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Abstract

We provide evidence that agents have slow moving beliefs about stock mar-
ket volatility. This is supported in survey data and is reflected in firm level
option prices. We embed these expectations into an asset pricing model and
show that we jointly explain the following stylized facts: when volatility in-
creases the equity and variance risk premiums fall or stay flat at short horizons,
despite higher future risk; these premiums appear to rise at longer horizons af-
ter future volatility has subsided; strategies that time volatility generate alpha;
the variance risk premium forecasts stock returns more strongly than either
realized variance or risk-neutral variance (VIX); changes in volatility are neg-
atively correlated with contemporaneous returns. Slow moving expectations
about volatility lead agents to initially underreact to volatility news followed
by a delayed overreaction. This results in a weak, or even negative, risk-return
tradeoff at shorter horizons but a stronger tradeoff at longer horizons (beyond
where one can strongly forecast volatility). These dynamics are mirrored in
the VIX and variance risk premium which reflect investor expectations about
volatility.

1. Introduction

The link between risk and return is at the core of many asset pricing models, though
there is weak empirical evidence of a risk-return tradeoff over time in the stock
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market. For example, consider the canonical mean-variance representative agent
model equilibrium (e.g., Merton (1980))

Et[rt+1]− rf,t = γσ2
t (1)

where γ is the representative agents risk-aversion, σ2
t is the conditional variance of

the market and Et[rt+1]−rf,t is the (log) market risk premium. This equation implies
a tight link between volatility and expected returns. While this model may seem like
a simplistic “straw man,” the strong positive link between conditional volatility and
expected returns is shared in leading structural equilibrium asset pricing models in
the literature.1

Empirically a long literature finds that the relationship between conditional vari-
ance and risk premiums is weak at best. In particular, measures of conditional stock
market variance or volatility do not strongly positively forecast returns (Glosten,
Jagannathan, and Runkle, 1993) so that risk-return ratios weaken when volatility
rises, leading to profitable volatility timing strategies (Moreira and Muir, 2017). In
fact, we show that current volatility relative to its average over the period of a few
months if anything negatively forecasts future stock returns over the next month, de-
spite positively forecasting next months volatility. However, longer lags of volatility
appear to positively forecast future returns, though they do so at horizons for which
they only weakly forecast future volatility. Thus they no longer strongly correlate
with expected volatility – the object that should be linked to expected returns in
theory.2 Measures of the variance risk premium display strikingly similar patterns.
For example, increases in volatility appear to negatively predict the premium on VIX
futures at short horizons (Cheng, 2018) and we show this is true for variance swaps
and other measures of the variance risk premium as well. That is, claims that pro-
vide insurance against future volatility, which are unconditionally expensive, appear
“too cheap” after volatility rises. Similar to the pattern in stock returns, increases
in volatility positively forecast the variance risk premium at longer horizons.

While the direct relation between conditional volatility and expected returns is
weak, there is indirect evidence potentially more in favor of a risk-return tradeoff.
First, realized stock returns are strongly negatively correlated with contemporaneous
innovations in volatility (French, Schwert, and Stambaugh, 1987). This is consistent
with a discount rate effect, since a higher discount rate in response to higher volatility

1Moreira and Muir (2017) show that the basic risk-return relation is strong in calibrations of
leading equilibrium asset pricing models (including habits, long run risk, time-varying disasters,
and intermediary based models). Martin (2016) argues this relationship is general in a wide class
of models if σ2

t is replaced by risk-neutral variance which we will consider empirically as well.
2See also Brandt and Kang (2004) for related findings using a different approach.
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pushes current stock prices – and thus realized returns – lower. However, it is puz-
zling if this is a discount rate effect that average returns next period are not high.
Second, the variance risk premium (V IX2 minus realized variance) does strongly
forecast stock returns suggesting equity risk premiums are high when the variance
risk premium is high (Bollerslev, Tauchen, and Zhou, 2009).3

The goal of this paper is to propose a model which jointly tackles these dynamics
between realized volatility, the VIX, the variance risk premium, and stock returns.
We do so by making one change to an otherwise standard Epstein Zin equilibrium
model with stochastic volatility: we allow the representative agent to have slow mov-
ing expectations about volatility, which we show is supported by survey evidence.
In our model agents form beliefs about volatility by taking a weighted average of
past volatility observations where the weights decrease exponentially further into
the past. When agents pay relatively too much attention to past volatility, they
temporarily underreact to increases in volatility and then subsequently overreact.
When agents see volatility increase they still react partially, driving prices down so
that volatility is associated with negative returns contemporaneously. However, the
initial underreaction means prices can continue to fall in the next period making
ex-ante “risk premiums” appear flat, or even negative, and the subsequent overre-
action keeps prices depressed for longer before eventually bouncing back, making it
appear as though risk premiums are high well after the shock to volatility has largely
subsided. Market expectations of volatility (the VIX) mirror this, meaning the vari-
ance risk premium can initially fall before slowly rising at longer horizons. Thus the
model matches the conditional dynamics of both equity and variance risk premiums
following an increase in volatility, though we show this reconciles several additional
pieces of evidence as well.

To see more clearly how the model delivers these dynamics, suppose that the true
volatility process follows an AR(1), as in our model. This means the agents’ objective
best guess for next months volatility only depends on current volatility. However,
suppose agents form a forecast for next months volatility based on a weighted av-
erage of volatility over the past several months. Then, if volatility increases, agents
expectations of volatility will increase but they will somewhat underreact to the
news – agents will not update their forecast about next periods volatility strongly
enough since they average across several lags of volatility. Agents still demand a
higher equity premium due to the higher subjective expectation of volatility, hence
stock prices will fall, generating a negative correlation between realized stock returns
and volatility innovations (French et al., 1987). Similarly, “risk-neutral” expecta-
tions of volatility (the VIX) will rise, though also not strongly enough relative to a

3See also Drechsler and Yaron (2011)
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rational forecast. We use the term “risk-neutral” in keeping with terminology in the
literature, though in our setting the VIX also reflects expectations under the agents
potentially subjective beliefs. More generally, we use the term risk premium as an
empirical observation about the behavior of expected returns which is also influenced
by beliefs. Because the VIX does not initially rise strongly enough, VIX minus the
rational expectation of realized volatility (the variance risk premium) will fall, thus
volatility news will negatively forecast the measured variance risk premium as in the
data (see Cheng (2018), which we extend).

When the next period arrives, suppose for simplicity there is no additional news
about future volatility. With rational expectations, expected volatility and the equity
premium both decline as volatility mean reverts toward the unconditional average,
while stock prices rise on average. Instead, in our model, the agent may again
update his expectation about volatility because he averages two periods of relatively
elevated volatility, and may require a relatively higher equity premium. If the initial
underreaction is strong enough, this pushes equity prices down further through an
additional discount rate effect. Through this channel, the ex-ante news about higher
volatility in the previous period can appear to forecast negative stock returns in
the next period, so the initial innovation in volatility can negatively forecast returns
in the short term. The standard risk return tradeoff thus appears weak or even
negative (Glosten et al., 1993), and this leads to profitable volatility timing strategies
(Moreira and Muir, 2017, 2019) because expected volatility increases by more than
the conditional expected return.4 This also nicely reconciles the puzzling evidence
that shocks to volatility do line up with contemporaneous drops in stock prices,
consistent with a discount rate effect (French et al., 1987), despite the fact that a
clear link between volatility and next period returns is weak and typically has the
wrong sign.

Going forward, however, stock returns will be higher on average in the periods
after the initial underreaction plays out. In fact, objective expected returns will
remain high for longer than they would under rational expectations because the
volatility shock effectively lasts longer in the agents minds. For example, even after
(true) expected volatility has returned to normal the agent may believe volatility is
high because he averages over a period in which past volatility had increased. Thus,
the news about volatility can negatively forecast stock returns in the near term but
positively forecast them in the longer term, despite the fact that news about volatility
strongly forecasts future volatility in the near term, but only weakly forecasts future
volatility in the longer term. The variance risk premium will mirror this behavior
with a decline in the near term followed by an increase in the longer term, reflecting

4See also Brandt and Kang (2004) who find expected returns fall when variance increases.
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agents slow moving expectations. Further, and importantly, the measured variance
risk premium will forecast stock returns appropriately at virtually all horizons leading
to a tight link between equity and variance risk premiums as we see in the data
(Bollerslev et al., 2009). In the model this occurs because of biased beliefs rather
than because of rational risk premiums, and the model can account for the otherwise
puzzling fact that while the variance risk premium is a strong forecaster of returns,
neither the VIX or realized variance are individually strong forecasters of returns.

After developing the model and this intuition, we calibrate the model parameters
to see if we can quantitatively account the facts outlined above and show that we can
do so reasonably well. Importantly, our model nests the fully rational case but we
show that slow moving expectations about volatility are important to match the data.
We also compare our calibrated model to Bollerslev et al. (2009) who show that the
variance risk premium can predict returns in a long-run risk model with stochastic
volatility of volatility. A main point of difference is in their model while the variance
risk premium does predict returns, both variance or the VIX on their own predict
returns even more strongly, counter to the data. Further, our model helps account for
the profitability of volatility timing strategies as in Moreira and Muir (2017) which
typical structural asset pricing models in the literature don’t match. Importantly, in
our calibration the bias in beliefs is not extreme – agents beliefs about volatility are
highly, but not perfectly, correlated with the rational forecast.

Next, we use survey data on volatility and uncertainty about stock returns from
two sources (the Graham and Harvey CFO survey and the Shiller survey) and docu-
ment that the surveys exhibit slow moving expectations as in our model. In particu-
lar, we regress survey expectations about volatility on past volatility realizations and
show that expectations look like a weighted average of past volatility realizations as
our model predicts, whereas optimal forecasts mainly load only on current volatility.
This provides direct support for the mechanism of slow moving expectations in our
paper.

We also document results at the firm level, where again we show implied volatility
from firm level options does not react strongly enough to recent changes in volatility,
leading to underreaction and a lower variance risk premium following increases in
volatility (see also Poteshman (2001) for related work). This is true even when we
include time fixed effects that control for aggregate movements in firm level volatility
which makes a risk based explanation difficult since this test focuses on idiosyncratic
movements in firm level volatility. The firm level analysis provides further support
for our story of underreaction and also provide robustness to our main empirical
results which rely on aggregate market data and hence a relatively smaller sample.

Finally, we consider several potential objections to both the facts and our model-
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ing choices. First, there is empirical evidence that volatility has two components: a
higher frequency component and a lower frequency, more persistent component that
our initial model ignores. It is possible that incorporating this component can match
some of the longer horizon empirical results: that expected returns and variance risk
premiums do rise in the long run after variance shocks. However, this feature alone
still fails to account for the short term behavior, and suggests that risk premiums
should be highest in the near term, counter to the data. Thus, just incorporat-
ing a long run component in variance but ignoring slow moving expectations will
not immediately match the patterns in the data. Second, we consider issues with
extreme realizations of variance (which is positively skewed) in our main empirical
facts. Third, in our baseline model volatility comes from the volatility of cash flows.
This assumption is for simplicity but not crucial for our story. Fourth, we consider
other explanations for our results including models with rational inattention and
heterogeneous agents. While these models may indeed explain some features of the
data, we explain why they do not easily generate the joint behavior of the facts we
study. Finally, we study additional evidence of our channel including Nagel, Reck,
Hoopes, Langetieg, Slemrod, and Stuart (2017) who show how investors respond to
volatility changes empirically. In their data, more sophisticated and more experi-
enced investors respond more quickly to changes in volatility. This makes sense if
we expect these investors to have a smaller degree of bias in forming expectations of
volatility.

1.1 Related Literature

Our model is related to other models of extrapolation from past data including Bar-
beris, Greenwood, Jin, and Shleifer (2015), Collin-Dufresne, Johannes, and Lochstoer
(2016), and Nagel and Xu (2019), though our focus is on volatility rather than re-
turns or cash flows.5 Our paper also fits into a broader literature on under and
overreaction, for example, Daniel, Hirshleifer, and Subrahmanyam (1998) and Bar-
beris, Shleifer, and Vishny (1998). These papers are able to generate underreaction
and delayed overreaction through potentially different underlying behavioral biases.
At least qualitatively, this underreaction and delayed overreaction to volatility is
what is needed to match the facts we study. See also Bordalo, Gennaioli, Ma, and

5See also Coibion and Gorodnichenko (2015) and Mankiw and Reis (2002) for models of sticky
expectations more generally, and Jiang, Krishnamurthy, and Lustig (2018) for extrapolation in
exchange rates. The agents in our model also differ in spirit from other forms of extrapolation such
as Nagel and Xu (2019) where agents rely too much on recent data because their memory “fades.”
In our context agents focus too little on recent data and too much on past data.
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Shleifer (2018) who study over and under reaction in expectations at the individual
forecaster and consensus levels and find consensus forecasts display rigidity. We focus
on extrapolation in particular to generate our results without taking a strong stand
on where this extrapolation comes from at a deeper level. We find extrapolation
appealing both because it appears to exist in many contexts (e.g., Barberis et al.
(2015)) and also because it is analytically tractable in our setting. Further, there is
extensive empirical evidence that agents appear to extrapolate from past experiences
when forming expectations (Malmendier and Nagel, 2011; Greenwood and Shleifer,
2014; Glaeser and Nathanson, 2017). Importantly, the survey data we study sug-
gests extrapolation of volatility, hence it suggests expectation formation similar to
what we use in the model. Further Landier, Ma, and Thesmar (2019) find consistent
evidence of both stickiness and extrapolation in an experimental setting, and find
agents do not learn quickly even when told the process is an AR(1), suggesting such
biases can persist.

