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Abstract

The advent of the Internet age has led to questions about the impact of obfuscation
and information provision activities by sellers. We estimate the welfare effects of search
design activities by an online used car seller, through a dynamic model of search over
differentiated offerings. We find that different emphases on product characteristics have
a modest impact on consumer welfare (-0.4% to +2.5%) but a relatively high impact
on the seller’s (-1.9% to +11.3%). Incentives for information provision are found to be
largely aligned between supply and demand. Finally, we find no evidence of consumer
myopia in learning.
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1 Introduction
Since at least Stigler (1961), economists have considered the effects of search frictions in
markets. The onset of the Internet, with its partially-fulfilled promise of complete price
transparency, promoted more directed research efforts, including understanding sources of
price dispersion, information acquisition strategies by agents, and information obfuscation
activities by sellers (Baye, Morgan, and Scholten 2004; Hortaçsu and Syverson 2004; Ellison
and Ellison 2009). A fundamental aspect remains understudied. While offering information
relevant to consumers, sellers are required to organize how the data are to be supplied. In the
the modern Internet era, virtually all sellers are required to engage in so-called ‘search design’
activities, by which they decide which information to emphasize, and which to relegate.

Sellers of differentiated products face a fundamental tension when engaging in search
design. On one hand, emphasizing more informative data is likely to increase consumer
welfare. On the other hand, sellers may become better off if they are strategic about how
they provide information. In this paper, we empirically investigate to extent to which search
design policies affect market outcomes.

Consider the following example, in which a used-car seller offers up 4 vehicles, each with
two characteristics:

Vehicle A Vehicle B Vehicle C Vehicle D
x1 +20 +20 -20 -20
x2 -10 +10 -10 +10
u = x1 + x2 +10 +30 -30 -10

Suppose one of these vehicles is in a given consumer’s consideration set, with uniform
probability (equivalently, there may exist four consumers, and each searches a different al-
ternative). Under perfect information, consumers derive conversion utility of uj = xj1 + xj2.

The first two rows of the table above denote the vehicles’ characteristics, and the last
row denotes the consumers’ utilities under perfect information. In this example, complete
ignorance means that the consumer expects zero utility, because each characteristic is exactly
offset by another to provide an ex-ante utility of zero. The consumer can spend a search
effort c to learn a characteristic. If the consumer decides to search characteristic 1, she
updates her utility to -20 or 20, depending on the vehicle she is inspecting. If instead she
searches characteristic 2, her utility is updated to -10 or 10. If the consumer searches both
characteristics, then she will find herself in one of four possible distinct cases, each with
equal probability. Finally, suppose there exists an outside option - for instance, the current
mode of transportation - with known value of 15.

If the firm provides perfect information, then only vehicle B is sold. However, the seller
may be able to induce purchases of vehicles A and B by carefully selecting which charac-
teristics to feature. Suppose the seller decides to emphasize characteristic x1, but not x2,
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which now needs to be searched to be learned. In this case, both vehicles A and B (at least
momentarily) yield high enough utility to be bought. Knowing x1, the consumer decides to
search x2 if and only if the search cost is low enough:

− c+ Pr (x2 = −10|x1 = 20)︸ ︷︷ ︸
V ehicleA

15︸︷︷︸
u0

+ Pr (x2 = 10|x1 = 20)︸ ︷︷ ︸
V ehicleB

30︸︷︷︸
uB

≥ 20︸︷︷︸
E(u|x1)

⇔c ≤ 2.5

When c > 2.5, the consumer prefers not to learn x2, but is willing to buy if she observes
x1 = 20 (i.e., vehicles A and B), which occurs with 50% probability: By emphasizing x1,
the seller creates a ‘demand wedge’ that is willing to purchase a vehicle before acquiring full
information.

The example above illustrates that the seller’s search design policy may be at odds
with the consumers’ interests. By disclosing some information the seller generates interest
- the market fails with no information - but by shading some other - characteristic x2 in
the example above - the seller uses search costs to stop at least some consumers at the
information set with the highest demand level. The example also illustrates that optimal
information design is challenging to characterize based on simple heuristics or observations,
especially once one considers additional aspects such as correlated product characteristics
and heterogeneous consumers.

The goal of this paper is to assess the effects of search design policies. We take advantage
of a unique dataset in which we observe consumers’ search actions for specific characteristics
of vehicles of an online used car seller. The variation from our case study enables us to
recover the fundamentals driving consumer learning processes, and conduct counterfactual
scenarios of different information disclosure policies by the seller.

We estimate a model of search in which consumers engage in strategic learning. While
doing this, they understand that the product characteristics they seek to learn may be arbi-
trarily correlated. The model introduces some novel features. First, it allows for piecemeal
search, which allows us to rationalize our data and conduct counterfactual analysis with
different information scenarios. Second, it recovers consumer beliefs flexibly, allowing us
to compute consumer expectations at arbitrary information sets. Third, it accounts for an
unobservable utility component that is allowed to covary with the observed components, and
whose distribution can be identified from search data.

Modeling search is often associated with large state spaces, because researchers are re-
quired to allow a large number of outcomes from learning. We develop a simulation-based
estimator that takes draws from the distribution of characteristics in order to inform con-
sumer beliefs. As the number of simulations used increases, the simulated actions approxi-
mate those of an agent with exact beliefs over the distribution of characteristics.
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Our estimation results document preference and search cost parameter estimates, as
well as a covariance matrix that summarizes a potentially complex relationship between
product characteristics. We document the relative variance in utility explained by each
featured characteristic. Our counterfactual analyses reveal that the welfare directions of
search design policies tend to be aligned between seller and consumers. Different information
design policies are found to affect consumers only moderately, but can have a sizable impact
on seller profits: They are found to vary consumer welfare from -0.4% to 2.5%, whereas sales
vary between -1.9% and 11.3%.

Past work has analyzed the role of consumer myopia on learning and information provision
policies (e.g., Gabaix and Laibson, 2006). Informed by it, we re-estimate the model under the
assumption of consumer myopia, and find no evidence of this kind of behavior: All measures
of fit worsen - despite the number of parameters being held constant across models - and
the myopic model is rejected as an approximation of forward-looking behavior (see Frazier,
Powell, and Dayanik (2009), Powell (2010), and Liang, Mu, and Syrgkanis (2017)).

Our paper is related to three important literature streams on search design, search fric-
tions, and myopic consumer learning. The first stream on search design has considered
the focal role of price obfuscation (Ellison and Ellison (2009), Einav, Knoepfle, Levin, and
Sundaresan (2014)) as well as the role of information in rich two-sided market interactions
(Horton (2014), Dinerstein, Einav, Levin, and Sundaresan (2018), Fradkin (2019)). Em-
pirical contributions to the second stream include Hong and Shum (2006), De los Santos,
Hortaçsu, and Wildenbeest (2012), and Koulayev (2014). Finally, the third stream (Gabaix
and Laibson, 2006, Frazier, Powell, and Dayanik (2009), Powell (2010), and Liang, Mu,
and Syrgkanis (2017)) studies the conditions under which myopic policies affect information
provision and approximate forward-looking learning behaviors.

The next section describes our context and dataset. Section 3 describes the search model
as well as the empirical analysis, including consumer beliefs, identification and estimation
details. Sections 4 and 5 present the empirical results and the counterfactual analyses,
respectively, and Section 6 concludes.

2 Data

2.1 Browsing Behavior
Our dataset comprises all online browsing activity on the website of a used car seller,
shift.com, between February and September 2016. The firm operates in a number of ge-
ographic markets, listing more than 4,000 vehicles during the sample period. Upon arrival
to the website, users can click through a number of filters in order to focus on the vehicles
of interest. The website lists a number of vehicle details. First, on the main listing page (see
Figure 1 for screenshot of main listing page, applicable to the data collection period), each
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vehicle photo is accompanied by make-model information, year, price, and mileage data.
Additional information is available in each vehicle’s detail page (see annotated screenshot
in Figure 2, applicable to the data collection period). Regarding each vehicle, users can 1)
browse through the photo gallery, 2) access the report of the dealer’s vehicle inspection, and
3) access the vehicle’s history, which includes additional information such as the number of
previous owners and the number of accidents the vehicle has been involved in. Accessing
each of these informative elements (pictures, inspection reports, and vehicle histories) re-
quires deliberate action by consumers through clicks. The dataset collects all such browsing
information, including all user sessions, webpage visits, and click actions.1 Although vehicles
are not sold directly online, the dealer uses a differentiated business model that provides a
primary conversion variable. Upon settling on a vehicle, consumers can order a test drive by
filling out a form with the relevant information. The company then follows up to confirm
the time and location of the test drive, usually taking place near a location convenient to
the customer. Successful test drive appointments are available in the dataset and are used
to characterize consumer conversion.2 Given the broad product line offered by the firm, we
focus on the search data related to browsing activity of sedan vehicles.3

Table 1 presents descriptive statistics of the dataset, comprising information about the
search behavior of the 24,116 users on the website. The descriptive statistics point to two
main patterns. First, search activity can take place over long periods of time. For example,
although each user browsed through an average of 2.28 vehicle profile pages, it is possible to
find users who browse tens or hundreds of vehicles. This is expected, given the complexity
of the products involved as well as their cost. Search activity is divided in browsing sessions,
defined as sets of events taking place within sequential intervals of 30 minutes. On the high
end, a few consumers went through more than 700 sessions, spread across three quarters of
a year.

