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Abstract

The functioning of real-world pollution markets suggests that firms face persistent price

forecast errors in making abatement decisions. The residual uncertainty in allowance

trading means that pollution markets may fail to deliver cost-effective abatement, in

contrast to price-based policies where firms set marginal abatement cost equal to an

emission tax. We develop a theoretical model of firm behavior in an allowance trading

market that accounts for price uncertainty and dynamic investment in abatement.

We show how the additional cost of forecast errors under quantity-based programs

can be incorporated into a standard Weitzman-style analysis. Finally, we simulate

the potential magnitude of forecast errors in cap-and-trade markets using parameters

calibrated to historical and modeled climate policies. Future work will examine the

interaction between allowance price uncertainty and abatement cost uncertainty.
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1 Introduction

Policy uncertainty significantly influences firms’ investment decisions. Firms may opt to

delay investment until resolving uncertainty about its returns – especially uncertainty related

to a pending policy decision, such as over monetary policy, tax policy, and other issues that

affect the volatility and uncertainty of a firm’s economic context (Dixit and Pindyck, 1994;

Arrow and Fisher, 1974; Bernanke, 1983; Rodrik, 1991; Hassett and Metcalf, 1999; Baker

et al., 2016). A special case of policy uncertainty occurs when the government decides upon

a policy framework, but residual uncertainty over returns to firm investment remain due to

the inherent characteristics of policy implementation. For example, suppose that a regulator

decides to price a technological externality, such as carbon dioxide emissions, through a cap-

and-trade program instead of a carbon tax. The inherent uncertainty of tradable allowance

prices under cap-and-trade exceeds that of the tax alternative. We examine the impact of

this residual policy uncertainty on the relative efficiencies of price- versus quantity-based

policies abating carbon dioxide emissions.

Much of the literature comparing cap-and-trade programs and emission taxes has focused

on the regulator’s information deficit (Weitzman, 1974). Firms typically know their marginal

abatement costs with greater precision than the regulator, and firms may not have the incen-

tive to reveal their true marginal abatement costs to the regulator (and to their competitors).

However, under cap-and-trade programs, this information asymmetry affects not only the

regulator, but also each firm with respect to other firms’ marginal abatement costs. Consider

the problem a firm faces in complying with an emission tax versus a cap-and-trade program.

Under any policy instrument, firms must first resolve uncertainty surrounding policy design.

Then, if the regulator chooses a tax, the firm learns the tax rate, identifies its abatement

options, and complies with the policy by investing in abatement that equates marginal cost

with the tax. If the regulator instead chooses a cap-and-trade program, the firm not only

must identify its abatement options as in the tax case, but also must form expectations

about the market-clearing price for emissions allowances which will then guide the firm’s
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investment.

Our paper examines this residual uncertainty about allowance prices, inherent to quantity-

based instruments such as cap-and-trade programs and tradable performance standards,

which increases the risk that firms may not equate their marginal abatement costs and

hence increase aggregate costs for any given emission goal. Firms may err in their allowance

price forecasts and make investments that would appear to be optimal ex ante given their

expectations, but, ex post, are recognized as having been too high or too low. Such forecast

errors may reflect different expectations about (1) abatement technology costs; (2) economic

output; (3) overlapping public policies that may restrict abatement decisions and influence

the clearing price in allowance markets. Given the common role of banking in cap-and-trade

programs, these expectations would need to reflect a dynamic assessment of these factors.

This residual uncertainty coupled with irreversible investments can increase the welfare costs

of choosing a quantity-based instrument, such as cap-and-trade, relative to a carbon tax.

Given the potential scale of tradable allowance markets, such forecast errors under cap-and-

trade could be economically significant.

We build a theoretical model that starts from the perspective of the firm choosing emis-

sion abatement investments in the presence of uncertainty over the price of carbon in a

tradable allowance market. In contrast to many papers the literature in which firms can

instantaneously adjust emission abatement to move up or down their firm-specific marginal

abatement cost function as allowance prices evolve, our model includes irreversible invest-

ment, uncertainty, and intertemporal emission allowance trading. Our model first shows that

price trajectories still follow a Hotelling rule in expectation, but the overall price process is

determined by volatility as well as this expected drift. This volatility creates potentially sig-

nificant forecast errors, as the realized trajectory of prices does not follow a smooth Hotelling

trajectory. Instead, our model is consistent with what is observed in allowance markets in

practice – a frequent jumping from one Hotelling trajectory to another as shocks to allowance

prices are realized.
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The fact that firms often make dynamic decisions to invest in long-lived abatement capital

magnifies the impact of these forecast errors. By deriving the necessary optimality conditions

for firm investment in abatement, we show that firms not only set their marginal abatement

costs equal to the avoided allowance prices, as in standard models of abatement as a variable

input, but also seek to smooth their rate of investment over time. Given uncertainty over

allowance prices, the value of smoothing also depends on the extent of price volatility. This

finding introduces the possibility that firms might err not only in their expectations of the

realized allowance price, but also in their beliefs about the overall price process, as the

volatility parameter depends on many different random processes, only some of which are

observable to individual firms.

To examine the welfare impacts of these forecast errors, we develop a modified version

of Weitzman’s canonical prices versus quantities comparison. In our version, quantity or-

ders are not imposed directly on individual firms, as in Weitzman (1974) and much of the

subsequent literature, but are instead transmitted to firms through some market-clearing

price, as in modern allowance and credit trading markets. We show that firm-level forecast

errors in a given period push the regulator to favor price-based instruments over quantity-

based instruments by inefficiently allocating quantity across firms, with the relative benefit

of price instruments increasing in the variance of the forecast error term. Forecast errors that

affect the overall distribution of quantity across compliance periods introduce further cost

inefficiencies for quantity-based regulations with banking and borrowing, though additional

considerations also emerge around benefit smoothing for non-stock pollutants.

To understand the potential magnitude of these forecast errors, we turn to simulations

calibrated to the performance of actual and modeled climate policies. We first simulate

stochastic allowance price trajectories, with drift and volatility parameters estimated from

historical prices from the European Union’s Emissions Trading System (EU ETS). We model

the corresponding abatement investment response by firms using an abatement cost function

estimated from models of U.S. carbon pricing policy. We then identify the smoothly increas-
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ing “Hotelling” price trajectories that would achieve the same overall emissions reductions

as each of the stochastic price simulations, and compare the total resource cost required to

achieve a particular level of emissions reductions under the two pricing scenarios. We show

that the “Hotelling” scenario, approximately equivalent to an emissions tax, serves as a lower

bound on total resource costs for achieving a given level of emissions control, by eliminating

forecast errors on the part of regulated firms. We find that the median percentage difference

in abatement costs between a stochastic price scenario and the corresponding Hotelling price

scenario is approximately 20 percent. In ongoing work, we also illustrate how a hybrid policy

instrument – such as a cap-and-trade program with price collars – can reduce the adverse

economic impacts of forecast errors.

The structure of the paper follows. Section 2 presents evidence of cost-effectiveness

anomalies in cap-and-trade and tradable performance programs in practice that illustrates

the economic significance of this residual policy uncertainty inherent to quantity-based ap-

proaches. Section 3 develops our theoretical model of firm abatement decisions given invest-

ment in long-lived abatement capital and uncertainty over future allowance prices. Section 4

discusses how we can interpret price forecast errors in a Weitzman-style prices versus quan-

tities welfare comparison. Section 5 calibrates a simulation model to illustrate the potential

magnitude of forecast errors in these markets, using parameters calibrated to historical and

modeled climate policies. Finally, Section 6 concludes and offers directions for future re-

search.

2 Cost-Effectiveness Anomalies in the Implementation

of Market-Based Instruments

Since the 1980s, policymakers have employed two major types of quantity-oriented,

market-based instruments to address environmental and energy objectives: cap-and-trade

programs and tradable performance standards. A cap-and-trade program establishes an
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emission cap that limits the aggregate quantity of emissions among all sources covered by

the program. The cap is subdivided into emission allowances that grant the holder the right

to emit a unit of pollution, and the government typically allocates these allowances through

an auction and/or freely to sources based on their historic emissions. Firms must hold suffi-

cient allowances to cover their emissions to demonstrate compliance, and a secondary market

in emission allowances emerges where firms may buy and sell allowances. Policymakers have

designed such markets for sulfur dioxide (SO2), nitrogen oxides (NOx), and carbon dioxide

(CO2).

Tradable performance standards establish a quantitative benchmark that firms must

meet. If a firm beats the benchmark, its overcompliance generates a credit that may be

traded to another firm, such as one that fails to meet the benchmark. Policymakers have

designed such markets to reduce lead in gasoline, promote fuel economy among vehicle

manufacturers, increase the renewable share of electricity generation, and raise the biofuel

share of transportation fuel markets.

The theoretical appeal of cap-and-trade programs and tradable performance standards

lies in the potential for the market to allocate effort in a cost-effective manner, just as in

any other, efficient market. Montgomery (1972) formally showed how firms operating under

a cap-and-trade program each have an incentive to equate their marginal abatement costs

with the allowance price and, as a result, marginal abatement costs are equalized among

all firms in the market. Complementing this static cost-effectiveness across firms, Rubin

(1996) and Kling and Rubin (1997) demonstrate the potential for dynamic cost-effectiveness

in cap-and-trade programs that permit intertemporal trading (banking allowances for future

compliance purposes, or borrowing future vintage allowances for contemporary compliance

purposes), with a Hotelling-style allowance price path over time emerging. In practice, the

behavior in a variety of cap-and-trade programs and tradable performance standards deviate

from these conditions in the underlying theory. This increases the costs of achieving any

emission goal or energy objective.
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2.1 Heterogeneity in Allowance Prices

Pollution markets deliver cost-effective abatement when firms equate their marginal

abatement costs to the price of an emission allowance or credit (Montgomery, 1972). In

order for firms to do this, there must be a single allowance or credit price. With many

such markets, trading occurs via brokers, with less transparency about prices than under

exchange-based trading. As a result, prices may deviate significantly across transactions.

Consider the California Low Carbon Fuel Standard (LCFS), which requires refineries to

satisfy a performance benchmark based on the carbon content of transportation fuels. Since

April 2016, the State of California has reported transaction-level data (credit prices and

number of credits) on credit trades on 842 days (through December 1, 2019).1 On 83 percent

of these days with trades, California reported at least two completed credit trades – what

we refer to as a multi-transaction trading days. On only 15 of these 699 multi-transaction

trading days did the transactions include the same credit prices. The within-trading day

credit price standard deviation averaged about $10/tCO2. The maximum price paid for

credits exceeded the minimum price for credits by more than 20 percent, on average, within

multi-trade trading days. There are as many credit days in which the maximum price paid

was double the minimum price paid as there are days with identical credit prices across

transactions. If buying firms are equating their marginal costs of compliance with the credit

price paid on the date of transaction, then this market is not resulting in the equating of

marginal costs of compliance among firms.

2.2 Absence of Hotelling Price Path

The dynamic cost-effectiveness condition for cap-and-trade programs with banking calls

for allowance prices to increase with the rate of interest. As Figure 1 illustrates for the SO2,

NOx, EU ETS CO2, and LCFS markets, prices are quite volatile, reveal occasional spikes

1We accessed these data on December 5, 2019 from: https://ww3.arb.ca.gov/fuels/lcfs/credit/

Weekly%20LCFS%20Credit%20Activity%20%28upto%201%20December,%202019%29.xlsx.
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and troughs, and do not follow what would be interpreted, even loosely, as a price path that

increases with the rate of interest. This extreme volatility suggests that uncertainty about

future prices may be substantial.

Under the EU ETS, market-clearing prices for carbon have ranged from over e30 per ton

of CO2 to under e5 per ton in the span of five years. Likewise, prices for SO2 allowances

under the U.S. Acid Rain Program have ranged from $1600 per ton to $100 per ton in a five-

year period, and prices for NOx allowances have ranged from $4,500 per ton to $800 per ton

under the NOx Budget Trading Program. Note that the observed volatility in these markets

is not simply a function of the volatility of the underlying energy commodities, whether oil,

natural gas, or coal. Indeed, the allowance price volatility observed under the EU ETS and

the U.S. Acid Rain Program exceeds the volatility of oil or natural gas futures prices over

comparable periods (see Figure 2). In all four markets, the volatility of allowance or credit

prices exceeds the volatility of S&P 500 index prices over a comparable period.

2.3 Economic Shocks

The failure to observe Hotelling-like price paths can reflect shocks to the system. For

example, the California RECLAIM program witnessed NOx allowance prices increase from

about $1,000 per ton in 1999, to more than $20,000 per ton in 2000, to more than $120,000

per ton in 2001 (Fowlie et al., 2012). The dramatic run-up in allowance prices over 2000-

2001 resulted from the California electricity crisis when insufficient generation existed to

meet demand, causing the dirtiest generators, often relied on to meet occasional peak load,

to run much more often during the crisis. This kind of output shock translated increased

demand for pollution-intensive output into increased demand for emission allowances. As

we noted in the introduction, firms need to acquire information about the actions of other

firms in the market to form expectations about allowance prices. The start-up of the EU

ETS signaled how poorly firms had done this. In April 2006, EU member states released

data on the previous year’s emissions of facilities covered by the ETS. The emission levels
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(a) Emissions Trading System CO2 Allowance
Price (EU)

(b) Low Carbon Fuel Standard Allowance Price
(California)

(c) SO2 Allowance Price (U.S.) (d) NOx Allowance Price (U.S.)