It may appear surprising that extrapolation in our context leads to underreaction
as extrapolation is most often associated with overreaction. For example, in models
where agents extrapolate from past returns or cash flows agents typically overreact
to news (e.g., see Barberis et al. (2015)). However, this depends on the persistence
of the true process and the noise about the conditional mean from observing past
realizations. Conditional means of returns or cash flow growth appear to move
slowly, and they are also more difficult to measure using past data due to a low
signal to noise ratio. Intuitively, it extrapolating from recent data will more likely
lead to overreaction in these cases. Our setting is different both because volatility is
easier to observe and also because it moves quite quickly. A moving average of past
volatility that includes many months would thus not put enough weight on recent
volatility and put too much weight on past volatility, leading to underreaction.

In our model there is naturally underreaction in volatility expectations in the
short term followed by delayed overreaction of expected volatility in the longer term.
This matches the spirit of Giglio and Kelly (2017) who show focus on overreaction
of long term volatility expectations. In particular, they argue that longer term
expectations of volatility are too volatile relative to those at short horizons, a form
of relative overreaction in long term expectations. While longer term expectations in
our model do feature relative overreaction, agents beliefs are such that the dynamics
for volatility under the risk-nuetral measure are captured by an AR structure – thus
we can’t speak directly to their result. We also have little to say about unconditional
variance risk premiums (Dew-Becker, Giglio, Le, and Rodriguez, 2017). We could
obtain facts about unconditional variance risk premiums in extensions if agents are
biased on average, but in our baseline model agents beliefs are not biased on average,
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only conditionally. We focus on this case because we focus on matching facts related
to the conditional, rather than unconditional, behavior of risk premiums.

The fact that at the aggregate level changes in volatility negatively forecast stock
returns while lags positively forecast mirror the results at the firm level documented
by Rachwalski and Wen (2016).6 Rachwalski and Wen (2016) suggest a story similar
to ours for their findings, though there are many important differences. We focus
on the aggregate market since this is where the standard risk-return relation in
equilibrium asset pricing models should apply and we target the additional facts on
the variance risk premium as well. We also study and estimate a quantitative model.
Similarly, Poteshman (2001) documents underreaction and subsequent overreaction
in options markets and attributes this to cognitive biases but does not link this
to equity risk premiums and does not view this through the lens of a quantitative
equilibrium model. We confirm and extend these firm level results.

2. Stylized Empirical Facts

We begin by focusing on the main stylized empirical facts that we will target in our
model. We study US data from 1990 to 2018 for which we have stock market excess
returns, the VIX (taken as the VIX on the last day of the month, thus representing
forward looking variance for the month) and realized variance (computed as the sum
of squared daily log returns within a month). Stock return data use the (log) return
on the S&P500 index over the risk-free rate taken from Ken French. We also take the
log price dividend ratio from CRSP based on value weighted returns.7 In addition,
we study variance swap returns and VIX futures returns from Dew-Becker et al.
(2017) and Cheng (2018), respectively, though these have shorter samples (variance
swap returns are 1996-2017 and VIX futures returns are 2004-2017). We define the
variance risk premium (VRP) as the squared VIX minus realized variance, though
to supplement this we also use the actual return series as well. When using returns
(e.g., variance swap or VIX futures) we take the negative of the returns, so the
implication is the return for selling variance or being short the VIX. This means the
unconditional premium for both returns is positive as the exposure to volatility is
negative.

6“Stocks with increases in idiosyncratic risk tend to earn low subsequent returns for a few
months. However, high idiosyncratic risk stocks eventually earn persistently high returns.” Rach-
walski and Wen (2016)

7We construct the price dividend ratio as the sum of dividends over the past year divided by the
current price. We find similar results using other price measures for example the cyclically adjusted
price to earnings ratio (CAPE) from Robert Shiller’s website.
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Figure 1 plots impulse responses of realized variance (RV), the log price dividend
ratio on the market, excess stock returns, and implied variance (VIX squared) to
a shock to RV using a VAR(1) with RV ordered first, so all variables can respond
contemporaneously to a realized variance shock. We compute the path of the variance
risk premium by computing the impulse response to the VIX minus the impulse
response of expected RV over the next period as implied by the VAR (e.g., V RPk =
Et[V IX

2
t+k]− Et[RVt+k+1]). We see RV follows roughly an AR(1), spiking after the

shock and mean reverting back after about 6 months (consistent with persistence of
about 0.72 monthly). Stock returns and stock prices fall contemporaneously with an
increase in RV at time 0, consistent with a discount rate effect of volatility shocks
(French et al., 1987). However, expected returns are negative in period 1 as well,
meaning stock prices continue to fall next period on average. Expected returns
gradually increase, eventually going positive several months out, but this is after the
volatility shock has largely subsided from the perspective of the left panel. Thus
the equity premium rises later, after volatility has largely mean-reverted, which is
quite different from a standard risk-return tradeoff view. The variance risk premium
shows very similar patterns, with the predicted premium being negative in month
1 before slowly rising and becoming positive beyond month 3. Most notably, the
premiums have a hump-shaped pattern: they appear low initially but continue to
rise as future volatility falls. The shaded regions indicate 95% confidence intervals
based on bootstrapping the residuals in the VAR.

The results are broadly consistent with the main empirical findings in the lit-
erature. First, the risk-return tradeoff overall is fairly weak, and often estimated
to be negative, for stock returns on lagged realized variance (Glosten et al., 1993;
Brandt and Kang, 2004; Moreira and Muir, 2017, 2019). We note that these papers
come to this conclusion over a variety of sample periods. Relative to the literature
we also show that the risk-return tradeoff appears to be flat or negative at first but
increases with horizon with a hump shaped response. This result is also mirrored
in Brandt and Kang (2004) who study the period from 1946-1998 and find a hump
shaped response with the expected return initially falling and then rising after fu-
ture volatility subsides. The time 0 response for stock returns is strongly negative as
in French et al. (1987). Our variance risk premium results are consistent with this
type of pattern as well. A variance shock initially predicts a decline in the variance
risk premium (VIX squared minus realized variance) but then gradually predicts an
increase in the variance risk premium. This result is consistent with Cheng (2018)
who studies a claim on implied volatility (VIX) instead of realized variance. Finally,
the variance risk premium and equity risk premium are tightly linked as in Bollerslev
et al. (2009).
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In the appendix, we study alternative specifications for this VAR, including using
logs of VIX and RV and using weighted least squares based on lagged stock market
volatility. Both help downweight the importance of high volatility observations which
is important. We see largely the same patterns as in the main VAR, though these
results do suggest periods of high variance are important. In particular, the VRP
response at time 1 is somewhat muted, though the VRP continues to display the
hump shaped pattern as before, as does the equity risk premium. Taken together,
this still supports a “slow moving” response of the premiums to realized variance,
despite the fact that future realized variance still mean reverts fairly quickly. This is
in contrast to the standard benchmark model, with the equity premium being affine
in expected variance. In this setting the risk premium response should peak imme-
diately and roughly mirror the response of future variance from period 1 onwards,
with a spike upwards followed by a decline as future variance mean reverts.

To further explore these facts and understand what drives the results, we run
predictive regressions in Table 1. In particular, we use current realized variance,
the VIX, and the average of realized variance over the prior six months to forecast
equity risk premiums, variance risk premiums, and future realized variance over the
next month. The average variance over the past six months helps summarize the
information in longer lags of variance and we will interpret it as a potential proxy
for slow moving expectations of agents. Further, the direct regressions allow us to
use actual returns on variance claims rather than taking the implied premium from
the VIX.

Current realized variance negatively forecasts returns next month (column 1) and
negatively forecasts variance risk premiums (columns 5-6), but positively forecasts
future variance (column 7). In contrast, the average of past variance typically posi-
tively forecasts risk premiums but doesn’t strongly forecast future variance (column
7). This indicates that risk premiums are high when variance in the past has been
high, but not when objective conditional variance is high. Importantly, we also use
actual returns on variance claims rather than the implied premium inherent in tak-
ing squared VIX minus expected realized variance as used in the VAR. Columns 5
and 6 use variance swap returns Dew-Becker et al. (2017) and VIX futures returns
Cheng (2018) and show they are predictable by current and past variance with the
same patterns. The negative sign indicates that it is cheap to insure against future
volatility when volatility increases, similar to Cheng (2018). Column 7 predicts fu-
ture variance using current variance and the average of past variance, and confirms
that the bulk of the information in expected variance comes from the first lag, con-
sistent with variance roughly following an AR(1). Column 8 repeats this regression
using the VIX on the left hand side instead of future realized variance. In contrast
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to column 7, in column 8 both current variance and average past variance are posi-
tively associated with the VIX and combine to explain most of the variation in the
VIX with an R2 above 80% Past variance has a large and significant coefficient of
about 0.3. If we think of the VIX as capturing market expectations about variance,
this suggests these expectations depend much more on longer lags of past variance
than the objective forecast from column 7. This provides suggestive evidence of
slow moving market expectations of variance. Columns 7 and 8 together explain
the patterns in columns 5-6: because implied variance (the VIX) depends strongly
on past variance, but the objective forecast of future variance depends mostly on
current variance, then V IX2 −RV (the variance risk premium) will negatively load
on current variance and positively load on past variance. This is exactly what we
find in the regressions in 5-6.

In column 2 of Table 1 we replicate the results from Bollerslev et al. (2009) that
the variance risk premium is a robust predictor of stock returns, and this result is
even stronger in our sample which adds the more recent ten years of data compared
to the sample used in Bollerslev et al. (2009). Thus, there is a strong link between
implied variance risk premiums and equity risk premiums. Importantly, however,
the variance risk premium is a strong predictor of returns, while the VIX or realized
variance individually are not as show in columns 3 and 4. VIX squared has little to
no forecasting power for returns, and if anything has the wrong sign with a negative
coefficient. Realized variance appears to predict returns somewhat, but also with
a negative sign. This is puzzling from the perspective of the model in Bollerslev
et al. (2009) in which the VIX alone is a strong predictor of returns, both because it
embeds the variance risk premium and because it reflects expected future variance,
and both of these strongly contributed to the equity risk premium. In light of our
results in column 8 that VIX depends strongly on past variance, this suggests an
alternative explanation for the variance risk premium forecasting returns based on
agents paying too much attention to past variance in forming their expectations.

In the appendix, we repeat these regressions using volatility in place of variance,
which will have fewer extreme realizations and using various subsamples as robust-
ness. The variance risk premium return results hold, with recent volatility negatively
predicting risk premiums and past variance typically positively predicting, though
this is somewhat weaker in some subsamples. Volatility also predicts future volatil-
ity with a fairly similar pattern as before for variances. However, the statistical
significance in some of the return forecasting regressions is weaker (in particular the
result that current volatility negatively forecasts returns in a univariate regression),
highlighting that much of the results in our main table come from high variance
realizations. While this suggests caution in terms of reliably predicting stock returns
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with changes in variance, our main point is in the benchmark models the coefficient
on variance would typically be strongly positive rather than negative, which is at
odds with what we see empirically. Hence the null in these models is a strongly
positive coefficient on current variance for the risk premium. The most robust facts
are that the variance risk premium forecasts stock returns, that the risk premiums
displays a hump-shaped pattern with a relative decrease at first and a rise further
out, and the current variance if anything is associated with lower rather than higher
risk premiums.

Standard asset pricing models typically struggle with these facts because they
suggest that an increase in risk (volatility) will be associated with heightened risk
premiums at all horizons, and this relationship will be strongest in the near term
and will decay with horizon when volatility is mean-reverting. For example, Moreira
and Muir (2017) show the risk return tradeoff in leading models is strong, including
models with habit formation (Campbell and Cochrane, 1999), long run risk (Bansal
and Yaron, 2004; Drechsler and Yaron, 2011), rare disasters (Barro, 2006; Wachter,
2013) and intermediary models (He and Krishnamurthy, 2013). Further, expected
returns will typically rise most on impact and will gradually fade through time as
volatility fades. We are not aware of leading equilibrium asset pricing models which
produce a temporary decline in risk premiums followed by a delayed increase.

Table 4, which we return to later, repeats this analysis at the firm level for US data
which gives us significantly more observations compared to the aggregate results and
hence provides robustness to our main results. We see strikingly similar results for
the variance risk premium with increases in firm-level variance negatively predicting
the firm-level variance risk premium. This is true even when including time fixed
effects suggesting that the facts we document hold even when removing aggregate
movements in volatility.

We also find supportive evidence in survey data: surveys that captures investors
perception of volatility or uncertainty are slow moving and load significantly more
on past realizations of volatility compared to optimal forecasts. This is similar to the
regression in Table 1 column 9 that market expectations of variance depend strongly
on past variance. We return to the survey evidence in a later section.

