## Challenges and Solutions in the Construction of Chinese Patent Database

Deyun YIN <u>deyun.yin@wipo.int</u> Research Fellow Innovation Economics Section, Economic and Statistic Division, World Intellectual Property Organization



2019/12/07

## Contents

# **Topic1:** Construction of CNIPA database: challenges, solutions and recent progress

• Inventor name Disambiguation

make individual-level study of Chinese innovation possible

- Standardizing applicants' names
- Construction of citation database
- Topic 2: Improving PATSTAT's coverage, geocoding and map global innovation network of innovation hotspots

1. Supplementing missing information from CNIPA, JPO, KII

2. International patents (PCT or patent family >=2 or foreignoriented patents)

3. identification of technological clusters with DBSCAN

4. Mapping global innovation network



# Contents

## - Topic 1: Construction of CNIPA database

- Inventor name disambiguation
- Applicant name harmonization
- Citation

- Topic 2: improving PATSTAT database geocoding and mapping global network of innovation hotspots

## Introduction

## Why CNIPA data?

- 1. World 2<sup>nd</sup> largest database.
- 2. Important for studying China's innovation

Coverage of Chinese patent in major databases in USPTO, EPO, JPO

## Introduction

### **But CNIPA data suffers from the following limitations:**

|            | Challenges    | Solutions                                                         |
|------------|---------------|-------------------------------------------------------------------|
| Inventors  | Lack Unique   | • USPTO: Patentsview                                              |
|            | identifiers   | • EPO: Pezzoni, et al., 2014                                      |
|            | Lack          | • JPO: Ikeuchi et al., 2018                                       |
|            | inventor      | • SIPO: Yin et al., 2019                                          |
|            | addresses     | • KIPO                                                            |
| Applicants | No            | • USPTO                                                           |
|            | harmonized    | • EPO                                                             |
|            | names         | • JPO: IIP company name list                                      |
|            |               | • SIPO: CPDP (He et al., 2018)                                    |
| Citations  | Lack of       | • Patent search report                                            |
|            | reliable      | <ul> <li>Extraction of within-text citation by IncoPAT</li> </ul> |
|            | citation data |                                                                   |

# Contents

# - Topic 1: Construction of CNIPA database

- Inventor name disambiguation
- Applicant name harmonization
- Citation

- Topic 2: improving PATSTAT database geocoding and mapping global network of innovation hotspots

## Inventor Name Disambiguation Introduction

Scientometrics https://doi.org/10.1007/s11192-019-03310-w

## Large-scale name disambiguation of Chinese patent inventors (1985–2016)

Deyun Yin<sup>1</sup> · Kazuyuki Motohashi<sup>1</sup> · Jianwei Dang<sup>2</sup>

Received: 16 April 2018 © Akadémiai Kiadó, Budapest, Hungary 2019

#### Abstract

This study presents the first systematic disambiguation result of Chinese patent inventors in State Intellectual Property Office of China patent database from 1985 to 2016. With a list of 66,248 inventors owning rare names and a hand-labeled data of 1465 inventors, our supervised learning algorithm identified 3.99 million unique inventors from 1.84 million Chinese names referring to 14.68 million patent-inventor records. We developed a method for constructing high-quality training data from a third-party rare name list and provided evidence for its reliability when large-scale and representative hand-labeled data is crucial but expensive to obtain. To optimize clustering results on large-scale dataset with highly unbalanced distribution, we also modified robust single linkage by adding constraints to the maximum distance within clusters generated. Varying across different training and testing data, as well as clustering parameters, our algorithm could yield F1 scores to 93.36% before clustering and 99.10% after clustering, with final splitting errors of 1.05–1.34% and lumping errors of 0.21–0.83%. Besides, we also applied this framework in standardizing applicants' names according to their text similarity and geographical information based on the high-resolution geocoding data of all addresses within mainland China.

**Keywords** Disambiguation  $\cdot$  Patent  $\cdot$  Inventor  $\cdot$  Machine learning  $\cdot$  Gradient boosting decision tree  $\cdot$  Single linkage

Deyun YIN, Kazuyuki MOTOHASHI, Jianwei DANG (2019). Large-scale Name Disambiguation of Chinese Patent Inventors (1985-2016), Scientometrics, p1-26.



Check fo

## Inventor Name Disambiguation Introduction

#### Background

- 1. **Productivity:** identifying and targeting productive ("star") engineers (prolific or with higher influence) and examine factors that influence organizational or inventor's productivity
- 2. Mobility: Tracking inventor's patenting career and mobility among institutions and regions, examine determinants of inventor mobility and its impact on knowledge spillover or firm performance.
- 3. Networks: inventor teams, collaborative and citation networks .

#### Why should we disambiguate Chinese inventors?

- CNIPA: World largest patent database and rising share of papers & patents published by Chinese
- East Asian names, especially Chinese names: most challenging problems

#### What is disambiguation? Identifying "who owns which"

**Goal:** Disambiguate Chinese inventors and give an unique identifiers for each different inventors in SIPO .

## Inventor Name Disambiguation Introduction

#### **Common Challenges & roots of confusion**

## Western Names

- Synonym: different names referring to one person:
  - Typographical errors/misspelling, name variant, and abbreviations
  - e.g.
  - Lee Fleming 5,029,133 (1991)
  - Lee O. Fleming -- 5,136,185 (1992)
- Major issue for disambiguating western names, negligible for Chinese names: 2~2.5‰ synonym problem in rare names, fewer than 2‰ for common names as rare names are prone to misspelling or miswritten.

## **Eastern Asian Names**

- **Homonym:** same name referring to different person:
  - Repetition of common names (同姓同名)
  - e.g. name "张伟"
    - 9,684 patent records (would generate 46,885,086 comparison pairs).
    - 61,037 papers in Wanfang database
  - most severe problems in Chinese names as Chinese names are less variate.
  - → highly unbalanced clustering task and large lumping errors generated by single linkage clustering

#### **Unique challenges:**

- 1. Lack inventor address: only address of the first applicant.
- 2. No training and testing set: need to choose appropriate training set & models

## Inventor Name Disambiguation Net Contribution

### Methodological Contribution:

- 1 An algorithm customized according to characteristics of Chinese names;
- 2 An evidence for substituting hand-labeled records with rare name data when large-scale, representative and unbiased hand-labeled records is impossible to collected.
- ③ Robust Single Linkage with dynamic constraints: adding constraints to the maximum distance on clusters generated by RSL→ a robust and flexible method to avoid creating excessively large clusters with high lumping errors.