The other insight taken from the descriptive numbers is that search behaviors can vary
significantly, per inspection of the ‘Min’ and ‘Max’ columns of Table 1. While some users
did not browse more than 1 vehicle, some browsed more than 100. The remaining statistics
also indicate significant reasonable variation in search patterns.

1At the time of our sample, all information-disclosing actions involved either clicks, when accessed via
computer, or taps and swipes, when accessed through mobile and tablet devices. We restrict ourselves
to browsing sessions via computer platforms since mobile and tablet swipes were found to be captured
inconsistently in the dataset. We also eliminated consumers whose modal device was a phone or a tablet.
We take additional data cleaning steps in order to eliminate irregular browsing activity, as we describe in
Appendix A.

2The firm provides information on the vehicle prices on its website, which cannot be bargained over.
The underlying assumption in using test drives as the conversion variable is that we assume the post test
drive behavior remains constant in counterfactual scenarios. Given the high conversion rates, we only model
consumer behavior up to the first conversion.

3The sedan category is the largest one. Search behavior changes significantly depending on the focal
category. For example, the sports cars category attracts a high number of users, but displays lower conver-
sion/visit ratios.
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One of the key dependent variables in the dataset is whether consumers end up convert-
ing. It is natural to expect that consumers who order test drives behave differently during
their search than the ones who do not. Figure 3 depicts the kernel densities of average session
times across converters and non-converters. Across a relatively long tail, we find convert-
ers engage in longer browsing sessions, whereas non-converters concentrate their activities
around sessions with durations below 15 minutes.

The website offers a number of search filters that allow consumers to easily identify the
vehicles they are willing to consider. Given the low search costs involved at that point, we
inform consumers’ consideration sets by the vehicles they interact with in the data. Hence,
the variation in our data identifies the extent to which consumers search characteristics of
alternatives in their consideration sets, rather than the formation of the consideration sets
themselves. We believe this is not a primary concern, since the search costs involved in
vehicle discovery are low, due to the number of available filters and search functionalities.
Despite this, we maintain the prominence of vehicle make-model and color information across
counterfactual scenarios which, given their popularity during vehicle discovery activities,
reduce concerns related to varying consideration sets further. We focus on the 89% of
consumers who evaluated up to four sedan vehicles in the data, yielding a working sample
with 12,887 consumers (91% browse up to five vehicles).

We model heterogeneity by incorporating a latent class distribution over search cost
levels, such that some consumers may be willing to search certain aspects more than others.4

Moreover, each segment is allowed to have different search costs related to each information-
gathering activity.

2.2 Vehicle Characteristics
We turn our attention to the heterogenous characteristic space of the 1,573 sedan vehicles
in the dataset. Each vehicle is described by its make, model, color, price, mileage, number
of inspection notes, age, number of accidents, and number of previous owners.5

Figure 4 depicts the histograms and cross-scatter plots of vehicle characteristics, excluding
the categorical variables make, model, and color. The main diagonal reveals that vehicles
are relatively heterogeneous in terms of their characteristics. Moreover, characteristics follow
very different marginal distributions. For example, price and mileage are continuous variables
and exhibit non-normal distributions. The remaining characteristics are countable, with
seemingly different distributional properties as well: The number of previous owners starts

4The AIC and BIC criteria favor a two-segment model, which is our model of choice throughout the
paper. Details on model comparisons are available from the authors. While extending heterogeneity to
preference parameters is trivial, we refrain from doing so due to computational costs, and the fact that none
of our counterfactual analyses take advantage of heterogeneity through targeting activities. We detail the
computational details of the estimation in Appendix D.

5Inspection reports feature one inspection note for each issue found by the dealer.
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at 1 and is strictly decreasing, whereas the number of inspection notes and the vehicle’s age
(in years) are non-monotonic.

Table 2 depicts the correlation matrix across the ordinal characteristics. With the ex-
ception of price, all characteristics are pairwise positively correlated, which is not surprising
since they are likely to be negatively associated with vehicle value. The negative correla-
tion between price and these characteristics is also expected: It is an indication that the
seller prices the vehicles according to the appeal of their characteristics. While the actual
relationships across variables are non-linear, the results in Table 2 are in line with Figure 4.
These analyses stress the need to allow for flexible marginal distributions of the vehicle char-
acteristics as well as to allow for flexible relationships among them. As we discuss later, we
introduce a flexible method to fit the multivariate distribution of the vehicles’ characteristics,
while including the additional effects of make, model, and color.

3 Model

3.1 Utility under Perfect Information
We assume consumers derive linear utility from the characteristics of the alternatives. Under
perfect information, consumer i’s indirect utility for purchasing vehicle j is equal to

vijt =
K∑
k=1

βkxjk + νij + εijt (1)

and is equal to
vi0t = εi0t (2)

if she decides for the outside option. Above, j indexes vehicles and k indexes observable (by
the researchers) vehicle characteristics. Characteristics {xjk} are constant across consumers
for the same vehicle (e.g., price, mileage, etc), and may be correlated. For example, as
discussed in the descriptive analysis, it is reasonable to expect an older vehicle will exhibit
higher mileage. Component νij is a preference for some vehicle j, which may be correlated
with the observed characteristics {xjk}. The introduction of the unobserved term νij captures
the fact that, during search, consumers may learn more than the objective characteristics
that the researchers are able to observe directly in the dataset. Including term νij takes into
account that a search action - in our application, photo browsing - may reveal subjective
information that is not only challenging to quantify, but also whose judgment may vary
across users.6 Shock εijt is uncorrelated across consumers, vehicles, and time, and captures

6One can also consider decomposing νij as βi.x
′

j , where x
′

j is an unobserved product characteristic. We
keep notation νij , given the impossibility of estimating the distribution of preferences separately from the
level of the unknown product characteristic x′

j .

7



idiosyncratic factors independent of the vehicles’ characteristics.
The seller’s website reveals some vehicle characteristics on its main listing page, including

a picture, price, mileage, age, and make/model information. We include these characteristics
in the consumers’ initial information set. Because these specific characteristics are extremely
easy to observe, search for information is modeled over and above these elements, as we now
explain.

Table 3 organizes the vehicle characteristics and presents the search action correspondence
that allows users to discover specific characteristics. We assume consumers know their own
preference parameters, as well as the vehicle characteristics included in the initial information
set. Users can learn additional information by taking search actions with respect to each
vehicle. Inspection of a vehicle’s history reveals both the number of previous owners of the
vehicle and the number of accidents the vehicle was involved in. Accessing inspection reports
reveals information about the number of issues identified during the inspection of the vehicle
by the seller. Finally, browsing through a vehicle’s photo gallery provides information about
component νij.

3.2 Search Dynamics
During their search, consumers decide whether to take subsequent information-acquisition
actions about vehicles in their consideration sets, or to terminate search either by ordering
a test drive or opting for the outside option. Given the discussion in the previous section, it
is clear that search behaviors are cumulative processes, taking into account the information
already available at each decision point. For example, a customer may stop or continue
searching a vehicle depending on how many inspection issues she finds. Moreover, because
features are correlated, a user may expect a vehicle to have had more owners after observ-
ing its high mileage. In order to take this into account, we assume that agents condition
unknown features on the known ones.

State Variables. We characterize the search problem of a consumer who acts ex-ante
optimally according to her beliefs. Consumer i considers alternatives 1..Ji, each with k

characteristics, as described before. All consumers also have access to an outside option,
whose deterministic utility is normalized to zero. Consumers have S search actions available
to them for each alternative, each of which maps into learning one or more characteristics.
Moving towards a Bellman equation framework, we omit time subscripts, and assume the
information-acquisition actions are perturbed by shocks denoted as εsij, where s ∈ S denotes
a search action. These shocks are learned contemporaneously, and represent unobservable
influences that may randomly affect consumers’ actions. We denote the collection of user i’s
shocks as εi.
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We summarize the characteristics known by consumer i about vehicle j by set Ωij, and
denote the collection of all information known about all vehicles in consumer i’s considera-
tion set by Ωi. For example, before initiating search for specific vehicles, user i is endowed
with information Ωij = {make_modelj, pricej,mileagej, agej, colorj} about vehicle j. The
information set is then expanded according to the consumer’s search decisions.

Decision-Making. At each decision point, consumer i solves the problem:

V i (Ωi, εi) = max

V i
0 (Ωi, εi,1) , ..., V i

Ji
(Ωi, εi,Ji)︸ ︷︷ ︸

TerminalDecisions

, V i
1,s (Ωi, εi,1,1) , ..., V i

Ji,s
(Ωi, εi,Ji,s)︸ ︷︷ ︸

SearchDecisions

∣∣∣∣∣∣∣
s=1..S


(3)

where V i (·) is the value function for consumer i.7 At each decision point, the consumer
may decide to stop her search and make a final selection, or continue learning by taking a
search action. V i

j (·) denotes the expected value of stopping search and selecting one of the
Ji + 1 alternatives, and V i

j,s (·) denotes the continuation value of taking a search action s

w.r.t. vehicle j.
If the consumer stops her search, she earns expected utility

V i
j (Ωi, εi) = E (vij|Ωi, εi) (4)

= E

(
K∑
k=1

βkxjk + νij

∣∣∣∣∣Ωij

)
+ εij (5)

conditional on the information available in Ωi. If instead she decides to take a search action,
say action s w.r.t. vehicle j, she expects continuation utility

V i
j,s (Ωi, εi) = −cs + Eε′i,ωjs

(V (Ωi ∪ ωjs, ε′i)|Ωi) + εijs (6)

where j and s denote the vehicle and search actions to be maximized over. Vector ωjs
contains the characteristics of vehicle j to be learned with action s. The correspondence
between search actions and learned characteristics are presented in Tables 3 and 4.

