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Abstract

We introduce a new methodology for estimating multi-product production func-
tions. It embeds the seminal contributions of Diewert (1973) and Lau (1976) in a
semi-parametric econometric framework following Olley and Pakes (1996). We ad-
dress the simultaneity of inputs and outputs while allowing for and estimating one
unobserved technical efficiency term for each firm-product, each one of which may be
freely correlated with inputs and outputs. We show how to translate the structural
parameters into the reduced form parameters that give the elasticity of each output
with respect to each input. For each output the sum of these input coefficients is the
returns to scale for that output. We show how to use these estimates to recover es-
timates of firm-product marginal costs by extending the Hall (1988) single-product
result to our multi-product setting. The main advantage of our framework is that
it does not require multi-product production to be a collection of single-product
production functions, which rules out the possibility that outputs are substitutes or
complements with one another. Our empirical results using panel multi-production
production data are largely consistent with our theoretical restrictions and strongly
reject the single-product production approximation to multi-product production.
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1 Introduction

A well-known anecdotal fact is that most firms that produce one good also produce at

least one or more other similar goods. This fact has been confirmed in recent micro-level

production data across several countries.1 Prior to these micro-level data being available,

most micro-level data sets on production only included total revenue generated by all of

a firm’s products, in addition to measurements on categories of input expenditures like

the wage bill, spending on capital or intermediate inputs. In these new data - in addition

to the same input measurements - product-level quantities and revenues are reported

separately for each product. In this paper we show how this kind of data can be used to

improve upon previous estimation of production functions and the implied estimates of

marginal costs and markups.

We introduce a new methodology for estimating multi-product production functions.

It embeds the seminal contributions of Diewert (1973) and Lau (1976) in a semi parametric

econometric framework following Olley and Pakes (1996) and the ensuing literature. The

intuition behind the approach is straightforward. The standard single product production

function gives the maximal output for any combination of inputs (e.g. labor, capital, and

intermediate inputs). A multi-product production function extends the single product

setting by giving the maximal output achievable of any one good holding inputs levels

and the levels of other output goods produced constant.

We estimate one output equation for each output by relating that output to aggregate

inputs and the other individual output levels. This approach allows for the possibility

that any one output can be a substitute or a complement with any other output. We

extend results from Petropoulos (2001) and Ackerberg, Benkard, Berry, and Pakes (2007)

to address the simultaneity of inputs and outputs. Our approach allows for and estimates

one unobserved technical efficiency term for each firm-product, each one of which may be

freely correlated with inputs and outputs.

We show how to translate the structural parameters into the reduced form parameters

that give the elasticity of each output with respect to each input. For each output the sum

of these input coefficients is the returns to scale for that output which will generally vary

by output. We then derive several testable conditions that must hold for the structural

estimates to be consistent with multi-product production.

Consistent with multi-product production theory, in the Belgian data all but five

of the forty-eight input coefficients are positive, and thirty eight of these forty-three

positive input coefficient estimates are strongly statistically significant. The coefficient on

”other good output” is always negative and highly significant suggesting quantities are

1See e.g. Bernard, Redding and Schott (2010, 2011) and Mayer, Melitz and Ottaviano (2014, 2018).
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substitutes for one another holding inputs constant. The significance in every case of the

twelve estimated quantity coefficients strongly rejects the use of single-product production

as an approximation to multi-product production.

When we translate the structural coefficients into their reduced-form counterparts

elasticities are almost all positive and result in returns to scale range from 0.88 to 1.247

for ten of twelve quantities with five quantities having returns to scale almost identical

to 1. We find a very high correlation of technical efficiency across products within a firm

suggesting an unobserved managerial ability that can be applied across the production

of different products. We also find that firms are about 40% more technically efficient at

producing their highest revenue product. Finally when we examine similar multi-product

data from France we find very similar results across all margins.

Hall (1986, 1988) shows in the case of single-product production, minimization of the

variable cost function yields a relationship between the markup and the elasticities of out-

put with respect to an input and observed input expenditures. We derive the multivariate

analog where we express marginal costs as a function of output-input elasticities, individ-

ual input expenditures, and output quantities. Deloecker and Warzynski (2012) assume

single-product production and recover firm-specific markups by applying Hall’s insights

to standard micro-level production data where only total revenue is recorded. Using this

new micro-level data on individual output quantities and revenues we show how one can

allow for and estimate one unobserved marginal cost term for each firm-product using the

multi-product variable cost minimization problem.

Using Indian manufacturing data, De Loecker et al (2016) is the first paper to tackle

these questions since the availability of this kind of data. They impose two key assump-

tions in their representation of multi-product production. Assumption A1 maintains that

all production is single-product production, thereby ruling out the possibility that outputs

might be substitutes or complements in production. They estimate production function

parameters using only the observations on single-product firms. Assumption A4 maintains

that it is possible to partition inputs across these different single-product production func-

tions. They then show that cost minimization - under A1 and A4 - provides for a rule for

partitioning inputs across the different single-product production technologies, and they

use this rule for identifying multi-product technical efficiency residuals at multi-product

firms.

Several follow-up papers using multi-product data extend the De Loecker et al (2016)

methodology on important economic dimensions. Valmari (2016) extends the cost min-

imization conditions to profit maximization conditions by adding a demand side to the

model. Gong and Sickles (2018) show how to allow for different production functions for
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multi-product firms versus single-product firms in a setting where stochastic frontier anal-

ysis is the maintained production model. Orr (2019) provides alternatives to assumptions

A1 and A4 and Itoga (2019) follows Orr’s extension. None of these papers allows any one

output to be a possible substitute or complement to any other output, but DLGKP and

the papers that followed do provide several restrictions that may be useful for improving

the precision of estimates in our setting.2

The rest of the paper is structured as follows. In Sections 2 and 3 we cover the theory

and identification. Section 4 discusses estimation of marginal costs. Section 5 discusses

estimation and Section 6 describes the data. Section 7 has the results and Section 8

concludes.

2 Multi-Product Production

Using Diewert (1973) and Lau (1976) we review the theoretical conditions under which

single- and multi-product production functions exist and their testable implications.

2.1 Single Product Firms

The primitive of production analysis is the firm’s production possibilities set T. In the

single-product setting T lives in the non-negative orthant of R1+N and contains all values

of the single output q that can be produced by using N inputs x = (x1, x2, . . . , xN), so if

(q̃1, x̃) ∈ T, then q̃1 is producible given x̃, The single-product production function F (x) -

the production frontier - is defined as:

q∗ = F (x) ≡ max{q | (q, x) ∈ T}.

F (x) admits some well-known testable properties. If inputs are freely disposable then

an output level achieved with the vector of inputs x′ can always be achieved with a vector

of inputs x′′ where x′′ ≥ x′. This implies the production function is weakly increasing

in inputs (Diewert (1973)). The production function F (x) should also be concave in the

freely variable inputs holding fixed inputs constant and it should be quasi-concave in the

fixed inputs holding the freely variable inputs constant (Lau (1976)).

2.2 Multi-Product Firms

With M outputs and N inputs the firm’s production possibilities set T lives on the

non-negative orthant of RM+N . It contains all of the combinations of M non-negative

2There is also an interest among practitioners in extending the Directional Distance Function to allow
for multi-product production (see e.g. Fare, Martins-Filho, and Vardanyan (2009) or Kuosmanen and
Johnson (2019).)