Figure 1: Historical Prices in Allowance and Credit Trading Markets

for 2005 suggested less allowance scarcity than the market had been pricing in. In a period

of two weeks, the weekly average allowance prices fell from more than e31/tCO2 to about

e13/tCO2. This represents a decline in market value of allowances of more than $50 billion.

2.4 Overlapping Regulations: Economic Regulation

In the U.S. power sector, cap-and-trade programs may cross jurisdictional boundaries that

separate power plants operating in competitive markets from those plants subject to state

economic regulation (typically some form of cost-of-service rate regulation). This variation in

economic regulation may influence the investment decisions and abatement behavior under
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(a) Emissions Trading System CO2 Allowance
Price Volatility (EU)

(b) Low Carbon Fuel Standard Allowance Price
Volatility (California)

(c) SO2 Allowance Price Volatility (U.S.) (d) NOx Allowance Price Volatility (U.S.)

Figure 2: Average Annualized Month-to-Month Price Volatility in Allowance and Credit
Trading Markets

the cap-and-trade program. For example, both Fowlie (2010) and Cicala (2015) show that

deregulated firms may have underinvested in capital-intensive compliance strategies for SO2

and NOx cap-and-trade programs, combined with evidence of overinvestment by regulated

firms. This may also help explain the finding by Carlson et al. (2000) that more than half

of the units operating in Phase I of the SO2 cap-and-trade program failed to minimize costs

during at least part of the study period.
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2.5 Overlapping Regulations: Environmental Regulation

As Goulder and Stavins (2011) describe, implementing an environmental mandate on top

of an existing cap-and-trade program can cause firms to modify abatement investment to

satisfy the mandate, which would increase costs, but would not increase emission reductions

so long as the cap under the cap-and-trade program is binding. In effect, the mandate – to

the extent it is binding – causes firms to undertake abatement investment that is not cost-

effective and reduces the residual effort necessary to comply with the cap-and-trade program.

The mandate imposes a pecuniary externality on the balance of the emission sources in the

cap-and-trade program through lower allowance prices.

The EU ETS has experienced low allowance prices due to both low economic output – and

hence demand for energy – and aggressive renewable power policies in some member states.

The latter results in considerable divergence in implicit carbon prices between investment

induced only by the cap-and-trade program and investment driven by high feed-in tariffs

for wind and solar power. Marcantonini and Ellerman (2015) estimate that the German

subsidies for wind and solar cost one and two orders of magnitude more, respectively, than

the going EU ETS allowance price over 2007-2010. The State of California likewise employs

a wide array of climate-oriented energy policies – a renewable portfolio standard, a solar roof

mandate, an energy efficiency resource standard, the LCFS – that all overlap with the CO2

cap-and-trade program. Any changes in the stringency of these overlapping instruments – or

the introduction of new policies – would then affect the allowance prices in the cap-and-trade

program.

Frey (2013) finds, for example, that overlapping state regulations limited the cost-effectiveness

of Phase I of the Acid Rain Program, by inducing higher-cost units to invest in scrubbers.

Under an allowance trading program, the impact of such state policies would not only affect

the units directly subject to state regulation, but also all other units in the allowance trad-

ing market. Uncertainty about the impact of overlapping policies translates into uncertainty

about the net quantity limit in the allowance trading program, which then translates into
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further uncertainty over the market-clearing price that should guide compliance investments.

More recently, the implementation of the Clean Air Interstate Rule and the Cross-State Air

Pollution Rule contributed to the collapse in the SO2 emission allowance prices by requiring

additional state-specific SO2 emission reductions such that the cap under the Acid Rain

Program is no longer binding. In contrast, under a price-based program, the presence of

overlapping policies does not affect the investment decisions of other firms in the market.

2.6 Prospect for Anomalies in Future Carbon Markets

Policymakers at the supranational, national, and sub-national levels are moving forward

with carbon pricing policies. The World Bank recently estimated that nearly 20 percent of

the world’s carbon dioxide emissions are covered (or will soon be covered) by some carbon

pricing policy (see Figure 3). While numerous hybrid policies exist, the majority of existing

or planned policies are emissions trading programs rooted in quantity targets, rather than

tax policies. Moreover, about one-half of the nations pledging to mitigation emissions under

the 2015 Paris Agreement signaled an interest in using carbon markets to do so.

In the United States, regulators have also exhibited strong revealed preference for using

allowance or credit trading programs to correct for carbon dioxide as well as other environ-

mental externalities. For example, virtually all energy produced or consumed is subject to

some sort allowance or credit trading program because of an environmental attribute. These

programs range from state-level trading programs for renewable energy credits as part of Re-

newable Portfolio Standards, to the nationwide sulfur and benzene credit trading program

for gasoline, to the Acid Rain Program and the NOx Budget Trading Program for controlling

SO2 and NOx emissions, respectively, to the credit trading under the nationwide renewable

fuel standard for gasoline and diesel markets, to the carbon dioxide cap-and-trade programs

in California and the Regional Greenhouse Gas Initiative in the northeast and mid-Atlantic

states, to the Low Carbon Fuel Standard in California.

The overlapping nature of energy and climate policies at the state and federal level also
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Figure 3: Global Carbon Emissions Covered by Policy (Ramstein et al., 2018).

raise questions about how firms would formulate expectations over carbon allowance prices.

Indeed, firms have signaled quite varying expectations over carbon prices in the “internal

carbon prices” they have employed in their investment analysis and strategic planning (Aldy

and Gianfrate, 2019). According to the Carbon Disclosure Project (CDP), the average

carbon price among U.S. firms disclosing use of an internal carbon price in their operations

was about $40/tCO2 in 2017, with a standard deviation of $33/tCO2. Of course, this omits

consideration of the mass of firms that implicitly use a price of zero and do not participate

in such disclosure efforts. Even within the same industry and country, there is substantial

variation: ExxonMobil uses $80/tCO2, ConocoPhillips uses $43/tCO2, and Devon Energy

uses $24/tCO2.

While it is possible that financial instruments would help regulated firms to mitigate un-

certainty associated with volatile allowance and credit prices, evidence on hedging decisions

more generally suggests that firms are likely to hedge incompletely, if at all. In studying

hedging of input fuel prices by U.S. airlines, Rampini et al. (2014) find that the airlines in
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their sample hedge only 20% of expected next-year jet fuel expenses – despite the fact that

financial instruments are widely available in this market and jet fuel represents a substantial

and highly volatile operating expense for these firms. The authors attribute this imperfect

hedging partly to firm financial constraints, which would certainly be relevant in our set-

ting. Moreover, firms may also be unable to hedge their full exposure to uncertain allowance

prices since the total quantity of allowances demanded depends on both the uncertain future

price and potential additional uncertainties around future abatement cost. Finally, since al-

lowance and credit trading markets are created virtually overnight through regulation, there

is considerable uncertainty associated with the start-up of these markets which may reduce

the availability of financial instruments in their early phases. To illustrate the potential mag-

nitude of this start-up uncertainty, consider that proposals for U.S. economy-wide carbon

cap-and-trade programs under the Kyoto Protocol and the Waxman-Markey Bill would have

created multi-billion dollar markets in their first year of operation, without any historical

data on market performance to guide the supply of financial instruments. Even regulators

designing these programs predicted a wide range of initial market values through their mod-

eling scenarios, ranging from $177 to $683 billion under the Kyoto Protocol and from $54 to

$254 billion under the Waxman-Markey Bill (in 2018 $).

2.7 Building a Theory to Account for Such Anomalies

Our paper seeks to develop existing theories of cap-and-trade markets to account for these

observations. Existing studies of allowance trading markets have generally adopted one of

two assumptions which are incompatible with the actual functioning of these programs. On

the one hand, papers in the spirit of Weitzman’s canonical work on the relative advantage of

price versus quantity advantage instruments have assumed that quantity orders are imposed

directly on individual firms (Hoel and Karp, 2002; Pizer, 2002; Newell and Pizer, 2003).

These papers generally focus on uncertainties on the part of the regulator rather than on the

part of regulated firms; one exception is Yohe (1978), which considers the possibility that

15



firms may not know their own abatement cost functions with certainty, so quantity orders

imposed directly on firms may not be achieved exactly. By contrast, in real-world allowance

and credit trading markets, aggregate quantity orders are transmitted to firms through some

(uncertain) market clearing price. One consequence of the complex price formation process is

that all types of shocks affect the equilibrium price, so regulated firms are not only impacted

by direct shocks to their own abatement cost functions.

On the other hand, another body of existing literature that has explicitly modeled the

market-clearing price associated with a given quantity limit has instead assumed that prices

follow a Hotelling trajectory given banking and borrowing (Rubin, 1996; Cronshaw and

Kruse, 1996; Newell et al., 2005). In these models, equilibrium allowance prices are pinned

down by an inter-temporal arbitrage condition which requires prices to rise smoothly at the

rate of interest. While Rubin (1996) achieves this Hotelling trajectory by assuming perfect

certainty in the allowance trading market, Newell et al. (2005) examine how to maintain this

smooth trajectory when shocks to abatement cost functions are realized each period. They

show that banking and borrowing combined with a commitment on the part of the regulator

to fix the last period expected price at a certain level will achieve this price trajectory.

However, they do not explore how firm behavior would differ if allowance prices were allowed

to remain stochastic, which is the focus of this paper. Real-world allowance prices evidently

do not follow this smooth trajectory, perhaps suggesting that allowance prices are continually

jumping from one Hotelling path to another as shocks are realized in the market, which we

explore further below.

We therefore develop a model of cap-and-trade markets that integrates the two key em-

pirical facts – one, that market-clearing allowance prices are volatile and uncertain and, two,

that many abatement options are long-lived capital investments. Our approach combines

three modeling strategies: Rubin’s work on allowance trading markets with certainty and

variable abatement decisions; Anderson et al. (2018) on dynamic investment decisions in

natural resource extraction; and Pindyck (1980) on natural resource extraction under uncer-
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tainty. Our model recognizes that quantity orders are transmitted to individual firms through

an uncertain market-clearing price; that firms may take into account price uncertainty in

making abatement decisions; and that abatement decisions are linked over time.

The two papers that relate most closely to this paper in directly accounting for firm

investment decisions given allowance price uncertainty are Chao and Wilson (1993) and Zhao

(2003). Chao and Wilson estimate the option value component of the SO2 allowance price in

the Acid Rain Program; this option value term reflects the fact that purchasing allowances

may provide regulated firms with greater flexibility given uncertainty about future market

conditions, as compared to investing in long-lived scrubbers. Then, Zhao (2003) considers

how firm investment depends on uncertainty over the abatement cost function, where firms

may invest in long-lived abatement capital or “technology” that reduces the cost of achieving

a given level of abatement; in his model, actual compliance decisions are modeled as variable

inputs. In comparing the impact of abatement cost uncertainty on both tradeable allowance

programs and emission taxes, Zhao finds that tradeable allowance programs can be beneficial

for responding to these uncertainties, as prices adjust to leave the overall quantity of variable

abatement unaffected.

Our paper serves as a useful complement to this earlier work. Zhao’s model considers how

both firm-level and market-wide shocks affect firm investment in abatement technology but

assumes that only market-wide shocks directly affect equilibrium prices or firms’ marginal

abatement costs. In contrast, our model allows price volatility to stem from any of the myriad

random shocks affecting allowance trading markets, only some of which would affect firm

abatement costs directly. Zhao’s model also assumes a rational expectations equilibrium,

whereas our paper explicitly considers the welfare consequences of forecast errors as part of

the trade-off between price- and quantity-based policy instruments. Finally, unlike Zhao’s

model, our approach incorporates banking and borrowing of allowances, thereby allowing us

to recover a version of the Hotelling rule for the expected growth in allowance prices that

embeds existing models of allowance trading as a special case.
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3 Theoretical Model of Abatement Investment

To build intuition for the impact of allowance price uncertainty, we develop a theoretical

model of dynamic abatement investment decisions. This model focuses on the firm’s cost-

minimizing compliance strategy. We abstract from changes to the firm’s production levels,

though Montgomery (1972) shows how the cost of achieving a certain level of emissions

may include both foregone profit due to deviations from unconstrained optimal production

levels and the direct costs of installing abatement equipment. Our model shows that firms

making abatement decisions will take into account expected price volatility as part of their

optimizing behavior. While the expected price trajectory is pinned down by a Hotelling rule,

as in previous papers, the price volatility depends on a wide variety of random processes

that affect this market. This volatility causes prices to jump from one Hotelling trajectory

to another, thereby causing firms to err in their beliefs about the realized allowance price.

Firms may also not know all of the random processes that determine price volatility, causing

them to err further in their forecasts of the overall price process.