We return to these facts after presenting the model, and we discuss additional
empirical robustness in the Appendix, including results using international data. In
the Appendix, we show that the negative relation between future returns and cur-
rent realized variance is robust going back to the 1950s but less so if one includes
the Great Depression (see Figure 9). However, most importantly, the point estimate
is still negative, meaning even including the Great Depression there is no strong evi-
dence of a positive risk-return tradeoff (e.g., variance does not reliably predict higher
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future returns) though the evidence of a statistically significant negative coefficient
on the next month return does change. Hence, we interpret the negative one month
prediction with some caution in light of the longer sample. In our parameter cali-
bration, we focus on the more recent US data from 1990 when we have the VIX and
variance risk premium data.

3. The Model

In this section, we develop an asset pricing model similar to that in Bollerslev,
Tauchen and Zhou (2009) except that we allow the representative investor to have
biased beliefs regarding the dynamics of stock return volatility. This simple modifi-
cation enables the model to account for the empirical evidence discussed earlier.

Let the objective process for aggregate log dividend growth be given by:

∆dt = µ+ σtεt, (2)

σ2
t = v̄ + ρ

(
σ2
t−1 − v̄

)
+ ωηt, (3)

where σ2
t is the realized variance of dividend growth innovations, observed at time t,

and εt and ηt are uncorrelated i.i.d. standard Normal shocks. Variance is persistent
with 0 < ρ < 1. Equation (3) implies that variance can go negative. For ease of
exposition we follow, e.g., Bansal and Yaron (2004) and Bollerslev, Tauchen, and
Zhou (2009), and proceed as if σ2

t is always non-negative. In the Appendix, we
show that this simplification is unimportant for our conclusions by solving a model
with Gamma distributed variance shocks, where variance is guaranteed to always
be positive. Bollerslev, Tauchen, and Zhou (2009) additionally let the variance of
variance follow a square root process, thereby generating a time-varying variance
risk premium in a rational model. We show in Section 3.4 that their model cannot
account for the empirical patterns we discuss in this paper.

We assume a representative stockholder with consumption equal to aggregate
dividends whose marginal utility prices all claims in the economy. The agents’ ex-
pectations of the conditional variance of dividend growth are given by:

ES
t−1

[
σ2
t

]
= v̄ + λxt−1, (4)

xt = φxt−1 + (1− φ)
(
σ2
t − v̄

)
= (1− φ)

∑∞
j=0 φ

j
(
σ2
t−j − v̄

)
. (5)

The S superscript on the expectations operator highlights that the expectation is
taken under the agent’s subjective beliefs. If φ = 0 and λ = ρ, the agent has
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rational expectations about the volatility dynamics, while if φ > 0 the agent has
slow-moving volatility expectations, allowing an exponentially weighted average of
past variance to affect the current expectation, as opposed to only the current value
as the physical volatility dynamics prescribe. The scale of agents’ expectations is set
by λ. We assume 0 < φ, λ < 1.

Under agents’ beliefs, the shock to variance is:

ωηSt ≡ σ2
t − v̄ − λxt−1

= v
(
σ2
t−1 − v̄

)
− λxt−1 + ωηt, (6)

where v
(
σ2
t−1 − v̄

)
−λxt−1 = EP

t−1 [σ2
t ]−ES

t−1 [σ2
t ] = EP

t−1

[
ωηSt

]
is the mistake agents

make when forecasting variance. Here a P superscript on the expectations operator
means the expectation is taken under the objective measure. We can thus write the
dynamics of xt under agents’ beliefs as:

xt = (φ+ (1− φ)λ)xt−1 + (1− φ)ωηSt . (7)

Note that investors’ variance expectations are sticky relative to the true variance
dynamics if φ > 0 and λ ≥ ρ, as the persistence of xt then is higher than the true
persistence of σ2

t (that is, φ + (1− φ)λ > ρ). Also note that the shock itself is
moderated by a factor of 1−φ. Figure 2 shows the impulse-response from a positive
variance shock (η0) for objective and subjective expected variance. The parameter
values are calibrated to the data as described below. The true AR(1) dynamics of
variance are reflected in the monotonically decaying response in the rational case
(dashed red line). The solid blue line give the impulse-response of agents’ expected
variance as reflected in the dynamics of xt. Agents’ initially underreact, as φ is
greater than zero in this case, but the higher persistence of xt leads to subsequent
overreaction.

Following Bollerslev, Tauchen, and Zhou (2009), the agent has Epstein-Zin utility
(Epstein and Zin, 1989) where β, γ, and ψ are the time-discounting, risk aversion,
and intertemporal substitution parameters, respectively. The stochastic discount
factor is therefore:

Mt = βθe−
θ
ψ

∆dt+(θ−1)rt , (8)

where θ = 1−γ
1−1/ψ

and rt is the log return to the aggregate dividend claim. We use

the standard log-linearization techniques of Campbell and Shiller (1988) and Bansal
and Yaron (2004) to derive equilibrium asset prices (see Appendix for details). In
particular, we assume aggregate log returns are rt = κ0 + κpdt − pdt−1 + ∆dt, where
pd is the aggregate log price-dividend ratio and κ is a constant close to but less than
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one that arises from the log-linearization. We then obtain:

pdt = c− Axt, (9)

where A = −1
2
λ(1−γ)(1−1/ψ)
1−κ(φ+(1−φ)λ)

. Notice that if γ, ψ > 1 we have that A > 0. This is the
standard preference parameter configuration for asset pricing models with Epstein-
Zin preferences. It implies that the price-dividend ratio is low when agents perceive
variance to be high, as in the data.

3.1 Equity risk premium dynamics

Let rt and rf,t denote the aggregate log return and risk-free rate in period t, re-
spectively. The subjective conditional risk premium of log returns in this economy
is:

ES
t−1 [rt − rf,t] = (γ − 1

2
)ES

t−1

[
σ2
t

]
+ δr, (10)

where δr is a constant given in the Appendix that captures the price effect of discount
rate shocks due to the variance shocks (ηt). The first term reflects the standard risk-
return trade-off that is linear in the conditional variance of dividend growth, where
the −1/2 part arises as this is the log return risk premium.

The conditional variance of log returns is determined both by the conditional
variance of dividend growth and the impact of the variance shock on the price-
dividend ratio:

V arSt−1 (rt) = Θ + ES
t−1

[
σ2
t

]
, (11)

where Θ = (κA(1− φ)ω)2.
The objective risk premium, however, is:

EP
t−1 [rt − rf,t] = ES

t−1 [rt − rf,t]− κ (1− φ)A
(
EP
t−1

[
σ2
t

]
− ES

t−1

[
σ2
t

])
, (12)

where the P superscript on the expectation denotes that it is taken using the true,
objective variance dynamics. To see where Equation (12) comes from, recall that the
shock to agents beliefs about variance is predictable (see Equation (6)). The mistake
is persistent, which magnifies its effect on prices as given by the term −κA (1− φ).8

If φ > 0, agents make mistakes in their conditional variance expectations. These
mistakes are reflected in current discount rates and therefore prices. Consider a
positive shock to variance (ηt−1 > 0). With φ > 0 investors’ expectations are sticky,

8This expression is found by using the Campbell-Shiller return approxima-
tion and noting that EP

t−1 (−κpdt) − ES
t−1 (−κpdt) = −κA

(
EP

t−1 [xt]− ES
t−1 [xt]

)
=

−κA (1− φ)
(
EP

t−1

[
σ2
t

]
− ES

t−1

[
σ2
t

])
.
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meaning investors do not update their beliefs sufficiently and initially underreact
to the variance shock. Thus, EP

t−1 [σ2
t ] > ES

t−1 [σ2
t ]. Since A > 0 in the relevant

calibrations, this means a positive shock to variance can, if the mistake is sufficiently
large, decrease next period’s objective risk premium. The reason is that investors
will on average perceive a positive shock to discount rates next period as the realized
value of σ2

t on average is higher than they had expected. This leads to a predictable
decline in the price-dividend ratio under the objective measure. The upper right
panel of Figure 3 shows the impulse-response of the log price-dividend ratio to a
volatility shock. As expected, the price-dividend ratio falls at the impulse, but note
that it keeps falling in the following period due to the increase in discount rates when
agents learn variance is higher than expected. Subsequently, given the too persistent
variance expectations, agents eventually overreact to the volatility shock, which leads
to EP

t+j−1

[
σ2
t+j

]
< ES

t+j−1

[
σ2
t+j

]
for some j > 0. In this case, the second term in

Equation (12) becomes positive and the conditional risk premium overshoots. This
is shown in the lower right Panel of Figure 3 .

Upon impact, a positive shock to variance decreases prices as the long-run im-
pact on discount rates is positive when A is positive. This is consistent with the
negative contemporaneous correlation of realized variance and returns in the data
(e.g., French, Schwert, and Stambaugh, 1987). In particular, shocks to returns are:

rt − EP
t−1 [rt] = −Θ1/2ηt + σtεt, (13)

where Θ1/2 = κA (1− φ)ω encodes the present value impact of the shock to variance
(ηt) due to its effect on the discount rates agents require for holding the risky asset.

3.2 Variance risk premium dynamics

In addition to the equity claim, we also price a variance claim with payoff:

RVt ≡ Θ + σ2
t , (14)

where RVt stands for realized variance at time t. We define the time t − 1 implied
variance (IVt−1) as the swap rate that gives a one-period variance swap a present
value of zero:

0 = ES
t−1 [Mt (RVt − IVt−1)] . (15)

Thus:
IVt−1 = ES

t−1 [Rf,tMtRVt] . (16)

As is standard in the literature, we denote the (objective) expected payoff of a
position in the variance swap where you are paying the realized variance and receiving
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the implied variance as the variance risk premium:

V RPt−1 = IVt−1 − EP
t−1 [RVt] . (17)

If realized variance is high (low) in bad times, this risk premium is positive (negative).
Our model-definition of realized variance is motivated by industry practice for

variance swap payoffs, where monthly realized variance is the sum of squared daily
log returns within the month. In the model, squared monthly log returns are:

(rt − Et−1 [rt])
2 = Θη2

t + 2σtΘ
0.5ηtεt + σ2

t ε
2
t . (18)

To approximate the use of higher frequency data to estimate realized variance within
our model, we assume that the second moments of realized shocks equal their continuous-
time limit.9 Setting η2

t = ε2
t = 1 and ηtεt = 0 in Equation (18) gives the realized

variance in Equation (14).10

The equilibrium implied variance is:

IVt−1 = ES
t−1 [RVt] + δIV , (19)

where ES
t−1 [RVt] = ES

t−1 [Θ + σ2
t ] = Θ+v̄+λxt−1 and δIV =

(
1
2
γ2 − 1/ψ−γ

1−1/ψ
κ (1− φ)A

)
ω2.

The second term is an unconditional risk premium required by the agents due to the
variance claim’s exposure to shocks to variance. The conditional variance risk pre-
mium is then:

V RPt−1 = IVt−1 − EP
t−1 [RVt]

= δIV + ES
t−1 [RVt]− EP

t−1 [RVt]

= δIV + ES
t−1

[
σ2
t

]
− EP

t−1

[
σ2
t

]
. (20)

9That is, if W
(1)
t and W

(2)
t are standard Brownian motions with uncorrelated innovations,∫ t+1

t

(
dW

(j)
t

)2
=
∫ t+1

t
dt = 1 for j = {1, 2} and

∫ t+1

t
dW

(1)
t dW

(2)
t = 0.

10In benchmark equilibrium models, typically calibrated at the monthly frequency (e.g., Boller-
slev, Tauchen, and Zhou (2009), Drechsler and Yaron (2011)), there is no clear counterpart to this
multi-frequency approach where IV and RV are monthly, but where RV is estimated using daily
data. In the models cited above, the definition of the IVt is the risk-neutral expectation of the
market return variance in month t + 2. For example, IV at the end of January is the risk-neutral
expectation at the end of January of market return variance in March. We define RV in a manner
that avoids this one-month offset that is at odds with the data definitions. This brings the model
closer to the moments from the data we use for calibration of the model parameters. While it is
convenient to align the model definitions more closely to the timings used in the data, we note that
our model results would also go through with alternate definitions of the variance risk premium
used in earlier literature.
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Thus, the dynamics of the variance risk premium share a component of the dynamics
of the equity risk premium (Equation (12)), namely the mistakes agents’ make in
their variance expectation. Thus, agents will initially underreact to the variance
shock, but subsequently overreact due to their sticky expectations, which leads to
time-variation in the variance risk premium similar to that in the data. In fact, the
lagged variance risk premium forecasts equity returns, as it does in the data and as
it does in Bollerslev, Tauchen, and Zhou (2009). However, in the their model this
is due to time-varying variance of variance, which we abstract from in this baseline
version of our model.

Next, we calibrate the parameters of the model to assess if it can quantitatively
account for the empirical observations discussed earlier.

3.3 Model calibration

We calibrate the model to moments that are at the heart of the issues we seek to
address with the model. The data is monthly and from 1990 through 2018. We
use the V IX2

t as the proxy for IVt, where V IXt is the option-implied risk-neutral
volatility of stock returns over the next month. RVt is calculated as the sum of daily
squared log excess market returns in month t.