4



outputs q = (q1, q2, . . . , qM) that can be produced by using N non-negative inputs x =

(x1, x2, . . . , xN) so if (q̃, x̃) ∈ T then q̃ = (q̃1, . . . , q̃J) is achievable using x̃ = (x̃1, . . . , x̃N).

For good j produced by the firm let the output production of other goods be denoted by

q−j. For any (q−j, x), if max{qj | (qj, q−j, x) ∈ T is finite, then Diewert (1973) defines the

transformation function as

q∗j = Fj(q−j, x) ≡ max{qj | (qj, q−j, x) ∈ T}.

If no positive output of qj is possible given (q−j, x) then he assigns

Fj(q−j, x) = −∞.

We develop the properties of Fj(q−j, x) under a mix of assumptions from Diewert (1973)

and Lau (1976).

We follow Lau (1976) and divide outputs and inputs (q−j, x) into those that are variable

v in the short-run and those that are not, denoted by K. Alternatively, we could do all of

our analysis conditional on q−j, with (v,K) partitioning only the variable from the fixed

inputs. We sometimes abuse notation by expressing (q−j, x) as (v,K) and by writing

Fj(v,K).

We assume the production possibilities set T satisfies the following four Conditions P :

(i) P.1 T is a non-empty subset of the non-negative orthant of RM+N

(ii) P.2 T is closed and bounded,

(iii) P.3 If (q, xk, x−k) ∈ T then (q, x′k, x−k) ∈ T ∀x′k ≥ xk.

(iv) P.4 The sets TK = {v | (v,K) ∈ T} are convex for every K; the sets T v =

{K | (v,K) ∈ T} are convex in K for every v.

Conditions P.1 and P.2 are weak regularity conditions on T that require the production

set to be non-empty, closed, and bounded. Condition P.3 is a free disposal condition on

inputs; if you can produce qj given (q−j, x), then you can produce qj with any x
′ ≥ x.

Diewert (1973) uses these free disposal conditions to prove that output is weakly increasing

in any input holding all other inputs and outputs constant. Diewert (1973) then shows

if we add the condition that T is convex, there exists a well-defined production function

that is concave in the inputs, ensuring decreasing marginal rates of substitution among

inputs. The standard concavity tests in a single product setting can be directly extended

to test whether the multi-product theory holds.

Convexity on T rules out the possibility of increasing returns to scale. Condition P.4

extends the convexity on T assumption from Diewert (1973) to the disjoint biconvexity
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assumption of Lau (1976). Under disjoint biconvexity we have convexity of the freely

variable inputs and outputs v holding fixed inputs and outputs K constant, and convexity

in the fixed variables K holding the freely variable v constant. This setup allows for the

possibility of overall increasing returns to scale - non-convexities in T - while maintaining

decreasing marginal rates of substitution between elements in v and similarly for the

elements in K. The analysis can be done unconditionally or conditional on outputs q−j.

The following theorem formalizes the above claims.

Theorem 2.1 (The Transformation Function ) Under P.1-P.4 the function Fj(q−j, x)

is an extended real-valued function defined for each (q−j, x) ≥ (0M−1, 0N) and is non-

negative on the set where it is finite. Fj(q−j, x) is non-decreasing in x holding q−j con-

stant, Fj(v,K) is concave in v for all K, and Fj(v,K) and quasi-concave in K for all

v.

Proof: See Appendix A.

The empirical implication of disjoint convexity is as follows. Convexity in the elements of

v (conditional on any K) results in a production function that is concave in v holding K

constant. For the elements in K convexity in K given v results in the production function

being quasi-concave in K given v. As before these tests can be conducted unconditionally

or conditional on outputs q−j.

2.3 ”Unobserved” Inputs

Historically, in the single-product production literature it is common to allow for a com-

ponent of the error to affect output and be observed by the firm when it is making its

input decisions (Griliches and Mairesse (1995)). This factor is an ”unobserved” technical

efficiency term that is unobserved to the researcher and is allowed to be freely correlated

with input choices. In our setting with multiple products we want to allow for one possible

”unobserved” technical efficiency term for each output produced, with the entire vector

of these unobserved shocks denoted

ω = (ω1, ω2, . . . , ωM).

In this section we briefly outline how to incorporate these factors into our theory frame-

work. The main result is all of the components of the theorem continue to hold with the

caveat now that everything is conditional on ω.

We extend the production possibilities set to the case where - in addition to containing

observed M outputs q and observed N inputs x - we now add the ”unobserved” M inputs
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ω, so (q, x, ω) ∈ RM+N+M . (q, x, ω) ∈ T if (e.g.) the vector of outputs q can be produced

with observed and unobserved inputs x and ω respectively. We define the ”Generalized

Transformation Function” as the Transformation Function that has all of ω as arguments

in production. Define

q∗j = Fj(q−j, x, , ω) = max(qj|qj, q−j, x, ω) ∈ T

and let it equal −∞ if there is no non-negative qj such that (qj, q−j, x, ω) ∈ T .

Now we assume the production possibilities set T satisfies the following four Conditions

P’ :

(i) P’.1 T is a non-empty subset of the non-negative orthant of RM+N

(ii) P’.2 T is closed and bounded,

(iii) P’.3 If (q, xk, x−k, ω) ∈ T then (q, x′k, x−k, ω) ∈ T ∀x′k ≥ xk.

(iv) P’.4 The sets TK = {v | (v,K, ω) ∈ T} are convex for every K given ω; the sets

T v = {K | (v,K, ω) ∈ T} are convex in K for every v given ω.

All of the results for the transformation function hold but now they are conditional on ω.

Theorem 2.2 (The Generalized Transformation Function ) Under P’.1-P’.4 the func-

tion Fj(q−j, x, ω) is an extended real-valued function defined for each (q−j, x) ≥ (0M−1, 0N)

and is non-negative on the set where it is finite. Fj(q−j, x, ω) is non-decreasing in x hold-

ing q−j and ω constant. Given ω, Fj(v,K, , ω) is concave in v for all K quasi-concave in

K for all v.

Proof: See Appendix A.

Convexity in the elements of v conditional on any K and ω results in a production function

that is concave in v holding K and ω constant. For the elements in K convexity in K

given v and ω results in the production function being quasi-concave in K given v and ω.

All previously discussed tests are available in this setting after conditioning on ω.

3 Identification of Production Function Parameters

We use a simultaneous equations system suggested by Theorem 2.2 to develop several

results. We then illustrate in the two-product setting.
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3.1 General Setup

Using Cobb-Douglass specifications for each of the goods with all variables in logs we

write the system of M production equations as:

qjt = βj0 + βjl lt + βjkkt + βjmmt + γj−j′q−jt + ωjt j = 1 · · ·M (1)

where (lt, kt,mt) denote total labor, capital, and materials use in the production of all

goods.3 Input production parameters vary by good j and are given by βj = (βjl , β
j
k, β

j
m).

q−jt denotes the M − 1 column vector of all other outputs excluding qj and γj−j denotes

the M − 1 row vector of output elasticities for all other products excluding j. ωjt is the

unobserved input for good j and we suppress it throughout this section for transparency.

From Theorem 2.2 we have the first testable implication.

Lemma 3.1 The multi-product production function is only well-defined when βj > 0 ∀j.