Our model integrates modeling strategies from three related papers. First, we adopt the

basic model of an allowance trading market, with banking and borrowing of allowances across

periods, developed in Rubin (1996). As with much of the standard literature on multi-period

allowance trading markets, Rubin’s model assumes no accumulation of abatement from one

period to the next. We therefore build on Rubin’s work by modeling long-lived investment

as the key margin of firm decision-making around compliance. Our approach is similar in

the spirit to Anderson et al. (2018), which derives a modified version of the Hotelling rule

for natural resource extraction where the key margin of decision-making is investment in

well drilling rather than production from already-drilled wells. Lastly, we also recognize that

firms face a stochastic price process for allowances. We allow firms to take into account

price volatility in their optimization decisions, following methods used in Pindyck (1980) for

natural resource extraction under uncertainty.
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3.1 Model Set-Up

Assume that a representative firm chooses some optimal rate of abatement investment

A(t) and allowance purchases Y (t) at each instant, where positive Y (t) corresponds to net

allowances purchases and negative Y (t) corresponds to net allowances sales. The investment

cost function is given by ψ(·) and the instantaneous price of allowances is P (t). The firm

discounts future costs and benefits at some exogenous discount rate r. The firm accumulates

investment in abatement over time, and the total stock of abatement capital is given by K(t);

this stock depreciates at rate δ. The firm is also able to bank unused allowances over time,

where B(t) gives the total size of the firm’s bank at time t. The firm’s baseline emissions

rate is Ē. Therefore, at each instant, the firm’s compliance requirement is Ē −K(t), which

may result in the firm buying or selling allowances or adding or removing allowances from its

bank.2 Finally, following (Anderson et al., 2018), we define R(t) as the remaining abatement

opportunities available to the firm, perhaps due to technological limitations on the firm’s

ability to reduce its emissions rate beyond a particular amount.

Therefore, at the start of the allowance trading market, the firm’s problem is given by:

max
A,Y

E0[

∫ T

0

e−rt{−ψ(A(t))− P (t)Y (t)}dt] (1)

subject to:

K̇ = A(t)− δK(t) (2)

A(t) ≥ 0, K0 given (3)

Ḃ = K(t) + Y (t)− Ē (4)

B(T ) ≥ 0, B0 = 0 (5)

2Firms may also receive some allowances for free (grandfathered) as a function of historic emissions,
and then buy or sell allowances and abate emissions as necessary for compliance. In that case, the firm’s
compliance requirement at each instant would instead be Ē − Ḡ − K(t), where Ḡ represents the flow of
grandfathered allowances. The optimality conditions derived in this section would remain unchanged.
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Ṙ = −A(t) + δK(t) (6)

R(t) = Ē −K(t) ≥ 0, R0 given (7)

dP = αPdt+ σPdz , where dz is an increment of a Weiner process (8)

Let us discuss each of these constraints in turn. Equation 2 describes the law of motion for

abatement capital, where K̇ represents the time derivative of capital stock; at each instant,

investment at rate A(t) adds to the stock, while depreciation at rate δK(t) depletes the stock.

Equation 3 sets the initial stock of abatement capital and constrains the rate of investment to

be weakly positive, meaning that firms cannot reverse investments once they have occurred,

besides waiting for depreciation to run its course. Likewise, Equation 4 describes the law

of motion for the allowance bank, where Ḃ gives the time derivative of the allowance bank.

Additional allowances are added to the bank at the rate of allowances purchased Y (t), net

of allowances used for compliance Ē−K(t). Equation 5 sets the initial level of the bank and

constrains the bank to be weakly positive in the final period (a no-Ponzi condition).

Equation 6 gives the law of motion of the stock of abatement opportunities R, where

current investment results in the loss of future opportunities, but depreciation of installed

abatement capital creates additional opportunities. Here we define the stock of abatement

opportunities as total baseline emissions less installed abatement capital, but we could as-

sume technological limitations on the firm’s ability to abate some of its baseline emissions

without altering any of the major results below. Finally, we assume that prices follow a

Geometric Brownian Motion process, with drift parameter α and volatility parameter σ,

following Equation 8. We discuss in detail below the implications of assuming an exogenous

price process in deriving the firm’s optimal behavior.

To solve for the firm’s necessary optimality conditions, we follow Pindyck (1980) and Karp

and Traeger (2013) and define the flow profit function Π and the optimal value function J :

Π(t) = e−rt{−ψ(A(t))− P (t)Y (t)}
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J(t, P,K,B,R) = max
A,Y

Et[

∫ T

t

e−rτ{−ψ(A(τ))− P (τ)Y (τ)}dτ ]

We then write the firm’s problem as a dynamic programming equation in continuous time

and expand using Ito’s Lemma:3

0 = max
A,Y

Π(t) +
1

dt
Et[d(J)]

0 = max
A,Y

Π(t) + Jt + JB(K + Y − Ē) + JK(A− δK) + JR(−A+ δK)

+ JPαP +
1

2
JPPσ

2P 2

(9)

For simplicity, we assume the firm chooses an interior solution for both A(t)∗ and Y (t)∗.4

In the case of Y (t)∗, Rubin (1996) notes that if we wish to consider arbitrary price paths in

this market, we would need to apply a technical condition to ensure that firms do not seek

to buy or sell an unbounded number of allowances, since the firm’s maximization problem is

linear in the number of allowances purchased or sold. By applying the first-order condition

directly in this derivation, we are assuming that the process of price formation is such that no

firm finds it optimal to buy or sell an unbounded number of allowances in equilibrium. In the

case of A(t)∗, our optimality condition dictates firm investment conditional on some interior

solution A(t)∗ > 0; it is possible that the first-order condition does not hold with equality

for any positive value of A(t)∗ in which case the firm will be bound by the irreversibility

constraint A(t) ≥ 0 and set A(t)∗ = 0.

With these assumptions in place, taking the first-order conditions with respect to the

choice variables A(t) and Y (t) yields:

ΠA + JK − JR = 0

3We follow the notation in Pindyck (1980) and use the notation JP to denote ∂J
∂P and 1

dtEt[d(·)] to denote
Ito’s differential operator. As in Karp and Traeger (2013), we are able to eliminate the expectation operator
in this step since we are taking the expectation conditional on information at time t, so all functions are
measurable at time t.

4For additional discussion of modifying the firm’s constraints to allow for banking but not borrowing, see
Rubin (1996).
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ΠY + JB = 0

which can be rewritten as:

ψ′(A(t))e−rt = JK − JR (10)

P (t)e−rt = JB (11)

3.2 Firm’s Optimal Behavior in the Allowance Market

First, we focus on the optimality conditions governing firm behavior in the allowance

market. We evaluate Equation 9 at the optimal values of Y (t)∗ and A(t)∗ and differentiate

with respect to B:

0 =ΠB + JtB + JBB(K(t) + Y (t)− Ē) + JKB(A(t)− δK(t)) + JRB(−A(t) + δK(t))

+ JPBαP (t) +
1

2
JPPBσ

2P (t)2

Applying Ito’s Lemma allows us to rewrite this expression as:

0 = ΠB +
1

dt
Et[d(JB)]

Since ΠB = 0, this expression simplifies to:

0 =
1

dt
Et[d(JB)]

Substituting in the firm’s first-order condition for Y (t) (Equation 11) and expanding the

differential operator gives:

0 =
1

dt
Et[d(P (t)e−rt)] = −rP (t)e−rt + e−rt

1

dt
Et[d(P (t))]

Rearranging terms gives:

rP (t) =
1

dt
Et[dP (t)] (12)
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This result recovers the standard Hotelling rule for the expected growth in equilibrium

allowance prices – namely, that prices are expected to increase over time at the discount

rate. It is useful to compare this result to the analogous finding in Rubin (1996), which

assumes both perfect certainty about the future allowance market and no accumulation of

abatement investment. When a no-borrowing constraint does not bind in his model, Rubin

recovers the following rule for price dynamics:

rP (t) = ˙P (t) (13)

In our model, Rubin’s result holds in expectation. This finding then allows us to endog-

enize the drift parameter in our Geometric Brownian Motion process for P , as the Hotelling

rule pins down that drift parameter α is equal to discount rate r in equilibrium.

3.3 Firm’s Optimal Abatement Investment

Next, we examine optimal firm investment in abatement. We follow the same general

steps described above; we first differentiate Equation 9 with respect to K(t) and then apply

Ito’s Lemma, substitute the first-order conditions for A(t) and Y (t) in the resulting expres-

sion, and expand the remaining differential operator. This procedure yields the following

condition:

(r + δ)ψ′(A(t)∗) = P (t) +
1

dt
Et[d(ψ′(A(t)∗))] (14)

Note that A(t)∗ is a function of the firm’s state variables B, K, and R, as well as price

P . Therefore, we can expand the differential operator on the right-hand side of Equation 14

using the following identities:

1

dt
Et[dA(t)∗] =

1

dt
Et[AKdK + ABdB + ARdR + APdP +

1

2
APPdP

2]

= AKK̇ + ABḂ + ARṘ + APαP +
1

2
APPσ

2P 2

(15)
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1

dt
Et[(dA(t)∗)2] =

1

dt
Et[(AKdK + ABdB + ARdR + APdP +

1

2
APPdP

2)2]

= APσ
2P 2

(16)

where the second set of equalities follows from eliminating all higher-order expressions of

dt that vanish as dt → 0. (We suppress the explicit time notation in these expressions for

notational simplicity.)

Our optimality condition then becomes:

(r + δ)ψ′(A(t)∗) = P (t)︸︷︷︸
Avoided allowance purchases

+ψ′′(A(t)∗)
1

dt
Et[dA

∗] +
1

2
ψ′′(A∗)

1

dt
Et[(dA(t)∗)2]︸ ︷︷ ︸

Value of smoothing investment over time

= P + ψ′′(A∗)[AKK̇ + ABḂ + ARṘ + APαP +
1

2
APPσ

2P 2] +
1

2
ψ′′′(A∗)A2

Pσ
2P 2

(17)

Given an interior solution for the optimal rate of abatement investment, we find that

the firm not only sets its amortized marginal abatement cost equal to the avoided allowance

payment, but also takes into account additional terms that capture the value of smoothing

its rate of investment over time. This value of smoothing depends, in turn, on the extent

of price volatility in the market, captured by the parameter σ. The value of smoothing also

depends on both the convexity of the abatement cost function and of the marginal abatement

cost function. The latter relationship may be understood as analogous to “prudence” terms

in lifetime consumption-savings models in macroeconomics. In these models, convexity of

marginal utility of consumption induces individuals to engage in precautionary savings in the

presence of uncertainty. In our context, we can understand increased abatement investment

as analogous to precautionary savings in the face of uncertain allowance prices, which occurs

whenever the marginal abatement cost function is concave (such that −ψ′(·) is convex).5

We can lend further interpretation to this optimality condition by considering what hap-

pens when we set price volatility to zero or instead model abatement decisions as variable.

First, if we set price volatility to zero, we effectively assume that allowance prices will follow

5Provided that optimal abatement is decreasing in allowance price, or AP ≤ 0.
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the same Hotelling trajectory indefinitely. In that case, we recover the following variant of

Equation 17:

(r + δ)ψ′(A(t)∗) = P (t) + ψ′′(A(t)∗) ˙A(t) (18)

In this modified optimality condition, the firm still wishes to smooth abatement investment

over time, but now the time derivative of A∗ is known with certainty.6 The “prudence” term,

which depends linearly on price volatility, also vanishes.

Likewise, it is also instructive to compare our result in Equation 17 to a model where

abatement is a variable decision, rather than a dynamic investment. We could recover this

scenario as a special case of the model presented above by assuming full depreciation (δ = 1).

In this case, the firm’s first-order conditions become:

ΠY + JB = 0

ΠA + JB = 0

which can be rewritten as:

e−rtψ′(A(t)) + JB = 0

e−rtP (t) + JB = 0

Rearranging terms and combining these expressions immediately yields:

ψ′(A(t)) = P (t) (19)

Here the firm sets the rate of abatement such that marginal cost is equal to the instantaneous

price of allowances. This result matches the abatement optimality condition in (Rubin, 1996).

6This result has parallels to the modified Hotelling rule for oil drilling in Anderson et al. (2018), which
models firms making investment decisions as if future prices were certain.
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3.4 Discussion

Our optimality conditions show that allowance trading activity, combined with banking

and borrowing, pins down expected price growth in equilibrium. We can then interpret

the volatility parameter as causing the price process to jump continually from one expected

Hotelling path to another. Where does this volatility come from? While much existing

literature discusses the Hotelling rule and allowance price trajectories over time, consider-

ably fewer papers have endogenized the overall price level. One exception is Stock et al.

(Forthcoming), which determines that the volatility of RIN prices in the Renewable Fuel

Standard credit trading market is largely determined by economic fundamentals such as the

global prices of oil, corn, and soybeans or the impact of overlapping policies – which are, at

least to an extent, exogenous to decisions in the abatement market. From this perspective,

assuming an exogenous volatility parameter may be a reasonable approximation. Additional

sources of price volatility in these markets may also be, to first order, exogenous to the

abatement behavior of market participants, including changes in economic output, changing

expectations about future policy reforms, or unpredictable impacts of overlapping policies.

In a supplemental analysis (see Appendix), we also solved for the firm’s necessary opti-

mality conditions given an endogenous price process. In this extended version of the model,

we model the market-clearing price as a flexible function of the overall emissions limit set

by the regulator, the baseline level of emissions, total installed abatement capital, total ac-

cumulated allowance bank, and, critically, random shocks to both baseline emissions (e.g.,

due to changes in economic output or overlapping policies) and the abatement cost function

(e.g., due to changes in the relative cost of high- versus low-emission fuels). This extended

model therefore allows us to endogenize price volatility as a function of market fundamen-

tals. Assuming a competitive market, in which firms do not internalize the impact of their

decisions on the market-clearing price or behave strategically, we find that the firm’s op-

timality conditions bear close resemblance to those derived above. We again recover the

Hotelling rule for the expected path of allowance prices, and the optimal level of abatement
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investment again comes from setting the amortized marginal cost of abatement equal to

avoided allowance payments plus terms that capture the value of smoothing investment over

time. However, now the smoothing terms depend on the volatility of the underlying random

processes, instead of the volatility of the exogenous price process. Likewise, the “prudence”

term is expanded to include cross-partial derivatives of the investment cost function between

abatement level and the random shock to the cost function; this source of volatility – in

contrast to shocks to baseline emissions – affects both the market-clearing price and, condi-

tional on that price, the optimal level of abatement investment. However, our substantive

conclusions remain unchanged after we endogenize price volatility in this manner, which

lends additional support to our use of an exogenous price process in our baseline model.

