Are Intermediary Constraints Priced?

Wenxin Du (Chicago and NBER)

Benjamin Hébert (Stanford and NBER)

Amy Huber (Stanford)

November 7, 2019

Introduction

- Intermediaries face regulatory and other constraints
 - e.g. leverage ratio requirements
- These constraints prevent intermediaries from closing arbitrage opportunities
 - e.g. covered interest parity violations
- Is the risk that these constraints tighten a priced risk factor?
- Direct test: does betting on arbitrage violations shrinking earn a risk premium?
- Yes: there is a risk premium, and exposure to this risk is priced in the cross-section

Model Overview

• We build on He and Krishnamurthy [2011, 2017] to motivate:

$$m_{t+1} = \mu_t - \gamma r_{t+1}^w + \xi |x_{t+1,0,1}|,$$

- Manager with Epstein-Zin preferences runs intermediary
- Faces regulatory constraint (which creates CIP violation)
- m_{t+1} : log SDF γ : EZ RRA r_{t+1}^w : manager wealth return
- $x_{t+1,0,1}$ is one-period spot CIP violation at time t+1
- idea: $x_{t+1,0,1}$ measures multiplier on regulatory constraint, multiplier proxy for investment opporunities
- $\gamma \neq 1$: Intertemporal hedging (Campbell [1993], Kondor and Vayanos [2019])

Model Takeaways

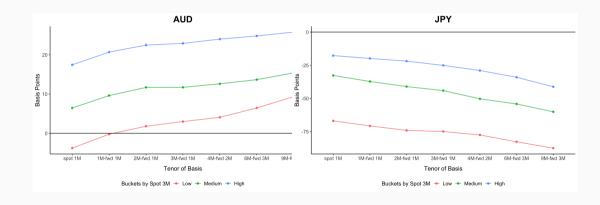
- Model implications:
 - focus on largest CIP violation (fortunately, doesn't change sign)
 - SDF omits factors
 - CIP shocks could be supply, demand, or regulation
 - CIP should be correlated with other arbitrages/near-arbitrages
 - CIP shocks and wealth return likely correlated
- Test: trading strategy that bets on size of $x_{t+1,0,1}$ at time t
 - We call this strategy "forward CIP trading strategy"
 - not an arbitrage, but a risky bet on the size of future arbitrage

Covered Interest Parity

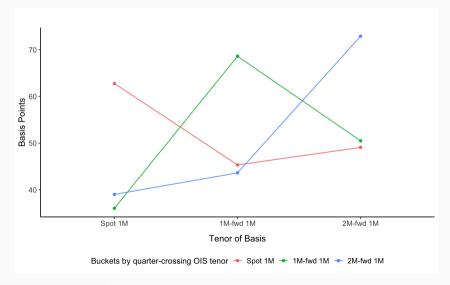
(Log) Spot CIP Basis, currency c:

$$x_{t,0,\tau}^c = r_{t,0,\tau}^\$ - r_{t,0,\tau}^c + \frac{12}{\tau} (f_{t,\tau}^c - s_t^c)$$

- $r_{t,0,\tau}, r_{t,0,\tau}^{\$}$: τ -month log rates at time t. $s_t, f_{t,\tau}$: spot and τ -month fwd log exchange rates (foreign currency per USD)
- Difference between USD rate and synthetic USD rate (standard definition, Du et al. [2018])
- All FX and rate data from Bloomberg: Benchmark results use OIS rates.
 Robustness results use IBOR, FRA rates.
- Pre-crisis: Jan 2003-June 2007, Crisis: July 2007-June 2010, Post-Crisis: July 2010-Aug 2018


Forward Covered Interest Parity

(Log) h-month forward starting CIP Basis, currency c:


$$x_{t,h,\tau}^{c} = r_{t,h,\tau}^{\$} - r_{t,h,\tau}^{c} + \frac{12}{\tau} (f_{t,\tau+h}^{c} - f_{t,h}^{c})$$
$$= \frac{h+\tau}{\tau} x_{t,0,h+\tau}^{c} - \frac{h}{\tau} x_{t,0,h}^{c}$$