For transparency we suppress time subscripts and we write this system in matrix form

by first moving outputs to left hand side yielding

qj − γj−j′q−j = βj0 + βjl l + βjkk + βjmm j = 1 · · ·M. (2)

We then express the system as

ΓQ = β X (3)

with Q = (q1, . . . , qM)′ the Mx1 vector of quantities, Γ the MxM matrix of associated

quantity parameters with the diagonals normalized to one, X = (1, l, k,m)′ and β the

associated Mx4 matrix of stacked rows (βj0, β
j
l , β

j
k, β

j
m) j = 1, . . . ,M .

For the reduced form of the multi-product production function not only must Γ−1 exist

but it also must be that the determinant of Γ is positive. The positive determinant ensures

that the non-diagonal elements are sufficiently small relative to the diagonal element of

1.

Lemma 3.2 A necessary and sufficient condition for the existence of the reduced form

multi-product production function is the determinant of Γ must be positive.

With Γ invertible we can solve for Q directly as

Q = Γ−1 β X (4)

These reduced form equations characterize how changing any one or any collection of

inputs affects the levels of each of the different outputs. Each production output has its

own measure of returns-to-scale that can be computed from Γ−1 β.

3This discussion generalizes immediately to a trans-log system of equations which Diewert (1973)
advocates. We allow for a quadratic in quantities in our robustness section.
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Lemma 3.3 Returns to scale for the jth output are given by the sum of the last three

elements of the jth row of Γ−1 β.

If multi-product production can be characterized as a collection of single-product

production functions, as maintained e.g. in Foster, Haltiwanger, and Syverson (2008) and

De Loecker, Goldberg, Khandelwal, Pacvnik (2016)), it follows directly that all of the

off-diagonal elements of Γ must equal zero.

Lemma 3.4 A necessary condition for single-product production functions to exist in a

multi-product setting is γij = 0 ∀i 6= j, i, j = 1, . . . ,M .

Significance of any subset of these γij’s or any function of them rejects the single-product

approximation. We explore all of these testable implications below in our data.

3.2 Illustration in a 2-product Setting

We illustrate using Dhyne, Petrin and Warzynski (2014), who look at the bread and cakes

industry in Belgium, where most firms that produce one also produce the other. We

suppress ω’s in this section. Let qBt and qCt denote output quantities of bread and cakes

and let the structural production function for bread and for cakes be given by the system

of equations

qBt = β0 + βbl lt + βbkkt + βbmmt + γCqCt (5)

qCt = β0 + βcl lt + βckkt + βcmmt + γBqBt (6)

Lemma 3.1 says the production parameters (βbl , β
b
k, β

b
m, β

c
l , β

c
k, β

c
m) must be positive to

be consistent with multi-product production. If we condition on outputs, and if labor

and materials are the flexible inputs and capital is the fixed input then either estimated

equation should be concave in l and m given k and quasi-concave in k given l and m.

These are the standard single-product conditions extended to each of the multi-product

equations.

Suppressing time subscripts and moving quantities to the left hand side we have in

matrix form [
qB
qC

] [
1 −γC
−γB 1

]
=

[βb0 βbl βbk βbm
βc0 βcl βck βcm

]
1
l
k
m


 .

From Lemma 3.2 solving for the reduced form for quantities requires invertibility of this

Γ matrix which leads to the testable condition that γB ∗ γC < 1.
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Inverting out Γ to solve for the reduced form we have

[
qB
qC

]
=

1

1− γCγB

[βb0 + γBβ
c
0 βbl + γBβ

c
l βbk + γBβ

c
k βbm + γBβ

c
m

βc0 + γCβ
l
0 βcl + γCβ

b
l βck + γCβ

b
k βcm + γCβ

b
m

]
1
l
k
m


 .

A one percent increase in labor leads to an increase in bread quantities of

1

1− γCγB
∗ (βbl + γBβ

c
l )

percent and cake quantities of

1

1− γCγB
∗ (βcl + γCβ

b
l )

percent. Lemma 3.3 has returns to scale for bread production equal to

1

1− γCγB
(βbl + γBβ

c
l + βbk + γBβ

c
k + βbm + γBβ

c
m),

and similarly for cake. Lemma 3.4 says treating bread and cakes separately as single

product production functions requires (γB, γC) = 0.We now turn to estimation of marginal

costs.

4 Identification of Marginal Costs

Hall (1986, 1988) shows in the case of single-product production cost minimization iden-

tifies the markup as a function of the observed elasticities of revenue with respect to an

input and the observed firm expenditures on that input. We derive the multivariate ana-

log using the variable cost function to show how to express marginal costs as a function of

output-input elasticities, individual input expenditures, and output quantities. We show

how/when we can identify one unobserved marginal cost term for each firm-product. For

the rest of the paper we use x to exclusively denote the N1 freely variable inputs and K

to exclusively denote the remaining N −N1 fixed inputs.

In order to use cost minimization to invert out marginal costs the reduced form pro-

duction functions must exist so we can express each of the M outputs only as a function

of inputs:

qm = qm(x,K, ω) m = 1, . . . ,M.

Letting q∗m denote the desired output for each good m. Minimization of the variable cost

function is given by

Minx P ∗ x s.t. qm(x,K, ω) > q∗m m = 1 . . .M
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where P = [P1 · · ·PN ]′ denote the input prices for inputs 1 through N. This minimization

yields the following first order conditions for the N1 freely variable inputs x:

Pi =
M∑
m=1

∂qm(x,K, ω)′

∂xi
λm i = 1, . . . , N1,

and λ = [λ1···λM ]′ denote marginal costs - the lagrange multipliers - for outputs one

through M.

As we show below if N1 > M we are overidentified, if N1 = M we are exactly identified,

and if N1 < M we are underidentified. To simplify discussion we analyze the case where

we are just identified; if we were overidentified it would add a set of N1 −M additional

restrictions to the just identified case. In matrix notation we have

P = [
∂q(x,K, ω)′

∂x
]λ

with [∂q(x,K,ω)
′

∂x
] the MxM (N1xN1) matrix of partial derivatives. If [∂q(x,K,ω)

′

∂x
] is invertible

- which is readily checked for any set of point estimates - we have

[
∂q(x,K, ω)′

∂x
]−1 P = λ

In the single-product case it simplifies down to

λ =
Pixi
q ∗ εi

,

which is the result from Hall (1986, 1988). Multiplying this formula through by 1
pq

, where

pq denotes the price of output we have the output elasticity divided by the markup is

equal to the ratio of input expenditure to revenue:

εi
µ

=
Pixi
pqq

where µ = po
λ
. This is the approach proposed in De Loecker and Warzynski (2012) to invert

out markups in standard plant-level data where only input expenditures and revenue are

observed, and where one has an estimate of the elasticity of output with respect to input

i. The difference between these last two expressions illustrates the value of observing

quantities of outputs (or, alternatively, individual prices of outputs); without them, one

can estimate markups using observed revenue shares and estimated elasticities, but one

cannot separate price from marginal cost.
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4.1 Illustration in a 2-product Setting

We focus on the two output case to illustrate. From cost minimization in the two-product

setting there are two first-order conditions given as

P =

[
∂q1
∂x1

∂q2
∂x1

∂q1
∂x2

∂q2
∂x2

]
λ

where P = [P1 P2]
′ denote the input prices for inputs one and two and λ = [λ1 λ2]

′

denote marginal costs for outputs one and two. Inverting the matrix and premultiplying

prices by this inverse yields marginal costs:

1

det

[
∂q2
∂x2

− ∂q2
∂x1

− ∂q1
∂x2

∂q1
∂x1

]
P = λ

where the determinant is given as

det =
∂q1
∂x1

∂q2
∂x2
− ∂q2
∂x1

∂q1
∂x2

.