Panel A of Table 2 gives the parameters of the baseline model. We match the
mean, autocorrelation, and variance of RVt in the data with the parameters gov-
erning the objective variance dynamics in the model (v̄, ρ, and ω). We set the risk
aversion parameter γ by matching the equity premium and we take the elasticity of
substitution ψ to be 2.2 as estimated in Bansal, Kiku, and Yaron (2016), which is
within the range of values used by Bollerslev, Tauchen, and Zhou (2009). Finally, we
set φ to match the response of the variance risk premium (V RP ) to a shock to RV in
the model to that in the data, and we set λ to match the variance of IVt in the model
to the variance of the V IX2

t in the data. We set κ = 0.971/12, consistent with values
used in earlier the literature and the average level of the price-dividend ratio in the
data. Our moments of interest do not require us to estimate the time-discounting
parameter, β, or the mean of dividend growth, µ.11 Table 2 gives the parameter
values as well as the moments from the data used in the calibration. Note that the
chosen value of φ is conservative in the sense that it is lower than that estimated
using the survey data.

11This is why we set the log-linearization parameter κ exogenously to a standard value in the
literature. In our monthly calibration, κ is very close to 1 and there is little sensitivity to reasonable
variation in this parameter to the moments we target.
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3.4 Comparison with the data

Figure 3 shows impulse responses in the model and the data from a VAR with RV,
log excess market returns, and realized V RP . The RV shock is ordered first, and
we consider the impulse-responses to a one standard deviation shock to RV . The
corresponding impulse-responses from the data are plotted with a black solid line,
with ± two standard error bands in grey. The impulse-responses from the calibrated
model are given in the blue dashed lines, while the impulse-responses from the model
assuming φ = 0 and λ = ρ (the rational case) are given in the red dash-dotted lines.

Both calibrations of the model are consistent with the autocorrelation pattern of
RV, as shown in the top left plot. A positive shock increases variance on impact and
decays monotonically and relatively quickly. However, the impact of an RV shock
on the conditional market and variance risk premiums (the bottom plots) is very
different across the two models. While in both the rational and extrapolative models
the market price decreases contemporaneously with a positive shock to variance
(top left plot), the response in the rational model is to immediately increase the
conditional risk premium due to the usual risk-return trade-off (Equation (12)), at
odds with the empirical facts. In the extrapolative model, however, the response of
the conditional equity premium as measured in the VAR is, as in the data, initially
negative. This is due to the mistake investors are making in their variance forecast
as shown in Figure 2. The equity premium subsequently overshoots due to the slow-
moving expectations of the extrapolative agents, consistent with the pattern in the
data. The same is true for the variance risk premium, although in this case the
pattern is stronger as its dynamics are only affected by the mistake in expectations
(see Equation (20)). The rational version of the model has no effect on the variance
risk premium from an RV shock, again at odds with the data.

Panel B of Table 2 shows unconditional moments from the model and their coun-
terparts in the data. In addition to the moments we match, we note that stock
returns and shocks to realized variance are negatively correlated as in the data.
Thus, we are able to account for the discount rate effect documented in French,
Stambaugh, and Schwert (1987) even though a shock to variance in fact decreases
the equity premium in the short-run as shown in the bottom right panel of Figure
3. The long-run response, however, is positive, and it is this long-run discount rate
response that dominates in the price response (see top right plot in Figure 3).

Bollerslev, Tauchen, and Zhou (2009; BTZ hereafter) provide a rational bench-
mark model of the dynamics of the variance risk premium and the conditional equity
premium. In this model, the representative agent has rational expectations and the
volatility of volatility follows a mean-reverting process. The time-variation in the
amount of variance risk gives rise to time-varying expected returns to variance swaps
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and the market risk premium. In particular, the lagged variance risk premium in
their model predicts future excess market returns as in the data. To highlight how
the extrapolative model of this paper differs in terms of asset price dynamics, we in
Figure 4 show regression coefficients from forecasting regressions at horizons from
1 to 12 months from both models, as well as the data.12 The solid red line shows
the coefficients from the extrapolative model, while the dashed black lines show the
coefficients from the BTZ model.

The top left plot shows the regression coefficients from univariate regressions of
monthly log excess market returns on the k-month lagged variance risk premium
(IVt−k − RVt−k; we follow BTZ here in the definition of VRP as a predictor). As
in the data, the variance risk premium positively predicts excess market returns
strongly with a coefficient of about 5 in both models. In the extrapolative model,
the prediction power is short-lived and goes to zero after about 4 months, while in
the BTZ model the persistence is somewhat higher. Overall both models do a good
job matching the relationship between market returns and the V RP .

A salient fact in the data is that while the difference V IX2
t − RVt is a strong

predictor of market returns, neither lagged RV nor the V IX (or the V IX2) are
strong return predictors on their own — a fact that BTZ documents in their Table
3 (page 4482 in BTZ (2009)). The top right plot of Figure 4 shows monthly excess
return forecasting regressions using RV at different lags. Empirically, there is a
marginally significant negative response for the one-month, which turns positive as
the lag length increases. This is in contrast to the strong positive risk premium
response in BTZ. In fact, while the coefficients in the data range between −1 and 1,
the BTZ model has a 1-month regression coefficient of 10, due to a strong risk-return
trade-off in this model, which monotonically decreases with lag length following the
AR(1) response of RV itself. The extrapolative model has a weak risk-return trade-
off, much closer to the data. There is a slight positive initial response (regression
coefficient around 1), and the pattern is hump-shaped as the lag length increases as
in the data. The bottom left plot of Figure 4 shows the return forecasting regression
coefficients with lags of V IX2 (IV in the models) on the right hand side of the
regressions. In the data, the point estimate is close to zero at all horizons, whereas
in the BTZ model there is again a strong counter-factual positive response (as for
RV case in this model, the coefficient is about 10 at the 1-month horizon). The
extrapolative model is largely within the two standard error bands of the data, with
a 1-month coefficient of 2.5. In sum, in the extrapolative model the V RP is a stronger

12To give the BTZ model a better chance at matching these patterns, we recalibrate the objective
variance process in their model to match that in the data. Their calibration implies a counter-
facturally high persistence of RVt.
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return predictor than either RV or the V IX2, as in the data, whereas the opposite
is the case in the BTZ model. These strong risk-return tradeoff implications are not
specific to the BTZ model, but are a shared feature of many of the leading structural
asset pricing models. For example, Moreira and Muir (2017) show a strong risk-
return relation is an implication of models with habits, long run risk, rare disasters,
and financial intermediation. Thus, our model helps reconcile the empirically weak
risk-return tradeoff while keeping the predictive power of the variance risk premium.

The bottom right plot of Figure 4 shows the response of the realized variance
risk premium on lagged values of RV . In the data the initial response is negative,
turning positive with a hump-shaped response as the lag length of RV increases.
The extrapolative model matches both the initial negative response and the following
positive hump-shape, though it overshoots this shape somewhat in the 3- to 8-month
lag range. In contrast, the RV coefficients in the BTZ model are counter-factually
effectively zero at all lag lengths.13 Thus our model is able to account for the facts in
Cheng (2018) that the variance risk premium appears to initially fall when measures
of risk rise before eventually increasing at longer horizons.

3.5 Volatility managed portfolios

Moreira and Muir (2017) document that volatility-managed factor portfolios yield
positive alpha in standard Gibbons, Ross, Shanken (1987) type return regressions.
For the market factor they consider a strategy that each period has a portfolio weight
in the market that is inversely proportional to RV . They show that the alpha of
such a strategy relative to the buy-and-hold market factor can be approximated by:

α = − c

E [RVt]
Cov

(
Et [RVt+1] ,

µt
Et [RVt+1]

)
, (21)

where Et [rt+1 − rf,t] = µt and where c is a constant that scales the timing portfolio
to have the same return variance as the market. Since there is no strong risk-return
trade-off in the extrapolative model, the covariance above is negative, which gives
rise to a positive alpha as in the data. Our simple variance process allows negative
values for variance, therefore to calculate this covariance we use the approximation:

µt
Et [rvt+1]

≈ µ̄

v̄ + Θ
+

1

v̄ + Θ
(µt − µ̄)− µ̄

(v̄ + Θ)2 (Et [rvt+1]− v̄ −Θ) , (22)

13The variance risk premium is time-varying in the BTZ model, but the state-variable that
governs this time-varition (the variance of variance) is locally uncorrelated with realized variance,
which is why the regression coefficients on lagged variance are effectively zero.
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and report the alpha for the volatility-managed market portfolio in Table 2 as:14

α ≈ −0.6× 1

v̄ + Θ
Cov

(
Et [rvt+1] , µt −

µ̄

v̄ + Θ
Et [rvt+1]

)
, (23)

which is equal to 2.4% annualized — in the same order of magnitude as the 4.9%
Moreira and Muir (2017) document.

3.6 Sensitivity to Parameter Values

How important is the extrapolative parameter φ in our model for matching the data?
Table 3 revisits our main stylized facts (e.g., from Table 1 and the literature) in the
first column and compares model values as we vary the degree of extrapolation φ.
We consider the fully rational case in the model as a benchmark (φ = 0, λ = 0.72)
in column 2 and then use our calibration of λ = 0.9 in the remaining columns while
increasing φ to 0.4, 0.6, and 0.8.

We show the relation between risk and return (regression of future market return
on current and past variance), volatility-managed alphas, the correlation between
realized returns and variance shocks, the forecasting regressions of stock returns using
the variance risk premium, the relation of the conditional variance risk premium with
current and past variance, and the correlation of the model implied variance (V IX2)
and realized variance.

We first note that the dependence of future returns on current variance declines
as we increase φ, while the dependence on past variance (six month moving average)
increases as we increase φ. The rational case in our model implies only current
variance should predict returns, with zero weight on the past average. This is natural
since current variance contains all information about expected future variance. With
high enough φ, current variance can have zero or even negative relation to next period
returns, while the average of past variance comes in positively for larger values of φ.
These results are mirrored in the next row which documents the volatility managed
alpha, with empirical numbers taken from Moreira and Muir (2017). The alpha is
positive in the data, reflecting a weak risk-return tradeoff. As we increase φ and the
risk-return tradeoff weakens, we increase the volatility timing alpha as well.

The contemporaneous correlation between realized returns and shocks to variance
doesn’t depend strongly on φ, and quantitatively is about the same for all values of
φ we examine. The reason for this is that there are two effects which quantitatively
cancel each other out in our calibrations: the first is that a higher φ implies a lower

14Moreira and Muir find that c
E[RVt]

≈ 0.6 in the data, and we simply use this value to compute

the volatility timed portfolio alpha implied by our model.
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reaction to volatility news through slow moving expectations. On the other hand,
a higher φ leads agents expectations to be more persistent that the true volatility
process. This second effect results in an effectively larger discount rate response to
volatility shocks as they last longer in agents expectations, and tends to move prices
more when volatility changes, while the first effect dampens the response to volatility
news. Thus, our model keeps the negative correlation between returns and variance
shocks even when underreaction to volatility is large.

Next, we show implications for the variance risk premium. First, the the variance
risk premium forecasts stock returns strongly in the data, and the model can account
for this once φ > 0. The variance risk premium itself (here measured as V IX2 minus
a forecast of realized variance based on current and past variance) is negatively
related to current variance and positively related to past variance. This is just the
result from Table 1 that, relative to future variance, VIX loads more on past variance
and less on current variance. The model can generate this pattern with φ > 0 (which
is required for the variance risk premium to have time-variation). As φ increases,
so that expectations are slow moving, current variance forecasts this premium more
negatively and past variance forecasts the premium more positively. This is simply
because the mistake in expectations is larger when we increase φ.

Finally, empirically there is a strong correlation between implied variance (V IX2)
and realized variance (0.86). If VIX is influenced market by beliefs about variance
this suggests that such beliefs are highly correlated with an objective forecast. In
the model, this correlation weakens as we increase φ as it implies investors make
larger mistakes. However, notably this correlation remains fairly high even for large
values of φ. This may at first seem surprising, since it implies the subjective forecast
of variance is strongly correlated with the objective measure in the model, meaning
mistakes are actually fairly small, even when we increase φ. But note that volatility
is persistent, and agents beliefs still put most weight on recent variance. Because
volatility is fairly persistent, putting weight on lagged variance results in only a
modest mistake, and these weights decay fairly quickly for longer lags (which have
weight φk). This is an important point since it highlights that while the degree of
extrapolation in our model may appear large, persistence in variance actually implies
only modest mistakes. Only in the case where φ is highest at 0.8 is this correlation
in the model lower than what we see empirically.

Having discussed this intuition, we note that φ of around 0.6 does fairly well
jointly accounting for the facts in the data in terms of the risk-return tradeoff,
volatility managed alpha, variance risk premium dependence on past variance, and
correlation between VIX and realized variance. However, these results also suggest
some tension in the model in terms of jointly matching all facts quantitatively. In
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particular, the risk-return tradeoff is even weaker in the data than the model with
φ = 0.6 (also reflected in the volatility managed alpha), and a large φ is needed to
match this moment. On the other hand, the variance risk premium results favor
a more modest value of φ for the magnitudes of the variance risk premium on past
variance to not be too large. Most important, however, the model with extrapolation
matches the moments on balance better than the rational benchmark.