We allow consumers to incur different search costs depending on their actions, namely at
rates cs, s ∈ {1, 2, 3}. We also introduce heterogeneity in search costs by use of two latent

7We use notation V i (·) to stress that consumers may have different sets of vehicles in their consideration
sets, and so will face unique value functions. We eliminate repeated search decisions. Although such actions
could be incorporated in the model, they are not the main focus of the analysis. We believe these are likely
to be related to consumer memory. In this case, the working assumption for the counterfactual analysis is
that consumers will conduct the necessary searches to refresh their memories, if needed. For simplification
purposes, our notation omits the fact that consumers do not search the same component of the same vehicle
multiple times, such that their action space depends on the state. Future work may inform memory-related
parameters by extending our model to allow repeated search action.
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segments, which vary in size and in the values of cs.
Expression {Ωi ∪ ωjs} captures the augmented information set that the consumer will

have access to, if she decides on search action s for vehicle j. For example, if she starts out
by searching vehicle j’s photos, her information set about vehicle j will transition from

Ωij = {make_modelj, pricej,mileagej, agej, colorj} (7)

to
Ω′

ij = {make_modelj, pricej,mileagej, agej, colorj, νij} (8)

Consumer i’s decision to search incorporates the fact that she already has some informa-
tion about vehicle j. Hence, the expectation operator in expression (6) is taken with respect
to the preference shocks ε′i as well as to the information ωjs that the consumer will obtain
through search, and which is affected by the information in Ωi.

3.3 Beliefs
We assume consumers hold beliefs consistent with the distribution of characteristics ob-
served in the data. Let X = [X1..XK ]

′
be the random vector of vehicle characteristics with

realizations observable both to the consumer and to the researchers (i.e., all characteristics
excluding νij and εijt). We denote the multivariate cumulative distribution (c.d.f.) of these
characteristics by

Gmake_model,price,mileage,age,color,owners,accidents,notes (9)

In order to estimate this joint distribution while preserving the different natures of the
marginal distributions as well as the cross-correlation patterns, we employ a statistical cop-
ula. Sklar (1959) showed that all multivariate c.d.f.’s FX1..XK admit copula representations

C (FX1 (x1) , ..., FXK (xK)) (10)

where each FXk (·) is the marginal c.d.f. of variable Xk. Taking advantage of Sklar’s result
is, however, complicated by two factors. First, variables such as color and make-model infor-
mation are categorical r.v.’s. Given their lack of ordinality, cross-correlations are relatively
meaningless for these variables. To see this, suppose X1 ≤ 0.2 were to define a vehicle’s
color as yellow, and X1 ∈ (0.2, 0.3) meant that the vehicle was white. It follows that proper
estimation of a copula parameter between r.v.’s X1 and X2 (X2 could represent mileage, for
example) would require an unrealistic degree of flexibility in order to capture the lack of
ordinality in X1. The second challenge is that the unobserved preference shock νij may also
be correlated with the observable characteristics, and so needs to be incorporated into this
framework.
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We start by addressing the first issue. Estimating the multivariate distribution with cate-
gorical variables could, in principle, be implemented by estimating a separate distribution for
each level of the variables {make_model, color}. However, this method can be cumbersome
to work with, and imposes large data requirements. Because copula estimation can rely on
parametric or non-parametric estimation of the marginal distributions, we employ a hybrid
approach: We estimate the marginal distribution of the ordinal variables, net of a param-
eterized effect of the non-ordinal variables. We employ separate ordered probit regressions
to each of the ordinal variables using the categorical variables as regressors. For example,
consider the case of the number of inspection notes found for a vehicle, which may have one
of seven values in the data (i.e., zero to six issues were found in the dataset). We estimate
an ordered probit regression for inspection notes according to the model

notesj =



0, y∗j ≤ µ0

1, µ0 < y∗j ≤ µ1
... ...
6, y∗j > µ6

(11)

where
y∗j = βnotesmm make_modelj + βnotescolor colorj + εnotesj , (12)

make_model and color are indicator variables, and εnotesj ∼ N (0, 1). We employ the same
approach to the remaining variables, including price and mileage, which we discretize into
five levels each.8 Our approach assumes a functional form for the relationship between
the categorical and ordinal variables. At the same time, it is fully flexible in terms of the
distribution of the ordinal variables, as it associates a probability mass to each characteristic
level. Figure 5 depicts an example of the cutoffs recovered for the case of the inspection
notes.

The result of the ordered probit regressions is a set of estimates for the make-model and
color fixed effects. Note that the estimated residuals ε̂j are independent of the non-ordinal
variables. Because each discrete value of the dependent variables can be generated by several
values of εj, we need to define a specification for estimator ε̂j. We use the maximum likelihood
estimator of ε̂j, so that each level of each characteristic is associated with a unique level of
the estimated residual ε̂j. By construction, these residuals are independent of the categorical
variables make_model and color.9

8Discretizing these variables into additional levels is straightforward, with a relatively low penalty for our
estimator.

9An alternative (and more demanding approach for our estimation strategy) would be to associate mul-
tiple levels of residuals to each characteristic level, by simulating εj ’s from intervals of the ordinal probit
regressions.
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We denote the joint distribution of the estimated residuals as

Fprice,mileage,age,owners,accidents,notes⊥make_model,color (13)

When the residuals above are evaluated at their empirical c.d.f.’s, they induce random
variables u = [u1...uK ]

′
, which are uniformly distributed. These variables are introduced into

a Gaussian copula:

cΣ (u) = 1√
det Σ

exp

−
1
2


Φ−1 (u1)

...
Φ−1 (uK)


′

.Σ−1.


Φ−1 (u1)

...
Φ−1 (uK)


 (14)

where

u = F (ε) =


F1 (ε1)

...
FK

(
εK
)


and where matrix Σ is a correlation matrix (its main diagonal equals one, by definition),
which moderates the relationships between the residuals. Function Φ−1 (·) is the inverse c.d.f.
of the standardized normal, and functions Fk’s are the empirical marginal distributions of
each characteristic. Note that cΣ (u) can be interpreted as a joint normal probability density
function (p.d.f.) of random vector (Φ−1 (u1) ...Φ−1 (uK))

′
. We simplify the notation by

defining zk = Φ−1 (uk), so that the copula can be readily interpreted as a p.d.f. of the
random vector Z = {z1..zK}:

fZ1..ZK (z) = 1√
det Σ

exp

−
1
2


z1
...
zK


′

.Σ−1.


z1
...
zK


 (15)

where zk ∼ N (0, 1). Above, the elements of random vector Z follow non-independent
standard normal distributions, with covariance matrix equal to Σ, which together with the
marginal distributions characterizes the joint distribution of the ordinal characteristics.

Estimation of the copula relies on the steps summarized in Figure A:
First, the residuals of each characteristic ε̂k, orthogonal to make-model and color informa-
tion, are estimated through the transformation

ε̂k = G−1
k (yk, X) (16)

where G−1
k is the maximum likelihood estimate of the errors of the ordinal probit regression

for each characteristic, yk is a vector with the levels of characteristic k, and X is a set of
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Figure A: Copula Estimation and the Marginal p.d.f. of zk

indicator variables with make-model and color information for each vehicle. Calculating the
empirical percentiles of εk for each k (or in different words, evaluating the empirical distri-
butions Fk at values εk), yields uniformly-distributed random variables uk = Fk (εk). Then,
applying the inverse standard normal c.d.f. yields normally-distributed random variables
zk = Φ−1 (uk). Finally, Σ is easily obtained by calculating the empirical correlation matrix
of (Z1..ZK)

′
. The collection of steps described above allows us to characterize the relation-

ships across variables in a flexible way, net of the categorical variables, despite the different
marginal distributions. As we explain later, the process depicted in Figure A is also used in
reverse, for simulation during estimation.

It remains to solve the second estimation challenge, which is to include the unobserved
utility component νij to this framework. We assume this component follows a normal dis-
tribution, such that it can be naturally added to the statistical copula by expanding the
‘multivariate density’ appropriately:

fZ1..ZK ,ν (z) = 1√
det Σ0

exp


−1

2


z1
...
zK
ν



′

.



 . Σ .

 σzν

σ′zν σ2
ν︸ ︷︷ ︸



−1

Σ0

.


z1
...
zK
ν




(17)

The covariance matrix Σ is now bordered by the relationships between the unobserved com-
ponent ν and each of the observable attributes, making up matrix Σ0. Vector σzν contains
the covariances between ν and each ‘normalized characteristic’ zk, and σ2

ν is a scalar corre-
sponding to the variance of ν. This specification allows us to identify correlations between
observed characteristics and the unobserved utility component.
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3.4 Estimation
Estimation is complicated by the size of the state space, part of which is unobservable.
In addition to their ex-ante knowledge, each consumer can take up to three search actions
per vehicle, and learn that its characteristics may be one of seven levels in terms of the
number of inspection notes, one of four levels in terms of number of accidents, one of six
levels in terms of number of past owners, and one of ω discrete levels used to simulate the
unobserved characteristic. As a result, a vehicle’s information in a consumer’s state space
has the following number of potential elements:

|Ωij| = (1 + 7)︸ ︷︷ ︸
insp. notes

× (1 + 4× 6)︸ ︷︷ ︸
vehicle hist.