Using the relationship that
∂qi
∂xj

=
∂qi
∂xj

xj
qi

qi
xj

= εij
qi
xj
,

and solving for marginal costs yields:

λ1 =
P1x1 ∗ ε22 − P2x2 ∗ ε21
(ε11ε22 − ε12ε21) ∗ q1

and

λ2 =
P2x2 ∗ ε11 − P1x1 ∗ ε12
(ε11ε22 − ε12ε21) ∗ q2

.

The marginal costs (λ1, λ2) are a function only of (ε11, ε12, ε21, ε22), input expenditures,

and output quantities. We now turn to estimation of the structural production function

parameters.

5 Estimation

We review the standard proxy approach in the single-product production setup and then

turn to our multi-product extension.
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5.1 Single-product production setting

We have for qt:

qt = βllt + βkkt + βmmt + ωt + εt (7)

where we have replaced the shock with its two components, i.e. εt = ωt + ηt. εt is

assumed to be i.i.d. error upon which the firm does not act (like measurement error or

specification error). ωt is the technical efficiency shock, a state variable observed by the

firm but unobserved to the econometrician. ωt is assumed to be first-order Markov and is

the source of the simultaneity problem as firm observe their shock before choosing their

freely variable inputs lt and mt. kt also responds to ωt but with a lag as investments

made in period t− 1 come online in period t. This assumption allows kt to be correlated

with expected value of ωt given ωt−1. as ωt−1 - denoted E[ωt|ωt−1] - but maintains that

the innovation in the productivity shock ξt = ωt −E[ωt|ωt−1] is unknown at the time the

investment decision was made in t− 1 and is therefore uncorrelated with current kt.

The control function approaches of OP and LP both provide weak conditions under

which there exists a proxy variable ht(kt, ωt) that is a function of both state variables and

that is monotonic in ωt given kt. The variables may include either investment (OP) or

materials, fuels, electricity, or services (LP) (e.g.). Given the monotonocity there exists

some function g(·),
ωt = g(kt, ht)

allowing ωt to be written as a function of kt and ht.
4 For estimation Wooldridge (2009)

uses a single index restriction to approximate unobserved productivity, writing

ωt = g(kt, ht) = c(kt, ht)
′βω

where c(kt, ht) is a known vector function of (kt, ht) chosen by researchers with parameter

vector βω to be estimated. The conditional expectation E[ωt|ωt−1] can then be written as

E[ωt|ωt−1] = f(c(kt−1, ht−1)
′βω)

for some unknown function f(·), which Wooldridge (2009) approximates using a polyno-

mial.

Replacing ωt with its expectation and innovation, the estimating equation becomes

qt = βllt + βkkt + βmmt + E[ωt|ω,t−1] + ξt + εt (8)

4Kim, Petrin, and Song (2016) extend Hu and Schennach (2008) to allow for measurement error in all
of the variables in the proxy function.
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For expositional transparency we use only the first-order approximation term for f(·),
which yields our error term

[ξt + εt](θ) = qt − βllt − βkkt − βmmt − c(ht−1, kt−1)
′βω (9)

with the parameters to β = (βl, βk, βm, βω).

We formulate the moment condition using materials mt as the proxy but any other

available proxy cited above could also be used here. The only change would be the set

of conditioning variables. When mt is the proxy a sufficient set of conditioning variables

given as (e.g.) xt = (kt, kt−1,mt−1,mt−2, lt−1). Let θ0 denote the true parameter value.

Wooldridge shows that the conditional moment restriction

s(xt; θ) ≡ E[[ξt + εt](θ)|xt] and s(xt; θ0) = 0

is sufficient for identification of β in the single product case (up to a rank condition on

the instruments).5 In equation (12) a function of mt−1 and kt−1 conditions out E[ωt|ωt−1].
ξt is not correlated with kt, so kt can serve as an instrument for itself. Lagged labor lt−1

and twice lagged materials mt−2 serve as instruments for lt and mt.

5.2 Multi-product production setting

In the multi-product case we have a system of Mt output equations:

qjt = βj0 + βjl lt + βjkkt + βjmmt + γj−j′q−jt + ωjt + ηjt j = 1 · · ·M (10)

We denote the vector of technical efficiency shocks as ωt = (ω1t, ω2t, . . . , ωMt) and assume

E[ωt|ωt−1] = ωt−1. Choices of inputs will now generally be based not only on ωjt but also

on all of the other technical efficiency shocks ω−jt. This frustrates the ”inverting out” of

ωt that allows one to express ωt as a function of kt and a single proxy ht as is done in the

single product case.

We extend suggestions from Petropoulos (2001) and Ackerberg, Benkard, Berry, and

Pakes (2007) to allow for these multiple unobserved technical efficiency shocks. Suppose

we observe (at least) one proxy variable for every technical efficiency shock. Let ht =

(h1t, . . . , hLt) denote the 1XL vector of available proxies. Each of these variables will

generally be a function of kt and (ω1t, ω2t, . . . , ωMt) and we write the vector of proxies

as ht(kt, ωt). Conditional on kt if ht(kt, ωt) is one-to-one and onto in ωt then we can

invert the proxy variables to get the 1XL vector of functions ωt = g(kt,ht); in the next

5The Wooldridge formulation is robust to the Ackerberg, Caves, and Frazer (2015) criticism of OP/LP.
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subsection we provide a simple condition that ensures this invertibility. Included in this

vector of functions is

ωjt = gj(kt,ht), j = 1 · · ·M

which then motivates including a function of (kt, ht) in the estimation to control for ωjt.
6

The rest of the estimation proceeds in a manner similar to the single-product case.

We use the same single index restriction to approximate unobserved productivity, so we

have

ωjt = gj(kt,ht) = cj(kt,ht)
′βωj

where cj(kt,ht) is a known vector function of (kt,ht) chosen by researchers. E[ωjt|ωt−1]
is now given as

E[ωjt|ωt−1] = fj(cj(kt−1,ht−1)
′βωj

)

for some unknown function fj(·). Again we use only the first-order approximation term

for fj(·) to keep exposition to a minimum.

Re-expressing in terms of firm’s expectations we have

qjt = βjl lt + βjkkt + βjmmt + γj−j′q−jt + E[ωjt|ωt−1] + ξjt + εjt (11)

with ξjt = ωjt − E[ωjt|ωt−1]. The error is

[ξjt + εjt](θ) = qjt − βjl lt − β
j
kkt − β

j
mmt − γj−j′q−jt − cj(kt−1,ht−1)

′βωj

with the new parameters γj−j added to βj = (βjl , β
j
k, β

j
m, γ

j
−j, βωj

).

An additional key difference from the single product case is the need for instruments

for q−jt, which might either be lagged values of q−jt or inputs lagged even further back. Let

the set of conditioning variables be given as (e.g.) xjt = (q−j,t−1, kt, kt−1,ht−1,mt−1, lt−1).
7

Let θ0 denote the true parameter value. The conditional moment restriction

s(xjt; θ) ≡ E[[ξjt + εjt](θ)|xjt] and s(xjt; θ0) = 0

continues to be sufficient for identification of β as long as a rank condition holds.

5.3 Multivariate Control Functions

It is straightforward to use cost minimization and the implicit function theorem to prove

ht(kt, ωt) is a bijection under a full rank condition on
∑M

m=1
λm∂q2m
∂x∂ω′ . From the first-order

conditions of cost minimization we have

Pi =
M∑
m=1

∂qm(x,K, ω)′

∂xi
λm i = 1, . . . , N

6The extension of Kim, Petrin, and Song (2016) of Hu and Schennach (2008) to allow for measurement
error in the single-product production setting extends directly to the multi-product setup.