Given the significant price volatility observed in real-world allowance and credit trading

markets, it seems likely that actual prices do indeed continually jump from one Hotelling

path to another, as we have modeled here. As a consequence, firms are likely to experience

significant forecast errors between the expected allowance price, against which firms make

their abatement decisions, and the actual market-clearing price realized ex post. Moreover,

firms may also err in their forecasts of the price process, in addition to specific realized prices.

To the extent that the volatility parameter depends on many random variables, only some

of which are known to an individual firm, each firm may not know the true value of σ when

making its abatement decisions. Furthermore, firms may not be able to learn this parameter

simply by observing the past history of prices, given that the extent of price volatility has

varied significantly across different allowance and credit trading markets and over time.

4 Welfare

To understand the welfare consequences of firm-level forecast errors over allowance prices,

we turn to a modified version of the Weitzman (1974, 2018) derivations for the relative

advantage of price-based instruments over quantity-based instruments. This analysis allows
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us to examine the respective roles of information revelation over time versus firm-specific

forecast errors about market-clearing prices. The former creates uncertainty in the market

that is fundamentally unresolvable; firms can never know what abatement cost shocks will

be several periods in the future, for example. As we see in the derivation that follows,

the intertemporal linkages of equilibrium prices in cap-and-trade markets with banking and

borrowing mean that this uncertainty continues to affect the policy’s cost-effectiveness even

after information has been fully revealed in the market. Firm-specific forecast errors, on

the other hand, may result from the presence of private information in the market even

if all current shocks have been realized; these idiosyncratic forecast errors are evident, for

example, in the range of transaction prices observed even within a single trading day under

California’s Low-Carbon Fuel Standard.

To perform this analysis, we first develop Weitzman’s 1974 derivation with multiple pro-

duction units to account for the fact that aggregate quantity orders are transmitted through

an equilibrium price in modern quantity-based regulations. We also integrate Weitzman’s

2018 model of quantity regulation with banking and borrowing over two compliance peri-

ods.7 To be consistent with Weitzman’s set-up in both of these papers, all randomness in

the market-clearing price stems from shocks to each firm’s marginal abatement costs; how-

ever, as we have discussed earlier, real-world price volatility stems from myriad other factors

including changes in overall economic output or the impact of overlapping policies. The key

feature that links the uncertainty modeled here and these other sources of randomness in the

allowance price is that no individual regulated firm has perfect information about all shocks

affecting the market, which leads to firm-level forecast errors as firms make compliance

decisions before the market-clearing price is realized and all information is revealed.

While our model captures many key features of multi-period price- and quantity-based

7Other closely related papers in this recent literature on prices-versus-quantities with banking and bor-
rowing are Heutel (2018), Pizer and Prest (Forthcoming), and Karp (2019). These papers also consider how
the relative advantage of prices, quantities, and quantities with banking and borrowing depend on whether
the policymaker is able to update policies over time as information is revealed in the market. We consider
here what amounts to an “open loop” policy, or a policy without updating, in which the regulator sets prices
or quantities at the start of the two-period regulatory cycle.
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regulation in the presence of uncertainty, we return to the standard assumption that abate-

ment is variable in this section.8 As a result, we consider intertemporal smoothing of the

quantity produced only at the aggregate level in this model; firm-level smoothing occurs

simply by setting marginal cost equal to the market-clearing price, which then equalizes

firm-level marginal costs over time (at least in expectation) through the no-arbitrage condi-

tion created by banking and borrowing. Future work will examine the welfare consequences

of smoothing investment over time in the presence of price uncertainty.

We begin by defining the benefit function associated with reducing some pollutant and

the cost function associated with abatement of that pollutant. Let Bt(Qt) represent the

benefits associated with producing an aggregate quantity Qt of the pollutant.9 Likewise,

let Ci
t(q

i
t, θ

i
t) be the costs to firm i associated with producing quantity qit of the pollutant,

where θit represents a firm-specific random shock to the cost function in period t. Therefore,

the aggregate costs associated with pollution level Qt are given by
∑N

i=1C
i
t(q

i
t, θ

i
t), where

Qt =
∑N

i=1 q
i
t. Here we are assuming that the pollutant in question is uniformly mixed, such

that only the total level of pollutant enters into the benefits function, not the identity of each

polluting entity; this assumption reflects the characteristics of most greenhouse gas emissions

but could be relaxed to model local pollutants. By contrast, the costs of abatement depend

on the pollution level achieved by each individual firm.

We assume for tractability that there are two periods in the current regulatory cycle.10

In each period, the regulator sets an optimal price order in the presence of uncertainty by

8Weitzman (2018) provides further discussion of the need for this assumption in footnote 8.
9Here we assume no uncertainty in the benefit function, which is consistent with Weitzman (2018).

10We also assume here that there is no discounting between periods and that the intertemporal permit
trading ratio is equal to 1. These assumptions greatly simplify our derivation and allow us to highlight the
impact of intra-firm and inter-temporal forecast errors. Karp (2019) shows that the choice of discount factor
and permit trading ratio may affect the relative advantages of prices, quantities, and quantities with banking
and borrowing.
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solving the following maximization problem:

max
p̃1,p̃2

E[B1(
N∑
i=1

qi1(p̃1, θ
i
1))−

N∑
i=1

Ci
1(qi1(p̃1, θ

i
1), θi1) +B2(

N∑
i=1

qi2(p̃2, θ
i
2))−

N∑
i=1

Ci
2(qi2(p̃2, θ

i
2), θi2)]

(20)

Likewise, the regulator sets the optimal (aggregate) quantity order by solving the following

maximization problem:

max
Q̂

E[B1(
N∑
i=1

qi1(p1(Q̂, θ1, θ2), θi1))−
N∑
i=1

Ci
1(qi1(p1(Q̂, θ1, θ2), θi1), θi1)

+B2(
N∑
i=1

qi2(p2(Q̂, θ1, θ2), θi2))−
N∑
i=1

Ci
2(qi2(p2(Q̂, θ1, θ2), θi2), θi2)]

(21)

Here pt(Q̂, θ1, θ2) represents the market-clearing price associated with the regulated quantity

order Q̂ and the marginal cost shocks θ1 and θ2.

Following Weitzman, we expand the cost and benefit functions by taking a second-order

Taylor expansion about the quantity q̄it. We define each q̄it as the level of the pollutant that

sets expected benefits equal to expected costs for each individual firm. However, q̄it no longer

represents the regulator’s optimal quantity limit imposed on each firm, since the regulator

now chooses the aggregate quantity only. The Taylor expansion of each abatement cost

function about q̄it is then given by:

Ci
t(q

i
t, θ

i
t) = ai(θ

i
t) + (C ′ + θit)(q

i
t − q̄it) +

C ′′i
2

(qit − q̄it)2 (22)

where C ′ represents the expected marginal abatement cost at q̄it and C ′′i represents the slope

of the marginal abatement cost function.11 As in Weitzman and much of the subsequent

literature, we assume for tractability that the abatement cost function is quadratic or can

be well approximated by a second-order Taylor expansion. θit represents how the random

11As we show in the full derivation in the Appendix, the Taylor expansion is defined such that C ′ is
constant for all i. Furthermore, while we could allow for the parameters of the cost and benefit function to
differ across periods, we assume for analytic tractability that C ′′i and B′′ are constant over time.
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cost shock affects the slope of the abatement cost function for firm i, and ai(θ
i
t) represents

how the cost shock θit affects the level of abatement costs. As in Weitzman’s derivation, we

assume without loss of generality that E[ai(θ
i
t)] = 0 and E[θit] = 0. Note that this assumption

does not preclude that the conditional expectation of a firm’s cost shock differs from 0; in

general, E[ai(θ
i
t)|aj(θ

j
t )] 6= 0 and E[θit|θ

j
t ] 6= 0 for some i and j, and E[ai(θ

i
t)|ai(θit′)] 6= 0 and

E[θit|θit′ ] 6= 0 for t and t′.

For the benefits function, we also take the Taylor expansion around Q̄t =
∑N

i=1 q̄
i
t:

B(Qt) = b+B′(
N∑
i=1

qit − q̄it)−
B′′

2
(
N∑
i=1

qit − q̄it)2 (23)

Here B′ captures the marginal benefit at Q̄t =
∑N

i=1 q̄
i
t, and B′′ captures the slope of the

marginal benefit function (where B′′ ≥ 0).

For the optimal price order, the derivation here closely follows Weitzman’s derivation with

multiple production units, except we constrain the regulated price to be the same across all

units. We again find that the optimal price order p̃t is equal to B′ = C ′i for all i (and for

all t where these parameters are constant). The full derivation is provided in the Appendix.

Assuming cost minimization, each firm will set its realized marginal cost function equal to

this price, yielding the following firm-level response function:

qit(p̃t, θ
i
t) = q̃it = q̄it −

θit
C ′′i

(24)

The aggregate quantity produced in each period t will then be:

N∑
i=1

qit(p̃t, θ
i
t) =

N∑
i=1

q̄it −
θit
C ′′i

= Q̄t −
N∑
i=1

θit
C ′′i

(25)

By contrast, for the optimal quantity order, we must solve for the market-clearing price

such that the aggregate quantity order is achieved after the realization of all shocks in the

market. Furthermore, because we allow banking and borrowing across the two periods, we
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must also apply a no-arbitrage condition that requires that the first-period price is equal

to the expected second-period price. To build intuition for the basic model set-up, we

initially follow Weitzman and assume that firms know both first- and second-period cost

shocks before making any compliance decisions; we then relax this assumption in subsequent

sections. Assuming cost minimization, the equilibrium price associated with the overall

optimal quantity order Q̂ is given by:12

p̂1(Q̂, θ1, θ2) = p̂2(Q̂, θ1, θ2) = C ′ +

∑N
i=1

θi1+θi2
2C′′

i∑N
i=1

1
C′′
i

(26)

In the first period, firm i will produce q̂i1 = q̄i1 +

∑N
j=1

θi1+θ
i
2

2C′′
j

C′′
i

∑N
j=1

1
C′′
j

− θi1
C′′
i

; the aggregate first-period

quantity produced will be Q̂1 = Q̄1 +
∑

j
θi2−θi1
2C′′

i
. Likewise, in the second period, firm i will

produce q̂i2 = q̄i2 +

∑N
j=1

θi1+θ
i
2

2C′′
j

C′′
i

∑N
j=1

1
C′′
j

− θi2
C′′
i

; the aggregate second-period quantity is then Q̂2 =

Q̄2 +
∑

j
θj1−θ

j
2

2C′′
i

. (The full derivation is again given in the Appendix.)

Finally, following Weitzman, we define the relative advantage of prices over quantities as

the expected difference between net benefits from the optimal price order and net benefits

from the optimal quantity order with banking and borrowing. That is:

∆ = E[B1(
N∑
i=1

q̃i1) +B2(
N∑
i=1

q̃i2)−
N∑
i=1

Ci
1(q̃i1, θ

i
1)−

N∑
i=1

Ci
2(q̃i2, θ

i
2)]

− E[B1(
N∑
i=1

q̂i1) +B2(
N∑
i=1

q̂i2)−
N∑
i=1

Ci
1(q̂i1, θ

i
1)−

N∑
i=1

Ci
2(q̂i2, θ

i
2)]

(27)

Substituting each firm’s response to the price and quantity orders, respectively, we obtain

12The Appendix also derives the market-clearing price for a single regulatory period (i.e., without banking
and borrowing and the resultant no-arbitrage condition).
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the following variant on Weitzman’s original derivation:13

∆ = E[
1

4
(

1∑
i=1

1
C′′
i

−B′′)(
∑
i=1

θi1 + θi2
C ′′i

)2] (28)

Here the relative advantage of prices over quantities with banking and borrowing may be

interpreted analogously to the original Weitzman derivation with multiple production units,

where the regulator compares the net benefits of fixing aggregate quantity over two periods

versus fixing marginal cost over two periods. Note that in this modified version of Weitzman’s

derivation, we cannot evaluate the costs associated with the quantity order for each firm

separately, since the quantity produced by each firm depends on the shocks to all other

firms’ marginal abatement cost functions via the market-clearing price. Consequently, we

must compare the slope of marginal benefits to an expression that combines the slopes of all

marginal costs.

Given this baseline result for the relative advantage of prices versus quantities with

banking and borrowing and multiple production units, we now proceed with relaxing the

strong assumption that firms have perfect information about all shocks before making any

compliance decisions.

