The Welfare Implications of Carbon Price Certainty

Joseph Aldy & Sarah Armitage

Harvard University

February 27, 2020

Policy Uncertainty and Investment

- Policy uncertainty affects firm investment:
 - Baker, Bloom, and Davis, 2016; Hassett and Metcalf, 1999; Rodrik, 1991 building on Arrow, 1959; Bernanke, 1983; and others.
- Distinguish between two types of policy uncertainty:
 - Uncertainty over policy design
 - Uncertainty inherent to policy instrument
- Inherent uncertainty differs under **price** vs. **quantity** instruments for correcting Pigouvian externalities.

Price-Based Instrument:

Price-Based Instrument:

 \Rightarrow Firm knows Pigouvian tax τ with certainty.

Price-Based Instrument:

 \Rightarrow Firm sets marginal abatement cost equal to τ .

Price-Based Instrument:

 \Rightarrow Regulator enforces firm compliance.

Quantity-Based Instrument:

Firm learns \hat{Q}	Firm makes compliance decision	Compliance period
Period 0	Period 1/2	Period 1

Quantity-Based Instrument:

 \Rightarrow Firm knows \hat{Q} with certainty, but not resulting market price.

Quantity-Based Instrument:

- \Rightarrow Firm must form expectation over all other firms' marginal abatement cost curves, output levels, and overlapping policies to estimate market-clearing price.
- ⇒ Firm then sets marginal abatement cost equal to expected price.

Quantity-Based Instrument:

Firm learns \hat{Q}	Firm makes compliance decision	Compliance period
Period 0	Period 1/2	Period 1

 \Rightarrow Regulator enforces firm compliance, and market for allowances clears. In general, realized market price does not equal a firm's expected price.

Long-Lived Abatement Investments

Cost-effective abatement options are often long-lived capital investments:

Allowance Market	Abatement Option
SO ₂	installing scrubbers, retrofitting plants for low-sulfur coal
NO_x	installing selective catalytic reduction
CO_2	investing in renewables, installing carbon capture and storage
RPS, EEPS	investing in renewables, retrofitting built environment
RFS	investing in biorefineries
Vehicle efficiency	developing new vehicle models

High historical price volatility in allowance and credit trading markets:

Emissions Trading System *CO*₂ Allowance Price (EU)

Low Carbon Fuel Standard Allowance Price (California)

SO₂ Allowance Price (US)

NO_x Allowance Price (US)

Impact of price volatility is not entirely resolved via financial instruments:

Impact of price volatility is not entirely resolved via financial instruments:

- Firms do not hedge completely even when financial instruments are available and volatile prices represent substantial business expense.
 - On average U.S. airlines hedged 20% of expected jet fuel expenses over 1996-2003 (Rampini and Viswanathan, 2014).

Impact of price volatility is not entirely resolved via financial instruments:

- Firms do not hedge completely even when financial instruments are available and volatile prices represent substantial business expense.
 - On average U.S. airlines hedged 20% of expected jet fuel expenses over 1996-2003 (Rampini and Viswanathan, 2014).
- Firms may not know total hedging requirement with certainty, where Total Hedging = $p \cdot q(p, \theta)$

Impact of price volatility is not entirely resolved via financial instruments:

- Firms do not hedge completely even when financial instruments are available and volatile prices represent substantial business expense.
 - On average U.S. airlines hedged 20% of expected jet fuel expenses over 1996-2003 (Rampini and Viswanathan, 2014).
- Firms may not know total hedging requirement with certainty, where Total Hedging = $p \cdot q(p, \theta)$
- Large markets created by regulation face start-up problem.

Start-Up Problem

Evidence of Cost Inefficiency in Cap & Trade

Empirical literature suggests inefficiencies in cap-and-trade programs:

- Carlson et al. (2000): One-half of Phase I units in SO_2 C&T program deviated at some point from least-cost compliance strategies.
- Fowlie (2010), Cicala (2015): Deregulated firms may underinvest in capital-intensive compliance strategies for SO_2 and NO_x C&T programs, paired with overinvestment by regulated firms.
- Frey (2013), Chan et al. (2018): Overlapping policies further lead to compliance strategies inconsistent with cost minimization.