× (1 + ω)︸ ︷︷ ︸
photos

= 88 (1 + w) (18)

where the ‘(1 + ·)’ structure above takes into account that consumers may not take all search
actions. When Ji is the number of vehicles in a consumer’s consideration set, the size of the
state space related to information acquisition for consumer i equals

|Ωi| = J
88(1+w)
i (19)

For example, a consumer with four vehicles in her consideration set, and with unobserved
characteristics approximated with w = 5 points, will face approximately 7.72×10317 possible
states. In addition to this, our context presents the challenge that we are required to solve as
many value functions as the number of consumers in the sample, since we allow consumers
to hold different consideration sets (consumer consideration sets may not overlap exactly).

In order to estimate our model, we develop an estimator that relies on simulating beliefs.
Consumer beliefs are replaced by draws from the distribution of product characteristics.
Consumers are then assumed to know the realized draws, but are unaware of which cor-
responds to the products they are searching. Importantly, as the number of simulations
increases, the simulated beliefs converge to their population analogue.

We refer the reader to Appendix C for the precise estimator details. An intuitive expla-
nation for our estimator is that, rather than writing the likelihood of fully rational consumers
- who are able to keep an incredible number of possibilities in mind - we instead estimate
our model as if the likelihood was informed by the actions of boundedly-rational consumers,
whose beliefs are as sophisticated as defined by the number of simulations used during esti-
mation. Importantly, the continuous mapping theorem (Mann and Wald, 1943) implies that
our estimates converge in distribution to that of agents with perfect beliefs, as the number
of simulations increases.10

Our approach has a number of advantages. First, it is scalable: It is possible to represent
10In the appendix, we also present a sketch of the pseudocode necessary to represent the corresponding

value functions.
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and estimate a large dynamic program in a modern computer. Second, the resulting decision
tree is “small” whenever the search context is informationally path-independent, e.g., when
the order in which search actions A and B are taken is irrelevant for the resulting infor-
mation state. Third, the estimation procedure samples more from higher probability areas
more often, such that the approximation proceeds by prioritizing high-probability events.
This produces an arguably near-ideal approximation sequence. We now provide an outline
of the estimation procedure.

First Stage Estimation Steps

• First, estimate matrix Σ (correlation of observable characteristics), according to the
steps laid out in Section 3.3. (Note that the additional border that makes up matrix
Σ0 is estimated later, with the remaining model parameters).

• Set the number of simulations R. For each consumer, simulate R sets of characteristics
for each vehicle in each consideration set, conditional on the vehicle’s ex-ante charac-
teristics. Refer to Figure B below for the steps involved in this simulation, discussed
later.

• Save both the simulated vehicle characteristics as well as the simulated zk draws (see
Figure A), as a later input for the model estimation.

.
Second Stage Estimation Steps

• Select the initial values for the preference parameters, the search cost parameters, and
the covariance parameters σzν . (We later explain that σ2

ν is normalized to one.)

• Draw values of ν conditional on σzν .

• For each consumer, update the value function by calculating utilities backwards from
perfect information.

• Use the decision tree to calculate the joint probability of the consumer’s search and
purchase decisions observed in the data, for each simulation of the unobserved compo-
nent.

• Average the probabilities across simulations and sum them across consumers and cal-
culate the log-likelihood for the sample. Decide convergence and/or attempt new
parameter estimates.

Figure 6 depicts a decision tree for a consumer searching over a single vehicle. The tree
depicts outcomes of the consumer’s possible 8 action states (i.e., combinations of search ac-
tions taken), as well as the probabilistic transitions across them. The decision tree is highly
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non-linear, and different sequences of search decisions can take the consumer to the same
information state. Details are provided in Appendix C.

Simulation. During the decision process, consumers need to integrate over the information
they are likely to learn from different search actions, conditional on the information already
available. These expectations are approximated via simulation. Below, we depict the process
of drawing characteristic levels xl, given the levels of some other characteristics, xk. We have
already defined the joint distribution of the random variables {zk, ν}, underlying the vehicles’
characteristics (see equation (17)). However, except for ν, these variables do not enter utility
functions directly. Additional steps are required to take draws of the characteristics they
underlie, as depicted in Figure B.

Figure B: Obtaining draws of characteristics xl, conditional on characteristics xk

Note: The process above applies to observable characteristics. The component ν
is assumed to follow a normal distribution, from which draws can be readily taken,
given knowledge of covariance matrix Σ.

Taking draws of vehicle characteristics xl, conditional on characteristics xk, involves
reversing the process outlined before. For example, suppose we intend to take draws of
characteristic age, conditional on price. First, we convert price to zprice, by following the
steps depicted on the top arrows of Figure B. Second, we use the conditional normal p.d.f. to
take draws

{
zrage

}R
r=1

, conditional on zprice. We then carry out the reverse process, depicted
on the bottom of Figure B, to produce the intended simulations.
Before estimation, we draw simulations of all of the observable search characteristics, condi-
tioning on all of the ex-ante characteristics. These draws are saved and available during the
estimation of the model parameters. In order to save computation time, we also save the
draws zr, which are used to simulate values ν(r) during the model estimation. These draws
are then updated for each parameter guess of σzν .
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Variance-Covariance Matrix. Matrix Σ0 moderates the relations between the vehicles’
observed characteristics, and its border includes the relations with the idiosyncratic utility
component ν. As we further discuss in the Identification section, we normalize parameter σ2

ν

to one. The remaining elements of the border of the variance-covariance matrix are estimated
under the restriction that the resulting variance-covariance matrix is positive semi-definite
(p.s.d.). First, we find an upper triangular matrix C such that

C ′.C =



 . Σ .

 σzν

σ′zν 1

 (20)

The process of finding C follows from common Cholesky decomposition. In appendix B, we
explain how we parameterize matrix C in order for Σ0 to be simultaneously consistent with
the correlation matrix of the observable shocks Σ, estimated in the first stage, and for Σ0

to remain p.s.d. during model estimation, as it changes with different parameter guesses of
σzν .

Likelihood. In our model, each i.i.d. observation is a sequence of search actions followed
by a terminal action performed by a consumer. Hence, the likelihood function of interest
characterizes the probability of a sequence of actions conditional on a set of parameters and
data. It is given by

L (θ|X,Ai) = ΠN
i=1Pr (Ai| θ,X) (21)

where X contains vehicle characteristic data and the correlation matrix Σ, Ai =
{
a1
i , ..., a

Ti
i

}
is the sequence of actions of individual i, Ti is the number of actions taken by individual i,
and θ is a vector of parameters. Because the shocks νij are unknown to the econometricians,
we employ a simulated maximum likelihood approach:

P̌ r (Ai| θ) = 1
R

R∑
r=1

Pr (Ai| θ, νri ) (22)

and the simulated log-likelihood for the sample follows:

l (θ|X) = log
(
ΠN
i=1P̌ r (Ai| θ)

)
=

N∑
i=1

log
(
P̌ r (Ai| θ)

)
(23)
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3.5 Identification
The identification of the search model is relatively complex, because most parameters affect
each of the moments of the corresponding data generation process. The preference parame-
ters are inferred through the relationships between their respective regressors and purchase
rates, as in traditional discrete choice models. However, they also affect search behaviors.
Notice, for example, that a consumer may be more willing to search a vehicle’s characteristic,
say x1, when her corresponding preference weight β1 is higher. The reason is that higher
values of β1 induce higher variances of the expected search utility from evaluating x1.

The search patterns in the data, together with the conversion decisions, allow us to
characterize the preference parameters and the search cost parameters. The latter ones are
intuitively identified by the average propensity of consumers to take each search action,
conditional on the covariance parameters. This last statement is especially applicable to
search actions involving vehicle characteristics that are known to the econometricians. In
terms of the unobservable characteristic, there is an observational equivalence between a
consumer who faces a low search cost and low variance with another who faces a high search
cost and high variance surrounding the same characteristic. Simply put, more uncertainty
surrounding a characteristic increases the option value of search, which in turn can be offset
by higher search costs. In order to take this into account, we normalize the variance of the
unobservable characteristic to one.11

It remains to discuss the identification of the covariance parameters between the observed
characteristics and the unobserved utility component ν. Whereas search costs are identified
by the average propensity of each search action being taken, the covariance parameters are
identified by information-dependent search patterns concerning the unobserved characteris-
tic. For example, suppose a consumer knows a given vehicle’s price. One can imagine that
if the price is moderately high, she may opt for the outside option immediately, conditional
on the preference and search cost parameters. If the price were lower, it is possible that the
consumer would have continued her search of the vehicle’s attributes, including component
ν. The price threshold at which the consumer is indifferent between continuing her search
for ν identifies the covariance between price and the unobserved component: If the consumer
selected the outside option without searching further, despite facing only a moderate price
point, then it must have been that the residual variance of the unknown component was
not high enough to justify further search. On the other hand, continuing search despite the
current low prior on the vehicle’s expected utility is a signal of high variance of component
ν, conditional on the known characteristics. The parameters σzν of the variance-covariance
matrix thus identify the residual variance of component ν, conditional on knowledge of the
vehicles’ remaining characteristics.