4.1 Firm Forecast Errors

Because the market-clearing price associated with the regulator’s quantity order depends

on shocks to the marginal abatement cost functions of all firms, a given firm i may not know

this price with certainty even in making abatement decisions for the current compliance

period. As a result, we assume that firm i will set its marginal abatement cost function

equal to the efficient price p̂t associated with aggregate quantity order Q̂, as derived in the

previous section, plus some expectation error εit. For example, firm-level forecast errors in

13We can immediately compare this expression to the result in Weitzman (2018) for the comparative
advantage of fixed prices over time-flexible quantities with perfect information for a single representative
firm: ∆ = E[ 14 (C ′′ −B′′) · ( θ2+θ1C′′ )2].
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the first period would result in Ei[p̂1(Q̂, θ1, θ2)] = p̂1(Q̂, θ1, θ2)+εi1. In the presence of forecast

errors, the firm’s quantity response becomes:

qi1(p̂1, θ
i
1, ε

i
1) =

p̂1(Q̂, θ1, θ2) + εi1 − C ′ − θi1
C ′′i

+ q̄i1 (29)

Let us assume initially that these firm-level forecast errors do not affect the overall

quantity produced in a given period. That is, some firms may have higher price expectations

and other firms may have lower price expectations in a given period, but the aggregate

quantity response is unchanged within that period.14 To identify the impact of these forecast

errors more clearly, we will assume that they only appear in the first period, whereas firms

have accurate information about the market-clearing price in the second period.

By contrast, under a price order, the price is set by regulation and does not depend on

private information about other firm’s marginal abatement costs. We maintain our earlier

assumption that the price is known with certainty to all firms under price-based regulation.

Therefore, firms’ response to a price order does not change from the version derived above.

We therefore re-derive the relative advantage of prices over quantities with banking and

borrowing, allowing for the presence of forecast errors under quantity-based regulation but

holding constant the net benefits of price-based regulation. Our welfare expression now

becomes:

∆ = E[
1

4
(

1∑
i=1

1
C′′
i

−B′′)(
∑
i=1

θi1 + θi2
C ′′i

)2 +
∑
i

εi1
2

2C ′′i
]︸ ︷︷ ︸

Additional Term

(30)

Equation 30 indicates that firm-level forecast errors under quantity regulation create an

additional advantage of price instruments relative to quantity instruments, with the relative

advantage increasing in the variance of the error terms. One way to interpret this finding,

in light of Weitzman’s original result, stems from the fact that the regulator is no longer

imposing quantity orders directly on individual firms. Instead, the regulator imposes an

14This initial assumption requires
∑N
i=1

εi1
C′′

i
= 0, which ensures that firms’ expectation errors will collec-

tively cancel with each other in determining the overall quantity.
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aggregate quantity order, which a market mechanism then translates into individual quantity

orders through the market-clearing price and the magnitude of marginal cost shocks realized

for each firm. Given firm-level expectation errors in a given compliance period, the same

relative advantages of price and quantity instruments still exist, but we must also consider

the possibility that the aggregate quantity order is not distributed in the least-cost manner

across firms in that period.

4.2 Information Revelation over Time

Beyond inefficiencies in the distribution of quantity across firms within a given period,

uncertainty over market-clearing prices may also affect the overall distribution of the reg-

ulated quantity across periods. From this perspective, forecast errors may reflect not only

idiosyncratic firm-level uncertainty over the marginal cost curves of other market partic-

ipants, but also fundamental uncertainty over future marginal cost shocks. No-arbitrage

conditions under quantity-based policies with banking and borrowing mean that the first-

period market-clearing price must incorporate information about second-period shocks as

well as first-period shocks, but these second-period shocks are generally not realized until

after the first compliance period. Therefore, systematic forecast errors around the ex post ef-

ficient market-clearing price (that is, the price that incorporates accurate information about

both first- and second-period shocks) may reflect this fundamental uncertainty about the

realization of these future shocks. As a result, forecast errors may also cause firms to col-

lectively over- or under-abate relative to the abatement level that would be intertemporally

optimal ex post.15

To understand the welfare consequences of this information revelation over time, we relax

15Karp (2019) also relaxes the assumption in Weitzman (2018) that the representative firm has perfect
information about second-period cost shocks, assuming instead rational expectations over future shocks which
evolve according to an AR-1 process. In the derivation presented here, we instead model heterogeneous firms
with different expectations about market-clearing prices. This derivation is still compatible with rational
expectations if we require each firm to have rational expectations over the cost shocks of other firms in
the market, given the revelation of its own cost shock. However, our derivation depends on heterogeneous
expectations about the price.
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the earlier restriction that first-period forecast errors do not affect the aggregate quantity

produced in this first period.16 Instead, the aggregate quantity in the first period may be

higher or lower than what is intertemporally optimal, depending on the net impact of firms’

forecast errors around the ex post efficient price. To ensure that the regulator’s overall

quantity limit is still met by the end of the final regulatory period, the aggregate second-

period quantity must also shift upwards or downwards to compensate. To accomplish this

adjustment, the second-period price must also adjust accordingly:

p̂′2(Q̂, θ1, θ2, ε1) = C ′ +

∑N
i=1

θi1+θi2
2C′′

i
−
∑N

i=1
εi1
C′′
i∑N

i=1
1
C′′
i

Full details of the changes in expected benefits and costs under quantity orders with this

type of forecast errors are provided in the Appendix; because this type of forecast error

does not apply to regulated prices, the expected benefits and costs of price orders are again

unchanged. The relative advantage of prices over quantities with banking and borrowing

now becomes:

∆ =E[
1

4
(

1∑
i=1

1
C′′
i

−B′′)(
∑
i=1

θi1 + θi2
C ′′i

)2 +
∑
i

εi1
2

2C ′′i

+
1

2
(

1∑
i=1

1
C′′
i

)(
N∑
i=1

εi1
C ′′i

)2

︸ ︷︷ ︸
Additional Cost Term

+B′′(
N∑
i=1

εi1
C ′′i

)2 + 2B′′(
N∑
i=1

εi1
C ′′i

)(
N∑
i=1

θi2 − θi1
2C ′′i

)]︸ ︷︷ ︸
Additional Benefit Term

(31)

Considering that forecast errors may result in overall under- or over-abatement in a

given compliance period creates several additional considerations for the regulator. First,

the additional cost imposed by failing to achieve the optimal distribution of quantity across

compliance periods, captured by the new term 1
2
( 1∑N

i=1
1
C′′
i

)(
εi1
C′′
i

)2, pushes the regulator to

prefer the price-based instrument over the quantity-based instrument with cost-ineffective

banking and borrowing. Here we emphasize that although we have restricted forecast errors

16We now allow
∑
i=1

εi1
C′′

i
6= 0, where this sum reflects market-wide uncertainty about the ex post efficient

price.
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to occur in the first period only, this initial uncertainty continues to create cost-inefficiencies

in later periods due to the intertemporal linkages of cap-and-trade.

On the other hand, while the effect of forecast errors on the intertemporal distribution of

quantity creates another opportunity for the policy to deviate from perfect benefit smoothing

over time, this concern is mitigated if the forecast errors reduce the net reallocation of

quantity across periods (i.e.,
∑N

i=1
εi1
C′′
i

and
∑N

i=1
θi1+θi2
2C′′

i
have opposite signs). Consequently,

this second set of additional terms, which depend on the slope of the marginal benefit

function, have an ambiguous impact on the regulator’s preference for prices over quantities

with banking and borrowing, depending on the overall impact on benefit smoothing. We

note, however, that this second consideration would disappear given a stock pollutant, such

as greenhouse gases, where the timing of production is not a first-order concern over short-

time horizons – leaving only the additional cost inefficiencies due to forecast errors under

quantity-based policies.

4.3 Discussion

In this comparison of expected welfare under prices versus quantities with banking and

borrowing, we find that the presence of firm-specific forecast errors creates cost inefficiencies,

both across firms and over time, that push the regulator to prefer price-based instruments

over quantity-based instruments. These cost inefficiencies asymmetrically affect quantity

instruments, which are transmitted to regulated entities through the equilibrium market-

clearing price, but not price instruments, where firms know the regulated price ex ante.

Moreover, we show that these cost inefficiencies should be considered alongside the standard

comparison of the relative slopes of the marginal cost and marginal benefit functions.

It is important to note that the asymmetry in cost effectiveness between price and quan-

tity instruments is a result of the inherent characteristics of quantity-based instruments,

which create residual uncertainty for regulated firms even after questions about policy de-

sign or stringency have been resolved. We do not model here uncertainty around policy
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design – that is, what price level or what quantity target the regulator will set in the future,

or whether previously announced policies will be altered – because this type of uncertainty

may affect any policy instrument. Of course, the characteristics of quantity-based instru-

ments may amplify the impact of this policy design uncertainty, given that a particular

regulated entity is affected not only by its own uncertainty over future policies, but also

the uncertainty of all other firms in the market, insofar as their beliefs about future policies

impact their compliance decisions and ultimately the market-clearing price. By contrast,

under a price-based instrument, a given firm’s compliance decisions are affected only by its

own marginal abatement costs and its own beliefs about future policies.

5 Simulations

To illustrate the potential magnitude of forecast errors arising from price volatility in

cap-and-trade markets, we have calibrated a simulation model based on the recent Stanford

Energy Modeling Forum (EMF-32) study focused on U.S. carbon tax policies (Barron et al.,

2018a; McFarland et al., 2018). In developing this model, we have also incorporated the

volatility of EU ETS prices as a real-world illustration of how uncertainties play out in

tradable allowance markets.

We first simulate 100,000 different stochastic price trajectories using drift and volatility

parameters estimated from the EU ETS. We then model the optimal abatement investment

decisions of a representative firm faced with this stochastic price trajectory over ten peri-

ods, with prices leveling off indefinitely after the final period. Each period is calibrated to

represent one year. We assume that the firm only knows the previous period’s realized price

when making its investment decisions, thereby allowing us to examine the impact of forecast

errors around the realized price. We do not consider the impact of forecast errors related to

the overall price process in these simulations.

Based on the total emissions reductions achieved from a given stochastic price trajectory,
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summed over all periods, we then calculate the “Hotelling” price trajectory that would

achieve the same level of overall emissions reductions – that is, a single price that rises each

period at the discount rate, before leveling off indefinitely after the final period. This price

trajectory is approximately equivalent to an emissions tax in eliminating uncertainty over

the regulated price, although in this thought experiment the quantity of emissions reductions

is still equalized across analogous stochastic price and tax trajectories. Nonetheless, this step

allows us to compare the total resource costs required to achieve a given level of emissions

reduction with and without firm-level uncertainty. We can also illustrate how price collars

such as price floors and ceilings can reduce the cost inefficiencies resulting from this residual

uncertainty.

5.1 Model Calibration

We first assume that allowance prices follow geometric Brownian motion and estimate

the drift and volatility parameters associated with historical prices in the EU ETS. We

focus on the periods since the end of the Phase I pilot program (2008-2018), as rules for

intertemporal banking and borrowing changed between Phases I and II. We estimate these

parameters using maximum likelihood; full details of the estimation procedure are provided

in the appendix. We estimate an annual (real) drift parameter of 0.0508 and an annual

volatility parameter of 0.3925; our drift parameter corresponds to 5.22% expected annual

price growth.

We then use results from the Stanford Energy Modeling Forum to calibrate the abatement

cost function. This dataset includes projected U.S. emissions reductions, relative to a baseline

scenario, resulting from an emissions price set at either $25 or $50 in 2020 and increasing

at an annual rate of either 1% or 5% to 2050. The dataset includes results from 10 models

analyzing each of these four price scenarios.

We adopt the simplifying assumption that all abatement is long-lived and thus abatement

in the current period persists into the next period, adjusting for depreciation; this assumption
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matches our theoretical modeling of abatement as durable capital stock. Likewise, we also

assume that abatement investment in a given year becomes available for compliance in the

following year. Based on these assumptions, we calculate the discounted value of the tax

payment avoided through abatement investment in each period. By assuming that the

investment cost function takes the form ψ(A) = φA2, we use the firm’s first-order conditions

to set the marginal investment cost equal to the discounted stream of avoided tax payments,

assuming depreciation rate of 10% and discount factor of 0.95.17 We calculate the depreciated

sum of abatement and compare that to average emissions reductions observed in the modeling

scenarios (relative to the baseline scenario). Setting these two values equal then allows use

to estimate the abatement cost parameter φ.

We obtain an estimated parameter φ̂ = 8.30 · 10−7 for abatement measured in metric

tons of CO2 reduced annually. Figure 4 shows the annual emissions reduction predicted by

our calibrated model versus each of the ten modeling scenarios from the Stanford EMF-32

exercise.

5.2 Simulation Results

Given this calibration, Figure 5 illustrates the results of our simulations. The horizontal

axis shows the different levels of total emissions reduction (in million metric tons of CO2)

resulting from different price simulations and ten years of firm investment in abatement.

The vertical axis shows the total investment cost required to achieve those reductions. As is

evident from the figures, the “tax” trajectories serve as a lower bound on the total resource

costs required to achieve a range of abatement levels. Additionally, the expected increase in

costs from stochastic prices increases in the magnitude of realized abatement. We find that

the median percentage difference in abatement costs between a stochastic price scenario and

17This functional form assumption is consistent with standard assumptions in the literature about abate-
ment cost functions, including Weitzman (1974). However, it does not fully capture the range of potential
dynamics derived in the previous section as, for example, ψ′′′(A) = 0.