Source: World Bank, State and Trends of Carbon Pricing

Allowance and credit trading programs in U.S. energy markets:

- State CO₂ Cap-and-Trade Programs
- State Renewable Portfolio Standard
- Gasoline Sulfur and Benzene Credit Trading
- Renewable Fuel Standard
- Cross-State Air Pollution Rule
- Low-Carbon Fuel Standard

State *CO*₂ **Cap-and-Trade Programs:**

State Renewable Portfolio Standards with Credit Trading:

Cross-State Air Pollution Rule Allowance Trading:

Renewable Fuel Standard Credit Trading:

Gasoline Benzene Credit Trading:

Gasoline Sulfur Credit Trading:

Low-Carbon Fuel Standard:

How does this inherent policy uncertainty affect firm behavior in allowance and credit trading markets?

$$\max_{A,Y} E_0 \left[\int_0^T e^{-rt} \{ -\psi(A(t)) - P(t)Y(t) \} dt \right]$$

- A(t): abatement investment
- $\psi(\cdot)$: investment cost function
- \bullet Y(t): allowances purchased
- r: discount rate
- ullet P(t): current allowance price, which follows GBM with drift lpha and volatility σ

$$\max_{\mathbf{A},Y} \mathrm{E}_0[\int_0^T e^{-rt} \{-\psi(\mathbf{A}(t)) - P(t)Y(t)\}dt]$$

- A(t): abatement investment
- $\psi(\cdot)$: investment cost function
- \bullet Y(t): allowances purchased
- r: discount rate
- ullet P(t): current allowance price, which follows GBM with drift lpha and volatility σ

$$\max_{A,Y} E_0 \left[\int_0^T e^{-rt} \{ -\psi(A(t)) - P(t)Y(t) \} dt \right]$$

- A(t): abatement investment
- $\psi(\cdot)$: investment cost function
- \bullet Y(t): allowances purchased
- r: discount rate
- ullet P(t): current allowance price, which follows GBM with drift lpha and volatility σ

$$\max_{A,Y} \mathrm{E}_0[\int_0^T e^{-rt} \{-\psi(A(t)) - P(t)Y(t)\}dt]$$

- A(t): abatement investment
- $\psi(\cdot)$: investment cost function
- \bullet Y(t): allowances purchased
- r: discount rate
- ullet P(t): current allowance price, which follows GBM with drift lpha and volatility σ

$$\max_{A,Y} \mathrm{E}_0\left[\int_0^T e^{-rt} \{-\psi(A(t)) - P(t)Y(t)\}dt\right]$$

- A(t): abatement investment
- $\psi(\cdot)$: investment cost function
- \bullet Y(t): allowances purchased
- r: discount rate
- ullet P(t): current allowance price, which follows GBM with drift lpha and volatility σ

$$\max_{A,Y} \mathrm{E}_0\left[\int_0^T e^{-rt} \left\{-\psi(A(t)) - P(t)Y(t)\right\}dt\right]$$

- A(t): abatement investment
- $\psi(\cdot)$: investment cost function
- \bullet Y(t): allowances purchased
- r: discount rate
- ullet P(t): current allowance price, which follows GBM with drift lpha and volatility σ

$$\max_{A,Y} \mathrm{E}_0\left[\int_0^T e^{-rt} \left\{-\psi(A(t)) - P(t)Y(t)\right\}dt\right]$$

subject to:

$$\max_{A,Y} \mathrm{E}_{0}[\int_{0}^{T} e^{-rt} \{-\psi(A(t)) - P(t)Y(t)\}dt]$$

subject to:

$$\dot{K} = A(t) - \delta K(t)$$

$$A(t) \geq 0$$
, K_0 given

$$\dot{B} = K(t) + Y(t) - \bar{E}$$

 $B(T) > 0, B_0 = 0$

$$\dot{R} = -A(t) + \delta K(t)$$

$$R(t) = \bar{E} - K(t) \ge 0$$
, R_0 given

- K(t): abatement stock
- ullet δ : depreciation rate
- B(t): allowance bank
- \bar{E} : baseline emissions
- R(t): remaining abatement opportunity

Model of Firm Investment in Abatement

$$\max_{A,Y} \operatorname{E}_0[\int_0^T e^{-rt} \{-\psi(A(t)) - P(t)Y(t)\}dt]$$

subject to:

$$\dot{K} = A(t) - \delta K(t)$$

$$A(t) \geq 0$$
, K_0 given

$$\dot{B} = K(t) + Y(t) - \bar{E}$$
 $B(T) > 0, B_0 = 0$

$$\dot{R}=-A(t)+\delta K(t)$$
 $R(t)=ar{E}-K(t)>0,\;R_0$ given

- K(t): abatement stock
- δ : depreciation rate
- B(t): allowance bank
- \bar{E} : baseline emissions
- R(t): remaining abatement opportunity