- $r_{t,h,\tau}, r_{t,h,\tau}^{\$}$: h-month forward τ -month log rates at time t
- Assumes no arbitrage between spot and forward OIS swaps
- Note analogy to forward interest rates, term structure

Term Structure of Forward CIP

AUD-JPY Basis and Quarter End

Forward CIP Trading Strategy

- 1. Initiate h-month forward τ -month forward CIP trade
- 2. h-months later, unwind
- Profits for the holding period *h*:

$$\pi^{c}_{t+h,h,\tau} \approx \frac{\tau}{12} (x^{c}_{t,h,\tau} - x^{c}_{t+h,0,\tau})$$

- $\frac{\tau}{12}$ is like a bond duration
- A bet on whether slope of forward CIP curve is realized
 - Recall again analogy to term structure
- Note: implementable even if interest rates for the spot CIP arbitrage are not tradable or not true marginal rates

Portfolios

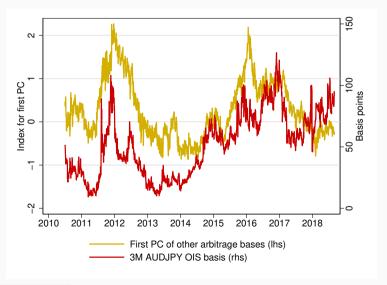
- Portfolios of forward arbitrages: "Carry" and "Dollar"
- "Carry" is AUD profits minus JPY profits
 - This is also biggest spot basis, which model suggests
- "Dollar" is equal-weighted from all currencies (vs. USD)
- Motivated by literature (Lustig et al. [2011], Verdelhan [2018])
- Paper has alternative definitions in robustness appendix

Portfolio Results

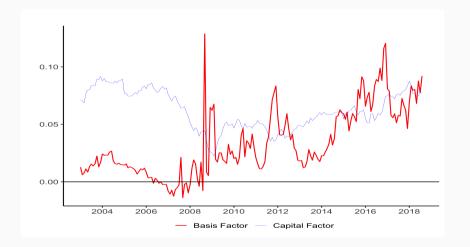
Table 1: Portfolio Returns on OIS 1M-forward 3M Forward CIP Trading Strategy

		Mean (bps))	Sharpe Ratio				
_	Pre- Crisis Post-		Pre- Crisis		Post-			
Carry	2.44	-4.37	14.25***	0.61	-0.16	1.38***		
s.e.	(1.34)	(10.79)	(3.26)	(0.34)	(0.38)	(0.33)		
Dollar	-1.46	6.16	0.07	-0.68*	0.18	0.02		
s.e.	(0.77)	(16.53)	(1.52)	(0.34)	(0.44)	(0.33)		

- 3-month forward and IBOR/FRA-based results in appendix
- Future spot basis does not rise as much as predicted by term structure slope
- We show in paper that slope predicts returns ala Campbell and Shiller [1991]


Why CIP?

- In our model, nothing is special about CIP per se
 - Any arbitrage can be used to measure shadow price on regulatory constraint
 - Consequently, all arbitrages should co-move
- In the real world, CIP is particularly clean:
 - It was zero pre-crisis, and can be measured accurately
 - It doesn't involve cheapest-to-deliver options or other nuisances
 - It has a rich term structure we can use to construct forward arbitrages


Comparing CIP and Other Arbitrages

- We check for co-movement with seven near-arbitrages:
 - bond-CDS, CDS-CDX, Libor tenor basis, 30Y swap spread, KfW vs Bunds, Refco vs Treasurys, TIPS asset swap
 - Each of these corresponds to one or more papers in the literature
 - These are all long-term (e.g. 5 years)
 - Construct 1st principal component in levels
- We find roughly 51% corr. between 1st PC and Classic Carry spot basis post-crisis
- We then compare spot basis to intermediary capital measure from He et al. [2017]

CIP vs 1st PC

Carry Basis and HKM Factor

• Basis factor rescaled (0.05 = 50 bps CIP violation)