11This normalization applies to virtually all models of search for unobserved components.
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4 Results
Table 5 presents the estimates of the preference coefficients. Consumers are found to dislike
more expensive vehicles, with higher mileage, higher number of inspection issues, and with
a higher number of previous owners. We find no statistically significant effect for vehicle age
and the number of previous accidents. This may be explained by the remaining regressors -
consumers may deem age irrelevant once mileage is controlled for - or by a lack of power (e.g.,
very few vehicles exhibit more than one past accident). Overall, the statistical significant
parameter estimates are in line with common expectation.

Table 6 presents the estimates of the search cost parameters by segment. The size of
the first segment is of approximately 67%. These consumers prioritize learning about vehi-
cle histories to browsing photos and inspection reports. Segment two, on the other hand,
privileges photos before anything else. This segment is consistent with the presence of a
portion of consumers in the dataset who appear to spend most of their time browsing photo
galleries of different vehicles. The search costs estimates are interpreted as a function of the
normalized variance of the unknown utility component, σ2

ν . As the researchers set σ2
ν to a

higher value, the estimated search costs will also rise, as the model attempts to explain why
consumers do not search photos as much, given the high option value implied by σ2

ν . Simi-
larly, when σ2

ν is normalized to a low number, search costs estimates decrease. While there
exists relative information across search cost estimates, one should keep in mind that their
magnitudes reflect the normalization of the variance of the unobserved search component,
and so the parameter values should not be immediately interpreted as monetary search costs,
even when normalized by the price coefficient.

Table 7 presents the estimates of the variance-covariance matrix of the unobserved term,
which are all significant at the 5% level. Table 8 presents the implied variance-covariance
matrix of the observable and unobservable characteristics. The non-bold components of the
table represent the correlations across observed characteristics, with the influences of make-
model and vehicle color parsed out. They are largely consistent with the raw correlations
presented in Table 2. As for the unobservable utility component - learned by inspection of
vehicle pictures - we find that it follows a familiar pattern: It correlates negatively with price
and positively with the remaining characteristics.

Table 9 provides a comparison between the model predictions and some key moments
in the data. Overall, the model matches average search intensities reasonably well, espe-
cially given that the model’s parameters are estimated via likelihood maximization rather
than through matching the moments in the data directly. Nonetheless, the model tends to
underestimate the maximum of the search intensities observed in the data.
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5 Counterfactual Analyses

5.1 Utility Explained by each Vehicle Characteristic
Combining information about preference parameters and the variance-covariance matrix of
characteristics, we simulate how much of utility variation is explained by each characteristic.
We calculate the familiar statistic

%UtilityVarianceExplained byxj = V ar (E (u|xj))
V ar (u) (24)

which captures how much of the utility variance is explained by each characteristic.
Figure 7 presents the percent utility variance explained by each characteristic, by order

of importance. Of the four characteristics found to be statistically-significant (cfr. Table
5), three top the list, namely, the number of previous owners, vehicle mileage, and number
of inspection notes. Of note is the fact that price is found to explain little variation in
utility. This result is unexpected, as one may expect price to be the decisive characteristic
in this market. However, it is a consequence of two separate quantities: First, the preference
parameters associated with each characteristic, and second, the amount of variation of the
characteristics in the data.12 In a relatively competitive market - such as the case of the
online used car market - prices may indeed affect preferences significantly, but competition
may also act as a downward force on actual variation. Our results should therefore be
interpreted as the combination of the two forces (preferences and characteristic variation),
which appear to make price relatively unimportant in explaining total variation in utility.

5.2 Designing Information Provision
We conduct counterfactual analyses across different information structures. Each informa-
tion structure emphasizes certain characteristics on the main page, and relegates others to
the vehicle detail pages. The analyses are motivated by the possibility that the firm may not
be able to maintain consumers’ cognitive loads relatively constant if it introduces too much
information in one place. For example, moving all characteristic information to the main
listing page could potentially make the seller’s website liken a spreadsheet, severely affecting
user experience.13 Each counterfactual analysis recomputes consumer search and purchase
decisions. Consumers’ expectations change, according to the information they have available
on the main listing page, as well as with the information they acquire during their search.

We first exchange characteristics between the two levels, one at a time. Table 10 presents
12For completeness, note that this statistic also captures a third factor: The cross-correlations in charac-

teristics.
13In the same vein, we do not consider the counterfactual scenario of moving a vehicle’s photo gallery to

the main listing page.
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the consumer welfare effects of such policies. We find that emphasizing vehicle histories
has statistically significant positive welfare effects on consumers. On the other hand, em-
phasizing inspection reports may have negative influences. The relative impact is modest,
ranging from -0.41% to approximately 2.5%. The fact that highest welfare increase involves
price obfuscation (i.e., prices would only be disclosed in detail pages) is highlighted in the
discussion below.

Table 11 presents the effects on sales. These effects are found to be higher than those
related to consumer welfare, ranging from -1.91% to +11.34%. In fact, search design is
found to always have higher relative impacts on profitability than on consumer welfare, as
we show later. Inspection of Table 11 reveals that price obfuscation - in our context, the act of
relegating price information to vehicle detail pages - can be especially profitable to the seller.
The result of a positive impact of this action on consumer and seller welfare requires further
consideration. We first summarize the relationship of all of the consumer and seller effects in
Figure 8, including the remaining information scenarios, which we detail in Table 12. This
analysis reveals that, across search designs, a very strong and approximately linear relation
occurs between consumer and seller effects (R2 ' 97%) across the different information
provision scenarios. This finding is surprising and at odds with the view that information
design is a zero-sum game between the seller and consumers. Rather, our findings point to
overwhelmingly consistent incentives. One reason for this may be that our analysis utilizes
variation from a seller in a strongly competitive market. As such, our results are likely to
reflect the fact that the seller is better off emphasizing the data that is most informative to
consumers. In support of this, note that Tables 10 and 12 reveal that the most profitable
scenarios involve the seller emphasizing vehicles’ histories. In these are included the vehicles’
number of previous owners, which is the most important explanatory variable of utility
variability (cfr. Figure 7).

Our finding of positive correlation between seller and consumers’ utilities across search
designs is at odds, for example, with the spirit of the analysis by Ellison and Ellison (2009).
We posit that the differences are likely to be explained by different levels of market power:
As competitiveness increases, seller incentives become more aligned with consumers’, and in
the limit of perfect competition, sellers would only survive if they selected the information
provision strategy that maximizes consumer surplus. Future work may be able to empirically
document a significant correlation between market power and the alignment of information
provision incentives formally.
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5.3 Consumer Myopia
We adapt our model to consider consumers who are myopic in terms of the benefits produced
by learning. Specifically, we consider a model where consumers act as if they only consider
the immediate learning benefit of each search action, but ignore the benefits for subsequent
searches at each point (see Frazier, Powell, and Dayanik (2009), Powell (2010), and Liang,
Mu, and Syrgkanis (2017)). Under this assumption, terminal utilities are calculated as
before:

Vj (Ωi, εi) = E (vij|Ωi, εi) (25)

but the dynamic utility from search decisions takes on a different form:

Vj,s (Ωi, εi) = −cs+

E
ε

′
i,ωjs

[
max

{
vi0, V1

(
Ωi, ε

′
i

)
, .., Vj

(
Ωi ∪ ωjs, ε

′
i

)
, .., VJ

(
Ωi, ε

′
i

)}∣∣∣Ωi

]
+ εsij (26)

The formula above reveals that myopic consumers behave as if each search was their last
one.

We adapt our value functions by recalculating search values according to (26), and re-
estimate the model. Notice that while utility calculations differ between models, the number
of estimated parameters remains constant across models.

We first compare the predicted moments of the myopic model with the ones in the data
in Table 13. The fit measures can be compared with those of the full forward-looking case,
presented in Table 9. Across the board, the myopic model fits the sample moments worse
than the forward-looking model.

Second, we conduct a non-nested test à la Vuong (1989), in order to verify whether the
knowledge gradient and the forward-looking models are at the same ‘statistical distance’
from some true underlying data generation process. This test rejects that the models are at
the same distance from the true data generation process with a p-value less than 1% (see
Table 14).

Overall, these results suggest that, albeit computationally convenient, the myopic model
provides a poor approximation to the forward-looking problem. These findings are in con-
trast, for example, with the conditions isolated by the work mentioned above, which states
that myopic behavior may be at times optimal. The results also question the degree to which
consumers are myopic about the payoffs of engaging in search activities. Indeed, in our case,
failing to incorporate strategic behavior results in worse fit of the moments in the data and
in a statistically-significant different likelihood than of the full dynamic problem.
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6 Concluding Remarks
Our analysis has concerned itself with estimating the effects of search design policies on
consumer and seller welfares. In their theoretical paper, Ellison and Wolitzky (2012) stated
that “retailers may (...) harness the power of the Internet to make information processing
problems more formidable [to consumers].” Our results are contrasting with their work, in
that we mostly find a coincidence of interests between seller and consumers. We expect that
additional research, relating sellers’ incentives to obfuscate information with market power,
may reconcile the findings.