### Data contribution:

- 1 A cleaned Chinese inventor dataset with classification of ethnicity (Chinese names, Japanese, and other foreign names);
- (2) 21,359 hand-labeled records participated by 1,465 academic and industrial inventors from a broad range of technological fields for evaluating and comparing performances of disambiguation classifiers.
- ③ a list of 66,248 inventors owning real rare names (0.4 million records)
- (4) 1.84 million Chinese names  $\rightarrow$  3.99 million unique inventors (14.68 million)

## Inventor Name Disambiguation Literature Review

| Methodology               | Author                        | Application                  | Training Set                                                                    | Algorithms                                                                    | Evaluation                                                                                                     | Claimed Result                                                                 |
|---------------------------|-------------------------------|------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Rule-based<br>(Heuristic) | Lai et al.,<br>2009           | USPTO<br>1975~2008           | NA                                                                              | Similarity profile + ad hoc<br>threshold                                      | Extension of Torvik et al.<br>(2005) and the first dataset<br>public available                                 | Splitting:<br>9.18%,<br>Lumping:<br>0.76%                                      |
|                           | Zhang et al.,<br>2014         | SIPO 2000-2009               | NA                                                                              | String matching of<br>applicant, province, IPC<br>class                       | First and unique attempt<br>that disambiguated Chinese<br>inventors                                            | NA                                                                             |
|                           | Pezzoni et al.,<br>2014       | PATSTAT 2011                 | NA                                                                              | Similarity profile + <i>ad hoc</i> threshold and weight                       | First disambiguation of PATSTAT data                                                                           | Precision:74%,<br>Recall: 70%                                                  |
|                           | Morris, 2017                  | PATSTAT 2014                 | NA                                                                              | using high-resolution<br>geocoding data                                       | Simple, straightforward<br>rules that disambiguate<br>assignees and inventors at<br>the same time              | Splitting:<br>10.5%,<br>Lumping: 9.5%                                          |
| Semi-<br>supervised       | Li & Lee<br>Fleming, 2014     | Full USPTO                   | Statistically<br>generated labels<br>with rare names as<br>a part of input data | Naïve Bayes + <i>ad hoc</i> rules<br>automatically generated<br>training sets | Pioneering work based on<br>machine learning method                                                            | Splitting 3.62%,<br>Lumping:<br>2.34%, F1 score<br>from 3rd party:<br>92.7314% |
|                           | Ikeuchi et al.,<br>2017       | Japanese<br>inventors in JPO | Rare name data as<br>a part of input data                                       | Naïve Bayes + ad hoc rules                                                    | First systematic<br>disambiguation of Japanese<br>patent data                                                  | Splitting:<br>2.41%,<br>Lumping:<br>0.29%                                      |
| Supervised                | Ventura,<br>et.al., 2015      | A small subset<br>of USPTO   | Optoelectronics +<br>Academic life<br>scientists                                | Random Forest +<br>Hierarchical clustering                                    | First supervised method<br>while the training set have<br>large biases when applying<br>to whole USPTO dataset | Splitting:<br>2.09%,<br>Lumping:<br>1.26%                                      |
|                           | Kim, Khabsa,<br>& Giles, 2016 | Full USPTO                   | Random mixture<br>of IS and E&S<br>dataset                                      | Random Forest +<br>DBSCAN                                                     | Similar to method of<br>Ventura, et.al., (2015) with<br>refinement such as detailed<br>feature selection       | Precision:<br>>99%,<br>Recall: 97%,                                            |
| Unsupervised              | Balsmeier et al., 2016        | Weekly updated<br>Full USPTO | NA                                                                              | K-Means clustering                                                            | Completely automated process                                                                                   | NA                                                                             |

#### Summary of nationality identified by names in full SIPO patent inventor data

| Names of                                   | Unique  | Unique | Inventor-    | Ida_seq | Max  | Criteria                                                                                                                         |                                                                                                                |
|--------------------------------------------|---------|--------|--------------|---------|------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| country                                    | patents | names  | patent pairs | /names  |      |                                                                                                                                  |                                                                                                                |
| Chinese<br>(Korean,<br>Taiwanese,<br>etc.) | 4,9 m   | 1,84 m | 14,685,617   | 7.96    | 9680 | No points within name, do<br>not have a Japanese Family<br>name and the length of name<br>equal to or lower than 4<br>characters | Inventor-patent records<br>in SIPO                                                                             |
| Western (all<br>other<br>countries)        | 0.899 m | 1,17 m | 2,492,036    | 2.14    | 509  | With a point in names,<br>e,g. "P·T·贾特", "D·罗布"                                                                                  | <ul> <li>Chinese (Korean, Taiwanese, etc.)</li> <li>Western (all other countries)</li> <li>Japanese</li> </ul> |
| Japanese                                   | 0.569 m | 0.35 m | 1,435,067    | 4.05    | 1402 | With typical Japanese Family<br>name e.g. "伊藤彰浩", "毒<br>岛真"                                                                      |                                                                                                                |
| In Total                                   | 6,25 m  | 3,36 m | 18,6 m       |         |      |                                                                                                                                  |                                                                                                                |

# Inventor Name Disambiguation Data

| Unit of<br>Analysis:                          | <ul><li>inventor-patent pairs.</li><li>Ida_seq = Patent id + inventor sequence</li></ul>                                                                                                                                                                                        |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input                                         | Inventor characteristics <ul> <li>Inventor names</li> </ul>                                                                                                                                                                                                                     |
|                                               | <ul> <li>Patent characteristics</li> <li>Applicant names: job</li> <li>Applicant address</li> <li>Geocoding of applicant address (Baidu<br/>Map's API)</li> <li>All inventors: co-inventors</li> <li>IPC code: technological area</li> <li>Title: technological area</li> </ul> |
| Process:<br>pairs for<br>comparing<br>ida_seq | <ul> <li>Non-match: 0 = two ida_seq pairs<br/>belonging to 2 different person</li> <li>Match: 1= two ida_seq pairs belonging to<br/>the same person</li> </ul>                                                                                                                  |
| Output                                        | <ul> <li>Inv_id = Unique inventor identifier</li> </ul>                                                                                                                                                                                                                         |