4. Additional Evidence: Survey Data and Firm

Level Analysis

4.1 Survey Data on Volatility

Survey data on investors expectations is especially useful because it allows us to
evaluate the main mechanism in our model using direct data on expectations. In
addition, Giglio, Maggiori, Stroebel, and Utkus (2019) show that survey data on
investor beliefs about risk translates directly into actions in terms of portfolio al-
locations. Specifically, they find that investors substantially reduce their portfolio
allocation to stocks when they think stocks are riskier in terms of greater probability
of a significant decline in the stock market.

We bring survey data related to volatility from two sources. The first is the
Graham and Harvey survey of CFOs which is quarterly from 2001. The survey
asks respondents for a mean forecast for the stock market over the next year as
well as 10th and 90th percentiles. We construct the 90th minus 10th percentile as
a measure of volatility or uncertainty and square this number to get a measure of
expected variance. While this measure has limitations, it does capture how spread
out agents view the return distribution, and under the view of a normal distribution
would perfectly capture agents expectations about volatility. Our second source of
survey evidence is from Robert Shiller who asks investors the probability of a stock
market crash over the next 6 months such as that seen in 1987. Again, we view
this as correlated with agents perception of risk and volatility though it is still an
imperfect measure. We use the monthly Shiller sample which begins in July of 2001.

We proceed in two ways to assess whether survey data display slow moving expec-
tations about volatility. First, we fit survey expectations and actual realized variance
over the period investors are asked to forecast as an exponential weighted average of
past variance exactly as in our specification in the model:

yt→t+k = a+ b

J∑
i=1

φi−1σ2
t−i + εt
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where yt→t+k is the actual future realized variance from time t to t + k, and then
yt→t+k is replaced by survey expectations of variance instead. When using realized
variance on the left hand side, we compute forward looking realized variance over the
horizon which corresponds to the survey expectations about volatility (e.g., k is 1
year for CFO survey and 6 months for the Shiller survey). We take J , the number of
lags of realized variance, to be 12 periods (longer lags produce similar results). We
estimate φ in both cases, where a higher φ from survey data indicates more reliance
on past variance compared to the optimal forecast. This specification has the benefit
that it maps exactly to our model setup for beliefs.

Table 5 gives our estimates. We find φsurvey > φRV meaning survey expectations
depend much more on past volatility than optimal forecasts indicate. We find φRV
is economically and statistically fairly small, consistent with realized variance being
fairly well approximated by an AR(1) as discussed earlier, while we find φsurvey to be
large, between 0.75 (Shiller) and 0.77 (CFO). The estimates from these two totally
separate surveys thus deliver similar degrees of extrapolation from past variance.
The substantial amount of extrapolation we see in the survey data is a bit larger
than what we estimate from our model, meaning the expectations bias from pure
survey data appears stronger than the bias we estimate from only financial market
data. The value in our model is thus conservative relative to the survey data. This
provides independent evidence consistent with our model.

To further assess the degree of investors slow moving expectations, we run a
vector autoregression (VAR) with future realized variance as well as the reported
expectations from the survey. We order future variance first, followed by the survey
expectation and plot the impulse response to a variance shock. Results are given
in Figure 5. As before, future variance increases substantially after this shock then
subsequently declines as it mean reverts. The survey expectations, however, show
a hump shaped response, consistent with expectations continuing to rise after the
initial shock. The expectations initially do not rise as much (underreaction) but
then subsequently remain elevated long after expected variance declines (subsequent
overreaction), consistent with the dependence of survey expectation on longer lags
of past variance. The pattern from both surveys is similar, and this prediction
is exactly what we expect from our model of slow moving expectations of volatility.
Thus, two independent surveys provide consistent evidence in favor of the mechanism
we propose.
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4.2 Firm Level Analysis

We revisit our stylized aggregate facts at the firm level (stock level). We take implied
volatility from OptionMetrics at the stock level from 1996-2017 and use daily and
monthly return data from CRSP for the stocks in the merged OptionMetrics sample
(6,489 unique stocks over the sample). Implied volatility is measured on the last
day of the month and measures option implied volatility over the subsequent month
(30 days) for at the money options. Realized variance is computed using the daily
returns within a given month. Our measure of the variance risk premium is then
IV 2

i,t − RVt+1 which is the implied variance over the next month minus the actual
realized variance over the next month. We use daily log stock returns from CRSP
and computed the sum of squared log returns over the following month’s trading
days as our measure of realized variance.

Similar to our results in Table 1, we forecast equity risk premiums, variance risk
premiums, and future realized variance over the next month using the change in real-
ized variance from month t to t− 6. We use the change over six months, rather than
the average of all realizations over six months, for several reasons. Most importantly,
this helps account for quarterly earnings announcements at the firm level which are
a big driver of firm level volatility and result in quarter fixed effects at the firm level
with realized volatility being high during months with earnings announcements. By
differencing the six month lag we both account for unconditional firm level effects
and effects of quarterly earnings announcements on firm level volatility. We win-
sorize lags of realized variance at the 90th percentile, though importantly we do not
winsorize future realized variance so that the left hand side in this case is still the
realized variance risk premium. In unreported results we find similar result without
winsorization, but the main advantage is we find much stronger predictive power
for future variance with winsorization due to substantially more noise in firm level
realized volatility estimates compared to the aggregate. We also find qualitatively
similar results in several other specifications, including using log of realized variance
or using volatility in place of variance, though these results are omitted for space.

The results show that increases in volatility over 6 months negatively forecast
variance risk premiums, but positively forecast future variance. The coefficients for
predicting future variance and future variance risk premiums are highly statistically
significant with or without time fixed effects (standard errors are double clustered
by time and firm). The results with time fixed effects are especially important
because these remove any aggregate movements in firm level variance or variance
risk premiums. By removing aggregate effects, we are more likely capturing purely
idiosyncratic movements in realized variance that helps push against a risk-based
story for our results. These results are also similar in spirit to Poteshman (2001)
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who argues for underreaction in option prices in an earlier sample.
The firm level analysis achieves two things. First, it provides robustness to our

aggregate results which rely on fewer observations. Second, it provides more insight
into whether the variance risk premium results we document are likely driven by
true economic risk premiums (compensation for risk) or whether they are instead
more likely driven by biased expectations and underreaction to changes in volatility.
As stressed earlier, the aggregate results are not consistent with standard risk based
models since higher risk (more variance) should, if anything, imply a higher rather
than lower risk premium. Nevertheless, it is always possible to construct a model in
which investor preferences move in such a way to match the aggregate evidence. The
firm level evidence is more powerful since we think of firm level variance as largely
idiosyncratic, especially in our second specification where we include time fixed effects
in the regression to remove any common components of firm level variance. Hence,
we would likely expect a much smaller effect at the firm level from a risk premium
story due to variance shocks being more idiosyncratic at the firm level. Instead, we
recover a coefficient of around -0.1 for the firm level VRP, which is in line with the
magnitudes we observe in the aggregate results.

Further in this dimension, at the firm level we see a weakly negative but not
significant coefficient for the equity risk premium. This is exactly what we expect
in the model if agents do not price idiosyncratic firm level risk. In our aggregate
results, investors should require more compensation for the increase in variance and
this mechanism combined with biased beliefs results in the negative coefficient on
the equity risk premium. Absent this channel, we would only expect the results to
hold for the variance risk premium. Taken together, the firm level results support
our main hypothesis that agents initially underreact to changes in variance and that
this is reflected in implied volatilities.

4.3 Evidence on Actual Trading Behavior

Nagel et al. (2017) show evidence that investors do react to changes in volatility with
more sophisticated investors and older investors responding more strongly. Specif-
ically, they show that higher income and older investors sell more aggressively fol-
lowing increases in volatility. This is reasonable in our model if one takes higher
income investors to be more sophisticated and less prone to the expectations bias
in our paper. Similarly, it is possible that investors learn more about the volatility
process with time (as the evidence on investor experience suggests they would) and
hence exhibit less of a bias as they are older. A shortcoming of our model is that
it features a representative investor and so does not speak directly to this evidence
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(as there is no trade in equilibrium), though modest extensions of the model which
allow for differences in the amount of bias would naturally be consistent with the
evidence on trading behavior.

5. Extensions and Alternative Models

5.1 Alternative Explanations

Moreira and Muir (2017) show that leading equilibrium asset pricing models (e.g.,
habits models, intermediary models, long run risk, and rare disasters) typically imply
a strong risk return tradeoff and hence won’t match the facts that volatility is a weak
predictor of returns.

What other models could explain our results? While some models can indeed
match some of our stylized facts, we are not aware of models that can quantitatively
jointly match them. This is especially true regarding the firm level analysis which
relies solely on idiosyncratic movement in firm level variance, and our survey expec-
tation data which suggests slow moving volatility expectations. We briefly discuss
models with rational inattention and heterogeneity in terms of which facts they can
explain.

Models featuring infrequent rebalancing and/or rational inattention (Abel, Eberly,
and Panageas, 2013) at first appear promising but won’t easily match the facts that
we document. Essentially, even if a small fraction of traders is attentive at any
given time, they will still price in changes to volatility. Similarly, even agents know
they will not rebalance again soon they will still ensure a risk-return tradeoff at the
horizon at which they expect rebalance. This will result in a risk-return tradeoff
that resembles the standard case. Further, Nagel et al. (2017) show evidence that
investors do react to changes in volatility with more sophisticated investors (e.g.,
those in highest income brackets) responding most quickly. That is, it does not
appear agents are not aware and do not act on changes in volatility. Finally, we
are unaware of these models being able to easily match the variance risk premium
dynamics, and particularly the firm level facts or the survey expectation data.

Heterogenous agents models can potentially explain the weak risk-return relation,
and in these models this risk-return relation can even go negative depending on
the wealth distribution (e.g., Gârleanu and Panageas (2015), Longstaff and Wang
(2012)). These models feature a conditional risk-return tradeoff that is typically
positive for most parts of the state space but can turn negative in the worst states.
For the unconditional risk-return tradeoff to be weak, calibrations of the models
would typically also require that the correlation between contemporaneous returns
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and volatility would be weak, which is not the case. It is not obvious these models
would be able to explain the mismatch in frequencies that we observe, e.g., with
risk premiums initially declining but then rising further out after volatility increases.
Further, it is less clear that these models can match the variance risk premium results,
the firm level results we document (which rely on firm level idiosyncratic variance
rather than aggregate variance), and the slow moving expectations from our survey
data. In these models the relation between volatility and expected returns is only
weak or negative in bad times though we don’t find such a conditional relation in the
data (for example, the strong negative correlation of returns and realized variance
innovations is robust in good and bad market conditions).

5.2 Model Extensions

We extend the model to incorporate richer, and more realistic, volatility dynamics.
In particular we assume that the volatility of volatility is time varying along the lines
of Bollerslev et al. (2009). This helps us match variation in the volatility of volatility.
An appendix discusses this extension.

Our model has implications for the price dividend ratio that are clearly rejected
in the data. Most importantly the model – if taken literally – says the dividend yield
is perfectly correlated with the VIX, which is clearly counterfactual. In particular,
empirically the dividend yield is much more persistent than the VIX, though the
two are positively correlated. This highlights that the dividend yield could also be
driven by forces outside our model. In particular, an extension of our model with
time-varying expected dividend growth would generate additional movements in the
dividend yield and, if they were highly persistent, could generate the difference in
persistence. This highlights why we choose not to use dividend yield related moments
when targeting the parameters in our calibration even though our baseline model has
implications for these moments.

In the main model we put the stochastic volatility on the cash flow process.
However, this is not particularly important and our paper doesn’t have much to
say whether this is discount rate or cash flow volatility. In our model discount
rate volatility would still be priced and would still imply the highest premium at
shorter horizons. However, a lower price of discount rate shocks could lower the risk-
return tradeoff further. We make the assumption of stochastic cash flow volatility
for convenience.
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6. Conclusion

We show that underreaction followed by delayed overreaction can match many em-
pirical facts surrounding volatility and risk premiums that are puzzling from leading
equilibrium asset pricing models. We achieve this feature by assuming agents ex-
trapolate from past volatility and we estimate the degree to which they do so in
survey data. In particular, our model matches the weak overall risk-return trade-
off and matches the dynamic responses of both the equity premium and variance
risk premium following shocks to variance. We are able to account for the fact that
shocks to volatility are indeed associated with negative realized returns through a
discount rate channel though still the relation between volatility and next period
returns are weak. Finally, in our model the variance risk premium predicts returns
much more strongly than either variance or implied variance, as in the data. Survey
evidence directly supports the idea that agents have slow moving expectations about
volatility, as does evidence at the firm level.
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7. Tables / Figures

Table 1: Stylized Facts. We run predictive regressions of future excess stock
returns (market returns over the risk free rate), future variance risk premiums (mea-
sured using variance swap returns rvar, and VIX futures returns rV IX), and future
realized variance on various measures of past variance, average of past variance over
6 months (σ2

t−1,t−6), and implied volatility from the VIX. In our notation σ2
t rep-

resents the realized variance of daily market returns in month t. The returns on
variance swaps and VIX futures have a negative sign, thus representing the premium
for insuring against future increases in VIX or variance (so that the variance risk
premium is positive on average). Data are monthly from 1990-2018, the variance
swap and VIX futures data are 1996-2017 and 2004-2017, respectively. Standard
errors in parentheses use Newey West correction with 12 lags.