7If ht contains mt (lt) then one would add mt−2 (lt−2) to the conditioning set.
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which has - when evaluated at the optimal x - a second derivative matrix given by

M∑
m=1

λm
∂2qm(x,K, ω)

∂x ∂x′

which is symmetric and positive definite and thus invertible. Using the implicit function

theorem we have the following expression when evaluated at the optimal x:

M∑
m=1

λm
∂2qm(x,K, ω)

∂x ∂x′
∗ ∂x
∂ω′

+
M∑
m=1

λm
∂2qm(x,K, ω)

∂ω ∂x′
= 0.

Given the invertibility of
∑M

m=1 λm
∂2qm(x,K,ω)

∂x ∂x′
we can solve for ∂x

∂ω′ as

∂x

∂ω′
=
( M∑
m=1

λm
∂2qm(x,K, ω)

∂x ∂x′
)−1 ∗ M∑

m=1

λm
∂2qm(x,K, ω)

∂ω ∂x′

Thus ht(kt, ωt) is a bijection under a full rank condition on
∑M

m=1 λm
∂2qm(x,K,ω)

∂x∂ω′ . The

condition requires that each change in ω results in a matrix of changes in the sum of the

derivatives across the outputs that is not perfectly collinear. Analysis of a simple case

with Cobb-Douglass production functions did not suggest any obvious reason why this

full rank condition should not hold.

5.4 Illustration in a 2-product Setting

In the case of two-product production we have an equation for good 1

q1t = β1
l lt + β1

kkt + β1
mmt + γ1q2t + ω1t + ε1t (12)

and an equation for good 2

q2t = β2
l lt + β2

kkt + β2
mmt + γ2q1t + ω2t + ε2t. (13)

We use as our two proxies investment and materials, and we write these input demands as

it(kt, ω1t, ω2t) and mt = m(kt, ω1t, ω2t). If the bivariate function (it,mt) is one-to-one and

onto with (ω1t, ω2t) then this bivariate bijection can be inverted and there exist functions

g1(·) and g2(·) such that ω1t = g1(kt, it,mt) and ω2t = g2(kt, it,mt). For either j we

approximate

ωj = gj(kt, it,mt) = cj(kt, it,mt)
′βωj

where cj(kt, it,mt) is a known vector function of (kt, it,mt) chosen by researchers. The

nonparametric conditional mean function for either j is given as

E[ωjt|ωt−1] = fj(cj(kt−1, it−1,mt−1)
′βωj

) j = 1, 2
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for some unknown functions f1(·) and f2(·). The error now becomes

[ξjt + εjt](θ) = qjt − βjl lt − β
j
kkt − β

j
mmt − γj−jq−jt − fj(cj(kt−1, it−1,mt−1)

′βω) j = 1, 2.

Let the set of conditioning variables be given as (e.g.) xjt = (q−j,t−1, kt, kt−1, it−1,mt−1,mt−2).

Let θ0 denote the true parameter value. The conditional moment restrictions for each

equation are given as

s(xjt; θ) ≡ E[[ξjt + εjt](θ)|xjt] and s(xjt; θ0) = 0 j = 1, 2.

We now turn to our multi-product data.

6 Data

6.1 The Belgian PRODCOM survey

Statistical offices around the world are running production surveys through which they

collect precise information about the products made by firms that are intended for use in

industrial statistics. These datasets cover a large subset of mostly manufacturing firms

and typically contain both values and quantities for each good produced by firms.

In this paper, we use the firm-product level production data based on a production

survey (PRODCOM) collected by Statistics Belgium.8

The survey is designed to cover at least 90% of production value in each NACE 4-

digit industry by including all Belgium firms with a minimum of 10 employees or total

revenue above 2.5 million Euros.9 The sampled firms are required to disclose monthly

product-specific revenues and quantities sold of all products at the PRODCOM 8 digit

level (e.g. 11.05.10.00 for ”Beer made from malt”, 23.51.11.00 for ”Cement clinkers” in

the PRODCOM 2008-2017 classification).

Our analysis covers the entire period through which the data is available, 1996-2017.

This creates two difficulties: in 2008, PRODCOM both significantly reduced its sample

size to administrative costs and changed its classification system (the first 4 digits of

a PRODCOM code refer to a NACE 4 digit sector and the NACE classification has

been revised in 2008 implying a complete redefinition of the PRODCOM codes). In

addition to that major revision, PRODCOM codes are marginally revised on a yearly

basis. We therefore use annual concordance tables provided by Eurostat to follow the

8See http://statbel.fgov.be/fr/statistiques/collecte donnees/enquetes/prodcom/ and
http://statbel.fgov.be/nl/statistieken/gegevensinzameling/enquetes/prodcom/ for more details in
French and Dutch, or Eurostat in English (http://ec.europa.eu/eurostat/web/prodcom). This dataset
was previously used in Bernard et al., 2019 and Amiti et al., forthcoming.

9NACE is a French acronym for the European Statistical Classification of Economic Activities.
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specific products over our sample period and use only those products with no confusion

regarding the concordance (one to many and many to one)-

In our empirical analysis, we perform several cleaning procedures to avoid outliers.

First, we only keep firms that have their principal business activities in manufacturing

as classified by NACE. First, for each 4-digit industry we compute the median ratios of

total revenue over employment, capital over employment, total revenue over materials

and wage bill over labor (average wage), and we exclude those observations more than

five times the interquartile range below or above the median. Second, we only keep firm-

product observations where the share of the product’s revenue in the firm’s total revenue

is at least 5%. Third, we use the Value Added Tax revenue data that provides us with

a separate check against the revenue numbers firms report to PRODCOM. Comparing

the tax administrative data revenue numbers with the revenue numbers reported in the

PRODCOM data, we find that between 85% and 90% of firms report similar values for

both. We exclude firms if they do not report a total value of production to PRODCOM

that is at least 90% of the revenue they report to the tax authorities.

As will become clearer in the next subsection, we aggregate monthly revenues and

quantities to the quarterly level and calculate the associated quarterly unit price. This is

done in order to use the same time dimension than the other datasets that we need for

our analysis.

Table 1: Average share of a firm’s revenue derived by its individual products, 1996 to
2017

Product ranking within a firm determined by its share of the firm’s total revenue.

Number of products produced by the firm at the Prodcom 8-digit level
1 2 3 4 5 More than 5 N

Product rank
1 100 78.1 69.9 64.8 60.0 50.5
2 21.9 22.9 23.2 22.5 21.7
3 7.2 9.0 10.6 11.6
4 3.0 5.0 6.5
5 1.9 3.8
6+ 5.9

Share of manufacturing output 24.7 17.8 11.4 9.4 3.7 33.0 100
# observations 37,284 34,068 22,875 18,324 12,380 79,199 204,130

Note: For any product rank i each column j reports the average share (in %) of the i-th product

in total output for firms producing j products.

Table 1 shows the average revenue share of products in firms’ portfolios when they are

producing a different number of products at two levels of aggregation (8-digit and 2-digit
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PRODCOM). We observe 204,130 firm-product yearly observations between 1996 and

2017. As has been noted in other product-level data sets, the majority of firms produce

multiple products.10 At the 8-digit level of disaggregation, multi-product firms are respon-

sible for 75.3% of total value of manufacturing output. Most firms produce between one

and five products and these firms account for 67% of the value of manufacturing output.