## Inventor Name Disambiguation Algorithms

| ntor | id   | ida_seq        | name             | inventor_all         | ipc_class   | ipc_group    | title         | la                |
|------|------|----------------|------------------|----------------------|-------------|--------------|---------------|-------------------|
| 丁友昉  | 2068 | 03100363-1     | ['丁友昉']          | ['丁友昉','王德培','刘廷志']  | ['A23K', 'A | ['1-14', '1  | 多种微生物秸秆发酵饲料与  | 39.07842290307    |
| 丁友昉  | 2068 | 03105080-1     | ['天津科技大学']       | ['丁友昉', '杜连祥', '王德培' | ['A23K']    | ['1-14']     | 利用多菌种联合厌氧发酵生  | 39.07842290307    |
| 丁友昉  | 2068 | 200410037613-2 | ['包头天赋食品']       | ['方向东', '丁友昉', '秦刚'] | ['C12N', 'A | ['1-20', '1  | 多菌种微生物发酵剂的制作  | 40.60827433188299 |
| 丁友昉  | 2068 | 200410072845-1 | ['丁友昉']          | ['丁友昉', '秦刚', '王德培'] | ['C12G']    | ['3-02']     | 发酵虫草、枸杞保健酒及制  | 39,08885978382113 |
| 丁友昉  | 2068 | 200410072995-2 | ['天津科技大学']       | ['王德培', '丁友昉', '秦刚', | ['A23K', 'A | ['1-14', '1  | 多种微生物发酵精饲料和发  | 39,08885978382113 |
| 丁友昉  | 2068 | 200610014479-2 | ['天津科建科技发展']     | ['王德培', '丁友昉']       | ['C12N', 'C | ['9-24', '1  | 复合微生物β-葡聚糖酶和β | 39.1135305284678  |
| 丁友昉  | 2068 | 200610015434-1 | ['天津达美科技']       | ['丁友昉','王德培','杨扬']   | ['C12N', 'C | ['9-24', '1  | 一种固态机械发酵木聚糖酶  | 39.11334710771231 |
| 丁友昉  | 2068 | 200710058626-2 | ['天津科技大学']       | ['王德培','丁友昉','高年发']  | ['C12P', 'C | ['7-52', '1  | 固定化微生物发酵丙酸的生  | 39.07842290307    |
| 丁友昉  | 2068 | 200710058627-2 | ['天津科技大学', '唐山赛纳 | ['王德培','丁友昉','周念闽']  | ['A61K', 'A | ['35-74', '9 | 一种用于牲畜的益生活菌微  | 39.07842290307    |
| 丁友昉  | 2068 | 200710059578-3 | ['天津科技大学']       | ['王德培', '揣玉多', '丁友昉' | ['A23K', 'A | ['1-00', '1  | 微生物发酵的紫甘薯饲料及  | 39.07842290307    |
| 丁友昉  | 2068 | 200810152951-2 | ['北京阔利达生物技术开发',  | ['王德培', '丁友昉', '李桂祥' | ['A23K']    | ['1-14']     | 发酵废弃蔬菜饲料和制备方法 | 40.4164229624551  |
| 丁友昉  | 2068 | 200910067649-2 | ['北京阔利达生物技术开发',  | ['王德培', '丁友昉', '李桂祥' | ['A23K']    | ['1-16']     | 微生物活菌饲用添加剂及制  | 40.4164229624551  |
| 丁友昉  | 2068 | 201410206221-1 | ['丁友昉']          | ['丁友昉','王德培','刘廷志'   | ['A23K', 'A | ['1-00', '1  | 多种益生菌秸秆发酵饲料的  | 39.08066616659715 |

Input data

#### Sample of Similarity profile

| ida_seq1       | ida_seq2       | match | app_i | inventor_i | ipc_c | ipc_g | applicant | geo | address  | title    | keyword1 | keyword2 |
|----------------|----------------|-------|-------|------------|-------|-------|-----------|-----|----------|----------|----------|----------|
| 200610014479-2 | 201510139861-2 | 0     | 0     | 0          | 0     | 0     | 0         | 1   | .2631579 | 0        | 0        | 0        |
| 200610014479-2 | 200610015434-1 | 1     | 0     | 2          | 8     | 3     | 0         | 5   | .9473684 | .4487628 | 0        | 0        |
| 200610014479-2 | 200710058626-2 | 1     | 0     | 2          | 2     | 0     | 0         | 3   | .5714286 | .55      | 0        | 0        |
| 200610014479-2 | 200710058627-2 | 1     | 0     | 2          | 0     | 0     | 0         | 3   | .5714286 | .4118687 | 0        | 0        |
| 200610014479-2 | 200710059578-3 | 1     | 0     | 2          | 3     | 2     | 0         | 3   | .5714286 | .5343137 | 0        | 0        |
| 200610014479-2 | 200810152951-2 | 1     | 0     | 2          | 0     | 1     | 0         | 1   | .2916667 | .491453  | 0        | 0        |
| 200610014479-2 | 200910067649-2 | 1     | 0     | 2          | 0     | 0     | 0         | 1   | .2916667 | .5861111 | 0        | 0        |
| 200610014479-2 | 201410206221-1 | 1     | 0     | 2          | 0     | 1     | 0         | 3   | .3333333 | .3507615 | 0        | 0        |
| 200610014479-2 | 201510731936-6 | 0     | 0     | 0          | 0     | 0     | 0         | 1   | .2083333 | .3605556 | 0        | 0        |
| 200610014479-2 | 201510736690-4 | 0     | 0     | 0          | 0     | 1     | 0         | 1   | .2083333 | .3611111 | 0        | 0        |
| 200610014479-2 | 200610032408-4 | 0     | 0     | 0          | 0     | 0     | 0         | 1   | .0869565 | .3728632 | 0        | 0        |