There is also space to consider the extent to which different disclosure policies affect
consumers’ beliefs about the distribution of characteristics they are likely to face. This task
is challenging because of the complications introduced by the introduction of the Bayesian
equilibrium concept, and its constraints on the beliefs over the distribution of characteris-
tics. The approach would nonetheless represent a significant step forward for the empirical
literature on search design.

The effects of different information scenarios can also be estimated through the use of
experiments. However, each experimental condition requires specific investments, which
present real design and roll-out costs, and may not be scalable - we have reported the findings
of eleven scenarios in this paper. In addition, sellers are often conservative about providing
different users with different experiences. In contrast with experiments, our methodology
can be viewed as a way to recover the effects of search design policies from non-experimental
revealed-preference data.
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7 Figures

Figure 1: Screenshot of Main Listing Page, shift.com, October 2016
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Figure 2: Annotated Screenshot of Vehicle Detail Page, shift.com, October 2016
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Figure 3: Densities of Avg. Session Times Across Users
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Figure 5: Ordered Probit Regions Associated with Levels of Inspection Issues
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Figure 7: % Utility Variance Explained by each Characteristic
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Figure 8: Information Design Effects: Consumer Welfare and Profits
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Tables

Table 1: Descriptive Statistics

Mean Std. Dev. Min Max
Vehicle Detail Pages Viewed 2.28 3.47 1 129

Number of Sessions 6.03 21.14 1 762
Photo Sets Browsed 1.63 2.65 0 74

Vehicle Histories Browsed 0.69 2.09 0 101
Inspection Reports Browsed 0.30 1.27 0 53

Average Session Duration (min.) 14.2 13.39 0.1 282.04
Activity Range (days) 18.67 38.5 0 232

Number of users: 24,116
Note: Statistics are per user. The event “Photo Sets Browsed” equals
one for each user-vehicle observation whenever a user browsed more 20
or more pictures of a vehicle.

Table 2: Correlation Table for Non-Categorical Characteristics

Price Mileage Insp. notes Vehicle age No. accidents No. owners
Price 1

Mileage -0.45 1
Insp. notes -0.16 0.39 1
Vehicle age -0.40 0.71 0.44 1

No. accidents -0.07 0.10 0.09 0.12 1
No. owners -0.08 0.21 0.09 0.17 0.09 1
Note: Number of vehicles: 1,573. All correlation estimates statistically significant, with
p-values below 0.01.

31



Table 3: Vehicle Information and State Variables

Knowledge Level Characteristic Utility Component
Ex-ante Characteristics

Observable ex-ante Make/Model make_modelj
>�> Price pricej
>�> Mileage mileagej
>�> Age agej
>�> Color colorj

Perceived Quality/Fit
Learned after browsing one

photo set
Vehicle Photos νij

Vehicle History
Learned upon visiting a

vehicle’s history
Number of Previous

Owners
ownersj

>�> Number of Accidents accidentsj

Vehicle Status
Learned upon visiting
inspection reports

Number of Inspection
Notes

notesj

Notes: Vehicle indexes omitted. Ex-ante characteristics belong to users’ initial informa-
tion set. The remaining characteristics are revealed through search actions.

Table 4: Correspondence of Search Actions and Learned Characteristics

Search Action (s) Meaning Learned Characteristics
1 Vehicle Photos νij
2 Vehicle History ownersj, accj
3 Inspection Report notesj
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Table 5: Model Estimates: Preference Parameters

Parameter
Estimates

Vehicle Characteristics
price -0.372**

(0.000)
mileage -0.19**

(0.000)
notes -0.36**

(0.000)
age -0.01

(0.348)
accidents 0.032

(0.434)
owners -1.611**

(0.000)
Log-Likelihood: -38,937.35
Make-Model and Color Dummies X
N= 12,887
Note: Standard errors in parentheses. Significance levels:
† p≤0.10, * p≤0.05, ** p≤0.01.
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Table 6: Model Estimates: Search Cost Parameters

Parameter Estimates
Segment 1

cphotos 2.306**
(0.031)

cvehicle history 0.248**
(0.048)

cinsp.report 5.255**
(0.094)

Segment 2
cphotos 0.034*

(0.02)
cvehicle history 4.382**

(0.05)
cinsp.report 3.309**

(0.022)
Other Parameters

α -0.732**
(0.01)

Make-Model and Color Dummies X
N= 12,887
Note: Search costs estimated through exp (·) transforma-
tion. Standard errors in parentheses obtained via the delta
method. Significance levels: † p≤0.10, * p≤0.05, ** p≤0.01.
Size of segment 1, implied by α̂, is 67.5%.
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Table 7: Model Estimates: Variance-Covariance Parameters

Parameter
Estimates

Variance-Covariance Parameters

s1 -0.445**
(0.045)

s2 0.76**
(0.000)

s3 0.674**
(0.000)

s4 0.609**
(0.044)

s5 0.1*
(0.045)

s6 0.551**
(0.045)

Make-Model and Color Dummies X
N= 12,887
Note: Standard errors in parentheses. Significance levels:
† p≤0.10, * p≤0.05, ** p≤0.01.

Table 8: Estimated Variance-Covariance Matrix

Σ̂0 =



1 −0.66 −0.31 −0.73 −0.07 −0.21 −0.44
−0.66 1 0.37 0.71 0.08 0.27 0.76
−0.31 0.37 1 0.41 0.07 0.14 0.67
−0.73 0.71 0.41 1 0.09 0.24 0.61
−0.07 0.08 0.07 0.09 1 0.021 0.1
−0.21 0.27 0.14 0.24 0.021 1 0.55
−0.44 0.76 0.67 0.61 0.1 0.55 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣



Price
Mileage
Insp.notes
V ehicle age
No.accidents
No.owners

ν


Note: In bold, cross-correlation elements induced by estimated param-
eters s1..s6. Rightmost vector shows the corresponding characteristics.
Non-bold figures are all significant at the 1% level. Bold figures are
significant at the 5% level (see Table 7).
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Table 9: Search Moments from Dataset and Model Predictions

Data Model Prediction
Mean Std. Dev. Min Max Mean Std. Dev. Min Max

Conversion Rate 0.047 0.213 0 1 0.055 0.228 0 1
N. Searches 1.639 3.22 1.082 9 1.433 1.153 0.5 6.054

Vehicle Histories 0.441 0.743 0 4 0.397 0.316 0.108 1.844
Inspection Reports 0.175 0.496 0 4 0.161 0.184 0 1.157
Photo Sets 1.023 0.873 0 4 0.875 0.664 0.268 3.376

N: 12,887 consumers
Note: All model predictions are first averaged across simulations, and then statistics are applied. The
Standard Deviation, Min and Max statistics of the Conversion Rate were corrected through use of the
Bernoulli distribution moments (e.g., Std. Dev =

√
p (1− p)).

Table 10: Consumer Welfare Effects of Exchanging Attributes Between Front and Detail
Pages

Vehicle Detail Page Attribute
Front Page Attribute Vehicle History Inspection Report

Mileage +1.65% (+1.73%)** -0.39% (-0.41%)**
Age +1.76% (+1.85%)** -0.11% (-0.12%)
Price +2.35% (+2.48%)** +0.02% (+0.01%)*

N: 12,887 consumers
Note: Above, impact of exchanging attributes in the front page with the ones in the vehicle
detail page on the number of searches. Relative changes in parentheses. Significance levels:
† p≤0.10, * p≤0.05, ** p≤0.01.

Table 11: Conversion Effects of Exchanging Attributes Between Front and Detail Pages

Vehicle Detail Page Attribute
Front Page Attribute Vehicle History Inspection Report

Mileage +0.36% (+6.58%)** -0.11% (-1.91%)
Age +0.36% (+6.55%)** -0.02% (-0.33%)
Price +0.63% (+11.34%)** -0.00% (-0.03%)

N: 12,887 consumers
Note: Above, impact of exchanging attributes in the front page with the ones in the vehicle
detail page on mean conversions. Relative changes in parentheses. Significance levels: †
p≤0.10, * p≤0.05, ** p≤0.01.
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Table 12: Conversion Effects of Different Information Configurations

Information Configuration Consumer Welfare Conversion Effects
Original
Configuration:

Main Listing Page[
Mileage
Age

] Vehicle Detail Page[
V.Hist.
Insp.Rep.

] – –

Scenario a) [
V.Hist.
Insp.Rep.

] [
Mileage
Age

]
+1.49% (+1.57%)** +0.29% (+5.31%)**

Scenario b)
[

V.Hist.
Insp.Rep.

] [
Age

Mileage

]
+1.46% (+1.54%)** +0.30% (+5.39%)**

Scenario c)
[
Mileage
Age

] [
Insp.Rep.
V.Hist

]
+0.08% (+0.09%) +0.05% (+0.95%)

Scenario d)
[
Insp.Rep.

Age

] [
Mileage
V.Hist

]
-0.35% (-0.37%)** -0.08% (-1.41%)

Scenario e)
[

Mileage
Insp.Rep.

] [
Age

V.Hist

]
-0.12% (-0.13%)† -0.03% (-0.56%)

Scenario f)
[
V.Hist
Age

] [
Insp.Rep.
Mileage

]
+1.65% (+1.73%)** +0.36% (+6.58%)**

Scenario g)
[
Mileage
V.Hist

] [
Insp.Rep.

Age

]
+1.76% (+1.85%)** +0.38% (+6.86%)**

N: 12,887 consumers
Note: Above, impact of exchanging attributes in the front page with the ones in the vehicle detail page on the
number of searches. Relative changes in parentheses. Significance levels: † p≤0.10, * p≤0.05, ** p≤0.01.