Excess Stock Returns Variance Risk Premium Variance
(1) (2) (3) (4) (5) (6) (7) (8)

reM,t+1 reM,t+1 reM,t+1 reM,t+1 rvar,t+1 rV IX,t+1 σ2
t+1 V IX2

t

σ2
t -1.91 -1.39 -0.74 -0.37 0.71 0.51

(0.42) (0.49) (0.24) (0.10) (0.08) (0.04)

σ2
t−1,t−6 1.46 0.60 0.24 0.02 0.31

(0.64) (0.36) (0.12) (0.06) (0.04)
V IX2

t − σ2
t 4.58

(0.67)
V IX2

t -0.17
(1.16)

N 335 341 341 341 264 166 335 335
Adj. R2 3.3% 7.0% 0.0% 2.0% 0.8% 5.0% 51.1% 80.9%
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Table 2: Calibration. We describe the calibration of parameter values.

Panel A: Parameters

Parameter Description Value Targeted Moment(s)

γ Risk Aversion 2.7 Equity Premium
ψ Elasticity of Intertemporal Substitution 2.2 Literature / VRP
v̄ Unconditional Variance (Monthly) 0.26% Data
ρ Persistence of Variance 0.72 Data
ω Volatility of Variance Shocks (Monthly) 0.23% Data
φ Degree of Extrapolation 0.6 VRP Response
λ Scale of Expectations 0.9 Volatility of VIX

Panel B: Moments
Moment Description Model Data
E[rm]− rf Equity Premium (Annual) 7.1% 7.2%√
E[RVt] Square Root Avg. Variance (Annual) 18% 18%

ρ(RVt, RVt−1) Persistence of Variance (Monthly) 0.72 0.72
σ(RVt) Volatility of Variance (Monthly) 0.45% 0.46%
σ(V IX2

t ) Volatility of V IX2 (Monthly) 0.33% 0.33%
ρ(V IX2

t , RVt) Correlation RV and V IX2 (Monthly) 0.89 0.86
ρ(V IX2

t , V IX
2
t−1) Persistence of V IX2 (Monthly) 0.92 0.81

α
(

c
RVt−1

rm,t, rm,t

)
Volatility-Managed Alpha (Moreira Muir) 2.4% 4.9%

ρ(rm,t, R̃Vt) Correlation of Returns and Vol Shocks -0.24 -0.38
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Table 3: Stylized Facts in Model and Sensitivity to φ. We compare our main
facts from Table 1 in the data (first column) vs in our model (remaining columns).
The risk-return tradeoff regresses one month ahead market excess returns on current
variance and an average of variance over the past 6 months. The volatility-managed
alpha is taken from Moreira and Muir (2017) based on their volatility timing strategy
(see text for details). All other data used are monthly from 1990-2018 as correspond-
ing to the results in Table 1. We show how our results change as we increase the
extrapolation parameter φ across the columns. The second column is the rational
model case, φ = 0, λ = 0.72 while in other columns we use our calibrated value of
λ = 0.9.

Data Model
φ = 0, λ = ρ φ = 0.4 φ = 0.6 φ = 0.8

(1) (2) (3) (4) (5)
Risk Return Tradeoff

σ2
t -1.91 2.71 1.22 0.05 -1.39

(0.42)

σ2
t−1,t−6 1.46 0 1.63 2.72 3.31

(0.79)
R2 3.1% 5.3% 3.3% 3.3% 3.6%

Volatility-Managed Alpha
α 4.86 -0.09 0.80 2.20 6.71

(1.56)
Correlation: Realized Returns and Vol Shocks

-0.38 -0.24 -0.24 -0.24 -0.23
Forecasting Returns with Variance Risk Premium

V RPt 4.58 0 7.29 4.94 3.96
(0.67)

R2 7.0% 0% 2.1% 2.1% 2.8%
Expected Variance Risk Premium (V RPt = V IX2

t − Et[σ
2
t+1])

σ2
t -0.18 0 -0.07 -0.25 -0.47

(0.03)

σ2
t−1,t−6 0.22 0 0.27 0.45 0.52

(0.03)
Correlation: V IX2 and Realized Variance

0.86 1 0.96 0.89 0.73
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Table 4: Stock level analysis. We repeat our results at the stock level. We run
three forecasting regressions yi,t+1 = ai + b∆6σ

2
t + εi,t+1 where ∆6σi,t is the 6 month

change in realized variance at the stock level for firm i (the realized variance estimates
on the right hand size are winsorized at the 95% level, see text for discussion). As
dependent variables, y, we use the equity risk premium (stock return over the risk
free rate, ri,t+1 − rfi,t labeled ERP), future variance (σ2

i,t+1), and the variance risk
premium (difference between implied variance from option metrics and future realized
variance, V RPt = IV 2

i,t − σ2
i,t+1 where IV is implied volatility). Data are monthly

but realized variance uses daily data with the month. The last three columns repeat
the regression using time fixed effects. In our panel regressions standard errors are
double clustered by stock and time.

ERP Vol VRP ERP Vol VRP

∆6σ
2
t −0.129 0.253∗∗∗ −0.104∗∗∗ −0.040 0.188∗∗∗ −0.070∗∗∗

(0.137) (0.067) (0.036) (0.075) (0.046) (0.022)

N 536,726 536,726 536,726 536,726 536,726 536,726
Adj R2 0.001 0.010 0.002 0.159 0.060 0.024
Time FE N N N Y Y Y
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Table 5: Survey Expectations. We fit the actual volatility process and the survey
expectations to an exponential weighted average on past realized variance. That is,
we fit: σ2

t,t+k = a+bΣJ
i=1φ

i−1σ2
t−i+εt and report the estimated φ where we choose J to

be 12 periods, and k as the horizon at which investors forecast variance in the survey
(six months or one year). We then repeat this replacing σ2

t on the left hand side
with the expectation of variance from the survey over the same horizon. A higher φ
from the expectations data signifies that expectations rely more on variance farther
in the past compared to the optimal forecast for volatility. We use the Graham and
Harvey CFO survey (CFO) which is available quarterly and corresponds to a one year
forecast horizon and the Shiller survey which is available monthly and corresponds
to a six month forecast horizon. Standard errors are below in parentheses.

Dependence on Past Variance (φ)

Source Survey Future Variance
CFO 0.77∗∗∗ 0.05

(0.10) (0.31)
Shiller 0.73∗∗∗ 0.03

(0.04) (0.29)
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Figure 1: Impulse Response to Variance Shock, US data. VAR of realized
variance, market excess returns (denoted ERP for equity risk premium), the variance
risk premium (VRP), and the log price dividend ratio (labeled Prices). VRP is
implied variance (V IX2) minus next period realized variance. Responses are for a
one-standard deviation shock to realized variance at time 0. Vertical dashed lines
at time 1 highlight the predicted, rather than realized, ERP and VRP. X-axis is in
months. Price and equity returns are in percent (monthly), while RV and the VRP
are in terms of standard deviations of variance shocks. Shaded regions indicate 95%
confidence intervals constructed using bootstrap. Panel B weights the observations
by the inverse of lagged realized volatility (weighted least squares). Panel C uses
logs of RV and the VIX in place of levels. See text for more detail.
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Figure 2: Dynamics of variance expectations in the model. We plot the
behavior of agents expectations of volatility in our main calibration (blue line) and
the true path of expected volatility (dashed red line) in response to a one standard
deviation increase in variance in our model. The dot dashed black line provides an
alternative calibration when we set the scale of expectations lower. Because agents
extrapolate from past volatility they initially underreact and then subsequently over-
react. The variance risk premium then reflects the difference between agents expec-
tations of volatility minus the rational forecast of volatility, hence it goes negative
initially then becomes positive. The x-axis is in months.
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Figure 3: Impulse responses: data vs model. We plot the behavior of expected
stock returns and variance risk premiums in the data vs the model at various horizons
for a one standard deviation shock to variance. The black line shows the impulse
response from the data using a VAR of realized variance, excess stock returns, and
the variance risk premium. The blue dashed line repeats this using simulated data
from the estimated model. The red dot dashed line repeats this exercise in the
simulated model data but imposes no extrapolation bias (rational model). Price and
equity returns are given in units of percent per month, while RV and the VRP are
given in terms of standard deviations of the variance shocks. The x-axis is in months.
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Figure 4: Regressions: data vs our calibrated model and the model of
Bollerslev et al. (2009). We run forecasting regressions and plot coefficients by
horizon in the data (blue line), our calibrated model (red line) and the Bollerslev et al.
(2009) model (black dot dashed line). Regressions are of the form yt = ak+bkxt−k+et
and we plot coefficients bk from k = 1, .., 12 months. Dashed blue lines indicate the
95% confidence interval in the data based on Newey-West standard errors. Returns
are (log) excess returns on the market, VRP is the variance risk premium (V IX2-RV)
and RV is realized variance. Data are monthly.
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Figure 5: Survey Expectations, VAR. We run a VAR using realized volatility
and survey expectations of volatility (in this order) and plot the impulse response to
a volatility shock. Expected volatility rises strongly after the shock and then mean
reverts fairly quickly. Survey expectations rise slowly, underreact initially and then
remain elevated far longer (subsequent overreaction).
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8. Appendix

Appendix contains additional derivations, tables, and figures.

9. Baseline Model solution

In this section, we provide more detailed solutions for the baseline model in the
paper, where variance shocks are Normally distributed.

9.1 The Variance Process

From the main text, agents beliefs about the dividend process are as follows:

∆dt = µ+ σtεt, (24)

where εt is i.i.d. standard Normal and

σ2
t = v̄ + λxt−1 + ωηSt , (25)

xt = φxt−1 + (1− φ)
(
σ2
t − v̄

)
= (φ+ (1− φ)λ)xt−1 + (1− φ)ωηSt , (26)

where ηSt is an i.i.d. standard Normal shock uncorrelated with ε. Both variance σ2
t

and εt are observed at time t.
We assume an exchange economy where the agent has Epstein-Zin preferences,

and aggregate log dividend growth is denoted ∆d and the agent’s consumption equal
aggregate dividends. The first order condition is then:

1 = ES
t [Mt+1Rt+1]

= βθES
t

[
e−

θ
ψ

∆dt+1+θrt+1

]
= βθES

t

[
e(1−γ)∆dt+1+θκ0+θκpdt+1−θpdt

]
, (27)

where r is the log return on the dividend claim and where pd is the log price-dividend
ratio. Also, θ = 1−γ

1−1/ψ
, where γ and ψ are the risk aversion and intertemporal

elasticity of substitution parameters, respectively.
We proceed with the conjecture pdt = c− Axt. Then:

1 = βθES
t

[
e(1−γ)(µ+σt+1εt+1)+θκ0+θκ(c−Axt+1)−θ(c−Axt)

]
= βθES

t

[
e(1−γ)µ+ 1

2
(1−γ)2σ2

t+1+θκ0+θκ(c−A(φxt+(1−φ)(σ2
t+1−v̄)))−θ(c−Axt)

]
. (28)
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Now, ignoring any terms that don’t multiply x and using σ2
t+1 = v̄+λxt +ωηSt+1, we

have that:

ES
t

[
e(1−γ)µ+ 1

2
(1−γ)2σ2

t+1+θκ0+θκ(c−A(φxt+(1−φ)(σ2
t+1−v̄)))−θ(c−Axt)

]
=

const× ES
t

[
e(1−γ)2 1

2
λxt−θκA(φxt+(1−φ)λxt)+θAxt

]
. (29)

And so we have:

(1− γ)2 1

2
λ− θκA (φ+ (1− φ)λ) + θA = 0, (30)

which gives:

A = −1

2

λ (1− γ) (1− 1/ψ)

1− κ (φ+ (1− φ)λ)
. (31)

Thus, with γ, ψ > 1, we have that A > 0.
The conditional variance of log returns is then:

V arSt−1 (rt) = V arSt−1 (κpdt + ∆dt)

= Θ + ES
t−1

[
σ2
t

]
, (32)

where Θ = (κA (1− φ)ω)2. To get the equity risk premium, we need to solve for
the risk-free rate which in turn requires solving for c. Going back to the first-order
equation for the risky asset:

1 = βθES
t

[
e(1−γ)µ+ 1

2
(1−γ)2σ2

t+1+θκ0+θκ(c−A(φxt+(1−φ)(σ2
t+1−v̄)))−θ(c−Axt)

]
= βθES

t

[
e(1−γ)µ+ 1

2
(1−γ)2(v̄+ωηSt+1)+θκ0+θκ(c−A(1−φ)ωηSt+1)−θc

]
= βθe(1−γ)µ+ 1

2
(1−γ)2v̄+θκ0−θc(1−κ)+ 1

2( 1
2

(1−γ)2−θκA(1−φ))
2
ω2

, (33)

where the second equality uses the fact from above that terms in the exponential
that multiplies xt add to zero.

Then:

0 = θ ln β+(1− γ)µ+
1

2
(1− γ)2 v̄+θκ0−θc (1− κ)+

1

2

(
1

2
(1− γ)2 − θκA (1− φ)

)2

ω2.