Deyun YIN

## Inventor Name Disambiguation Algorithms

#### **Step 4: Clustering**

#### Algorithm: Pseudocode for our modified version of RSL with constraints (RSLcd)

Input data: precomputed distance matrix predicted by GBDT

**Input: parameters in RSL:** τ; k, etc.

#### Input: Additional user-defined parameters in RSLcd:

- 1) upper limit: u; 0.5<u<=1
- 2) shrinking rate: r = 0 < r < 1
- 3) block size: Z = 2
- 1. Initialize the mutual reachability distance threshold  $\tau$
- 2. For each pairwise distance within block do:
- 3. If block size >Z: Pre-clustering with RSL
- 4. While there is any cluster whose max distance  $\geq u$ : do
- 5.  $\tau = \tau * r \#$  shrink the value of  $\tau$  with shrinking rate r
- 6. Re-clustering with new  $\tau$  while keeping all other parameters unchanged
- 7. **End**
- 8. Combine new results with previous ones and update labels
- 9. Return labels

## Inventor Name Disambiguation Result

# **Figure 2: Feature selection: F1 score with 4 kinds of features' combinations (before clustering)**



# Figure 2-3 Gini importance of features in Gradient Boosting Classifier



## Inventor Name Disambiguation Result

#### Figure 4. Comparison of clustering algorithms (after clustering)



## Inventor Name Disambiguation Result

 Table 8. Comparison of clustering methods with three kinds of training sets (Evaluation after clustering)

| Training set                | Clustering_ <sub>T</sub> | F1 Score (%, std) | AUC          | Score | Splitting | Lumping   |
|-----------------------------|--------------------------|-------------------|--------------|-------|-----------|-----------|
|                             |                          |                   | (%)          |       | Error (%) | Error (%) |
| Rare                        | RSL_0.15                 | 97.70 (0.97)      | 96.95        |       | 3.69      | 0.80      |
|                             | RSLcd_0.15               | 97.88 (1.11)      | 97.08        |       | 3.71      | 0.16      |
|                             | RSL_0.5                  | 82.16 (19.03)     | 84.88        |       | 1.22      | 59.18     |
|                             | RSLcd_0.5                | 99.10 (0.53)      | <b>97.47</b> |       | 1.34      | 0.21      |
|                             | Mean Diff                | 1.40***           | 0.52***      |       | -2.35***  | -0.60***  |
| Hand <sub>train</sub>       | RSL_0.15                 | 93.45 (5.17)      | 93.76        |       | 2.79      | 18.08     |
|                             | RSLcd_0.15               | 98.21 (29.63)     | 97.43        |       | 2.86      | 0.53      |
|                             | RSL_0.5                  | 73.02 (0.74)      | 77.50        |       | 0.90      | 83.32     |
|                             | RSLcd_0.5                | 99.03 (0.48)      | 95.09        |       | 1.05      | 0.82      |
|                             | Mean Diff                | 5.58***           | 1.33**       |       | -1.74***  | -17.26*** |
| Rare+ Hand <sub>train</sub> | RSL_0.15                 | 96.84 (2.19)      | 96.21        |       | 3.71      | 4.09      |
|                             | RSLcd_0.15               | 97.82 (1.07)      | 96.94        |       | 3.80      | 0.54      |
|                             | RSL_0.5                  | 78.03 (22.77)     | 81.51        |       | 1.18      | 70.55     |
|                             | RSLcd_0.5                | 98.94 (0.50)      | 96.57        |       | 1.34      | 0.83      |
|                             | Mean Diff                | 2.10***           | 0.36***      |       | -2.38***  | -3.26***  |

## Inventor Name Disambiguation Conclusions

- Algorithm: 2-step supervised learning:
- Step 1: Gradient Boosting Decision Tree (GBDT)
- Step 2: Modified algorithm of Robust Single Linkage (RSLcd)

#### **Result:**

- F1 scores to 93.36% before clustering and 99.10% after clustering, with final splitting errors of 1.05%–1.34% and lumping errors of 0.21%–0.83%.
- from 1.8 million Chinese names → 3.99 million unique inventors (14.68 million patent-inventor records)

#### **Conclusion and net contributions:**

- First systematic disambiguation of Chinese inventors with machine learning techniques and a reliable dataset for inventor-level studies.
- Rare name data as qualified training set
- Dynamic constrained RSL: Inhibit the chaining effect of (robust) single linkage

#### Statistical description of disambiguation result on all Chinese inventors in SIPO

| Obs.      | 14.68 million | Percentiles |     |
|-----------|---------------|-------------|-----|
| Min       | 1             | 1%          | 1   |
| Max       | 8516          | 10%         | 1   |
| Mean      | 50.35275      | 25%         | 3   |
| Std. Dev. | 298.2924      | 50%         | 8   |
| Variance  | 88978.38      | 75%         | 27  |
| Skewness  | 18.62185      | 90%         | 76  |
| Kurtosis  | 443.5064      | 99%         | 642 |

# Contents

# - Topic 1: Construction of CNIPA database

- Inventor name disambiguation
- Applicant name harmonization
- Citation

- Topic 2: improving PATSTAT database, geocoding and mapping global network of innovation hotspots

# **Applicant Name Harmonization**

## Linking China's patent data to companies' data **Chinese Patent Data Project** (CPDP)

CPDP Home SIPO - Chinese listed firms SIPO - ASIE firms SIPO - U.S. MNEs USPTO/EPO/WIPO - Chinese applicants SIPO - Chinese listed SMEs About CPDP CPDP Home > SIPO - ASIE firms This is the home page for the Chinese Patent Data Project (CPDP). In this Matching SIPO patents to firms in the Annual Survey of Industrial Enterprises (ASIE) of China's National Bureau of Statistics: completed project, patents from China's State Intellectual The data in the files below are **freely** available to members of this community. Property Office (SIPO) are matched to various types Note: Suggested citation for the three data files below: of companies. He, Z.-L., Tong, T.W., Zhang, Y., & He, W. 2018. A database linking Chinese patents to China's census firms. Nature Scientific Data 5: 180042. DOI: 10.1038/sdata.2018.42 Information about announcements, new data File (Excel) File Size Description User Documentation (for all three files) releases, tools. Matched design patents 39 MB 398,483 records (387,250 true matches, among which 291,578 are unique) supplemental files, fixes, etc. is available on this Matched invention patents 39 MB 332,682 records (317,268 true matches, among which 253,628 are unique) SIPO - ASIE Matching Documentation site. Matched utility model patents 48 MB 424,484 records (409,070 true matches, among which 304,441 are unique)

The CPDP data and website are maintained by these researchers.