Table 13: Consumer Behavior Statistics Compared with Myopic Model

Data Knowledge Gradient
Mean Std. Dev. Min Max Mean Std. Dev. Min Max

Conversion Rate 0.047 0.213 0 1 0.057 0.233 0 1
N. Searches 1.639 3.22 1.082 9 1.16 0.65 0.46 4.319

Vehicle Histories 0.441 0.743 0 4 0.279 0.163 0.057 1.143
Inspection Reports 0.175 0.496 0 4 0.119 0.084 0 0.694
Photo Sets 1.023 0.873 0 4 0.762 0.428 0.257 2.699

N: 12,887 consumers
Note: All predictions are first averaged across simulations; then statistics are applied. The Standard
Deviation, Min and Max statistics of the Conversion Rate were corrected through use of the Bernoulli
distribution moments (e.g., Std. Dev =

√
p (1− p)).
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Table 14: Vuong’s Non-Nested Test

Log-likelihood Vuong’s Test
Forward-Looking Model -38,937.35 Z-statistic 2,233.9

25.94 = 86.13
Knowledge Gradient -41,171.25 p-value 0.000
N: 12,887
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Appendix

A Data Cleaning
A few unusual patterns emerged while analyzing the clickstream data. First, a few sessions
were very short, resembling ‘bouncing’ behavior in which a user visits the website and leaves
without triggering additional action flags, often adding up to a very short overall session time.
This type of activity is typically generated by users who visited the website by mistake, or
by ‘bots’ scraping the Internet for content. These users are likely to have very different
objectives than purchasing a car on the platform. We control for this type of behavior by
eliminating sessions that triggered only a page visit or that took less than 5 seconds in terms
of the overall measured activity (e.g., a session that triggers two events, with only 3 seconds
apart, is eliminated). We also removed a few users with very unusual browsing behaviors.
For example, users who exhibited activity across multiple IP addresses belonging to different
countries within a very short period of time were eliminated from the sample.

B Variance-Covariance Matrix Decomposition
During the estimation of the structural parameters, the variance-covariance matrix

Σ0 =



 . Σ .

 σzν

σ′zν σ2
ν

 (27)

has a known component Σ, and an unknown border. We take the Cholesky decomposition
of Σ0, and parameterize its border with vector

s1, s2, ..., s6,

√√√√1−
6∑
j=1

s2
j


′

This yields the decomposed matrix in Table 15.
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Table 15: Cholesky Decomposition of Bordered Variance-Covariance Matrix

C =



1. −0.664415 −0.305486 −0.727454 −0.0660357 −0.159545 s1
0 0.747364 0.217517 0.29733 0.0471439 0.143938 s2
0 0 0.927019 0.128614 0.0370378 0.00187495 s3
0 0 0 0.604867 0.0352993 0.016755 s4
0 0 0 0 0.995389 0.00822777 s5
0 0 0 0 0 0.976461 s6

0 0 0 0 0 0
√

1−
∑6

j=1 s
2
j



The matrix Σ, obtained by
Σ = C ′C (28)

conforms to matrix Σ0 in that the upper-left block is equal to Σ, and the element
√

1−∑6
j=1 s

2
j

in C implies that resulting lower-right parameter σ2
ν is normalized to one. In addition, vector

σzν in Σ0 is obtained by linear combinations of parameters {s1..s6}. Finally, at each iteration
we check that matrix Σ is p.s.d., and penalize likelihood evaluations for guesses generating
non-p.s.d. covariance matrices.

C State-Partitioning Decision Trees

C.1 Example
Each consumers’ dynamic problem is represented by a separate decision tree, with one ‘node’
for each possible configuration of her search actions. For example, a consumer with only one
vehicle in her consideration set and three available search actions generates a tree with 8 (23)
nodes. Each node has a number of allowable search actions. For example, if the consumer
is in node “010” (i.e., the binary representation for the consumer having taken the second
search action), then actions “100” and “001” are still available. The decision of selecting a
terminal decision, be it ordering a test drive or selecting the outside option, are available at
all nodes as well. The result is that each node has a collection of allowed actions.
When the consumer arrives to node “010”, she may be in one of a number of information
states. We call each state a “partition”, for reasons we explain further below. Finally, search
actions transition consumers across nodes (e.g., action “100” leads consumer from node “010”
- if she has already taken the second search action - to node “110”).

In order to clarify the decision tree further, we consider the case of a decision-maker (DM)
who faces only one alternative with two characteristics, each of which she may decide to
search or not. Assume that the support of the characteristics is x1 ∈ {1, 2} and x2 ∈ {2, 3},
and that they are distributed according to some joint distribution. We depict the DM’s
decision tree in Figure 9. Before estimation, we take draws from the joint distribution
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of characteristics (we use four draws here; this low number is convenient for illustration
purposes). Suppose that we obtain draws {1, 2}, {1, 3}, {2, 2}, and {1, 3}, as represented
in the top -left corner of Figure 9, and the ‘freq.’ column denotes the frequency with which
each simulation was drawn.

In the figure, the tree extends from right to left, starting at node “00” - i.e., where no
search action has been taken yet. This node has a single information set P1 = {1, 2, 3}:
Before search takes place, any of the simulations 1, 2, or 3 could correspond to the truth,
and the consumer is required to search, in order to understand which case she is actually
facing. For example, in the data, the true characteristics could be x1 = 1 and x2 = 2.

At node “00”, any of the simulations may represent the true vehicle characteristics, but
the decision maker does not know which one. Suppose the consumer decided to take search
action 01 (top arrow), which informs her of characteristic x2. She understands that she will
transition from node 00 to node 01, and specifically, that her new information state will
be either {1, 3} or {2}. To see this, note that because x2 ∈ {2, 3}, implies that learning
it partitions the initial simulation space into two subsets. If the DM learns that x2 = 2,
then she understands that the correct simulation is either draw 1 or 3, which indeed exhibits
x2 = 2; otherwise, the correct simulation must be element 2 (the only element with x2 = 3
in this example).

The ‘state bootstrapping’ approach is also useful to calculate transition probabilities.
Specifically, because the simulations are drawn from the joint distribution of characteristics,
the frequency column can be used to easily calculate transition probabilities. Taking action
01 at node 00 transitions the decision maker to partition {1, 3} with 1/2 probability, because
simulations 1 and 3 were drawn once each, whereas simulation 2 was drawn twice. At node
00, the consumer may also take search action 10, and learn x1, which partitions the state
space into partitions {1, 2} and {3} with transition probabilities 3/4 and 1/4, respectively.
Importantly, as the number of simulations increases, the draws represent the distribution of
characteristics more closely, yielding estimator consistency.
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C.2 Programming the Decision Tree
The decision tree has three fundamental objects. The first one is a node, which corresponds
to each possible “action state” (set of search actions taken) that the consumer may face
during her search. By action state, we mean a value that identifies which search actions the
consumer has already taken.

The second fundamental object is a partition. This object identifies a set of eligible
simulations at a given node. Each node contains a set of eligible partitions, each of which
the consumer may encounter at that node. For example, when the consumer searches an
action with a binary value, she partitions the set of eligible simulations into two subsets, and
selects one depending on the observed value. The corresponding child node features both of
those partitions.

Finally, the third object is an (search) action, which belongs to a specific partition. More-
over, each partition may contain multiple admissible search actions. The action object has
two roles. First, it links a partition to its child partitions and their probabilities. For exam-
ple, if a consumer takes a given search action while in a given partition, she will transition
to different partitions of a sub-node, with different probabilities. Second, an action also con-
tains its own value, which is obtained by integrating the value of the possible future paths
it can lead to.

The connections among all of these objects describe the DM’s dynamic problem. Below,
we provide a stylized representation of each of the fundamental decision-tree objects. (The
actual representation is more complex in that involves vectors of pointers and additional
properties and methods.)

}
Node:

node{

int id;
vector of <partition> v_p;

}

Partition:

partition{

vector of <action> v_a;
vector of <int> simulations;
vector of <terminal_utilities> v_tu;

}
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Action:

action{

vector of <partition> v_p;
vector of <transition_probabilities> v_tp;
double EV;

}

In order to understand the links among the objects above, consider Figure 9. When the
consumer starts her search, she is in partition 1 of node 1. This partition is saved as an
element of the vector “v_p” of the node. The partition is associated with an object that
has a vector of actions “v_a”, a vector of identifiers of the simulations it contains (field
“simulations”) and a vector of terminal utilities. In the example, vector “v_tu” has two
elements, corresponding to the inside and outside options. Finally, each action in vector
“v_a” has three fields. First, an action keeps track of the partitions it can transition the
decision-maker to (field “v_p”). It also keeps track of the transition probabilities to each of
those partitions (field “v_tp”), and finally, it keeps track of its own value (field “EV”).

Consider again the tree represented in Figure 9, which has four nodes. Notice that
partition P1 shows up as a field of node 01, as well as a field of action 01 of node 00. Relying
on memory pointers in coding is helpful in not having to allocate partition P1 twice. Rather,
object P1 is created only once, with node 00 and action 01 merely keeping references to it.