40



Figure 4: Annual Emissions from Calibrated Model versus EMF 32 Results

The points refer to the projected U.S. CO2 emissions levels from each of the ten models in
EMF 32, assuming an initial carbon price of $25/ton in 2020, rising at 5% annually until
2050 and then leveling off. The line reflects implied emissions reduction from our calibrated
abatement investment cost function, when applying the same carbon price trajectory.
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the corresponding tax scenario is approximately 20 percent.18 Because a given “stochastic

price” and “tax” trajectory are constructed to achieve the same total emissions reduction,

both scenarios reflect the total investment costs of achieving a range of quantity orders.

Under each “tax” trajectory, various shocks to the price process are smoothed over time and

firms know the full price trajectory with certainty, as in the Weitzman-style derivation in the

previous section that incorporated all firm-specific shocks into a single efficient price. Under

the stochastic price trajectories, firms instead face persistent forecast errors in making their

investment decisions.

These results therefore illustrate why it is critical to account for the magnitude of fore-

cast errors in considering the relative welfare gains from price or quantity instruments. The

presence of firm-level uncertainty over the market-clearing allowance price effectively shifts

upwards the expected abatement cost function – that is, the expected total resource cost as-

sociated with achieving a given quantity of emissions reduction. Therefore, it is not sufficient

to compare the abatement costs of a quantity order imposed directly on firms, on the one

hand, with the abatement costs from setting marginal abatement cost equal to the regulated

price, on the other hand (as in Pizer (2002), for example). Instead, the effective abatement

cost function is itself a function of the type of policy instrument. Persistent forecast errors

create an additional welfare cost in the implementation of quantity orders relative to price

orders.

6 Conclusion

This paper examines the impact of firm-level uncertainty over allowance prices in cap-

and-trade markets – a form of residual uncertainty which is inherent to this type of policy

instrument. Our theory model elucidates forecast errors that are not emphasized in the

standard literature, both the difference between expected price and realized price and im-

18Note that we set an effective price ceiling at $1000 per ton when discretizing the state space to per-
form backwards induction; however, given our drift and volatility parameters and the number of periods
considered, this upper bound affects fewer than 0.1% of simulated price trajectories.
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Figure 5: Total Emissions Reduction from 10 Years of Abatement Investment

The “stochastic” price scenario reflects total emissions reductions and abatement investment
costs associated with simulated price trajectories, where drift and volatility parameters are
calibrated to historic EU ETS prices; the baseline price is $25/ton. The “tax” scenarios
achieve the same total emissions reduction given a baseline price that smoothly increases at
the calibrated EU ETS drift. In both cases, the abatement cost function is calibrated to the
results of Barron et al. (2018a). The lower panel is a close-up of the upper panel.
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perfect information about the overall price process. Our welfare analysis then focuses on

the first type of forecast error and shows how the additional cost associated with imperfect

information about future market-clearing prices can be analyzed in a standard prices-versus-

quantities framework. Finally, our simulations suggest that the magnitude of these forecast

errors may be substantial in the context of climate policy, creating a wedge between the ef-

fective abatement cost function under price certainty versus in the presence of these forecast

errors.

In future research, we seek to decompose the extent of price volatility into that resulting

from own abatement cost shocks – and therefore correlated with the firm’s optimal abatement

decisions, conditional on price – and that resulting from other shocks to these markets.

These other shocks may include shocks to the abatement costs of other firms, the impacts

of overlapping policies, or changes to economic output. This exercise will also enable us to

extend our Weitzman-style welfare analysis into a fully dynamic version in which optimal

quantity responses are linked over time. We also have ongoing work to incorporate an

assessment of overlapping policies in our simulation model.
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A Derivation of Theory Model

A.1 Necessary Condition for Optimal Investment

To obtain the dynamics of optimal abatement investment, differentiate the fundamental

equation of optimality with respect to K:

ΠK + JtK + JBK(K + Y + Ḡ− Ē) + JB + JKK(A− δK)

− δJK + JRK(−A+ δK) + δJR + JPKαP +
1

2
JPPKσ

2P 2 = 0

After applying Ito’s Lemma and eliminating ΠK = 0, this expression becomes:

1

dt
Et[d(JK)] + JB − δJK + δJR = 0
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Substituting the first-order conditions derived in the main text (JB = e−rtP and JK −

JR = ψ′(A)e−rt), we obtain:

1

dt
Et[d(JR + ψ′(A)e−rt)] + e−rtP − δψ′(A)e−rt = 0

Note that this expression is evaluated at the optimal values of A and Y . Next, noting

that 1
dt

Et[d(JR)] = 019 and expanding differential operator to eliminate e−rt terms, we obtain:

(δ + r)ψ′(A) = P +
1

dt
Et[d(ψ′(A))]

The main text provides the expansion and interpretation of this result.

A.2 Endogenous Prices

Now assume that the market-clearing price is some function of disturbances to baseline

emissions η, disturbances to the marginal cost function θ, the installed stock of abatement

equipment K, and the regulatory target Q̄. (However, we assume that the market is com-

petitive, so firms do not internalize the impact of their choice of K on the market-clearing

price.)

Now the firm’s optimization problem can be written as:

max
A,Y

E0[

∫ T

0

e−rt{−ψ(A(t); θ(t))− P (t)Y (t)}dt]

subject to:

dK = {A(t)− δK(t)}dt

A(t) ≥ 0, K0 given

19This result comes from differentiating the fundamental equation of optimality with respect to R, which
yields: ΠR + JtR + JBR(K + Y + Ḡ − Ē) + JKR(A − δK) + JRR(−A + δK) + JPRαP + 1

2JPPRσ
2P 2 = 0.

Applying Ito’s Lemma allows us to rewrite this expression as ΠR + 1
dtEt[d(Jr)] = 0. Noting that ΠR = 0,

we therefore have 1
dtEt[d(JR)] = 0.
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dB = {K(t) + Y (t)− Ē}dt+ dη(t)

B(T ) ≥ 0, B0 = 0

dR = {−A(t) + δK(t)}dt

R(t) = Ē −K(t) ≥ 0, R0 given

P (t) = f(η(t), θ(t), K(t), B(t), R(t), Q̄)

dη(t) = σηdzη, where dzη is an increment of a Wiener process

dθ(t) = σθdzθ, where dzθ is an increment of a Wiener process

Et[dzηdzθ] = ρ

Now the fundamental equation of optimality can be written as:

0 = max
A,Y

Π(t) +
1

dt
Et[d(J)]

Which simplifies to:

0 = max
A,Y

Πd(t) + Jt + JB(K + Y − Ē) + JK(A− δK) + JR(−A+ δK)

+
1

2
Jηησ

2
η +

1

2
Jθθσ

2
θ + Jθησθσηρ]

The firm’s first-order conditions are again given by:

ΠA + JK − JR = 0

ΠY + JB = 0

To obtain price dynamics, we again differentiate the fundamental equation of optimality

with respect to B:
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0 =ΠB + JtB + JBB(K + Y + Ḡ− Ē) + JKB(A− δK) + JRB(−A+ δK)

+
1

2
JηηBσ

2
η +

1

2
JθθBσ

2
θ + JηθBσησθρ

which can be again written as:

0 = ΠB +
1

dt
Et[d(JB)]

In the competitive case where firms do not internalize the impact of their decisions on P (t)

through the state variables B(t), K(t), and R(t), we have again have ∂Πd
∂B

= 0.20 Substituting

the first-order condition JB = e−rtP and expanding using Ito’s differential operator again

gives:

0 =
1

dt
Et[d(e−rtP (t))] = −re−rtP + e−rt

1

dt
Et[d(P (t))]

We again recover the Hotelling rule for price dynamics:

1

dt
Et[d(P (t))] = rP (t)

Next we differentiate the fundamental equation of optimality with respect to K, which

yields:

ΠK + JtK + JBK(K + Y − Ē) + JB + JKK(A− δK)

− δJK + JRK(−A+ δK) +
1

2
JηηKσ

2
η +

1

2
JθθKσ

2
θ + JηθKσησθρ = 0

As before, this expression can be rewritten as:

ΠK +
1

dt
Et[d(JK)] + JB − δJK + δJR = 0

20For an analogous derivation, see equation 13 in (Pindyck, 1980).
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Under a competitive equilibrium, we have ΠK = 0. Substituting first-order conditions again

yields:

(δ + r)
∂ψ

∂A
= P +

1

dt
Et[d(

∂ψ

∂A
)] (32)

In this case, we now have ∂ψ
∂A

is a function both of A and θ. Note that we again evaluate the

entire expression at the optimal values of A∗ and Y ∗. Therefore, expanding the differential

operator on the right-hand side now yields:

1

dt
Et[d(

∂ψ

∂A
)] =

∂2ψ

∂A2

1

dt
Et[dA] +

∂2ψ

∂A∂θ

1

dt
Et[dθ]

+
1

2

∂3ψ

∂A3

1

dt
Et[(dA)2] +

∂3ψ

∂A2∂θ

1

dt
Et[(dθ)(dA)] +

1

2

∂3ψ

∂A∂θ2

1

dt
Et[(dθ)

2]

First note that Et[dθ] = 0. Then, expanding with Ito’s Lemma, note that A∗ =

A(K,R,B, P, θ), so we have dA = AKdK + ARdR + ABdB + APdP + Aθdθ + 1
2
Aθθ(dθ)

2.

Therefore we can expand the above terms as follows:

1

dt
Et[(dA)2] = A2

Pf
2
θ σ

2
θ + A2

Pf
2
ησ

2
η + 2A2

Pfθfησθσηρ (33)

1

dt
Et[(dA)(dθ)] = APfθσ

2
θ + APfησθσηρ (34)

1

dt
Et[(dθ)

2] = σ2
θ (35)

Substituting into the above expression yields:

(r + δ)
∂ψ

∂A
= P +

∂ψ2

∂A2

1

dt
Et[dA

∗]

+
1

2

∂3ψ

∂A3
[A2

Pf
2
θ σ

2
θ + A2

Pf
2
ησ

2
η + 2A2

Pfθfησθσηρ]

+
∂3ψ

∂A2∂θ
[APfθσ

2
θ + APfησησθρ]

+
1

2

∂3ψ

∂A∂θ2
σ2
θ

(36)
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B Derivation of Welfare Result

B.1 Single Price Order

First, we derive a variant of Weitzman’s 1974 and 2018 results with multiple production

units and two compliance periods, when the regulator sets a single price order. The problem

set-up is given in the main text. The regulator’s optimization problem is given by:

max
p̃1,p̃2

E[B1(
N∑
i=1

qi1(p̃1, θ1))−
N∑
i=1

Ci
1(qi1(p̃1, θ

i
1), θi1) +B2(

N∑
i=1

qi2(p̃2, θ2))−
N∑
i=1

Ci
2(qi2(p̃2, θ

i
2), θi2)]

which yields the following first-order conditions:

E[
N∑
i=1

∂B1

∂Q1

· ∂Q1

∂qi1
· dq

i
1

dp̃1

] = E[
N∑
i=1

∂Ci
1

∂qi1
· dq

i
1

dp̃1

]

E[
N∑
i=1

∂B2

∂Q2

· ∂Q2

∂qi2
· dq

i
2

dp̃2

] = E[
N∑
i=1

∂Ci
2

∂qi2
· dq

i
2

dp̃2

]

As in Weitzman, we assume that firms set marginal cost equal to price, which yields the

following response function for firm i facing price pt:

∂Ci
t

∂qit
= pt = C ′ + θit + C ′′i (qit − q̄it)

Rearranging gives:

qit(pt, θ
i
t) = qit =

pt − C ′ − θit
C ′′i

+ q̄it

Differentiating with respect to pt gives:

dqit
dpt

=
1

C ′′i

Substituting this result into the regulator’s first-order condition for the optimal price
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order and recognizing that all firms set
∂Cit
∂qit

= p̃t, we have:

∂B1

∂Q1

·
N∑
i=1

1

C ′′i
= p̃1

N∑
i=1

1

C ′′i

∂B2

∂Q2

·
N∑
i=1

1

C ′′i
= p̃2

N∑
i=1

1

C ′′i

Therefore, the optimal price order is given by p̃1 = B′ and p̃2 = B′. Using the same steps

as Weitzman (1974), we can then show that C ′ = p̃1 = p̃2. Therefore, plugging this optimal

price order into our price response function, we arrive at the same quantity response as the

original Weitzman derivation:

qit(p̃t, θ
i
t) = q̃it =

−θit
C ′′i

+ q̄it

B.2 Single Quantity Order

To obtain a single quantity order, we retain the set-up given in the main text. Now the

optimal aggregate quantity order is given by:

max
Q̂

E[B1(
N∑
i=1

qi1(p1(Q̂, θ1), θ1))−
N∑
i=1

Ci
1(qi1(p1(Q̂, θ1), θi1), θi1)

+B2(
N∑
i=1

qi2(p2(Q̂, θ2), θ2))−
N∑
i=1

Ci
2(qi2(p2(Q̂, θ2), θi2), θi2)]

which yields the first-order condition:

E[
N∑
i=1

∂B1

∂Q1

· ∂Q1

∂qi1
· ∂q

i
1

∂p̂1

· dp̂1

dQ̂
+

N∑
i=1

∂B2

∂Q2

· ∂Q2

∂qi2
· ∂q

i
2

∂p̂2

· dp̂2

dQ̂
]

= E[
N∑
i=1

∂Ci
1

∂qi1
· ∂q

i
1

∂p̂1

· dp̂1

dQ̂
+

N∑
i=1

∂Ci
2

∂qi2
· ∂q

i
2

∂p̂2

· dp̂2

dQ̂
]

First, note that we still have
∂qit
∂pt

= 1
C′′
i

, a constant. We can also use the price response
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equation from above to derive dp̂t
dQ̂

:

N∑
i=1

qit(pt, θ
i
t) =

N∑
i=1

pt − C ′ − θit
C ′′i

+ q̄it

Qt =
N∑
i=1

pt − C ′ − θit
C ′′i

+ Q̄t

Therefore, aggregate quantity is given by:

Q =
N∑
i=1

p1 − C ′ − θi1
C ′′i

+ Q̄1 +
N∑
i=1

p2 − C ′ − θi2
C ′′i

+ Q̄2

Differentiating with respect to Q gives:

1 =
∑
i

1

C ′′i

dp1

dQ
+

1

C ′′i

dp2

dQ
⇒ dp1

dQ
+
dp2

dQ
= 1/(

∑
i

1

C ′′i
)

From the regulator’s perspective at the time of setting the aggregate quantity limit, the

no-arbitrage condition requires p1 = p2. Therefore, we have dp1
dQ

= dp2
dQ

= 1/(2
∑N

i=1
1
C′′
i

)

Note that this expression is also a constant that can be pulled outside the expectation error.