\* Downloading the files proceeds in two steps: 1. Left-click the underlined hyperlink for a file; 2. Then in the downloading/previewing page, press Ctrl+S (or click on the "Download" button from the "File" pull-down menu). \*\* Problems with downloading, please contact Yuchen Zhang at yzhang54 [at] tulane.edu

#### Notice: Should distinguish different type of applicants when pre-processing and stemming the names:

- Removing spaces, brackets, and name suffix such as "股份有限公司", "有限公司", "公司", "所", "院", "中心", as well as firms' prefix like "省", "市", "北京", "(北京)", "深圳". Keep the prefix representing addresses of **universities and research**, such as "北京大学",
- "浙江大学", etc., the address prefix is their sole identifier.
  - Heilongjiang University → Heilongjiang Group
  - Zhongshan Group → Zhongshan University

Search this site

# **Applicant Name Harmonization**

#### **Problem setting:** the synonym problem

Goal: cover the name variant, changing names, typos, abbreviations subsidiaries, associate ventures, and joint ventures?

# Rule-based (Dictionary based, Corporate trees) vs Machine learning approach

Assumption: high similarity in two or more dimensions indicates a higher probability of matching.

#### Our approach

e.g., 深圳/TCL/数字技术/有限公司 Province/city + name stem+ industry+ type

- ① Preprocessing
- ② Stemming
- ③ Blocking by Name stems,
- ④ String similarity of full names, addresses (geocoded), inventors, technology profiles, etc.

# **Applicant Name Harmonization**

### **Steps:**

- Preprocessing:
- Stemming: extract the most special words (e.g., "万达", "中兴通讯", "TCL", "ABB") in a name with TF-IDF algorithm.
- **Blocking** by the stem, applicant type and generating comparing pairs: from 0.38 million unique applicant names, we generated 5.54 m record pairs to compare.
- Comparing the Levenshtein similarity of preprocessed names and record pairs.
- **Clustering** with thresholds directly, or
- **Predicting distances** based on trained models and clustering based on distance matrices. Two datasets were collected for training and testing our algorithm: one is our manually standardized applicants' names of firms filed patents and listed on the National Equities Exchanges and Quotations (NEEQ), the other is SIPO's linked data with China's Annual Survey of Industrial Enterprises (ASIE), which is provided by the Chinese Patent Data Project (He et al., 2018).

# Citation

## **Chinese Citation Database**

- CNIPA Official Website (search report + examiner-added+ some extracted from full-text)
- Google Patent
- > PATSTAT: (international search report)
- IncoPAT: (international search report + extracted from fulltext)



## Contents

Topic 2: improving PATSTAT database, geocoding and mapping global network of innovation hotspots The World Intellectual Property Organization (WIPO) invites you to the launch of the

## World Intellectual Property Report 2019

The Geography of Innovation: Local Hotspots, Global Networks

> followed by a panel discussion on Where will future technology break through?

Tuesday, November 12, 2019 3.00 p.m.

WIPO New Conference Hall 34. Chemin des Colombettes. Geneva

To register for the event, visit wipo.int/wipr



INTELLECTUAL PROPERTY ORGANIZATION



Invitation



Where exactly is innovation taking place? Relying on millions of patent and scientific publication records, the World Intellectual Property Report 2019 documents how the geography of innovation has evolved over the past few decades. It finds that innovation is increasingly global and intertwined.

At the same time, a limited set of innovation hotspots lead the way and are at the center of global innovation networks. In addition to macro analysis of global trends, the report explores the geography of innovation through two case studies of technology fields undergoing rapid change - autonomous vehicles and agricultural biotechnology. On the basis of its findings, the report makes the case for economies to stay open in the pursuit of innovation.

Published every two years, the World Intellectual Property Report is WIPO's flagship analytical report.

#### Program

3.00 p.m. to 3.10 p.m. **Opening remarks** 

Mr. Francis Gurry, Director General, WIPO

3.10 p.m. to 3.40 p.m. Presentation of the World Intellectual Property Report 2019

Mr. Carsten Fink, Chief Economist, WIPO

3.40 p.m. to to 4.40 p.m. Panel discussion - Where will future technology break through?

Ms. Silke Reinhold, Head of Electronics and Mobility Patents and Design Rights, Volkswagen AG, Germany

Prof. AnnaLee Saxenian, Dean, School of Information, University of California at Berkeley, United States of America

Prof. Jie Tang, Harbin Institute of Technology and Former Vice-Mayor, Shenzhen, China

4.40 p.m. to 5.00 p.m. **Open discussion** 

5.00 p.m. Reception Tied in: the global network of local innovation

# Mapping the global innovation networks of hotspots

Ernest MIGUELEZ<sup>2</sup>, Julio RAFFO<sup>1</sup>,

Massimiliano CODA-ZABETTA<sup>2</sup>, Christian CHACUA<sup>2</sup>, Deyun YIN<sup>1</sup>

Francesco LISSONI<sup>2,3</sup>, Gianluca TARASCONI<sup>3</sup>

<u>yindeyunut@gmail.com</u>

1. IES, ESD, World Intellectual Property Organization

2. GREThA UMR CNRS 5113—Université de Bordeaux

3. ICRIOS - Bocconi University



#### 2019/12/10

# Introduction

### **Abstracts:**

To enable the study of global geography of innovation, this paper constructed a comprehensive globally geocoded dataset of patent applications in PATSTAT (1970-2017) and scientific publications in Web of Science database (1998-2017). Based on Density-based spatial clustering of applications with noise (DBSCAN), it identified 174 GIHs and 313 SNCs worldwide, which together concentrate 85% of all patents and 81% of all scientific publications produced worldwide. This manuscript also explored several questions concerned with two current phenomena on the way knowledge is produced and shared worldwide: its geographical spread at the international level and its spatial concentration in few worldwide geographical hotspots.