Asset Pricing Interpretations

SDF:
$$m_{t+1} = \mu_t - \gamma r_{t+1}^w + \xi |x_{t+1,0,1}|$$

- Either ξ big or r_{t+1}^w and $x_{t+1,0,1}$ correlated
 - Model: $\xi > 0 \Leftrightarrow \gamma < 1$ (sign of intertemporal hedging effect)
- Equity return on broker dealers as proxy for r_{t+1}^{W} (He, Kelly, Manela, 2017),

	Intermediary return	Forward CIP return
Price of risk (mean excess return)	0.610*	0.048***
	(0.288)	(0.011)
SDF parameters (γ, ξ)	0.658	305***
	(1.768)	(91.7)

• Alternative interpretation: forward CIP trading return is a better proxy for r_{t+1}^w than the intermediary equity return.

Cross-Sectional Implications

- Forward arbitrage returns directly test if the risk of the basis widening is priced
- Our model, however, gives an SDF
 - ullet All assets exposed to forward CIP returns $(r_{t+1}^{\scriptscriptstyle X})$ should earn excess returns
- Cross-sectional test, building on He et al. [2017] (HKM):

$$R_{t+1}^{i} - R_{t}^{f} = \mu_{i} + \beta_{w}^{i} (R_{t+1}^{w} - R_{t}^{f}) + \beta_{x}^{i} r_{t+1}^{x} + \epsilon_{t+1}^{i},$$

$$E[R_{t+1}^{i} - R_{t}^{f}] = \alpha + \beta_{w}^{i} \lambda_{w} + \beta_{x}^{i} \lambda_{x}.$$

- ullet From mean return, we expect $\lambda_{x}=-4.8bps$, $\lambda_{w}=61bps$
 - We formally test this alternative hypothesis

Cross-Sectional Details

- We study Fama-French Size x Value 25, US Tsy/Corp. Bonds, FX Portfolios (Lustig et al. [2011]), Sovereign bonds (Borri and Verdelhan [2015]), Commodity Futures (HKM and Yang [2013]), SPX options (Constantinides et al. [2013])
 - Also use non-AUD/JPY forward forward CIP trading strategy returns as test assets
 - Adding corporate CDS is work in progress
- Non-log returns, consistent w/ HKM but not model
- We estimate betas and mean returns on different samples
 - betas: post-crisis only, consistent with our theory
 - means: longest possible sample for each asset class
 - like a conditional beta model with break post-crisis
- Cochrane [2009] GMM standard errors to account for estimated betas
- Monthly data

Cross-Sectional Asset Pricing Test, 2-Factor

	US	Sov	FX	FF	Commod	Options	FwdArb	AllexFF	FwdArb
Int. Equity	0.499	1.363	1.845***	0.601	1.031*	1.377**	0.0857	0.999***	1.996***
	(0.898)	(0.782)	(0.425)	(0.558)	(0.425)	(0.422)	(0.968)	(0.221)	(0.110)
Basis Shock	-0.150	-0.0784	-0.0718	0.0271	-0.0171	-0.134**	-0.0487**	-0.0482***	
	(0.0781)	(0.0502)	(0.0465)	(0.0628)	(0.0221)	(0.0410)	(0.0153)	(0.0138)	
Intercepts	Yes	Yes	Yes						
MAPE (%)	0.021	0.022	0.060	0.142	0.363	0.143	0.007		0.008
H1 p-value	0.417	0.166	0.005	0.345	0.174	0.012	0.785	0.217	0.000
N (assets)	9	6	11	25	23	18	10	77	10
N (beta, mos.)	98	98	98	98	98	90	98		98
N (mean, mos.)	360	283	418	1106	331	264	98		98