Model of Firm Investment in Abatement

$$\max_{A,Y} E_0 \left[\int_0^T e^{-rt} \{ -\psi(A(t)) - P(t)Y(t) \} dt \right]$$

subject to:

$$\dot{K} = A(t) - \delta K(t)$$

$$A(t) \geq 0$$
, K_0 given

$$\dot{B} = K(t) + Y(t) - \bar{E}$$

 $B(T) > 0, B_0 = 0$

$$\dot{R} = -A(t) + \delta K(t)$$

$$R(t) = \bar{E} - K(t) > 0$$
, R_0 given

- K(t): abatement stock
- ullet δ : depreciation rate
- B(t): allowance bank
- \bar{E} : baseline emissions
- R(t): remaining abatement opportunity

Model of Firm Investment in Abatement

$$\max_{A,Y} E_0 \left[\int_0^T e^{-rt} \{ -\psi(A(t)) - P(t)Y(t) \} dt \right]$$

subject to:

$$\dot{K} = A(t) - \delta K(t)$$

$$A(t) \geq 0$$
, K_0 given

$$\dot{B} = K(t) + Y(t) - \bar{E}$$
 $B(T) > 0, B_0 = 0$

$$\dot{R} = -A(t) + \delta K(t)$$

$$R(t) = \bar{E} - K(t) > 0$$
, R_0 given

- K(t): abatement stock
- ullet δ : depreciation rate
- B(t): allowance bank
- \bar{E} : baseline emissions
- R(t): remaining abatement opportunity

Recover standard result that equilibrium allowance prices follow Hotelling Rule:

$$\frac{1}{dt}\mathrm{E}_t[d(P(t))] = r \cdot P$$

• Recover standard result that equilibrium allowance prices follow Hotelling Rule:

$$\frac{1}{dt}\mathrm{E}_t[d(P(t))] = r \cdot P$$

Compare to optimality condition when abatement is variable input (Rubin, 1996):

$$\dot{P} = r \cdot P$$

② However, optimal abatement is now dynamic decision. Assuming firm chooses some unconstrained $A^* > 0$:

$$(r+\delta)\psi'(A^*) = P + \psi''(A^*)\frac{1}{dt}E_t[dA^*] + \psi'''(A^*)\frac{1}{dt}E_t[(dA^*)^2]$$

However, optimal abatement is now dynamic decision. Assuming firm chooses some unconstrained $A^* > 0$:

$$(r+\delta)\psi'(A^*) = P + \psi''(A^*)\frac{1}{dt}E_t[dA^*] + \psi'''(A^*)\frac{1}{dt}E_t[(dA^*)^2]$$

Firm sets amortized marginal cost of abatement investment equal to:

Avoided allowance payment;

9 However, optimal abatement is now dynamic decision. Assuming firm chooses some unconstrained $A^* > 0$:

$$(r+\delta)\psi'(A^*) = P + \psi''(A^*)\frac{1}{dt}E_t[dA^*] + \psi'''(A^*)\frac{1}{dt}E_t[(dA^*)^2]$$

Firm sets amortized marginal cost of abatement investment equal to:

- Avoided allowance payment;
- Value of smoothing investment over time.

② However, optimal abatement is now dynamic decision. Assuming firm chooses some unconstrained $A^* > 0$:

$$(r+\delta)\psi'(A^*) = P + \psi''(A^*)\frac{1}{dt}E_t[dA^*] + \psi'''(A^*)\frac{1}{dt}E_t[(dA^*)^2]$$

Value of smoothing investment depends on price volatility:

② However, optimal abatement is now dynamic decision. Assuming firm chooses some unconstrained $A^* > 0$:

$$(r+\delta)\psi'(A^*) = P + \psi''(A^*)\underbrace{\frac{1}{dt}}_{\mathbf{E}_t[dA^*]} + \psi'''(A^*)\frac{1}{dt}\underbrace{\mathbf{E}_t[(dA^*)^2]}_{\mathbf{E}_t[dA^*]}$$