### **Keywords:**

Geocoding, Patent, DBSCAN, Innovation, Global Innovation Network

# Data & Methodologies

Deyun YIN

# **Coverage of PATSTAT 2018 Autumn Applicant**



### **Inventors**



See <a href="https://public.tableau.com/profile/patstat.support#!/vizhome/CoverageofPATSTAT2018AutumnEdition/CoveragePATSTATGlobalegalevent">https://public.tableau.com/profile/patstat.support#!/vizhome/CoverageofPATSTAT2018AutumnEdition/CoveragePATSTATGlobalegalevent</a>

Deyun YIN

Challenges and Solutions in Constructing Chinese Patent Database

Legal event

## **Coverage of PATSTAT 2018 Autumn Applicant with country**



### **Inventors with country**



## **Coverage of PATSTAT 2018 Autumn Applicant with address**



### **Inventors with address**



Deyun YIN

## Patent data

#### Sources

- PATSTAT: Rassenfosse et al (2019) +
- USPTO: PatentsView +
- PCT: WIPO Statistical Database +
- SIPO: Yin & Motohashi (2018) +
- JPO: Ikeuchi et al (2017) +
- EPO, JPO, USPTO: Morrison et al. (2017)
- Geocoded at up to rooftop level

## **Scientific Publication data**

### Source

- Clarivate's Web of Science, SCIE
- Geocoded at postal code or sub-city level

Coverage

- 48 years (1970-2017)
- 168 patent offices
- 24.8 M (of 34M) patent families (73%)
  - 7.8 M (of 9M) international patent families (87%)
  - 17.5 M (of 25.5M) domestic patents (79%)
- 22 M inventors

### Coverage

- 20 years (1998-2017)
- 25.9 million records (93%)
- 20 million papers (98%)
- 66 M authors

- Step 1: Density-based spatial clustering of applications with noise (DBSCAN)
- To make the result internationally comparable
- ✓ International patent families + All Wos
  - (1) Patent family >=2
  - 2 PCT patents
  - ③ Foreign-oriented patents: applicants' origin of country  $\neq$  filing offices
- ✓ Domestic patents (National patents, Singletons)

## **GINs Vs. SNCs**

## 

or, more plainly, hotspots.

# DBSCAN on specialized industries: Specialized Niche Clusters (SNCs):

To allow for scientific and technological specialization, the above method is repeated for 25 sub-samples of the same publication and patent data, which refer to 12 scientific fields and 13 technological ones, respectively. Only the resulting polygons of these 25 iterations not contained within a hotspot are kept. From these, the overlapping polygons are merged in the same way as for hotspots.

The final outer areas are referred to as (SNCs) or, more plainly, niche clusters.

- Step 2: Delimiting clusters' borders with concave hulls
- Some convex hull in a set X of points in the Euclidean space is the smallest convex set that contains all the X points. That is to say, is a polygon encompassing all the X points, with straight, short lines connecting the outer points in space among X. Any point inside the outer shape belongs to the polygon.
- Concave hull: A k-nearest neighbors approach for the computation of the region occupied by a set of points. The concave hull starts from the convex hull, but removes the concave areas that do not have any point inside. (Adriano et al., 2007)
- Step 3: Final boundaries of clusters: merging patent layer with publication layer)





- are internationally comparable, i.e. the same scientific publication or patent (specialized) density would have determined the same hotspot (cluster) anywhere in the world;
- have non-predefined boundaries, i.e. hotspots and niche clusters can have different sizes and include more than one city, state/province or country.
- can have different scientific and technological density, i.e. hotspots and niche clusters need only scientific publication or patent high concentration, but not necessary both;
- have different specialization density, i.e. niche clusters are defined with lower density thresholds than hotspots;
- are distinct geographical areas, i.e. the polygons are nonoverlapping within and across hotspots and niche clusters; and,

# **Descriptive Statistics**

Deyun YIN

## 2.1 The two sides of global knowledge production

## Figure 2.2: More the value, more the concentration



Evolution of top-cited patents share



Evolution of top-cited scientific publications share

# 2.1 The two sides of global knowledge production

### Table 2.2 Shares of top innovation subnational regions within countries

Top three large administrative areas in patent and scientific publication concentration by period, selected countries

| Country F                       | Patents                                            |        |                                                    |          | Publications                                       |      |                                                    |      |
|---------------------------------|----------------------------------------------------|--------|----------------------------------------------------|----------|----------------------------------------------------|------|----------------------------------------------------|------|
| (level)                         | 1991-95                                            | %      | 2011-15                                            | %        | 2001-05                                            | %    | 2011-15                                            | %    |
| China<br>(provinces)            | Beijing<br>Guangdong<br>Shanghai                   | 42.3   | Guangdong<br>Beijing<br>Jiangsu                    | 60.3     | Beijing<br>Shanghai<br>Jiangsu                     | 45.5 | Beijing<br>Shanghai<br>Jiangsu                     | 39.4 |
| Germany<br>(states)             | Baden-Württemberg<br>Bayern<br>Nordrhein-Westfalen | 63.8   | Bayern<br>Baden-Württemberg<br>Nordrhein-Westfalen | 65.0     | Bayern<br>Nordrhein-Westfalen<br>Baden-Württemberg | 49.4 | Nordrhein-Westfalen<br>Baden-Württemberg<br>Bayern | 50.0 |
| France<br>(regions)             | Île-de-France<br>Auvergne-Rhône-Alpes<br>Grand Est | 64.1   | Île-de-France<br>Auvergne-Rhône-Alpes<br>Occitanie | 59.9     | Île-de-France<br>Auvergne-Rhône-Alpes<br>Occitanie | 63.1 | Île-de-France<br>Auvergne-Rhône-Alpes<br>Occitanie | 62.7 |
| United<br>Kingdom<br>(counties) | Greater London<br>Hertfordshire<br>Cambridgeshire  | 17.9   | Greater London<br>Cambridgeshire<br>Oxfordshire    | 23.9     | Greater London<br>Cambridgeshire<br>Oxfordshire    | 35.8 | Greater London<br>Oxfordshire<br>Cambridgeshire    | 38.7 |
| India<br>(states)               | Maharashtra<br>Karnataka<br>Telangana              | 51.6   | Karnataka<br>Maharashtra<br>Telangana              | 60.1     | Maharashtra<br>Tamil Nadu<br>NCT of Delhi          | 36.4 | Tamil Nadu<br>Maharashtra<br>NCT of Delhi          | 36.1 |
| Japan<br>prefecture)            | Tokyo<br>Kanagawa<br>Osaka                         | 51.5   | Tokyo<br>Kanagawa<br>Osaka                         | 56.3     | Tokyo<br>Osaka<br>Ibaraki                          | 35.8 | Tokyo<br>Osaka<br>Aichi                            | 35.4 |
| United<br>States<br>(states)    | California<br>New York<br>Texas                    | 30.8   | California<br>New York<br>Texas                    | 36.5     | California<br>New York<br>Massachusetts            | 28.2 | California<br>Massachusetts<br>New York            | 28.7 |
| Devun YI                        | N                                                  | Challe | enges and Solutions in Co                          | nstructi | ng Chinese Patent Databas                          | e _  | 2019/12/10                                         | 4    |