Therefore, we can set Q = Q̂) and invoke the linearity of expectation to obtain:

N∑
i=1

B′ · 1

C ′′i
· 1

2
∑

j
1
C′′
j

+
N∑
i=1

B′ · 1

C ′′i
· 1

2
∑

j
1
C′′
j

=
N∑
i=1

E[
∂Ci

1

∂qi1
] · 1

C ′′i
· 1

2
∑

j
1
C′′
j

+
N∑
i=1

E[
∂Ci

2

∂qi1
] · 1

C ′′i
· 1

2
∑

j
1
C′′
j

Recognizing that each
∂Cit
∂qit

is set equal to p̂t(Q̂, θt, θt′) by cost minimization and that E[p̂1(Q̂, θ1, θ2)] =

E[p̂2(Q̂, θ1, θ2)] from the perspective of the regulator deciding on optimal policy, we can

rewrite this expression as:

N∑
i=1

B′ · 1

C ′′i
· 1∑

j
1
C′′
j

=
N∑
i=1

E[p̂(Q̂, θ1, θ2)] · 1

C ′′i
· 1∑

j
1
C′′
j
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Which ultimately yields (for the regulator’s optimal aggregate quantity order Q̂):

B′ = E[p̂(Q̂, θ)]

Note that we have defined q̄it such that E[∂Bt
∂qit

] = E[
∂Cit
∂qit

]. Therefore, the regulator’s first-order

condition for Q is satisfied when Q̂ =
∑N

i=1 q̄
i
1 +

∑N
i=1 q̄

i
2.

Nonetheless, the realized efficient price resulting from the optimal quantity instrument is

not necessarily equal to B′ or C ′, but instead depends of the realizations of cost shocks θ. As

in the initial derivation in the main body of the paper, we assume that firms initially have

perfect information about first- and second-period cost shocks. Therefore, the first-period

market-clearing price is given by:

Q1 +Q2 = Q̂1 +
N∑
i=1

p̂1 − C ′ − θi1
C ′′i

+ Q̂2 +
N∑
i=1

p̂2 − C ′ − θi2
C ′′i

We then apply the two key conditions governing this market: one the aggregate quantity

limit must be met (Q1 + Q2 = Q̂1 + Q̂2 = Q̂), and two, the no-arbitrage condition requires

that the first-period market-clearing price is equal to the (expected) second-period market-

clearing price (p̂1 = p̂2). Imposing these conditions and rearranging terms then yields the

efficient market-clearing price under a multi-period quantity instrument with banking and

borrowing:

p̂1(Q̂, θ1, θ2) = p̂2(Q̂, θ1, θ2) = C ′ +

∑
i
θi1+θi2
2C′′

i∑
i

1
C′′
i

Plugging this expression for p̂t(Q̂, θ) into each price response function, we see that the

individual realized quantities qit will generally not be equal to q̂it. In the first period:

qi1(p̂1, θ
i
1) =

p̂1 − C ′ − θi1
C ′′i

+ q̄i1 =

C ′ +

∑
j

θ
j
1+θ

j
2

2C′′
j∑

j
1
C′′
j

− C ′ − θi1

C ′′i
+ q̄i1 =

∑
j

θ
j
1+θ

j
2

2C′′
j∑

j
1
C′′
j

− θi1

C ′′i
+ q̄i1
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Likewise, in the second period:

qi2(p̂2, θ
i
2) =

p̂2 − C ′ − θi2
C ′′i

+ q̄i2 =

C ′ +

∑
j

θ
j
1+θ

j
2

2C′′
j∑

j
1
C′′
j

− C ′ − θi2

C ′′i
+ q̄i2 =

∑
j

θ
j
1+θ

j
2

2C′′
j∑

j
1
C′′
j

− θi2

C ′′i
+ q̄i2

By our definition of q̄it, we have imposed that C ′ is constant for all i and all t. Since we

generally do not have θit = θjt or θit = θit′ , this expression does not reduce to q̄it except under

very special conditions.

B.3 Relative Advantage of Prices Over Quantities with Banking

and Borrowing

Here we derive the relative advantage of prices over quantities with banking and bor-

rowing, relying on the baseline assumption from Weitzman (2018) that firms have perfect

information about both first- and second-period cost shocks before making any compliance

decisions. We substitute our expressions for qit(p̂t, θ
i
t) and qit(p̃t, θ

i
t) into the Taylor expansions
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for (expected) benefits and costs. For the expected benefits of the quantity order, we obtain:

E[B1(
N∑
i=1

qi1(p̂1, θ
i
1)) +B2(

N∑
i=1

qi2(p̂2, θ
i
2))]

= E[b+B′(
N∑
i=1

qi1(p̂1, θ
i
1)− q̄i1) +

−B′′

2
(
∑
i=1N

qi1(p̂1, θ
i
1)− q̄i1)2]

+ E[b+B′(
N∑
i=1

qi2(p̂2, θ
i
2)− q̄i2) +

−B′′

2
(
∑
i=1N

qi2(p̂2, θ
i
2)− q̄i2)2]

= E[B′(
N∑
i=1

∑
j

θ
j
1+θ

j
2

2C′′
j∑

j
1
C′′
j

− θi1

C ′′i
) +
−B′′

2
(
N∑
i=1

∑
j

θ
j
1+θ

j
2

2C′′
j∑

j
1
C′′
j

− θi2

C ′′i
)2]

+ E[B′(
N∑
i=1

∑
j

θ
j
1+θ

j
2

2C′′
j∑

j
1
C′′
j

− θi1

C ′′i
) +
−B′′

2
(
N∑
i=1

∑
j

θ
j
1+θ

j
2

2C′′
j∑

j
1
C′′
j

− θi2

C ′′i
)]

= −B′′(
N∑
i=1

θi1 − θi2
2C ′′i

)2

Expected costs from the quantity order:

N∑
i=1

E[Ci
1(qi1(p̂1, θ

i
1), θi1)] +

N∑
i=1

E[Ci
2(qi2(p̂2, θ

i
2), θi2)]

=
N∑
i=1

E[ai(θ
i
1) + (C ′ + θi1)(qi1(p̂1, θ

i
1)− q̄i1) +

C ′′i
2

(qi1(p̂1, θ
i
1)− q̄i1)2]

+
N∑
i=1

E[ai(θ
i
2) + (C ′ + θi2)(qi2(p̂2, θ

i
2)− q̄i2) +

C ′′i
2

(qi2(p̂2, θ
i
2)− q̄i2)2]

=
N∑
i=1

E[θi1(

∑
j

θ
j
1+θ

j
2

2C′′
j∑

j
1
C′′
j

− θi1

C ′′i
) +

C ′′i
2

(

∑
j

θ
j
1+θ

j
2

2C′′
j∑

j
1
C′′
j

− θi1

C ′′i
)2]

+
N∑
i=1

E[θi2(

∑
j

θ
j
1+θ

j
2

2C′′
j∑

j
1
C′′
j

− θi2

C ′′i
) +

C ′′i
2

(

∑
j

θ
j
1+θ

j
2

2C′′
j∑

j
1
C′′
j

− θi2

C ′′i
)2]

= −1

2
(
N∑
i=1

θi1
2

C ′′i
)− 1

2
(
N∑
i=1

θi2
2

C ′′i
) + (

1

4
∑N

i=1
1
C′′
i

)(
N∑
i=1

θi1
C ′′i
−

N∑
i=1

θi2
C ′′i

)2
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Expected benefits from the price order:

E[B1(
N∑
i=1

qi1(p̃1, θ
i
1)) +B2(

N∑
i=1

qi2(p̃2, θ
i
2))]

= E[b+B′(
N∑
i=1

qi1(p̃1, θ
i
1)− q̄i1) +

−B′′

2
(
N∑
i=1

qi1(p̃1, θ
i
1)− q̄i1)2]

+ E[b+B′(
N∑
i=1

qi2(p̃2, θ
i
2)− q̄i2) +

−B′′

2
(
N∑
i=1

qi2(p̃2, θ
i
2)− q̄i2)2]

=
−B′′

2
(
N∑
i=1

−θi1
C ′′i

)2 +
−B′′

2
(
N∑
i=1

−θi2
C ′′i

)2

Expected costs from the price order:

N∑
i=1

E[Ci
1(qi1(p̃1, θ

i
1), θi1)] +

N∑
i=1

E[Ci
2(qi2(p̃2, θ

i
2), θi2)]

= E[ai(θ
i
1) + (C ′ + θi1)(qi1(p̃1, θ

i
1)− q̄i1) +

C ′′i
2

(qi1(p̃1, θ
i
1)− q̄i1)2]

+ E[ai(θ
i
2) + (C ′ + θi2)(qi2(p̃2, θ

i
2)− q̄i2) +

C ′′i
2

(qi2(p̃2, θ
i
2)− q̄i2)2]

=
N∑
i=1

E[θi1(
−θi1
C ′′i

) +
C ′′i
2

(
−θi1
C ′′i

)2 +
N∑
i=1

E[θi2(
−θi2
C ′′i

) +
C ′′i
2

(
−θi2
C ′′i

)2]

= E[
N∑
i=1

− θi1
2

2C ′′i
+

N∑
i=1

− θi2
2

2C ′′i
]

Combining all terms to form the relative advantage of prices over quantities yields:

∆ = E[(
1

4
∑N

i=1
1
C′′
i

−B′′)(
N∑
i=1

θi1
C ′′i
−

N∑
i=1

θi2
C ′′i

)2]

B.4 Relative Advantage of Prices Over Quantities with Forecast

Errors

We now incrementally relax the assumption that firms have perfect certainty over all

marginal cost shocks before making any abatement decisions. For one, each production
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unit may not know the realized p̂t(Q̂, θt, θt′) when making its compliance decision, because

this quantity depends on θ−it whereas the production unit i may only observe θit. We note

here that it is possible to leave the aggregate quantity distribution unchanged across the

two compliance periods while mis-allocating quantity across production units within a given

period, which produces additional welfare loss relative to a price instrument.

Suppose that firm i optimizes with respect to its signal of the market-clearing price,

E[p̂t] = p̂t(Q̂, θt, θt′) + εit, where εit reflects the firm’s idiosyncratic forecast error in period t.

The corresponding quantity response is given by:

qit(pt, θ
i
t) =

p̂t(Q̂, θt, θt′) + εit − C ′ − θit
C ′′i

+ q̄it

where p̂t(Q̂, θt, θt′) is the efficient price defined above.

In this case, the aggregate quantity produced in period t will remain unchanged whenever

the following condition is met:

Q̂ =
∑
i

C ′ +

∑
j

θ
j
1+θ

j
2)

2C′′
j∑

j
1
C′′
j

+ εi1 − C ′ − θi1

C ′′i
+ Q̄1 +

∑
i

C ′ +

∑
j

θ
j
1+θ

j
2)

2C′′
j∑

j
1
C′′
j

− C ′ − θi2

C ′′i
+ Q̄2

0 = 2
N∑
i=1

θi1 + θi2
2C ′′i

− θi1
C ′′i
− θi2
C ′′i

+
εi1
C ′′i

0 =
∑
i

εi1
C ′′i

Here we assume that the firm experiences forecast errors only in the first period to cleanly

distinguish this result from the results in the subsequent section; this assumption could be

easily relaxed.