For firms producing two goods the core good accounts for 78.1% of revenue. Similarly

for firms producing three goods 69.9% of revenue comes from the core product. Even for

firms producing six or more goods the core good is responsible for 50.5% of revenue..

To test the pure Diewert-Lau framework, our analysis requires the identification of

firms producing the same subset of products. For this purpose, we identified a few spe-

cific industries where firms producing two goods were the most commonly observed form

of production. We identified six 2-product environment (combos) that fit to our require-

ments11: bread and cake; marble and other building stones; doors of plastic and doors of

metal; structures of iron, steel and aluminium, and doors of metal; windows of wood, and

joinery and carpentry of wood; and bricks, and prefabricated structures of cement.

Table 2 shows the product portfolio description for those 6 environments. The main

message that this table conveys is that, for these 6 economic environments that we identi-

fied, the most observed form of production is when firms produce these two exact products

associated to a combination, or at least this type of production pattern is a common form

of production. The more obvious example is bread and cake: out of 9,621 observations,

firms producing bread produce 2-products in 8,064 cases; out of these 8,064 two-product

firms, 7,855 also produce cake. As we go down the list, the number of observations

becomes lower and the share of single product firms also goes up.12

6.2 Firm Input Measurements

Quarterly measurements of firms inputs from 1997 to 2016 are obtained from the VAT

fiscal declarations of firm revenue, the National Social Security database, and the Central

Balance Sheet Office database. For tax liability purposes, Belgian firms have to report

in their VAT fiscal declarations both their sales revenues and their purchases. Purchases

are reported into three separate categories : material inputs and services directly used

for production, other inputs and services used for supporting activities, and acquisition of

capital goods. Using this information, we construct quarterly measures for both types of

10See e.g. Bernard et. al (2010) or Goldberg et. al (2010).
11See Appendix B for the full product description
12For one of our combinations, we realize that firms producing PRODCOM products within a 6-digit

code were providing different unit of measurements. We therefore used the most common unit provided
for code 222314.
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intermediate inputs and for investments. For measures of firm employment, we use data

from the National Social Security declarations, where firms report on a quarterly basis

their level of employment and their total wage bill. To construct a quarterly measure of

capital we start with data from the Central Balance Sheet Office, which records annual

measures of firm assets for all Belgian firms. For the first year a firm is in our data, we

take the total fixed assets as reported in the annual account as their starting capital stock.

We then use standard perpetual inventory methods to build out a capital stock for each

firm-quarter.13

7 Results

7.1 6-digit analysis

Table 3 shows the coefficients of our generalized transformation function for the 6 selected

combinations of two goods. The top panel shows the results when the log of quantity of

the first good (bread in the first example) is considered as left hand side variable and

regressed on aggregate firm-level inputs and the log of quantity of the second good (cake

in the first column). The bottom panel shows a similar regressions when log of quantity

of the second good (cake in column 1’) is regressed on inputs and the log of quantity of

the first good (bread in column 1’).14

The first row of each panel shows the coefficient of the log of production of the other

good conditional on input use. The coefficient is always negative and highly significant

suggesting quantities are substitutes for one another holding inputs constant. The signif-

icance in every case of the twelve estimated quantity coefficients strongly rejects the use

of single-product production as an approximation to multi-product production.

Consistent with multi-product production theory, all but five of the forty-eight input

13In order to build the capital stock, we assume a constant depreciation rate of 8% per year for all
firms. Real capital stock is computed using the quarterly deflator of fixed capital gross accumulation. The
initial capital stock in t = t0, where period t0 represents the 4th quarter of the first year of observation
of the firm, is given by

Kt0 =
Total fixed assetsfirst year of observation

PK;t0

The capital stock in the subsequent periods is given by

Kt = (1− 0.0194)Kt−1 +
It

PK;t

We assume that the new investment is not readily available for production and that it takes one year
from the time of investment for a new unit of capital to be fully operational.

14See Dhyne, Petrin and Warzynski (2016) for a joint estimation of production function, demand
function and cost function for the Belgian bread and cake industry.
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coefficients are positive, and thirty eight of these forty-three positive input coefficient

estimates are strongly statistically significant. These findings are based on relatively small

sample sizes for each industry which, except for Bread and Cakes, ranges from between

255 to 996 observations. The last row at the bottom of Table 3 shows that there is a very

high correlation of technical efficiency terms within-firm, perhaps related to unmeasured

managerial ability that can be translated to the various products that the firm produces.

We translate the structural coefficients into their reduced-form counterparts in Table 4

to investigate individual elasticities of output for each input and calculate overall returns

to scale for each quantity. Overall the reduced form elasticities look reasonable as they are

almost all positive and result in returns to scale 0.88 to 1.247 for ten of twelve quantities

with five quantities having returns to scale almost identical to 1. Two of the twelve reduced

form capital coefficient estimates have point estimates that are negative - although not

statistically significant - arising from the fact that the estimated coefficient on capital from

the structural equation is probably too low (and statistically insignificant). Not surprising

is the returns to scale estimates that seem most unrealistic, like those in column 4’ and 5’,

arise because of one or more failures of the theoretical properties of structural production

function estimates.
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Table 3: Multi-product production function estimates at 6-digit Prodcom level, Belgian
data

Dependent variable qijt is log of the quantity sold in physical units at the 6-digit product
level of good j by firm i at time t

(1) (2) (3) (4) (5) (6)
107111-107112 237011-237012 222314-251210 251123-251210 162311-162319 236111-236112

q(−j) -0.374*** -0.629*** -0.769*** -0.417*** -0.303*** -0.334***

(0.010) (0.048) (0.032) (0.058) (0.041) (0.038)

l 0.405*** 0.442*** 0.364*** 0.267*** 0.650*** -0.071
(0.017) (0.066) (0.068) (0.074) (0.043) (0.091)

k 0.101*** 0.163*** 0.070*** 0.286*** 0.606*** 0.722***

(0.009) (0.050) (0.022) (0.032) (0.075) (0.064)

m1 0.602*** 0.979*** 1.216*** 0.571*** 0.404*** 0.655***

(0.016) (0.060) (0.062) (0.085) (0.058) (0.049)

m2 0.305*** 0.042 0.350*** 0.219*** -0.240*** 0.108
(0.012) (0.066) (0.036) (0.041) (0.054) (0.084)

(1’) (2’) (3’) (4’) (5’) (6’)
107112-107111 237012-237011 251210-222314 251210-251123 162319-162311 236112-236111

q(−j) -0.555*** -0.390*** -0.720*** -0.687*** -1.307*** -0.963***

(0.015) (0.033) (0.030) (0.102) (0.161) (0.108)

l 0.547*** 0.276*** 0.365*** -0.037 0.741*** 0.342**

(0.019) (0.055) (0.066) (0.098) (0.146) (0.141)

k 0.145*** 0.399*** 0.005 0.068 0.841*** 1.027***

(0.010) (0.037) (0.022) (0.054) (0.185) (0.108)

m1 0.721*** 0.955*** 1.187*** 1.185*** 1.077*** 0.682***

(0.019) (0.040) (0.060) (0.061) (0.095) (0.104)

m2 0.163*** -0.234*** 0.276*** 0.108* -0.459*** 0.142
(0.015) (0.052) (0.037) (0.057) (0.110) (0.131)

Correlation between ω1 and ω2

0.81 0.89 0.92 0.84 0.78 0.95

# obs. 7,262 996 895 596 255 360

Note: Each column reports the estimated coefficients using a modified variant of the GMM

Wooldrige estimator. Explanatory variables are in logs and include firm-level labor, the standard

real indices for materials and for capital - i.e. the dollar value of each - and the physical quantity

of the other good produced by the firm. We include the product’s price as an additional control.