# 2.1 The two sides of global knowledge production

# **Table 2.4 Persistent concentration of innovation in a few hotspots**Top three GIH concentration, patents

| Country1991-95%2011-15%2001-05%2011-15%ChinaBeijing<br>Shanghai36.5Shenzhen-Hong Kong<br>Beijing<br>Shanghai52.2Image: Shanghai<br>Shanghai843.9Beijing<br>Shanghai35.8GermanyFrankfurt<br>Köln-Dusseldorf37.4Frankfurt<br>Stuttgart29.4Image: Shanghai<br>Shanghai34.4Beijing<br>Shanghai34.2Frankfurt<br>Stuttgart37.4Stuttgart<br>Köln-Dusseldorf29.4Image: Shanghai<br>Shanghai34.4Köin<br>Berlin34.4Frankfurt<br>Suttgart1.000<br>Grenoble42.8Paris<br>LyonParis<br>LyonParis<br>LyonParis<br>LyonParis<br>LyonParis<br>LondonUnited<br>KingdomLondon<br>Manchester<br>Cambridge30.0Cambridge<br>Oxford35.01mage: Cambridge<br>DelhiCambridge<br>Oxford39.8Condon<br>Cambridge41.8IndiaBengaluru<br>Mumbai<br>Delhi41.9Bengaluru<br>Hyderabad<br>Delhi46.21mage: Tokyo<br>Osaka<br>NagoyaTokyo<br>Osaka53.4Tokyo<br>Osaka<br>Nagoya54.350.554.4United<br>StatesNagoyaTokyo<br>Osaka<br>NagoyaTokyo<br>Nagoya27.7Numbai<br>Mumbai<br>Bengaluru24.6United<br>StatesNagoyaTokyo<br>Osaka<br>NagoyaTokyo<br>Osaka<br>NagoyaTokyo<br>Osaka<br>Nagoya70.8Tokyo<br>Osaka<br>Nagoya53.4Tokyo<br>Ce-Batimore<br>Boston54.3Sonton<br>Ce-Batimore21.4 | Country           | Patents                                           |      |                                                   |      | Publications                       |      |                                    |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------|------|---------------------------------------------------|------|------------------------------------|------|------------------------------------|------|
| ChinaBeijing<br>Shanghai36.5Shenzhen-Hong Kong<br>Beijing<br>Shanghai52.2Beijing<br>Shanghai43.9Beijing<br>Shanghai<br>Nanjing35.8GermanyFrankfurt<br>Köln-Dusseldorf<br>Stuttgart37.4Frankfurt<br>Stuttgart29.4Frankfurt<br>Köin<br>Berlin34.4Frankfurt<br>Köin<br>Berlin34.2Frankfurt<br>Köin<br>Berlin34.2Frankfurt<br>Köin<br>Berlin34.4Frankfurt<br>Köin<br>Berlin34.2FranceParis<br>Lyon47.1Paris<br>Grenoble42.8Paris<br>LyonParis<br>LyonParis<br>LyonParis<br>LyonParis<br>Lyon1.00don<br>Cambridge35.01.00don<br>Cambridge39.8London<br>Oxford49.4United<br>KingdomLondon<br>Manchester<br>Cambridge30.0London<br>Cambridge35.01.00don<br>Cambridge27.7Delhi<br>Mumbai<br>Kolkata24.6JapanTokyo<br>Osaka<br>Nagoya80.5Tokyo<br>Osaka<br>Nagoya83.4Tokyo<br>Osaka<br>Nagoya64.3Tokyo<br>Osaka<br>Nagoya21.4United<br>StatesSan Jose-San Francisco<br>Boston23.4New York<br>Dc-BaltimoreNew York<br>Dc-Baltimore21.2Beston<br>Dc-Baltimore21.4                                                                                                                                                                                          | Country           | 1991-95                                           | %    | 2011-15                                           | %    | 2001-05                            | %    | 2011-15                            | %    |
| GermanyFrankfurt<br>Köln-Dusseldorf37.4Frankfurt<br>Stuttgart29.4Frankfurt<br>Köln<br>Berlin34.4Frankfurt<br>Köln<br>Berlin34.2FranceParis<br>LyonParis<br>LyonParis<br>Grenoble42.8Paris<br>Lyon51.0Paris<br>Lyon49.4United<br>KingdomLondon<br>Manchester<br>Cambridge30.0London<br>Cambridge35.0London<br>Cambridge39.8London<br>Oxford41.8IndiaBengaluru<br>Mumbai<br>Delhi41.9Bengaluru<br>Hyderabad<br>Delhi46.2Delhi<br>Mumbai<br>Bengaluru27.7Delhi<br>Mumbai<br>Mumbai<br>NagoyaTokyo<br>Osaka<br>Nagoya70kyo<br>Nagoya64.3Tokyo<br>Osaka<br>Nagoya64.3Tokyo<br>Dosaka<br>Nagoya64.3Soston<br>Doston<br>DC-Baltimore21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | China             | Beijing<br>Shanghai<br>Shenzhen-Hong Kong         | 36.5 | Shenzhen-Hong Kong<br>Beijing<br>Shanghai         | 52.2 | Beijing<br>Shanghai<br>Nanjing     | 43.9 | Beijing<br>Shanghai<br>Nanjing     | 35.8 |
| FranceParis<br>Lyon<br>Grenoble47.1Paris<br>Grenoble<br>Lyon42.8Paris<br>Lyon<br>Grenoble51.0Paris<br>Lyon<br>Lyon49.4United<br>KingdomLondon<br>Manchester<br>Cambridge30.0London<br>Cambridge<br>Oxford35.0London<br>Cambridge<br>Oxford39.8London<br>Oxford41.8IndiaBengaluru<br>Mumbai<br>Delhi41.9Bengaluru<br>Hyderabad<br>Delhi46.2Delhi<br>Mumbai<br>Bengaluru27.7Delhi<br>Mumbai<br>Kolkata24.6JapanTokyo<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Germany           | Frankfurt<br>Köln-Dusseldorf<br>Stuttgart         | 37.4 | Frankfurt<br>Stuttgart<br>Köln-Dusseldorf         | 29.4 | Frankfurt<br>Köln<br>Berlin        | 34.4 | Frankfurt<br>Köln<br>Berlin        | 34.2 |
| United<br>KingdomLondon<br>Manchester<br>Cambridge30.0London<br>Cambridge<br>Oxford35.0London<br>Cambridge<br>Oxford39.8London<br>Oxford<br>Cambridge41.8IndiaBengaluru<br>Mumbai<br>Delhi41.9Bengaluru<br>Hyderabad<br>Delhi46.2Delhi<br>Mumbai<br>Bengaluru27.7Delhi<br>Mumbai<br>Kolkata24.6JapanTokyo<br>Osaka<br>Nagoya80.5Tokyo<br>Osaka<br>Nagoya83.4Tokyo<br>Osaka<br>Nagoya64.3Tokyo<br>Osaka<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | France            | Paris<br>Lyon<br>Grenoble                         | 47.1 | Paris<br>Grenoble<br>Lyon                         | 42.8 | Paris<br>Lyon<br>Grenoble          | 51.0 | Paris<br>Lyon<br>Toulouse          | 49.4 |
| IndiaBengaluru<br>Mumbai<br>Delhi41.9Bengaluru<br>Hyderabad<br>Delhi46.2Delhi<br>Mumbai<br>BengaluruDelhi<br>Mumbai<br>Bengaluru27.7Delhi<br>Mumbai<br>Kolkata24.6JapanTokyo<br>Osaka<br>Nagoya80.5Tokyo<br>Osaka<br>Nagoya83.4Tokyo<br>Osaka<br>Nagoya64.3Tokyo<br>Osaka<br>Nagoya64.3Tokyo<br>Osaka<br>Nagoya64.8United<br>StatesNew York City<br>Boston19.4San Jose-San Francisco<br>New York City<br>Boston23.4New York<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | United<br>Kingdom | London<br>Manchester<br>Cambridge                 | 30.0 | London<br>Cambridge<br>Oxford                     | 35.0 | London<br>Cambridge<br>Oxford      | 39.8 | London<br>Oxford<br>Cambridge      | 41.8 |
| JapanTokyo<br>Osaka<br>NagoyaBostonTokyo<br>Osaka<br>NagoyaTokyo<br>Osaka<br>NagoyaTokyo<br>Osaka<br>NagoyaTokyo<br>Osaka<br>NagoyaTokyo<br>Osaka<br>NagoyaG4.3Tokyo<br>Osaka<br>NagoyaG4.8United<br>StatesNew York City<br>San Jose-San Francisco<br>BostonSan Jose-San Francisco<br>New York City<br>BostonSan Jose-San Francisco<br>New York City<br>Boston23.4New York<br>DC-Baltimore<br>BostonBoston21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | India             | Bengaluru<br>Mumbai<br>Delhi                      | 41.9 | Bengaluru<br>Hyderabad<br>Delhi                   | 46.2 | Delhi<br>Mumbai<br>Bengaluru       | 27.7 | Delhi<br>Mumbai<br>Kolkata         | 24.6 |
| United<br>StatesNew York CitySan Jose-San FranciscoNew YorkBostonBostonUnited<br>StatesSan Jose-San Francisco19.4New York City23.4DC-Baltimore<br>Boston21.2New York21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Japan             | Tokyo<br>Osaka<br>Nagoya                          | 80.5 | Tokyo<br>Osaka<br>Nagoya                          | 83.4 | Tokyo<br>Osaka<br>Nagoya           | 64.3 | Tokyo<br>Osaka<br>Nagoya           | 64.8 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | United<br>States  | New York City<br>San Jose-San Francisco<br>Boston | 19.4 | San Jose-San Francisco<br>New York City<br>Boston | 23.4 | New York<br>DC-Baltimore<br>Boston | 21.2 | Boston<br>New York<br>DC-Baltimore | 21.4 |