Value of smoothing investment depends on price volatility:

$$\frac{1}{dt} E_{t}[dA^{*}] = A_{K}^{*}(A - \delta K) + A_{B}^{*}(K + Y - \bar{E}) + A_{R}^{*}(-A + \delta K) + A_{P}^{*}\alpha P + \frac{1}{2}A_{PP}^{*}\sigma^{2}P^{2}$$

② However, optimal abatement is now dynamic decision. Assuming firm chooses some unconstrained $A^* > 0$:

$$(r+\delta)\psi'(A^*) = P + \psi''(A^*)\frac{1}{dt}\operatorname{E}_t[dA^*] + \psi'''(A^*)\underbrace{\frac{1}{dt}\operatorname{E}_t[(dA^*)^2]}_{}$$

Value of smoothing investment depends on price volatility:

$$\frac{1}{dt} \mathrm{E}_t[(dA^*)^2] = A_p^{*2} \sigma^2 P^2$$

② However, optimal abatement is now dynamic decision. Assuming firm chooses some unconstrained $A^* > 0$:

$$(r+\delta)\psi'(A^*) = P + \psi''(A^*)\frac{1}{dt}E_t[dA^*] + \psi'''(A^*)\frac{1}{dt}E_t[(dA^*)^2]$$

Compare to optimality condition when abatement is variable input (Rubin, 1996):

$$\psi'(A^*) = P$$

Model Interpretation

- Banking activity pins down expected price path in equilibrium.
- Current and expected future prices may jump to higher or lower equilibrium path given outside shocks such as:
 - Overlapping policies
 - Anticipated cap-and-trade policy reform
 - Changes in economic output

Model Interpretation

- Banking activity pins down expected price path in equilibrium.
- Current and expected future prices may jump to higher or lower equilibrium path given outside shocks such as:
 - Overlapping policies
 - Anticipated cap-and-trade policy reform
 - Changes in economic output
- Modeling long-lived, dynamic investment illuminates impact of price volatility:
 - Firms may have forecast errors in estimating future stream of prices.
 - Firms take into account price volatility in value of smoothing.

How does this inherent policy uncertainty affect the cost of achieving an emissions target?

Simulations

- Model compliance decisions of representative firm given simulated price trajectory:
 - Scenario 1: Firm makes abatement investment decisions given stochastic prices.
 - Scenario 2: Firm faces smoothly increasing Hotelling prices.

Simulations

- Model compliance decisions of representative firm given simulated price trajectory:
 - Scenario 1: Firm makes abatement investment decisions given stochastic prices.
 - Scenario 2: Firm faces smoothly increasing Hotelling prices.
- Both scenarios produce same total emissions reductions, but costs are higher with stochastic prices.

Simulations

- Model compliance decisions of representative firm given simulated price trajectory:
 - Scenario 1: Firm makes abatement investment decisions given stochastic prices.
 - Scenario 2: Firm faces smoothly increasing Hotelling prices.
- Both scenarios produce same total emissions reductions, but costs are higher with stochastic prices.
- Price volatility alters effective abatement cost function for quantity-based instruments relative to price-based instruments.

Model Calibration

- Calibrate abatement cost function to U.S. carbon tax simulations from the Stanford Energy Modeling Forum 32 (Barron et al., 2018), assuming quadratic abatement investment costs.
 - Later work will examine richer specifications of cost function and abatement opportunities.

Model Calibration

- Calibrate abatement cost function to U.S. carbon tax simulations from the Stanford Energy Modeling Forum 32 (Barron et al., 2018), assuming quadratic abatement investment costs.
 - Later work will examine richer specifications of cost function and abatement opportunities.
- Calibrate drift and volatility parameters to historical EU ETS allowance prices for Phases II and III (2008-2018), assuming prices follow geometric Brownian motion.
 - Estimate 5.2% annual expected price growth ($\alpha = 0.0508$)
 - Estimate 42.9% annual price volatility ($\sigma = 0.3925$)

Model Calibration

Total Emissions Reduction (10 Years of Abatement Investment):

Simulation Results

Total Emissions Reduction (10 Years of Abatement Investment):

Simulation Results

Total Emissions Reduction (10 Years of Abatement Investment):

• To understand implications of forecast errors in allowance trading markets, turn to Weitzman (1974, 2018).

- To understand implications of forecast errors in allowance trading markets, turn to Weitzman (1974, 2018).
- Original Weitzman derivation assumes that regulators impose quantity orders directly.

