Mapping Firms' Locations in Technological Space: A Topological Analysis of Patent Statistics

Emerson G. Escolar Yasuaki Hiraoka Mitsuru Igami Yasin Ozcan

Riken AIP, Kyoto University, Yale University, MIT Sloan

December 7, 2019

Question & Approach

- Basic descriptive question
 - Where do firms innovate?
 - Where are they "located" in technological space?
- To answer this question, we use:
 - Patent statistics
 - Mapper algorithm: a new method from topological data analysis (TDA)
- Can handle any distance metrics
 - Looking forward to working with text-based metrics, too

The Problem

- Data from USPTO on top 333 firms (by count) in 1976–2005
 - Firm i = 1, 2, ..., 333
 - Year t = 1976, 1977, ..., 2005
- Each firm i (in each year t) patents across 430 USPC technological categories
 - Class c = 1, 2, ..., 430
- Patenting activity of firm-year (i, t) is a 430-vector

$$p_{i,t} = (p_{i,t,1}, p_{i,t,2}, ..., p_{i,t,430})$$

Challenge: How do we map all $p_{i,t}$'s in technological space?

Existing Methods

Normalization

$$x_{i,t} = f(p_{i,t})$$

- E.g., taking log, converting to % shares, moving window, ...
- Oistance metric

$$\delta(x_{i,t},x_{i',t'})$$

- E.g., Euclidean, Mahalanobis, correlation, cosine, min-complement, ...
- Oimensionality reduction
 - E.g., PCA (principal-component analysis), MDS (multi-dimensional scaling), k-means clustering, ...

Note: The final step is needed because of high dimensionality (430) of data.

Example: Log(.) + Corr(.) + PCA

• Interesting 2-dimensional plot, but what about the other 428 dimensions?

Our Proposal: Computational Topology

Normalization [same as before]

$$x_{i,t}=f(p_{i,t})$$

- E.g., taking log, converting to % shares, moving window, ...
- 2 Distance metric [same as before]

$$\delta(x_{i,t},x_{i',t'})$$

- E.g., Euclidean, Mahalanobis, correlation, cosine, min-complement, ...
- Dimensionality reduction [NEW!]
 - Not "just PCA/MDS"
 - Not "just clustering"
 - But combine them in a clever way

Step 1: Apply filter function.

• Project 2-dimensional X onto the horizontal axis (i.e., \mathbb{R}^1).

Step 2: Cover the image, and partition data.

• Cover the image f(X) (the points on the horizontal axis) by equal-sized intervals C_1 , C_2 , C_3 , & C_4 with overlaps.

Step 3: Perform clustering in each pre-image.

• For each interval C_j , apply clustering algorithm to its pre-image $f^{-1}(C_j)$. That is, adjacent points in the original 2-dimensional space are bundled.

Step 4: Represent clusters by nodes, and shared points by edges.

- Represent clusters by nodes (vertices) $V_{j,k}$ s.
- If clusters share the same points, connect them with an edge.

Mapper Algorithm: Background

- Singh, Mémoli, & Carlsson ('07) proposed it.
 - Yao et al. ('09): an RNA folding pathway
 - Nicolau, Levine, & Carlsson ('11): the DNA microarray data of breast cancer
 - Rizvi et al. ('17): cellular differentiation & development
- Lum et al. ('13):
 - (i) gene expression of breast tumors
 - (ii) voting in the US Congress
 - (iii) NBA players' performances
 - They also propose a (generic, graph-theoretic) algorithm to detect "flares".
- By contrast, our "flare" definition & detection algorithm exploit the Mapper graph's particularities.

The Mapper Graph of 333 Firms in 1976–2005

Do Flares Matter?

- Each circle represents a firm.
 - Horizontal axis (X): Flare length of its patenting history in 1976–2005
 - Vertical axis (Y): Its financial performance (revenue) as of 2005
 - Circle size (Z): Its total patent count 1976–2005

Do Flares Matter?

Table: Revenues and Flare Length (n = 20)

LHS variable:	Log(Revenue in 2005)				
Patents acquired by:	R&D only		R&D an	R&D and M&A	
	(1)	(2)	(3)	(4)	
Flare length $= 1$	1.225	0.538	1.440	0.403	
	(0.182)	(0.221)	(0.190)	(0.231)	
Flare length $= 2$	2.145	1.210	2.141	0.703	
	(0.382)	(0.409)	(0.354)	(0.387)	
Flare length $= 3$	2.287	1.167	2.242	0.790	
	(0.476)	(0.507)	(0.462)	(0.476)	
Flare length $= 4$	2.082	0.897	3.225	1.246	
	(0.487)	(0.522)	(0.438)	(0.495)	
Flare length $= 5$	2.960	1.674	2.586	0.716	
	(0.614)	(0.640)	(0.441)	(0.489)	
Flare length $= 6$	3.632	2.258	3.757	1.746	
	(0.523)	(0.570)	(0.637)	(0.656)	
Flare length $= \infty$	3.780	2.258	3.511	1.523	
	(0.595)	(0.646)	(0.571)	(0.600)	
Log(Patents)		0.252		0.446	
•	(-)	(0.050)	(-)	(0.065)	
Adjusted R ²	0.440	0.487	0.478	0.555	
Number of observations	286	286	288	288	

Note: Standard errors are in parentheses. S&P economic sector dummies are included. Estimates for flare lengths $8,\,9,\,\&\,10$ are suppressed due to space constraint.

Conclusion

- We can summarize firms' technological locations in a graph.
- 2 It preserves global data patterns in a high-dimensional space.
- The method works with:
 - ANY distance metrics
 - ANY ways to codify patents
 - ANY clustering & PCA/MDS methods

It complements all existing (& new) measures/methods!

- Extensions
 - From US data to world data (Patstat by EPO)
 - From top-333 to top-1000+
 - From 1976-2005 to 1966-2015
 - From 430 USPC classes to 630 IPC subclasses
 - Including product-market competition?
 - Including non-practicing entities (NPEs)?