Cross-Sectional Asset Pricing Test, 3-Factor

	US	Sov	FX	FF	Commod	Options	FwdArb	AllexFF	FwdArb
Market	1.007*	0.459	0.887***	-0.0248	0.627***	0.464**	-4.223	0.453***	2.206***
	(0.483)	(0.483)	(0.176)	(0.524)	(0.180)	(0.148)	(4.215)	(0.100)	(0.208)
HKM Factor	-1.274	1.712	0.399	0.529	0.766	2.973	-2.572	0.383	2.083***
	(0.958)	(1.365)	(1.259)	(0.541)	(0.580)	(2.044)	(2.726)	(0.505)	(0.110)
Basis Shock	-0.0504	-0.0605	-0.0588	0.0345	-0.0064	-0.0849	-0.0834*	-0.0498***	
	(0.0804)	(0.0465)	(0.0339)	(0.0539)	(0.0263)	(0.0541)	(0.0411)	(0.0107)	
Intercepts	Yes	Yes							
MAPE (%)	0.008	0.021	0.062	0.149	0.349	0.146	0.005		0.009
H1 p-value	0.658	0.906	0.358	0.223	0.119	0.364	0.483	0.098	0.000
N (assets)	9	6	11	25	23	18	10	77	10

Cross-Sectional Asset Pricing Test, 2-Factor PC1

	US	Sov	FX	FF	Commod	Options	FwdArb	AllexFF
Int. Equity	0.362	1.237	1.561**	0.825	1.177**	1.708***	-0.645	1.204***
	(0.440)	(0.668)	(0.492)	(0.629)	(0.447)	(0.371)	(1.375)	(0.257)
AR1 Resid of	-0.0654***	-0.0793***	0.0441	-0.0288	-0.0236	-0.0807***	-0.0856**	-0.0438***
PC1								
	(0.0151)	(0.0212)	(0.0325)	(0.0927)	(0.0251)	(0.0207)	(0.0310)	(0.00978)
Intercepts	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
MAPE (%)	0.036	0.041	0.068	0.158	0.352	0.192	0.005	
H1 p-value	0.568	0.350	0.054	0.737	0.207	0.003	0.360	0.021
N (assets)	9	6	11	25	23	18	10	77

• AR(1) residual of PC1 scaled to have s.d. of basis shock

Conclusion

- The risk that CIP violations become bigger is priced
- Model: risk of intermediaries becoming more constrained
- This should be expected given intermediary asset pricing (He and Krishnamurthy [2011]) meets intertemporal hedging (Campbell [1993])
- Hard to explain existence of arbitrage, why arbitrage risk is priced, and why it co-moves with intermediary wealth without central role for intermediaries

References

- Nicola Borri and Adrien Verdelhan. Sovereign risk premia. 2015.
- John Campbell. Intertemporal asset pricing without consumption data. *American Economic Review*, 83(3):487–512, 1993.
- John Y Campbell and Robert J Shiller. Yield spreads and interest rate movements: A bird's eye view. *The Review of Economic Studies*, 58(3):495–514, 1991.
- John H Cochrane. Asset pricing: Revised edition. Princeton university press, 2009.
- George M Constantinides, Jens Carsten Jackwerth, and Alexi Savov. The puzzle of index option returns. *Review of Asset Pricing Studies*, 3(2):229–257, 2013.
- Wenxin Du, Alexander Tepper, and Adrien Verdelhan. Deviations from Covered Interest Rate Parity. *The Journal of Finance*, 2 2018. doi: 10.1111/jofi.12620. URL http://doi.wiley.com/10.1111/jofi.12620.
- Zhigu He and Arvind Krishnamurthy. A model of capital and crises. *The Review of Economic Studies*, 79(2):735–777, 2011.
- Zhiguo He and Arvind Krishnamurthy. Intermediary Asset Pricing and the Financial Crisis. *Annual Review of Financial Economics*, pages 1–37, 2017.

- Zhiguo He, Bryan Kelly, and Asaf Manela. Intermediary asset pricing: New evidence from many asset classes. *Journal of Financial Economics*, 126(1):1–35, 2017.
- Péter Kondor and Dimitri Vayanos. Liquidity risk and the dynamics of arbitrage capital. *The Journal of Finance*, 74(3):1139–1173, 2019.
- Hanno Lustig, Nikolai Roussanov, and Adrien Verdelhan. Common risk factors in currency markets. *The Review of Financial Studies*, 24(11):3731–3777, 2011.
- Adrien Verdelhan. The share of systematic variation in bilateral exchange rates. *The Journal of Finance*, 73(1):375–418, 2018. doi: 10.1111/jofi.12587.
- Fan Yang. Investment shocks and the commodity basis spread. *Journal of Financial Economics*, 110(1):164–184, 2013.