- To understand implications of forecast errors in allowance trading markets, turn to Weitzman (1974, 2018).
- Original Weitzman derivation assumes that regulators impose quantity orders directly.
- Modify derivation so quantity orders are transmitted through market-clearing price:

- To understand implications of forecast errors in allowance trading markets, turn to Weitzman (1974, 2018).
- Original Weitzman derivation assumes that regulators impose quantity orders directly.
- Modify derivation so quantity orders are transmitted through market-clearing price:
 - Optimal price order:

$$egin{aligned} \max_{ au_1, au_2} & \mathrm{E}[B_1(\sum_{i=1}^N q_1^i(au_1, heta_1^i)) - \sum_{i=1}^N C_1^i(q_1^i(au_1, heta_1^i), heta_1^i) \ & B_2(\sum_{i=1}^N q_2^i(au_2, heta_2^i)) - \sum_{i=1}^N C_2^i(q_2^i(au_2, heta_2^i), heta_2^i)] \end{aligned}$$

 θ_t^i is a shock to i's cost function in period t.

- To understand implications of forecast errors in allowance trading markets, turn to Weitzman (1974, 2018).
- Original Weitzman derivation assumes that regulators impose quantity orders directly.
- Modify derivation so quantity orders are transmitted through market-clearing price:
 - Optimal quantity order:

$$egin{aligned} \max_{\hat{Q}} & \mathrm{E}[B_1(\sum_{i=1}^{N} q_1^i(p_1(\hat{Q}, heta), heta_1^i)) - \sum_{i=1}^{N} C_1^i(q_1^i(p_1(\hat{Q}, heta), heta_1^i), heta_1^i) \ & + B_2(\sum_{i=1}^{N} q_2^i(p_2(\hat{Q}, heta), heta_2^i)) - \sum_{i=1}^{N} C_2^i(q_2^i(p_2(\hat{Q}, heta), heta_2^i), heta_2^i)] \end{aligned}$$

 θ_t^i is a shock to i's cost function in period t.

• Baseline scenario: firms have perfect information about all shocks before making any compliance decisions.

- Baseline scenario: firms have perfect information about all shocks before making any compliance decisions.
- Relative advantage of prices over quantities:

$$\Delta = \mathrm{E}\left[\frac{1}{4}\left(\frac{1}{\sum_{i=1}^{N}\frac{1}{C_{i}''}} - B''\right)\left(\sum_{i=1}^{N}\frac{\theta_{1}^{i} + \theta_{2}^{i}}{C_{i}''}\right)^{2}\right]$$

 C_i'' : slope of marginal cost function for production unit i

B": slope of aggregate marginal benefit function

- Baseline scenario: firms have perfect information about all shocks before making any compliance decisions.
- Relative advantage of prices over quantities:

$$\Delta = \mathrm{E}[\frac{1}{4}(\frac{1}{\sum_{i=1}^{N}\frac{1}{C_{i}''}} - B'')(\sum_{i=1}^{N}\frac{\theta_{1}^{i} + \theta_{2}^{i}}{C_{i}''})^{2}]$$

 C_i'' : slope of marginal cost function for production unit i

B": slope of aggregate marginal benefit function

• Compare to Weitzman (2018) result with representative firm: Derivation

$$\Delta = \mathrm{E}[\frac{1}{4}(C'' - B'') \cdot (\frac{\theta_2 + \theta_1}{C''})^2]$$

• Now assume firm *i* sets:

 $\mathsf{Marginal}\;\mathsf{Cost}\;=\;\mathsf{Market}\text{-}\mathsf{Clearing}\;\mathsf{Price}\;+\;\mathsf{Forecast}\;\mathsf{Error}\;\epsilon_i$

• Now assume firm *i* sets:

Marginal Cost = Market-Clearing Price + Forecast Error ϵ_i

• Two types of firm-level forecast errors in multi-period setting:

Now assume firm i sets:

Marginal Cost = Market-Clearing Price + Forecast Error ϵ_i

- Two types of firm-level forecast errors in multi-period setting:
 - Uncertainty caused by private information

Now assume firm i sets:

Marginal Cost = Market-Clearing Price + Forecast Error ϵ_i

- Two types of firm-level forecast errors in multi-period setting:
 - Uncertainty caused by private information ⇒ Mis-allocation across firms

• Now assume firm *i* sets:

Marginal Cost = Market-Clearing Price + Forecast Error ϵ_i

- Two types of firm-level forecast errors in multi-period setting:
 - Uncertainty caused by private information ⇒ Mis-allocation across firms
 - Uncertainty caused by as-yet unrealized market shocks

• Now assume firm *i* sets:

Marginal Cost = Market-Clearing Price + Forecast Error ϵ_i

- Two types of firm-level forecast errors in multi-period setting:
 - Uncertainty caused by private information ⇒ Mis-allocation across firms
 - ② Uncertainty caused by as-yet unrealized market shocks ⇒ Mis-allocation across compliance periods

• **UNCERTAINTY TYPE** #1: Idiosyncratic forecast errors with no impact on aggregate distribution of quantity across periods.

Relative advantage of prices over quantities: Derivation

$$\Delta = \mathrm{E}[\frac{1}{4}(\frac{1}{\sum_{i=1}^{N}\frac{1}{C''}} - B'')(\sum_{i=1}^{N}\frac{\theta_{1}^{i} + \theta_{2}^{i}}{C''_{i}})^{2} + \frac{1}{2}\sum_{i=1}^{N}\frac{\epsilon_{1}^{i}}{C''_{i}}]$$

• UNCERTAINTY TYPE #1: Idiosyncratic forecast errors with no impact on aggregate distribution of quantity across periods.

Relative advantage of prices over quantities:

$$\Delta = E\left[\frac{1}{4}\left(\frac{1}{\sum_{i=1}^{N}\frac{1}{C_{i}''}} - B''\right)\left(\sum_{i=1}^{N}\frac{\theta_{1}^{i} + \theta_{2}^{i}}{C_{i}''}\right)^{2} + \underbrace{\frac{1}{2}\sum_{i=1}^{N}\frac{\epsilon_{1}^{i}^{2}}{C_{i}''}}_{>0}\right]$$

Cost inefficiency arises from failure to allocate quantity optimally across firms.

• **UNCERTAINTY TYPE #2:** Systematic forecast errors that impact aggregate distribution of quantity across periods.

Relative advantage of prices over quantities: Derivation

$$\Delta = E\left[\frac{1}{4}\left(\frac{1}{\sum_{i=1}^{N}\frac{1}{C_{i}''}} - B''\right)\left(\sum_{i=1}^{N}\frac{\theta_{1}^{i} + \theta_{2}^{i}}{C_{i}''}\right)^{2} + \frac{1}{2}\sum_{i=1}^{N}\frac{\epsilon_{1}^{i}^{2}}{C_{i}''}\right) + \frac{1}{2}\left(\frac{1}{\sum_{i=1}^{N}\frac{1}{C_{i}''}}\right)\left(\sum_{i=1}^{N}\frac{\epsilon_{1}^{i}}{C_{i}''}\right)^{2} + B''\left(\sum_{i=1}^{N}\frac{\epsilon_{1}^{i}}{C_{i}''}\right)^{2} + 2B''\left(\sum_{i=1}^{N}\frac{\epsilon_{1}^{i}}{C_{i}''}\right)\left(\sum_{i=1}^{N}\frac{\theta_{2}^{i} - \theta_{1}^{i}}{2C_{i}''}\right)\right]$$

• **UNCERTAINTY TYPE #2:** Systematic forecast errors that impact aggregate distribution of quantity across periods.

Relative advantage of prices over quantities: Derivation

$$\Delta = E\left[\frac{1}{4}\left(\frac{1}{\sum_{i=1}^{N}\frac{1}{C_{i}''}} - B''\right)\left(\sum_{i=1}^{N}\frac{\theta_{1}^{i} + \theta_{2}^{i}}{C_{i}''}\right)^{2} + \frac{1}{2}\sum_{i=1}^{N}\frac{\epsilon_{1}^{i}^{2}}{C_{i}''}\right) + \underbrace{\frac{1}{2}\left(\frac{1}{\sum_{i=1}^{N}\frac{1}{C_{i}''}}\right)\left(\sum_{i=1}^{N}\frac{\epsilon_{1}^{i}}{C_{i}''}\right)^{2} + B''\left(\sum_{i=1}^{N}\frac{\epsilon_{1}^{i}}{C_{i}''}\right)^{2} + 2B''\left(\sum_{i=1}^{N}\frac{\epsilon_{1}^{i}}{C_{i}''}\right)\left(\sum_{i=1}^{N}\frac{\theta_{2}^{i} - \theta_{1}^{i}}{2C_{i}''}\right)\right]}_{>0}$$

• Cost inefficiency arises from failure to allocate quantity optimally across periods.