We create the decision tree bottom-up, starting at the last node corresponding to all
search actions taken (in the working example, node 11). We populate the last node with
single-element partitions. We then proceed to populate all direct parent nodes (in the work-
ing example, nodes 01 and 10). For each one, we cycle through the elements in the partitions
of the child node (node 11), and attempt to merge them so that each partition of the parent
node only differs on the characteristics that have not been searched yet. For each partition,
we then create the actions, which link to the child partitions. For example, the only admissi-
ble search action allowed at node 01 is action 10. Hence, we add action 10 to each partition of
node 01, and link it to the potential child partitions, taking into account the characteristics
that the action reveals. The procedure stops once the top of the tree is reached.

C.3 Updating the Decision Tree
Consider a set of structural parameters being attempted by the optimizer. The tree is
updated in four stages:

1. For each consumer, given the new guess for the structural parameters, the algorithm
re-draws values of ν, conditional on the observed characteristics. If these values remain
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the same as the previous draws, a previously available decision tree can be used for
the new iteration. Otherwise, a new tree needs to be generated for consumer i.

2. Terminal action utilities are calculated for all partitions. For example, at node 00,
calculating the expected value of the inside option involves performing a weighted
average of the characteristics of all simulations, and performing the inner product of
the resulting vector with the vector of current preference parameters.

3. The transition probabilities are recalculated for all actions. These are calculated from
the simulation frequency of the simulated draws.

4. Proceeding bottom-up, the expected value of each search action is calculated, by cycling
through each of the potential child partitions (the partitions that the action may lead
to). For each child partition, the log-sum of all of the action utilities (inside, outside
and search actions) is calculated. Finally, those expected utilities are weighted by the
transition probabilities.

This process is accelerated by noticing that some steps can be skipped when the simulations
remain constant across evaluations. Namely, the tree structure remains valid (it has the same
partitions and actions) as long as the draws of ν are the same at the new structural parame-
ters (e.g., when only preference parameters change across iterations). A tree from a previous
evaluation can be used in this case, eliminating the need to create a new one. Moreover,
noticing that the transition probabilities also depend exclusively on the simulations allows
us to not recompute the whole tree at all parameter guesses.

C.4 Unobserved Characteristic
Our goal is to maintain the relatively parsimonious tree representation described above,
while allowing for an unobserved characteristic that may be arbitrarily correlated with the
observable ones. Because the covariance between observed characteristics can be estimated
in a first stage, it is kept constant through the estimation of the structural parameters. In
contrast, the covariance parameters relating the unobserved characteristic with the observed
ones are unknown and need to be estimated simultaneously with the preference parameters.
As the guesses for the covariance parameters change, so will the simulations of the unobserved
characteristic, as in usual simulation-based estimation models.

One complication that arises when incorporating an unobserved characteristic in the con-
text of state-partitioning trees is that the probability of two draws of a continuous variable
coinciding is equal to zero. This uniqueness means that searching the unobserved character-
istic not only informs the DM about it, but it also informs the DM of all of the other search
characteristics perfectly. Consider the example in Table 16. Unless the cost of evaluating
characteristic ν is prohibitively high, the DM should opt to immediately learn ν, because
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Table 17: Example of Simulations with Continuous Signal ν̂

Simulation # x1 x2 ν̂
1 1 1 1.5
2 1 2 0
3 2 2 1.5

that decision will also provide full information about the remaining characteristics (e.g.,
learning that ν = 0.3 informs the DM that she is in case 1) with certainty.

Table 16: Example of Simulations with Continuous Unknown Characteristic ν

Simulation # x1 x2 ν
1 1 1 0.3
2 1 2 -1.3
3 2 2 0.6

An apparent solution would be to discretize the space of ν, just as one can do with
continuous observable characteristics. However, that discretization procedure will fail to
update the likelihood for small optimization steps. This is a common issue, usually present
in the context of accept/reject estimators (see McFadden (1989)).

We assume that, when consumers take the search action corresponding to the unobserved
characteristic, they learn a signal ν̂ = ν + η, where η is normally distributed N

(
0, σ2

η

)
. For

estimation purposes, signal ν̂ has a fixed support, based on the sparse grid proposed by
Heiss and Winschel (2008). In this way, the number of support points for ν grows with the
number of vehicles in the consumer’s consideration set. Given the covariance matrix Σ, which
includes the observable characteristics plus the unobserved characteristic ν, it is possible
to write the distribution of ν̂ conditional on the observable characteristics. For a specific
parameter guess, we take draws of ν̂, conditional on a simulation’s observed characteristics,
from the fixed support. The simulation probability of each support point ν̂i is given by
P̌ r ( ν̂i|x1, x2) = f

ν̂
( ν̂i|x1,x2)∑NS

j=1 fν̂( ν̂j|x1,x2) where fν̂ ( ν̂i|x1, x2) is the density of the signal conditional
on the observable characteristics, and NS is the number of sparse grid support points used.
As NS grows, our simulation probability P̌ r ( ν̂i|x1, x2) approaches the exact probability
Pr ( ν̂i|x1, x2) induced by the normal distribution.

Table 17 provides an example. Suppose that only three draws were taken, and the sparse
grid of ν̂ is {−1.5, 0, 1.5}, with simulation probabilities as defined above. According to Table
17, searching the unknown characteristic ν partitions the simulation set into subsets {1, 3}
and {2}. The expected value of ν can be calculated easily. Before any search activities take
place, the DM is in an initial partition P1, and the expected value of ν is calculated according
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to

E (ν|P1) = 1
3 [E (ν|x1 = 1, x2 = 1, ν̂ = 1.5)

+ E (ν|x1 = 1, x2 = 2, ν̂ = 0)
+ E (ν|x1 = 2, x2 = 2, ν̂ = 1.5)]

However, if the consumer has searched the unobserved characteristic, and has found that ν̂ =
1.5 such that her partition is P2 = {1, 3}, the expected value of the unobserved characteristic
equals

E (ν|P2) = 1
2 [E (ν|x1 = 1, x2 = 1, ν̂ = 1.5)

+ E (ν|x1 = 2, x2 = 2, ν̂ = 1.5)]

The utility from the observed characteristics is calculated similarly.
As before, the simulation draws over ν̂ may not change across small optimization steps.

However, the conditional expectations above do change continuously with the covariance
parameters, meaning that this approach does produce a likelihood function that is sensitive to
small changes to parameter values.14 In our application, we use 30 simulations per consumer.
Some characteristics are ex-ante known by consumers, and so, they are always conditioned
on, except in counterfactual analyses.

C.5 Multiple Alternatives
The examples above apply to a single alternative. When the DM has multiple alternatives,
it suffices to repeat the same process for each. While this increases the number of columns in
Table 17, for example, the number of rows remains at R. Clearly, estimator efficiency requires
the number of simulations R to be appropriate for the maximum number of alternatives
observed in the sample. We cap the sample to consumers who browsed at most 4 vehicles,
which comprises 89% of the sample, and we employ 30 simulations per consumer.

Because each row of a simulation table has information about multiple alternatives, it
follows that learning a specific vehicle’s characteristic implies partitioning also the simula-
tions for the remaining vehicles. Importantly, because the draws are taken independently
across vehicles, partitioning the simulation set around a search characteristic of vehicle i
has no bearing on the distributional properties of the simulations of the remaining vehicles.
Overall, our method ensures that as long as the number of simulations is appropriate, it
yields a consistent estimator.

14Note also that the loss in efficiency from not updating the simulations of ν̂ continuously with the
covariance parameters decreases as the number of simulations increases.
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C.6 Calculating the Likelihood of a Search Path
Once the decision-tree is created, according to the steps outlined in Section C.3, it remains
to calculate the probability the consumer’s search sequence. Consider a customer who, in
the data, searches over a unique alternative with search characteristics x1 = 1 and x2 = 2,
and suppose four simulations are drawn, according to Table 18:

Table 18: Example of Simulations with Signal ν̂

Simulation # x1 x2 ν̂
1 1 1 1.5
2 1 2 0
3 2 2 1.5
4 1 2 1.5

In this example, simulations 1 and 4 are consistent with the vehicle observed in the
data. In order to calculate the likelihood of the search path, the algorithm calculates the
probability of each of the customer’s actions, conditional on simulation 1 being true first, and
then again conditional on simulation 4 being true. These probabilities are readily available
from applying the logit formula to the terminal utilities as well as to the expected utilities
of the search actions at every node. Because each simulation was drawn only once, the
likelihood of the path can be calculated by a simple average of each of the conditional
probabilities. The drawn signals ν̂ reflect the simulation probabilities, and so no additional
adjustments are required.

A potential issue with the current approach is that the drawn simulations may fail to be
consistent with the characteristics of the vehicles in the consumer’s consideration set. For
example, a vehicle’s characteristics may be x1 = 1 and x2 = 2, while all simulations may
predict different levels. This would be an issue, because somewhere along the decision tree,
the researchers know that the consumer has learned x1 = 1, which could be incompatible
with all of the draws. In order to solve this problem, we include a single observation in
the simulation set that is consistent with the observable characteristics of the vehicles in
the consumer’s consideration set. This ensures that there is always a non-empty partition
consistent with the consumer’s information set. This step does not affect the consistency of
our estimator, because there is no need to increase the number of such simulations beyond
one, as N or R increase.

D Computational Details
All estimation took place on Amazon AWS hardware. The estimation of the main model was
performed in parallel on “m4.10xlarge” instances. Estimation was programmed in C/C++.
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