(34)
And so

c =
ln β +

(
1− ψ−1

)
µ+ 1

2

(
1− ψ−1

)
(1− γ) v̄ + κ0 + θ−1 1

2

(
1
2

(1− γ)2 − θκA (1− φ)
)2
ω2

1− κ
.

(35)
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The risk-free rate is given by:

e−rf,t = ES
t [Mt+1]

= βθES
t

[
e−γ∆dt+1+(θ−1)(κ0+κpdt+1−pdt)

]
= βθES

t

[
e−γ∆dt+1+(θ−1)(κ0+κc−Aκxt+1−c+Axt)

]
= βθES

t

[
e−γµ+ 1

2
γ2(v̄+λxt+ωηSt+1)+(θ−1)(κ0+κc−Aκ((φ+(1−φ)λ)xt+(1−φ)ωηSt )−c+Axt)

]
= βθe−γµ+ 1

2
γ2v̄+(θ−1)(κ0+c(κ−1))+( 1

2
γ2λ+(θ−1)A(1−κ(φ+(1−φ)λ)))xt

×e
1
2( 1

2
γ2−(θ−1)κA(1−φ))

2
ω2

. (36)

Thus, plugging in for c we have:

rf,t = − ln β + ψ−1µ− 1

2

(
1− ψ−1

)
(1− γ) v̄ − 1

2θ

(
1

2
(1− γ)2 − θκA (1− φ)

)2

ω2...

+
1

2
(1− 2γ) v̄ +

1

2

(
1

2
(1− γ)2 − θκA (1− φ)

)2

ω2...

−
(

1

2
γ2λ+ (θ − 1)A (1− κ (φ+ (1− φ)λ))

)
xt

−1

2

(
1

2
γ2 − (θ − 1)κA (1− φ)

)2

ω2

The conditional expected log return is:

ES
t [κ0 + κpdt+1 − pdt + ∆dt+1] = κ0 + κc− c+ Axt + µ+ ES

t [−κAxt+1]

= κ0 + c (κ− 1) + µ+ A (1− κ (φ+ (1− φ)λ))xt.

Plugging in for c we have:

ES
t [rt+1] = κ0 + c (κ− 1) + µ+ A (1− κ (φ+ (1− φ)λ))xt

= − ln β + ψ−1µ− 1

2

(
1− ψ−1

)
(1− γ) v̄...

− 1

2θ

(
1

2
(1− γ)2 − θκA (1− φ)

)2

ω2...

+A (1− κ (φ+ (1− φ)λ))xt
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The conditional log risk premium is then:

ES
t [rt+1 − rf,t] =

(
1

2
γ2λ+ θA (1− κ (φ+ (1− φ)λ))

)
xt...

−1

2
(1− 2γ) v̄ − 1

2

(
1

2
(1− γ)2 − θκA (1− φ)

)2

ω2...

+
1

2

(
1

2
γ2 − (θ − 1)κA (1− φ)

)2

ω2

Next, note that:

θA (1− κ (φ+ (1− φ)λ)) = −1

2
θ
λ (1− γ) (1− 1/ψ)

1− κ (φ+ (1− φ)λ)
(1− κ (φ+ (1− φ)λ))

= −1

2
λθ (1− γ) (1− 1/ψ)

= λ

(
−1

2
+ γ − 1

2
γ2

)
So then

1

2
γ2λ+ θA (1− κ (φ+ (1− φ)λ)) = λ

(
γ − 1

2

)
.

We then have:

ES
t [rt+1 − rf,t] =

(
γ − 1

2

)
v̄ + λ

(
γ − 1

2

)
xt...

−1

2

(
1

2
(1− γ)2 − θκA (1− φ)

)2

ω2...

+
1

2

(
1

2
γ2 − (θ − 1)κA (1− φ)

)2

ω2.

This can be written

ES
t [rt+1 − rf,t] =

(
γ − 1

2

)
ES
t

[
σ2
t+1

]
+ δr. (37)

where

δr = −1

2

(
1

2
(1− γ)2 − θκA (1− φ)

)2

ω2...

+
1

2

(
1

2
γ2 − (θ − 1)κA (1− φ)

)2

ω2.
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The objective risk-premium is:

EP
t [rt+1 − rf,t] = ES

t [rt+1 − rf,t] + κ
(
EP
t+1 [pdt+1]− ES

t+1 [pdt+1]
)

= ES
t [rt+1 − rf,t]− κA

(
EP
t+1 [xt+1]− ES

t+1 [xt+1]
)
.

We have that:

ES
t [xt+1] = (φ+ (1− φ)λ)xt

EP
t [xt+1] = (φ+ (1− φ)λ)xt + (1− φ)EP

t

[
ωηSt+1

]
= ES

t [xt+1] + (1− φ)
(
EP
t

[
σ2
t+1

]
− ES

t

[
σ2
t+1

])
.

Thus:

EP
t [rt+1 − rf,t] = ES

t [rt+1 − rf,t]− κA (1− φ)
(
EP
t

[
σ2
t+1

]
− ES

t

[
σ2
t+1

])
, (38)

which is the same equation we get in the case with Normal variance shocks.
Shocks to realized returns are then:

rt+1 − EP
t [rt+1] = ∆dt+1 − EP

t [∆dt+1] + κ
(
pdt+1 − EP

t [pdt+1]
)

= σt+1εt+1 + κA
(
−xt+1 + EP

t [xt+1]
)

= σt+1εt+1 + κA (1− φ)
(
−
(
σ2
t+1 − v̄

)
+ EP

t

[(
σ2
t+1 − v̄

)])
= σt+1εt+1 − κA (1− φ)ωηt+1. (39)

Next, turning the the variance risk premium (VRP), note that the error in vari-
ance expectation will feed through in the VRP. In particular:

IVt−1 = ES
t−1

[
Mt

ES
t−1 [Mt]

(
Θ + v̄ + λxt−1 + ωηSt

)]
= Θ + δIV + ES

t−1

[
σ2
t

]
, (40)

where δIV = ES
t−1

[
Mt

ESt−1[Mt]
ωηSt

]
. To see that this is indeed a constant, note that:

ES
t−1

[
Mt

ES
t−1 [Mt]

ωηSt

]
=

ES
t

 βθe−γµ+ 1
2
γ2(v̄+λxt+ωηSt+1)+(θ−1)(κ0+κc−κA(φxt+(1−φ)(λxt+ωηSt+1))−c+Axt)

ES
t

[
βθe−γµ+ 1

2
γ2(v̄+λxt+ωηSt+1)+(θ−1)(κ0+κc−κA(φxt+(1−φ)(λxt+ωηSt+1))−c+Axt)

]ωηSt+1

 =
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ES
t

 e(
1
2
γ2−(θ−1)κA(1−φ))ωηSt+1

ES
t

[
e(

1
2
γ2−(θ−1)κA(1−φ))ωηSt+1

]ωηSt+1

 =

ES
t

 emωη
S
t+1

ES
t

[
emωη

S
t+1

]ωηSt+1

 . (41)

where m = 1
2
γ2 − (θ − 1)κA (1− φ). From Stein’s Lemma we have that:

ES
t

 emωη
S
t+1

ES
t

[
emωη

S
t+1

]ωηSt+1

 = ω2m. (42)

To summarize:

IVt−1 = Θ + δIV + ES
t−1

[
σ2
t

]
, (43)

δIV =

(
1

2
γ2 − (θ − 1)κA (1− φ)

)
ω2. (44)

The results given in the main text follow from the derivations shown here.

10. Model with Gamma-Distributed Variance Shocks

In this section, we show that a model where the variance process has Gamma dis-
tributed shocks – which allow us to guarantee positive variance – lead to the same
expressions for risk premium dynamics as in the model in the main text. The only
thing that changes somewhat are the unconditional levels of risk premiums (the in-
tercepts in the expressions), but these are not our main focus. Before we get into the
model, it is useful to establish some general properties of the Gamma distribution.

10.1 The Gamma Distribution

If X > 0 is a Gamma distributed random variable, we have that:

X ∼ Gamma (k, s) (45)

f (x) =
xk−1e−

x
s

skΓ (k)
, (46)

49



where k is the shape and s is the scale parameter, respectively, Γ (k) is the Gamma
function, f (x) is the probability density function, and k, s > 0. Then:

E [X] = ks, (47)

V ar (X) = ks2 (48)

E
[
etX
]

= (1− st)−k for t < s−1. (49)

Imposing V ar (X) = 1 implies that k = s−2.
Note that the analogue of Stein’s Lemma for a Gamma distributed variable is:

E
[
etxx

]
=

∫ ∞
0

etxx
xk−1e−

x
s

skΓ (k)
dx

=

∫ ∞
0

xketx−
x
s

skΓ (k)
dx

=

∫ ∞
0

xkex(t−
1
s)

skΓ (k)
dx. (50)

Next, define k̃ ≡ k + 1 and s̃ ≡ − 1
t−s−1 . Recall that we always need t < s−1 so

t− s−1 < 0 and thus s̃ > 0, which is required. Clearly, k̃ > 0 given that k > 0. We
can then write:

E
[
etxx

]
=

s̃k̃Γ
(
k̃
)

skΓ (k)

∫ ∞
0

xk̃−1e−
x
s̃

s̃k̃Γ
(
k̃
)dx

=
s̃k̃Γ

(
k̃
)

skΓ (k)
. (51)

10.2 The Variance Process

As in the main text, agents beliefs about the dividend process are as follows:

∆dt = µ+ σtεt, (52)

where εt is i.i.d. standard Normal and

σ2
t = v̄ + λxt−1 + ωη̃St , (53)

xt = φxt−1 + (1− φ)
(
σ2
t − v̄

)
= (φ+ (1− φ)λ)xt−1 + (1− φ)ωη̃St , (54)
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where η̃St = ηSt − s−1 where ηSt is a Gamma distributed variable scale and shape
parameters s and k, respectively, that is independent of εt. We normalize the shock
to have unit variance and so k = s−2, which in turns implies that its mean is mean
s−1 and so Et−1 [η̃t] = 0. Both variance σ2

t and εt are observed at time t.
In order for variance to always be non-negative, the restriction

(1− φ)ωs−1

1− (φ+ (1− φ)λ)
≤ v̄ (55)

has to be satisfied. In our calibration, we have

ω = 0.23%,

λ = 0.9,

φ = 0.6 (56)

v̄ = 0.26%. (57)

Thus, we need:

s ≥ 0.4× 0.23%

0.26%× (1− (0.6 + 0.4× 0.9))
= 8.85. (58)

Note that:

ES
t−1 [σtεt] = 0, (59)

V arSt−1 (σtεt) = ES
t−1

[
σ2
t

]
. (60)

10.3 Solving the Gamma-Model

As in the main text, we assume an exchange economy where the agent has Epstein-
Zin preferences, and aggregate log dividend growth is denoted ∆d and the agent’s
consumption equal aggregate dividends. We proceed as before with the conjecture
pdt = c− Axt and consider the first-order condition for the risky asset:

1 = βθES
t

[
e(1−γ)(µ+σt+1εt+1)+θκ0+θκ(c−Axt+1)−θ(c−Axt)

]
= βθES

t

[
e(1−γ)µ+ 1

2
(1−γ)2σ2

t+1+θκ0+θκ(c−A(φxt+(1−φ)(σ2
t+1−v̄)))−θ(c−Axt)

]
. (61)

Now, ignoring any terms that don’t multiply x and using σ2
t+1 = v̄+λxt +ωηSt+1, we

have that:

ES
t

[
e(1−γ)µ+ 1

2
(1−γ)2σ2

t+1+θκ0+θκ(c−A(φxt+(1−φ)(σ2
t+1−v̄)))−θ(c−Axt)

]
=
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const× ES
t

[
e(1−γ)2 1

2
λxt−θκA(φxt+(1−φ)λxt)+θAxt

]
. (62)

And so we have:

(1− γ)2 1

2
λ− θκA (φ+ (1− φ)λ) + θA = 0, (63)

which gives:

A = −1

2

λ (1− γ) (1− 1/ψ)

1− κ (φ+ (1− φ)λ)
, (64)

which is the same as for the case of Normally distributed variance shocks. Thus,
with γ, ψ > 1, we have that A > 0.

The conditional variance of log returns is:

V arSt−1 (rt) = V art−1 (κpdt + ∆dt)

= Θ + ES
t−1

[
σ2
t

]
, (65)

where Θ = (A (1− φ)ωκ)2. To get the equity risk premium, we need to solve for
the risk-free rate which in turn requires solving for c. Going back to the first-order
equation for the risky asset:

1 = βθES
t

[
e(1−γ)µ+ 1

2
(1−γ)2σ2

t+1+θκ0+θκ(c−A(φxt+(1−φ)(σ2
t+1−v̄)))−θ(c−Axt)

]
= βθES

t

[
e(1−γ)µ+ 1

2
(1−γ)2(v̄+ωηSt+1)+θκ0+θκ(c−A(1−φ)ωηSt+1)−θc

]
= βθe(1−γ)µ+ 1

2
(1−γ)2v̄+θκ0−θc(1−κ)ES

t

[
e[

1
2

(1−γ)2−θκA(1−φ)]ωηSt+1

]
, (66)

where the second equality uses the fact that terms in the exponential that multiplies
xt add to zero.