## 2.2 – Global networks of collaboration and sourcing

#### Figure 2.8 Large economies are highly internationalized



# 2.3 – Local innovation and global networks of innovative hubs Global Innovation Network: Country-level

## More international collaboration between countries

#### International co-invention



International co-publication





2011-2015

# 2.3 – Local innovation and global networks of innovative hubs Global Innovation Network: Country-level

## Who collaborates with whom?

#### Top 10 percent co-invention ties among GIHs and SNCs, 2011-2015



## Concluding remarks Global Patent database: an overview

|            | Who?                        | W                          | ho?                      | Where?                           |
|------------|-----------------------------|----------------------------|--------------------------|----------------------------------|
|            | Applicants<br>Harmonization | Inventor<br>Disambiguation | Gender<br>identification | Geocoding                        |
| USPTO      | NBER; PatentsView           | NBER; PatentsView          | PatentsView              | NBER; PatentsView                |
| PATSTAT    | OECD HAN                    | Pezzoni et al., 2014       | OECD, 2015               | de<br>Rassenfosse et al. (2019), |
| WIPO       | Hao Zhou                    | Penner et al., 2019        | Martinez et al., 2016    | Bergquist et al., 2017           |
| JPO        | IIP database                | Ikeuchi et al., 2018       | Easy                     | Ikeuchi et al., 2018             |
| CNIPA      | He et al., 2017, 2018       | Yin et al., 2018           | Yin et al., 2019         | Yin et al., 2018                 |
| A unified? |                             | Under-processing           | Under-processing         | Under-processing                 |

Some ideas about Innovation Information Initiatives:

- Fragmented, different rules → A unified framework, rules and algorithms, and global patent database (PATSTAT)
- A daunting task!  $\rightarrow$  Need international collaboration



2019/12/10

# Thank you!

Q&A

deyun.yin@wipo.int

Deyun YIN

Challenges and Solutions in Constructing Chinese Patent Database

2019/12/10 47