• **UNCERTAINTY TYPE #2:** Systematic forecast errors that impact aggregate distribution of quantity across periods.

Relative advantage of prices over quantities: Derivation

$$\Delta = E\left[\frac{1}{4}\left(\frac{1}{\sum_{i=1}^{N}\frac{1}{C_{i}''}} - B''\right)\left(\sum_{i=1}^{N}\frac{\theta_{1}^{i} + \theta_{2}^{i}}{C_{i}''}\right)^{2} + \frac{1}{2}\sum_{i=1}^{N}\frac{\epsilon_{1}^{i}^{2}}{C_{i}''}\right) + \frac{1}{2}\left(\frac{1}{\sum_{i=1}^{N}\frac{1}{C_{i}''}}\right)\left(\sum_{i=1}^{N}\frac{\epsilon_{1}^{i}}{C_{i}''}\right)^{2} + \underbrace{B''\left(\sum_{i=1}^{N}\frac{\epsilon_{1}^{i}}{C_{i}''}\right)^{2} + 2B''\left(\sum_{i=1}^{N}\frac{\epsilon_{1}^{i}}{C_{i}''}\right)\left(\sum_{i=1}^{N}\frac{\theta_{2}^{i} - \theta_{1}^{i}}{2C_{i}''}\right)\right]}_{>0 \text{ or } < 0}$$

- Cost inefficiency arises from failure to allocate quantity optimally across periods.
- Benefit smoothing across periods may increase or decrease, with ambiguous effects for welfare.

 Forecast errors asymmetrically affect quantity-based policies, conditional on policy design uncertainty being resolved.

- Forecast errors asymmetrically affect quantity-based policies, conditional on policy design uncertainty being resolved.
- Both types of firm forecast errors create cost inefficiencies that push regulator to prefer price instruments.
 - Effect on benefit smoothing is ambiguous.

- Forecast errors asymmetrically affect quantity-based policies, conditional on policy design uncertainty being resolved.
- Both types of firm forecast errors create cost inefficiencies that push regulator to prefer price instruments.
 - Effect on benefit smoothing is ambiguous.
- Given banking and borrowing, uncertainty in one compliance period may continue to create cost inefficiencies in future periods.

Conclusion & Future Directions

• Evaluations of price versus quantity instruments should take into account asymmetric firm forecast errors.

Conclusion & Future Directions

- Evaluations of price versus quantity instruments should take into account asymmetric firm forecast errors.
- ullet Effective abatement cost function depends on policy instrument o in simulations, median percentage difference in costs is 21%.

Conclusion & Future Directions

- Evaluations of price versus quantity instruments should take into account asymmetric firm forecast errors.
- ullet Effective abatement cost function depends on policy instrument o in simulations, median percentage difference in costs is 21%.
- Future work will focus on correlation between price uncertainty and abatement cost uncertainty and bringing full dynamics into welfare analysis.

Thank you!

Aldy: joseph_aldy@hks.harvard.edu https://scholar.harvard.edu/jaldy

Armitage: saraharmitage@g.harvard.edu https://scholar.harvard.edu/sarmitage

Start-Up Problem in Allowance Trading Markets

Value of Allowance Market in Year 1 - Waxman-Markey Bill: Back

Start-Up Problem in Allowance Trading Markets

Value of Allowance Market in Year 1 - Kyoto Protocol: Back

- Regulator's optimal price policy: $\tau_1 = \tau_2 = C'$
- Regulator's optimal quantity policy: $\hat{Q} = \sum_{i=1}^{N} \bar{q}_1^i + \sum_{i=1}^{N} \bar{q}_2^i$ where \bar{q}_t^i sets $\mathrm{E}[\frac{\partial B_t}{\partial a_t^i}] = \mathrm{E}[\frac{\partial C_t^i}{\partial a_t^i}]$.
- Two key conditions govern market-clearing price: no intertemporal arbitrage and the regulator's quantity limit. Applying these conditions:

$$\hat{
ho}_1(\hat{Q}, heta_1, heta_2) = \hat{
ho}_2(\hat{Q}, heta_1, heta_2) = C' + rac{\sum_i rac{ heta_1' + heta_2'}{2C_i''}}{\sum_i rac{1}{C_i''}}$$

