price-based instruments.
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N
Model Calibration

o Calibrate abatement cost function to U.S. carbon tax simulations from the Stanford
Energy Modeling Forum 32 (Barron et al., 2018), assuming quadratic abatement
investment costs.

o Later work will examine richer specifications of cost function and abatement opportunities.
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N
Model Calibration

o Calibrate abatement cost function to U.S. carbon tax simulations from the Stanford

Energy Modeling Forum 32 (Barron et al., 2018), assuming quadratic abatement
investment costs.

o Later work will examine richer specifications of cost function and abatement opportunities.

o Calibrate drift and volatility parameters to historical EU ETS allowance prices for Phases
Il 'and 111 (2008-2018), assuming prices follow geometric Brownian motion.

o Estimate 5.2% annual expected price growth (o = 0.0508)
o Estimate 42.9% annual price volatility (o = 0.3925)
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N
Model Calibration

Total Emissions Reduction (10 Years of Abatement Investment):
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Simulation Results

Total Emissions Reduction (10 Years of Abatement Investment):
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Revisiting Prices vs. Quantities

@ To understand implications of forecast errors in allowance trading markets, turn to
Weitzman (1974, 2018).
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Revisiting Prices vs. Quantities

@ To understand implications of forecast errors in allowance trading markets, turn to
Weitzman (1974, 2018).

@ Original Weitzman derivation assumes that regulators impose quantity orders directly.

@ Modify derivation so quantity orders are transmitted through market-clearing price:
e Optimal price order:

N

N
rg%(E[Bl ;q 71,91 ;C ql 7'1,91 9)

N N
Bo(D | ah(72,05)) — Y Ci(qh(r2, 65),65)]
i=1 i=1

61 is a shock to i's cost function in period t.
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@ To understand implications of forecast errors in allowance trading markets, turn to
Weitzman (1974, 2018).

@ Original Weitzman derivation assumes that regulators impose quantity orders directly.

@ Modify derivation so quantity orders are transmitted through market-clearing price:
e Optimal quantity order:

N N
max B[By( > ai(p(Q.60),61) = D Cilai(p(Q.6),61),61)
i=1 i=1

N

N
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Revisiting Prices vs. Quantities

@ Baseline scenario: firms have perfect information about all shocks before making any
compliance decisions.
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o Relative advantage of prices over quantities:
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Revisiting Prices vs. Quantities

@ Baseline scenario: firms have perfect information about all shocks before making any
compliance decisions.

o Relative advantage of prices over quantities:

N - .
1 1 07 + 6!

A=El (=g - BN 252
Ay & Z ¢

C!": slope of marginal cost function for production unit /

B”: slope of aggregate marginal benefit function

o Compare to Weitzman (2018) result with representative firm:

A — E[%(C” . B//) . (02 ;‘”91 )2]
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Revisiting Prices vs. Quantities

@ Now assume firm i/ sets:

Marginal Cost = Market-Clearing Price + Forecast Error ¢;
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Revisiting Prices vs. Quantities

@ Now assume firm i/ sets:

Marginal Cost = Market-Clearing Price + Forecast Error ¢;

@ Two types of firm-level forecast errors in multi-period setting:

@ Uncertainty caused by private information =
Mis-allocation across firms

© Uncertainty caused by as-yet unrealized market shocks =
Mis-allocation across compliance periods

J. Aldy & S. Armitage (Harvard) NBER Spring Workshop February 27, 2020 27/32



Welfare Consequences of Uncertainty

o UNCERTAINTY TYPE #1: Idiosyncratic forecast errors with no impact on aggregate
distribution of quantity across periods.

Relative advantage of prices over quantities:
N N ;2

1 1 0 + 05, 1lx~¢
AZE[z(izf\,:l cl,” —B")(; cr ) +2;C{’]
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Welfare Consequences of Uncertainty
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@ Cost inefficiency arises from failure to allocate quantity optimally across firms.
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Welfare Consequences of Uncertainty

o UNCERTAINTY TYPE #2: Systematic forecast errors that impact aggregate
distribution of quantity across periods.

Relative advantage of prices over quantities:
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@ Cost inefficiency arises from failure to allocate quantity optimally across periods.
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Welfare Consequences of Uncertainty

o UNCERTAINTY TYPE #2: Systematic forecast errors that impact aggregate
distribution of quantity across periods.

Relative advantage of prices over quantities:
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@ Cost inefficiency arises from failure to allocate quantity optimally across periods.

@ Benefit smoothing across periods may increase or decrease, with ambiguous effects for
welfare.
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Welfare Consequences of Uncertainty

@ Forecast errors asymmetrically affect quantity-based policies, conditional on policy design
uncertainty being resolved.
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Welfare Consequences of Uncertainty

@ Forecast errors asymmetrically affect quantity-based policies, conditional on policy design
uncertainty being resolved.

@ Both types of firm forecast errors create cost inefficiencies that push regulator to prefer
price instruments.
o Effect on benefit smoothing is ambiguous.

@ Given banking and borrowing, uncertainty in one compliance period may continue to
create cost inefficiencies in future periods.
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Conclusion & Future Directions

@ Evaluations of price versus quantity instruments should take into account asymmetric firm
forecast errors.
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Conclusion & Future Directions

@ Evaluations of price versus quantity instruments should take into account asymmetric firm
forecast errors.

o Effective abatement cost function depends on policy instrument — in simulations, median
percentage difference in costs is 21%.

@ Future work will focus on correlation between price uncertainty and abatement cost
uncertainty and bringing full dynamics into welfare analysis.
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Thank you!

Aldy: joseph_aldy®@hks.harvard.edu
https://scholar.harvard.edu/jaldy

Armitage: saraharmitage®@g.harvard.edu
https://scholar.harvard.edu/sarmitage
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-
Start-Up Problem in Allowance Trading Markets

Value of Allowance Market in Year 1 - Waxman-Markey Bill:
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-
Start-Up Problem in Allowance Trading Markets

Value of Allowance Market in Year 1 - Kyoto Protocol: &
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Revisiting Prices vs. Quantities

@ Regulator's optimal price policy: 71 = = C’
@ Regulator's optimal quantity policy: Q = Z,N:l q; + Z,Nzl G5 where g} sets
E[52] =

° Two key cond|t|ons govern market-clearing price: no intertemporal arbitrage and the
regulator’s quantity limit. Applying these conditions:
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@ Quantity response by firm i in period 1 (for illustration):
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Revisiting Prices vs. Quantities

@ Quantity response in presence of first-period forecast errors:
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o Constraint such that aggregate quantity in first period is unchanged:
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@ Expected benefits are unchanged, as are expected costs in period 2. Expected costs in

period 1:
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Revisiting Prices vs. Quantities

o Aggregate first-period quantity changes:
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@ Second-period price must adjust to ensure regulatory limit is still met:
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o Aggregate second-period quantity then changes:

@ Expected benefits and expected costs (first and second periods) all change.
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Revisiting Prices vs. Quantities

@ Market-clearing price such that realized quantity is regulated quantity (no intertemporal
arbitrage condition no longer applies):

. it
p(Q.0)=C" + ;\/71
Y1 er

i

@ Relative advantage of prices over quantities:
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@ In the presence of forecast errors, relative advantage of prlces over quantities becomes:
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