To determine the modified welfare expression in the presence of these expectation errors,

note first that the benefits under a quantity order are a function of the total quantity
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produced in a given period; because we assume in this derivation that the expectation errors

do not have an impact on the overall quantity in this compliance period, the Taylor expansion

for B1(
∑N

i=1 q̂
i
1) does not change from the version derived above. To determine how costs

change under a quantity order, we evaluate the following expression:

N∑
i=1

E[Ci
1(qi1(p̂1, θ

i
1), θi1)] +

N∑
i=1

E[Ci
2(qi2(p̂2, θ

i
2), θi2)]

=
N∑
i=1

E[θi1(

∑N
j=1

θ
j
1+θ

j
2

2C′′
j∑N

j=1
1
C′′
j

+ εi1 − θi1

C ′′i
) +

C ′′i
2

(

∑N
j=1

θ
j
1+θ

j
2

2C′′
j∑N

j=1
1
C′′
j

+ εi1 − θi1

C ′′i
)2]

+
N∑
i=1

E[θi2(

∑N
j=1

θ
j
1+θ

j
2

2C′′
j∑N

j=1
1
C′′
j

− θi2

C ′′i
) +

C ′′i
2

(

∑N
j=1

θ
j
1+θ

j
2

2C′′
j∑N

j=1
1
C′′
j

− θi2

C ′′i
)2]

= original terms from above + new terms

= original terms from above +
N∑
i=1

εi1
2

2C ′′i
+

N∑
i=1

θi1ε
i
1

C ′′i
−

N∑
i=1

θi1ε
i
1

C ′′i
+ (

N∑
i=1

εi1
C ′′i

)(

∑N
j=1

θj1+θj2
2C′′

j∑N
j=1

1
C′′
j

)

=− 1

2
(
N∑
i=1

θi1
2

C ′′i
)− 1

2
(
N∑
i=1

θi2
2

C ′′i
) + (

1

4
∑N

i=1
1
C′′
i

)(
N∑
i=1

θi1
C ′′i
−

N∑
i=1

θi2
C ′′i

)2 +
N∑
i=1

εi1
2

2C ′′i︸ ︷︷ ︸
Additional Term

The last equality follows from applying the constraint that
∑N

i=1
εi1
C′′
i

= 0 in order for the

aggregate quantity to be unchanged in the first compliance period.

By plugging in this expectation of the cost function under a quantity order with expecta-

tion errors, we obtain the following modified expression for the relative advantage of prices

over quantities:

∆ = E[(
1

4
∑N

i=1
1
C′′
i

−B′′)(
N∑
i=1

θi1
C ′′i
−

N∑
i=1

θi2
C ′′i

)2 +
N∑
i=1

εi1
2

2C ′′i
]
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B.5 Relative Advantage of Prices Over Quantities with Informa-

tion Revelation Over Time

In this variant of the model, we continue to allow firms to make forecast errors with regard

to the first-period price, but we now allow those errors to influence the overall distribution

of quantity across compliance periods. That is, we now allow
∑N

i=1
εi1
C′′
i

. Consequently, the

overall quantity produced in the first period is now given by:

Q1 =
Q̂

2
+

N∑
i=1

θi2 − θi1
2C ′′i

+
N∑
i=1

εi1
C ′′i

As discussed in the main text, the second-period price must now adjust to ensure that the

aggregate quantity limit is still met, given this adjustment to first-period production. The

new market-clearing price in the second period is now given by:

p̂′2(Q̂, θ1, θ2, ε1) = C ′ +

∑N
i=1

θi1+θi2
2C′′

i
−
∑N

i=1
εi1
C′′
i∑N

i=1
1
C′′
i

This market-clearing price then yields the following overall quantity in the second com-

pliance period:

Q2 =
Q̂

2
+

N∑
i=1

θi1 − θi2
2C ′′i

−
N∑
i=1

εi1
C ′′i

Consequently, expected benefits (over both compliance periods) from the quantity order

are now given by:21

E[−B′′(
N∑
i=1

θi1 − θi2
2C ′′i

−
N∑
i=1

εi1
C ′′i

)2]

21We could equivalently write this expression as: E[−B′′(
∑N
i=1

θi1−θ
i
2

2C′
i
−

∑N
i=1

εi1
C′′

i
)2].
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First-period expected costs from the quantity order are now given by:

−1

2
(
N∑
i=1

θi1
2

C ′′i
) +

1

2
(

1

4
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1
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εi1
2

2C ′′i

+ (
1∑N
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1
C′′
i

)(
N∑
i=1

εi1
C ′′i

)(
N∑
i=1

θi1
2C ′′i

) + (
1∑N

i=1
1
C′′
i

)(
N∑
i=1

εi1
C ′′i

)(
N∑
i=1

θi2
2C ′′i

)

Second-period expected costs are given by:

−1

2
(
N∑
i=1

θi2
2

C ′′i
) +

1

2
(

1

4
∑N
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1
C′′
i
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N∑
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θi1
C ′′i
−

N∑
i=1

θi2
C ′′i

)2

+
1

2
(

1∑N
i=1

1
C′′
i

)(
N∑
i=1

εi1
C ′′i

)2 − (
1∑N
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1
C′′
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)(
N∑
i=1
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i=1

θi1
2C ′′i

)− (
1∑N

i=1
1
C′′
i

)(
N∑
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εi1
C ′′i

)(
N∑
i=1

θi2
2Cii

)

Combining terms and rearranging yields the following modified expression for the relative

advantage of prices over quantities with banking and borrowing, where firms are subject to

forecast errors and market-level information is revealed over time:

∆ =E[
1

4
(

1∑
i=1

1
C′′
i

−B′′)(
∑
i=1

θi1 + θi2
C ′′i

)2 +
∑
i

εi1
2

2C ′′i

+
1

2
(

1∑
i=1

1
C′′
i

)(
εi1
C ′′i

)2 + 2B′′(
N∑
i=1

εi1
C ′′i

)(
N∑
i=1

θi2 − θi1
2C ′′i

) +B′′(
εi1
C ′′i

)2]

C Details about Model Calibration

C.1 Details about Price Calibration

We assume prices follow Geometric Brownian Motion and estimate the corresponding

drift and volatility parameters by maximum likelihood estimation with data on historical

EU ETS prices.

Prices following GBM will evolve according to the following (stochastic) law of motion:

Pt = P0 exp ((α− σ2

2
)t+ σ

√
tWt)
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. where Wt ∼ N(0, 1).

Note that this set-up can also be written as:

ln (
Pt
P0

) ∼ N((α− σ2

2
), σ2t)

We estimate the drift and volatility coefficients using maximum likelihood estimation.

Recall that the maximum likelihood estimator for the mean of a normal random variable is

â = 1
n

∑n
j=1 xj and the maximum likelihood estimator for the variance of a normal random

variable is ŝ2 = 1
n

∑n
j=1(xj − x̄)2.

Therefore, we have:

â = (α̂− σ̂2

2
)t =

1

n

T−1∑
i=1

ln(
Pi+1

Pi
)

ŝ2 = σ̂2t =
1

n

n∑
j=1

(ln(
Pi+1

Pi
)− â)2

In this case, we have weekly price data, but it is more reasonable to assume that the

relevant decision period is quarterly or annually. Therefore, we set t = 1
52

(to reflect 52

weeks/year) when estimating α̂ and σ̂. Using this procedure with EU ETS prices from 2008

through 2018 yields α̂ = 0.0508 and σ̂ = 0.3925.

From the set-up above, we have:

E[Pt+1] = E[P0 exp ((α− σ2

2
) · 1 + σ

√
1Wt)]

= Pt exp (α− σ2

2
)E[exp (σWt)] = Pt exp (α− σ2

2
) exp (

σ2

2
)

= Pt exp (α)

For estimated drift parameters around 0.0508, this yields expected price increases of exp (0.0508) =

1.0522, or 5.22%. Data on historical EU ETS allowance prices is taken from Sandbag -

Smarter Climate Policy (2018); we convert to real allowance prices using inflation data data

from European Central Bank: Statistical Data Warehouse (2020).
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C.2 Details about Abatement Function Calibration

We obtained data for the abatement function calibration from Barron et al. (2018b).

From reviewing the results of this modeling exercise, it seems reasonable to assume that

the estimated emissions reductions in each period relative to the baseline scenario depends

on a) expectations of future allowance prices; b) the existing stock of abatement, insofar

as the “low hanging fruit” is addressed first; and c) technology improvements over time.

With the exception of expected allowance prices, we do not observe these components of the

underlying model. Furthermore, the observed emissions reductions likely include both vari-

able abatement (e.g., behavioral responses to reduce energy consumption, carbon capture,

etc.) and fixed abatement investment (e.g., retrofitting plant to reduce energy consumption,

installing carbon capture equipment, etc.), yet we do not observe the relative contribution

of these two types of emissions reductions. As a consequence, we make certain assumptions

about the abatement cost function, which we describe below.

As a first step, note that the Stanford EMF data includes estimated emissions at different

years over the period 2010 to 2020 for the 10 different models. We extract emissions data

for 2015, 2020, 2025, and 2030 specifically, since these years are included for (almost) all

models; then we average over all 10 models for each price scenario, to obtain the values

underlying the red lines from Figure 1 in Barron et al. (2018a). (See McFarland et al. (2018)

for a technical discussion of the models underlying this data.) We calculate net emissions

reductions over these periods for each price scenario, averaged across all models and adjusted

for any changes in baseline emissions.

We adopt the simplifying assumption that all abatement is long-lived and thus abatement

in the current period persists into the next period, adjusting for depreciation; this assumption

matches our theoretical modeling of abatement as durable capital stock. Likewise, we also

assume that abatement investment in a given year becomes available for compliance in the

following year. Based on these assumptions, we calculate the discounted value of the tax

payment avoided through abatement investment in each period. Following the Stanford EMF
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price scenarios, we assume that the emissions price increases at either 1% or 5% annually

from 2020 to 2050, after which the price levels off (indefinitely); we also assume that firms

correctly anticipate this price trajectory beginning in 2015. We set depreciation δ = 0.10

and the firm’s discount factor β = 0.95.

As illustration, a firm reducing emissions by A2020 in the year 2020 avoids the following

tax payment:

Avoided Tax = β · A2020 · P2021 ·
1− [(1 + g)(1− δ)β]2050−2021+1

1− (1 + g)(1− δ)β

+ β2051−2020 · (1− δ)2051−2021−1 · A2020 · P2050 ·
1

1− (1− δ)β

where the first term refers to the avoided tax payment up to 2050, while the price is growing

at rate g, and the second term refers to the avoided tax payment for all periods thereafter.

After computing the avoided tax payment from abatement investments in each year 2015

to 2030, we then rewrite each of these expressions to solve for At explicitly:

Avoided Tax2020/{β · P2021 ·
1− [(1 + g)(1− δ)β]2050−2021+1

1− (1 + g)(1− δ)β

+ β2051−2020 · (1− δ)2051−2021−1 · P2050 ·
1

1− (1− δ)β
} = A2020

By assuming that the investment cost function takes the form ψ(A) = φA2, we use

the firm’s first-order conditions to set the marginal investment cost equal to the discounted

stream of avoided tax payments. We calculate the depreciated sum of abatement and com-

pare that to average emissions reductions observed in the modeling scenarios (relative to the

baseline scenario). Setting these two values equal then allows use to estimate the abatement

cost parameter φ.

To illustrate, the total accumulated abatement stock in 2030 is given by:

K2030 = A2015 · (1− δ)14 + A2016 · (1− δ)13 + ...+ A2028 · (1− δ) + A2029
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Emissions reductions relative to baseline are then given by:

∆E2030 = Ē2030 −K2030

Substituting my expressions for each At into this equation then allows me to solve for φ. For

A denoted in metric tons of CO2, estimated φ̂ values are provided in the table below:

Modeling Scenario

Years $25, 5% $25, 1% $50, 5% $50, 1%

2015-2030 8.30 · 10−07 6.74 · 10−07 1.19 · 10−06 8.15 · 10−07

Table 1: Estimated Abatement Cost Function Parameter from Stanford EMF-32 Modeling
Scenarios

We use the parameter associated with a $25 tax growing at 5% annually.

D Details about Model Simulations

To model the representative firm’s response to simulated price trajectories, we first per-

formed backward induction to determine the firm’s optimal abatement policy as a function

of the accumulated abatement cost stock, the realized allowance price in the previous compli-

ance period, and the number of elapsed compliance periods. Given computational limitations

and the need to discretize the state space, the representative firm is able to accumulate abate-

ment capital stock in multiples of 1 million metric tons of avoided annual CO2 emissions; the

upper bound on permitted abatement capital stock is total annual U.S. emissions in 2020,

as modeled in EMF 32 baseline scenarios. We construct the price transition matrix by sim-

ulating 10 million evolutions of a stochastic process with our calibrated drift and volatility

parameters and then calculating the probability that the next period allowance price will fall

into each “price bin,” conditional on the current period price. Each price bin is defined as a

particular integer dollar value. Note that we set an effective price ceiling at $1000 per ton
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when discretizing the state space to perform backwards induction; however, given our drift

and volatility parameters and the number of periods considered, this upper bound affects

fewer than 0.1% of simulated price trajectories.

After constructing the representative firm’s optimal policy matrix, we perform forward

simulation to model abatement investment paths for 100,000 simulated stochastic price tra-

jectories. To be consistent with the Stanford EMF modeling exercise, we assume that the

price levels off indefinitely after period T . We then sum the total avoided emissions from

each year of abatement investment and the firm’s total current value cost of that investment.

To compare the representative firm’s response under each of these stochastic trajectories to

responses under “tax trajectories,” we calculate the initial price P0 that would yield the same

total emissions reduction if that initial price were to increase smoothly each period at the

rate of interest. In this scenario, we assume that firms have perfect information about the

price path. We then calculate the difference in total abatement investment costs between

the “stochastic” and “tax” scenarios, having constrained total emissions reductions to be

the same in both cases.22

22Because of the discretization of the state space, we cannot always achieve a given level of emissions
reduction exactly following this approach. In practice, therefore, we calculate the total emissions reduction
and total abatement investment cost from a sequence of smoothly increasing initial prices and then plot a
curve from these emissions-cost pairs.
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