• Quantity response by firm *i* in period 1 (for illustration):

$$q_1^i(\hat{
ho}_1, heta_1^i) = rac{\hat{
ho}_1 - C' - heta_1^i}{C_i''} + ar{q}_1^i = rac{\sum_j rac{ heta_1^j + heta_2^j}{2C_j''}}{\sum_j rac{ all_1^j}{C_j''}} - heta_1^i$$

• Quantity response in presence of first-period forecast errors:

$$q_1^i(
ho_1, heta_1^i) = rac{\hat
ho_1(\hat Q, heta_1, heta_2) + \epsilon_1^i - C' - heta_1^i}{C_i''} + ar q_1^i$$

• Constraint such that aggregate quantity in first period is unchanged:

$$\sum_{i=1}^{N} \frac{\epsilon_1^i}{C_i''} = 0$$

• Expected benefits are unchanged, as are expected costs in period 2. Expected costs in period 1:

$$\sum_{i=1}^{N} \mathrm{E}[\theta_{1}^{i}(\frac{\frac{\sum_{j=1}^{N} \frac{\theta_{1}^{j} + \theta_{2}^{j}}{2C_{i}^{\prime \prime}}}{\sum_{j=1}^{N} \frac{1}{C_{j}^{\prime \prime}}} + \epsilon_{1}^{i} - \theta_{1}^{i}) + \frac{C_{i}^{\prime \prime}}{2}(\frac{\frac{\sum_{j=1}^{N} \frac{\theta_{1}^{j} + \theta_{2}^{j}}{2C_{i}^{\prime \prime}}}{\sum_{j=1}^{N} \frac{1}{C_{i}^{\prime \prime}}} + \epsilon_{1}^{i} - \theta_{1}^{i}}{C_{i}^{\prime \prime}})^{2}]$$

• Aggregate first-period quantity changes:

$$Q_1 = \frac{\hat{Q}}{2} + \sum_{i=1}^{N} \frac{\theta_2^i - \theta_1^i}{2C_i''} + \sum_{i=1}^{N} \frac{\epsilon_1^i}{C_i''}$$

Second-period price must adjust to ensure regulatory limit is still met:

$$\hat{\rho}_2'(\hat{Q}, \theta_1, \theta_2, \epsilon_1) = C' + \frac{\sum_{i=1}^{N} \frac{\theta_1^i + \theta_2^i}{2C_i''} - \sum_{i=1}^{N} \frac{\epsilon_1^i}{C_i''}}{\sum_{i=1}^{N} \frac{1}{C_i''}}$$

• Aggregate second-period quantity then changes:

$$Q_2 = \frac{\hat{Q}}{2} + \sum_{i=1}^{N} \frac{\theta_1^i - \theta_2^i}{2C_i''} - \sum_{i=1}^{N} \frac{\epsilon_1^i}{C_i''}$$

• Expected benefits and expected costs (first and second periods) all change.

• Market-clearing price such that realized quantity is regulated quantity (no intertemporal arbitrage condition no longer applies):

$$\hat{p}(\hat{Q}, \theta) = C' + rac{\sum_{i=1}^{N} rac{ heta_i}{C_i''}}{\sum_{i=1}^{N} rac{1}{C_i''}}$$

• Relative advantage of prices over quantities:

$$\Delta_n = \frac{B''}{2} \sum_{i=1}^N \sum_{j=1}^N \frac{\sigma_{ij}^2}{C_i'' C_j''} + \frac{1}{2 \sum_{j=1}^N \frac{1}{C_i''}} \sum_{i=1}^N \sum_{j=1}^N \frac{\sigma_{ij}^2}{C_i'' C_j''}$$

• In the presence of forecast errors, relative advantage of prices over quantities becomes:

$$\Delta_n = \frac{B''}{2} \sum_{i=1}^N \sum_{j=1}^N \frac{\sigma_{ij}^2}{C_i'' C_j''} + \frac{1}{2 \sum_{j=1}^N \frac{1}{C_j''}} \sum_{i=1}^N \sum_{j=1}^N \frac{\sigma_{ij}^2}{C_i'' C_j''} + \underbrace{\sum_{i=1}^N \frac{\mathrm{E}[\epsilon_i^2]}{2 C_i''}}_{i''}$$