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 4: Elasticities of Output with Respect to Inputs and Returns to Scale Implied by
the Strutural Estimates

(1) (2) (3) (4) (5) (6)
107111-107112 237011-237012 222314-251210 251123-251210 162311-162319 236111-236112

l 0.253 0.356 0.187 0.396 0.704 -0.273
(0.020) (0.066) (0.086) (0.100) (0.073) (0.135)

k 0.059 -0.116 0.149 0.361 0.582 0.558
(0.009) (0.057) (0.037) (0.038) (0.228) (0.101)

m1 0.419 0.502 0.679 0.107 0.129 0.630
(0.018) (0.049) (0.069) (0.070) (0.122) (0.061)

m2 0.308 0.250 0.309 0.244 -0.168 0.089
(0.012) (0.075) (0.045) (0.048) (0.121) (0.162)

RTS 1.039 0.992 1.324 1.108 1.247 1.005

(1’) (2’) (3’) (4’) (5’) (6’)
107112-107111 237012-237011 251210-222314 251210-251123 162319-162311 236112-236111

l 0.407 0.137 0.230 -0.309 -0.179 0.605
(0.019) (0.061) (0.074) (0.103) (0.179) (0.188)

k 0.112 0.443 -0.102 -0.180 0.080 0.489
(0.009) (0.046) (0.037) (0.060) (0.595) (0.131)

m1 0.488 0.759 0.698 1.112 0.909 0.075
(0.020) (0.038) (0.062) (0.060) (0.269) (0.101)

m2 -0.008 -0.331 0.054 -0.059 -0.239 0.056
(0.014) (0.060) (0.040) (0.097) (0.359) (0.190)

RTS 0.999 1.009 0.880 0.564 0.570 1.225

# obs. 7,262 996 895 596 255 360

Note: Each column reports the reduced form coefficients. s.e. are obtained by bootstrap, using

100 random replications.
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Table 5: Regression of Technical Efficiency ω (TFPQ) on CORE Product Indicator

ω
CORE 0.410***

(0.025)
Product dummies YES
Time dummies YES
R2 0.69
# obs. 26,032

* p<0.10, ** p<0.05, *** p<0.01.

The recent international trade literature has focussed on whether a firm’s core prod-

uct - the one that represents the largest share of the revenue that the firm generates -

is positively correlated with its technical efficiency. Most theory models have the core

competent products produced most efficiently. We regress our measure of technical effi-

ciency (TFPQ) on an indicator variable equal to one if the product generates more than

50% of the total sales of the firm. Results are shown in Table 5 where we pool all of our

productivity estimates across industries obtained from the estimated values from Table 3.

After controlling for product and time fixed effects we find that firms are approximately

40% more technically efficient at producing their core relative to non-core products.

7.2 4-digit analysis

We next try to adopt several aggregation strategies to consider different product markets

and possibly increase our sample size. Our first approach aggregates physical output

within a 4-digit PRODCOM code for firms operating in two 4-digit environments. We

estimate this framework for a subset of firms in the furniture industry. Table 6 shows the

results are largely consistent with the theory as the estimated matrix Γ̂ is positive definite

for all product pairs and almost all of the input coefficients are positive.

7.3 Robustness with French data

We replicate the analysis using a sample of French firms (see Smeets and Warzynski (2019)

for more information about the dataset). Data are collected annually for the period 2009-

2017, and we only use one variable for material, but the rest of the analysis is otherwise

similar. Table 7 shows the results at the 6-digit level and Table 8 at the 4-digit level.

The number of observations is a bit lower because of the relatively shorter panel and the

annual dimension of the data, but results again are largely consistent with our theory

results.
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Table 6: Multi-product production function estimates at 4-digit Prodcom level, Belgian
data

Dependent variable qijt is log of the quantity sold in physical units at the 4-digit product
level of good j by firm i at time t

(1) (2) (1’) (2’)
3100-3109 3102-3109 3109-3100 3109-3102

q(−j) -0.261*** -0.262*** -0.732*** -0.797***

(0.021) (0.027) (0.061) (0.075)

l 0.416*** 0.652*** 0.638*** 1.693**

(0.049) (0.117) (0.088) (0.167)

k 0.156 0.152 0.860*** -0.134
(0.200) (0.262) (0.352) (0.407)

m 0.910*** 0.447*** 0.631*** 0.125
(0.048) (0.090) (0.103) (0.144)

# obs. 1,205 885 1,205 885

Note: Each column reports the estimated coefficients using a modified variant of the GMM

Wooldrige estimator. Explanatory variables are in logs and include firm-level labor, the standard

real indices for materials and for capital - i.e. the dollar value of each - and the physical quantity

of the other good produced by the firm We include the product’s price as an additional control.

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 7: Multi-product production function estimates at 6-digit Prodcom level, French
data

Dependent variable qijt is log of the quantity sold in physical units at the 6-digit product
level of good j by firm i at time t

(1) (2) (3) (4) (5) (6)
181212-181219 162311-162319 310912-310913 237011-237012 310210-310913 251123-251210

q(−j) -0.652*** -0.301*** -0.074 -0.561** -0.212*** -0.464***

(0.110) (0.049) (0.048) (0.241) (0.047) (0.079)

l 0.340*** 0.714*** 0.311*** 0.633*** 0.235*** 0.312***

(0.077) (0.117) (0.106) (0.190) (0.084) (0.154)

k 0.073** 0.142** 0.045 0.052 0.298*** 0.334***

(0.036) (0.052) (0.052) (0.062) (0.056) (0.084)

m 1.200*** 0.464*** 0.652*** 0.856*** 0.696*** 0.838***

(0.094) (0.114) (0.093) (0.231) (0.071) (0.115)

(1’) (2’) (3’) (4’) (5’) (6’)
181219-181212 162319-162311 310913-310912 237012-237011 310913-310210 251210-251123

q(−j) -0.541*** -0.601*** -0.224* -0.410*** -0.532*** -0.399***

(0.081) (0.087) (0.086) (0.087) (0.130) (0.071)

l 0.334*** 0.585*** 0.011 0.547*** 0.076 0.066
(0.074) (0.172) (0.169) (0.191) (0.161) (0.147)

k -0.009 0.186** 0.118 0.113 0.145** 0.230***

(0.034) (0.074) (0.077) (0.083) (0.074) (0.070)

m 1.092*** 0.513*** 0.986*** 0.818*** 1.148*** 1.098***

(0.075) (0.150) (0.141) (0.170) (0.122) (0.123)

# obs. 569 349 380 359 334 312

Note: Each column reports the estimated coefficients using a modified variant of the GMM

Wooldrige estimator. Explanatory variables are in logs and include firm-level labor, the standard

real indices for materials and for capital - i.e. the dollar value of each - and the physical quantity

of the other good produced by the firm We include the product’s price as an additional control.

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 8: Multi-product production function estimates at 4-digit Prodcom level, French
data

Dependent variable qijt is log of the quantity sold in physical units at the 4-digit product
level of good j by firm i at time t

(1) (2) (1’) (2’)
3102-3109 3101-3109 3109-3102 3109-3101

q(−j) -0.153*** -0.297*** -0.239*** -0.492***

(0.024) (0.043) (0.061) (0.094)

l 0.244*** 0.285** 0.350*** 0.393**

(0.059) (0.129) (0.076) (0.157)

k 0.192*** 0.160** 0.112* 0.322***

(0.033) (0.063) (0.045) (0.101)

m 0.750*** 0.726*** 0.702*** 1.021***

(0.049) (0.146) (0.084) (0.183)

# obs. 1,078 342 1,079 342

Note: Each column reports the estimated coefficients using a modified variant of the GMM

Wooldrige estimator. Explanatory variables are in logs and include firm-level labor, the standard

real indices for materials and for capital - i.e. the dollar value of each - and the physical quantity

of the other good produced by the firm We include the product’s price as an additional control.

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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7.4 Marginal costs and markups

We derive estimates of marginal costs using the theory from Section 4. We apply the

formulas on our subsample of bread and cake producers where the number of observations

is the largest and report the results in Table 9. For a loaf of bread we find the interquartile

range of marginal costs of between 0.85 and 1.96 Euros. For cakes we find an interquartile

range of 2.46 and 7.58 Euros. While these levels do not seem unreasonable, when we

compare them to the interquartile range of unit prices for bread 1.14 to 1.71 and cake of

3.43 and 5.12 Euros, we can see that marginal costs for some products may be upwardly

biased. In particular the right tail of the distribution of marginal costs for cakes appears

to be inflated as markups fall below one.

Table 9: Summary statistics on marginal costs estimates and prices. Bread and cake
producers, Belgium

Marginal cost Price
Bread Cake Bread Cake

mean 1.504 5.61 1.474 5.032

10% 0.576 1.579 1.103 3.15
25% 0.855 2.465 1.149 3.431
50% 1.301 4.158 1.325 3.802
75% 1.962 7.582 1.715 5.127
90% 2.704 11.923 1.971 8.894

std dev 0.869 4.313 0.422 3.109

We then use our marginal cost estimates to compute markups. The estimates that

we obtain are sensible, with an average markup of 1.13 for bread and 1.37 for cake. The

distribution of markups for bread and cake is shown in Figure 1. We observe for both

products a concentration around one, and a fat tail on the right of 1. Again there is

evidence that for some goods the estimates of marginal costs are inflated.

As a next exercise, we then correlate our marginal costs and markup measures to

the productivity for both bread and cake. Results in Table 10 show that markups are

positively correlated with productivity for both products. These results are in line with

previous research using product level information and estimation markups and produc-

tivity (see e.g. Foster, Haltiwanger and Syverson, 2008 and De Loecker et al., 2016).
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Figure 1: Distribution of markups for bread (mk1) and cake (mk2)

8 Conclusion

We introduce a new methodology for estimating multi-product production functions. It

embeds the seminal contributions of Diewert (1973) and Lau (1976) in a semi-parametric

econometric framework following Olley and Pakes (1996). We address the simultaneity of

inputs and outputs while allowing for and estimating one unobserved technical efficiency

term for each firm-product, each one of which may be freely correlated with inputs and

outputs. We show how to translate the structural parameters into the reduced form

parameters that give the elasticity of each output with respect to each input. For each

output the sum of these input coefficients is the returns to scale for that output. We

show how to use these estimates to recover estimates of firm-product marginal costs

by extending the Hall (1988) single-product result to our multi-product setting. The

main advantage of our framework is that it does not require multi-product production

to be a collection of single-product production functions, which rules out the possibility

that outputs are substitutes or complements with one another. Our empirical results

using panel multi-production production data are largely consistent with our theoretical

restrictions and strongly reject the single-product production approximation to multi-

product production.
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Table 10: Relationship between prices, marginal costs, markups and TFPQ (ω)

Bread
logp logMC Markup

TFPQ -0.299*** -0.789*** 0.563***
(0.005) (0.011) (0.021)

R2 0.42 0.53 0.18
# obs. 4,569 4,569 4,569

Cake
logp logMC Markup

TFPQ -0.512*** -0.694*** 0.152***
(0.007) (0.012) (0.017)

Adj. R2 0.52 0.42 0.04
# obs. 4,569 4,569 4,569
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Appendix

The first result is from Diewert (1973) and the last two results are from Lau (1976).

The results below when we classify outputs and inputs into flexible (a ν) ones and fixed

ones (a K). The result extends directly to the case where we hold other outputs q−j

constant and in which case (ν,K) contains only flexible and fixed inputs.

Proof of Theorem 3.1

Under P.1-P.4 Fj(q−j, x) is

(1) non-decreasing in x

Let (q−g, x) ≥ (0M−1, 0N) and suppose q∗g = F (q−g, x) is finite. Then (q∗g , q−g, x
′) ∈

T ∀x′ ≥ x by free disposal. But F (q−g, x
′) ≥ q∗q = F (q−g, x).

Under P.1-P.4 Fj(v,K) is

(2a) concave in v ∀ K
Suppose q∗j = F (vj, K) j = 1, 2. Then (q∗j , vj, K) ∈ T j = 1, 2.

By convexity (λ q∗1 + (1− λ)q∗2, λ v1 + (1− λ)v2, K) ∈ T 0 < λ < 1.

Then q∗ = F (λ v1 + (1− λ)v2, K)

= max(q | (q, λ v1 + (1− λ)v2, K) ∈ T )

≥ λ q∗1 + (1− λ)q∗2

= λF (v1, K) + (1− λ)F (v2, K)

(2b) quasi-concave in K ∀ v
Suppose q∗j ≡ F (v,Kj) for j = 1, 2. Then (q∗j , v,Kj) ∈ T for j = 1, 2. Let q̃ =

min(q∗1, q
∗
2). Then (q̃, v,Kj) ∈ T for j = 1, 2. Then convexity of T in K ∀v implies

(q̃, v, λK1 + (1− λ)K2) ∈ T for0 < λ < 1 With Kλ ≡ λK1 + (1− λ)K2 we have

qλ = F (v,Kλ) ≥ q̃ = min(F (v,K1) , F (v,K2).
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Appendix B: choice of 6-digit combinations

Specification 1

10.71.11 Fresh bread

10.71.12 Fresh pastry goods and cakes

Specification 2

23.70.11 Marble, travertine, alabaster, worked, and articles thereof (except setts, curb-

stones, flagstones, tiles, cubes and similar articles); artificially coloured granules, chippings

and powder of marble, travertine and alabaster

23.70.12 Other worked ornamental or building stone and articles thereof; other artifi-

cially coloured granules and powder of natural stone; articles of agglomerated slate

Specification 3

22.23.14 Doors, windows and frames and thresholds for doors; shutters, blinds and

similar articles and parts thereof, of plastics

25.12.10 Doors, windows and their frames and thresholds for doors, of metal

Specification 4

25.11.23 Other structures and parts of structures, plates, rods, angles, shapes and the

like, of iron, steel or aluminium

25.12.10 Doors, windows and their frames and thresholds for doors, of metal

Specification 5

16.23.11 Windows, French windows and their frames, doors and their frames and

thresholds, of wood

16.23.19 Builders’ joinery and carpentry, of wood, n.e.c.

Specification 6

23.61.11 Tiles, flagstones, bricks and similar articles, of cement, concrete or artificial

stone

23.61.12 Prefabricated structural components for building or civil engineering, of ce-

ment, concrete or artificial stone
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