From the moment generating function (MGF) of the Gamma distributed shock
we then have that:

1 = βθe(1−γ)µ+ 1
2

(1−γ)2v̄+θκ0−θc(1−κ)+z1 , (67)

where

z1 = − 1

s2
ln

(
1− s

(
1

2
(1− γ)2 − θκA (1− φ)

)
ω

)
, (68)

and where s is the scale parameter for the Gamma distribution as given above. This
imposes the parameter restriction(

1

2
(1− γ)2 − θκA (1− φ)

)
ω < s−1, (69)
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to have existence of the MGF of the Gamma.
Then:

0 = θ ln β + (1− γ)µ+
1

2
(1− γ)2 v̄ + θκ0 − θc (1− κ) + z1. (70)

And so

c =
θ ln β + (1− γ)µ+ 1

2
(1− γ)2 v̄ + θκ0 + z1

θ (1− κ)
. (71)

The risk-free rate is given by:

e−rf,t = ES
t [Mt+1]

= βθES
t

[
e−γ∆dt+1+(θ−1)(κ0+κpdt+1−pdt)

]
= βθe−γµ+ 1

2
γ2v̄+(θ−1)(κ0+c(κ−1))+( 1

2
γ2λ+(θ−1)A(1−κ(φ+(1−φ)λ)))xt

...ES
t

[
e(

1
2
γ2−(θ−1)κA(1−φ))ωηSt+1

]
.

Again using the MGF of the Gamma distribution, we have:

e−rf,t = βθe−γµ+ 1
2
γ2v̄+(θ−1)(κ0+c(κ−1))+( 1

2
γ2λ+(θ−1)A(1−κ(φ+(1−φ)λ)))xt+z2

where

z2 = − 1

s2
ln

(
1− s

(
1

2
γ2 − (θ − 1)κA (1− φ)

)
ω

)
.

This yields the second parameter restriction:(
1

2
γ2 − (θ − 1)κA (1− φ)

)
ω < s−1.

We then have:

rf,t = −θ ln β + γµ− 1

2
γ2v̄ − (θ − 1) (κ0 + c (κ− 1)) ...

−
(

1

2
γ2λ+ (θ − 1)A (1− κ (φ+ (1− φ)λ))

)
xt − z2.
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Plugging in the expression for c, we have

rf,t = −θ ln β + γµ− 1

2
γ2v̄ − (θ − 1)κ0 + ...

(θ − 1)

(
ln β + (1− γ)µθ−1 +

1

2
(1− γ)2 v̄θ−1 + κ0 + θ−1z1

)
...

−
(

1

2
γ2λ+ (θ − 1)A (1− κ (φ+ (1− φ)λ))

)
xt − z2

= κ0 + µ+
1

2
v̄ − γv̄ + z1...

−
(

ln β + (1− γ)µθ−1 +
1

2
(1− γ)2 v̄θ−1 + κ0 + θ−1z1

)
−
(

1

2
γ2λ+ (θ − 1)A (1− κ (φ+ (1− φ)λ))

)
xt − z2

The conditional expected log return is:

ES
t [κ0 + κpdt+1 − pdt + ∆dt+1] = κ0 + κc− c+ Axt + µ+ ES

t [−κAxt+1]

= κ0 + c (κ− 1) + µ+ A [1− κ (φ+ (1− φ)λ)]xt.

Plugging in the expression for c, we have:

ES
t [rt+1] = κ0 +

θ ln β + (1− γ)µ+ 1
2

(1− γ)2 v̄ + θκ0 + z1

θ (1− κ)
(κ− 1) ...

+µ+ A [1− κ (φ+ (1− φ)λ)]xt

= κ0 −
(

ln β + θ−1 (1− γ)µ+ θ−1 1

2
(1− γ)2 v̄ + κ0 + θ−1z1

)
...

+µ+ A [1− κ (φ+ (1− φ)λ)]xt.

The conditional log risk premium is then:

ES
t [rt+1 − rf,t] = κ0 −

(
ln β + θ−1 (1− γ)µ+ θ−1 1

2
(1− γ)2 v̄ + κ0 + θ−1z1

)
...

+µ+ A [1− κ (φ+ (1− φ)λ)]xt

−

 κ0 + µ+ 1
2
v̄ − γv̄ + z1...

−
(
ln β + (1− γ)µθ−1 + 1

2
(1− γ)2 v̄θ−1 + κ0 + θ−1z1

)
...

−
(

1
2
γ2λ+ (θ − 1)A (1− κ (φ+ (1− φ)λ))

)
xt − z2


= γv̄ − 1

2
v̄ − z1 + z2 +

(
1

2
γ2λ+ θA (1− κ (φ+ (1− φ)λ))

)
xt
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Next, note that:

θA (1− κ (φ+ (1− φ)λ)) = −1

2
θ
λ (1− γ) (1− 1/ψ)

1− κ (φ+ (1− φ)λ)
(1− κ (φ+ (1− φ)λ))

= −1

2
λθ (1− γ) (1− 1/ψ)

= −1

2
λ(1− γ)2

= λ

(
−1

2
+ γ − 1

2
γ2

)
So then

1

2
γ2λ+ θA (1− κ (φ+ (1− φ)λ)) = λ

(
γ − 1

2

)
and then

ES
t [rt+1 − rf,t] = z2 − z1 +

(
γ − 1

2

)
ES
t

[
σ2
t+1

]
,

which is the same as that we get in the Normal variance shock case, up to an intercept.
The objective risk-premium is:

EP
t [rt+1 − rf,t] = ES

t [rt+1 − rf,t] + κ
(
EP
t+1 [pdt+1]− ES

t+1 [pdt+1]
)

= ES
t [rt+1 − rf,t]− κA

(
EP
t+1 [xt+1]− ES

t+1 [xt+1]
)
.

We have that:

ES
t [xt+1] = (φ+ (1− φ)λ)xt

EP
t [xt+1] = (φ+ (1− φ)λ)xt + (1− φ)EP

t

[
ωηSt+1

]
= ES

t [xt+1] + (1− φ)
(
EP
t

[
σ2
t+1

]
− ES

t

[
σ2
t+1

])
.

Thus:

EP
t [rt+1 − rf,t] = ES

t [rt+1 − rf,t]− κA (1− φ)
(
EP
t

[
σ2
t+1

]
− ES

t

[
σ2
t+1

])
, (72)

which again is the same equation we get in the case with Normal variance shocks.
Shocks to realized returns are then:

rt+1 − EP
t [rt+1] = ∆dt+1 − EP

t [∆dt+1] + κ
(
pdt+1 − EP

t [pdt+1]
)

= σt+1εt+1 + κA
(
−xt+1 + EP

t [xt+1]
)

= σt+1εt+1 + κA (1− φ)
(
−
(
σ2
t+1 − v̄

)
+ EP

t

[(
σ2
t+1 − v̄

)])
= σt+1εt+1 − κA (1− φ)ωηt+1. (73)
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Next, turning the the variance risk premium (VRP), note that the error in vari-
ance expectation will feed through in the VRP. In particular:

IVt−1 = ES
t−1

[
Mt

ES
t−1 [Mt]

(
Θ + v̄ + λxt−1 + ωηSt

)]
= Θ + δ + ES

t−1

[
σ2
t

]
, (74)

where δ = ES
t−1

[
Mt

ESt−1[Mt]
ωηSt

]
. To see that this is indeed a constant, note that:

ES
t−1

[
Mt

ES
t−1 [Mt]

ωηSt

]
=

ES
t

 βθe−γµ+ 1
2
γ2(v̄+λxt+ωηSt+1)+(θ−1)(κ0+κc−κA(φxt+(1−φ)(λxt+ωηSt+1))−c+Axt)

ES
t

[
βθe−γµ+ 1

2
γ2(v̄+λxt+ωηSt+1)+(θ−1)(κ0+κc−κA(φxt+(1−φ)(λxt+ωηSt+1))−c+Axt)

]ωηSt+1

 =

ES
t

 e(
1
2
γ2−(θ−1)κA(1−φ))ωηSt+1

ES
t

[
e(

1
2
γ2−(θ−1)κA(1−φ))ωηSt+1

]ωηSt+1

 =

ES
t

 emωη
S
t+1

ES
t

[
emωη

S
t+1

]ωηSt+1

 . (75)

where m = 1
2
γ2 − (θ − 1)κA (1− φ). Recall that agents believe η̃St = ηSt + s−1 is

Gamma distributed with mean s−1 and variance 1 (i.e., k = s−2). Note that in this
case, ωη̃St is Gamma with shape parameter k = s−2 and scale parameter ωs. Also,
recall that E [etxx] is a constant if x is Gamma and t < s−1 (see Equation (51)):
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t

 emωη
S
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ES
t

[
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S
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]ωηSt+1
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t

 emωη̃
S
t+1
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t

[
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S
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 , (76)

where

ES
t

 emωη̃
S
t+1

ES
t

[
emωη̃

S
t+1

]ωη̃St
 = s̃

(
s̃

ωs

)s−2

Γ (s−2 + 1)

Γ (s−2)
, (77)

where s̃ = −
(
m− (ωs)−1)−1

. To summarize:

IVt−1 = Θ + δ + ES
t−1

[
σ2
t

]
, (78)

δ = s̃

(
s̃

ωs

)s−2

Γ (s−2 + 1)

Γ (s−2)
− ωs−1, (79)
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which is the same expression as that we get in the case of Normal variance shocks,
except for the intercept term.

10.4 Data

The table below details our international data sources including starting time periods
for each series.

Table 6: Data Sources.

Country Index Volatility Source History
USA SP500 VIX WRDS From 1/2/1990
France CAC 40 VCAC Bloomberg Fron 1/3/2000
Canada sptsx60 VIXC Montreal Exchange From 10/2010
UK FTSE 100 VFTSE Bloomberg From 1/4/2000
Germany DAX DAX New Volatility (V1XI) Bloomberg From 1/2/1992
Japan Nikkei 225 VXJ Bloomberg From 1/5/1998
South Korea KOSPI VKOSPI Bloomberg From 1/2/2003
Netherlands AEX VAEX Bloomberg From 1/2000
Switzerland SMI V3X Bloomberg From 6/28/1999

10.5 Appendix Tables and Figures
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Table 7: Stylized Facts: Robustness. We repeat the analysis from Table 1 in
the main text but split the sample into pre and post 2010. This shows robustness to
the results post financial crisis and roughly splits the sample for the variance returns
(variance swap and VIX futures).

Panel A: Pre 2010 Sample

Excess Stock Returns Variance Risk Premium Variance
(1) (2) (3) (4) (5) (6) (7) (8)

reM,t+1 reM,t+1 reM,t+1 reM,t+1 rvar,t+1 rV IX,t+1 σ2
t+1 V IX2

t

σ2
t -1.78 -1.22 -0.59 -0.33 0.74 0.50

(0.52) (0.57) (0.22) (0.07) (0.08) (0.04)

σ2
t−1,t−6 1.42 0.57 0.12 -0.00 0.30

(0.72) (0.25) (0.08) (0.06) (0.04)
V IX2

t − σ2
t 5.08

(1.43)
V IX2

t -0.35
(1.19)

N 233 239 239 239 169 71 233 233
Adj. R2 2.6% 5.2% 0.0% 1.6% 0.5% 8.8% 54.4% 83.7%

Panel B: Post 2010

Excess Stock Returns Variance Risk Premium Variance
(1) (2) (3) (4) (5) (6) (7) (8)

reM,t+1 reM,t+1 reM,t+1 reM,t+1 rvar,t+1 rV IX,t+1 σ2
t+1 V IX2

t

σ2
t -3.19 -2.60 -1.29 -0.67 0.40 0.51

(0.74) (0.66) (0.79) (0.25) (0.03) (0.06)

σ2
t−1,t−6 5.69 2.97 1.38 0.03 0.44

(1.98) (1.74) (0.33) (0.07) (0.12)
V IX2

t − σ2
t 8.52

(0.84)
V IX2

t 2.26
(1.06)

N 95 101 101 101 93 93 96 96
Adj. R2 7.6% 17.0% 0.9% 2.3% 1.1% 5.9% 14.4% 58.9%
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Table 8: Stylized Facts: Robustness to using volatility. We repeat our
analysis using volatility (standard deviation) in place of variance. We run predictive
regressions of future excess stock returns (market returns over the risk free rate),
future variance risk premiums (variance swap returns rvar, and VIX futures returns
rV IX), and future realized variance on various measures of past volatility, average
of past volatility over 6 months (σ2

t−1,t−6), and implied volatility from the VIX. In
our notation σt represents the realized standard deviation of daily market returns in
month t. The returns on variance swaps and VIX futures have a negative sign, thus
representing the premium for insuring against future increases in VIX or variance
(so that the variance risk premium is positive on average). Data are monthly from
1990-2018, the variance swap and VIX futures data are 1996-2017 and 2004-2017,
respectively. Standard errors in parentheses use Newey West correction with 12 lags.

Panel A: Volatility

Excess Stock Returns Variance Risk Premium Variance
(1) (2) (3) (4) (5) (6) (7) (8)

reM,t+1 reM,t+1 reM,t+1 reM,t+1 rvar,t+1 rV IX,t+1 σt+1 V IXt

σt -0.35 -0.20 -0.16 -0.09 0.68 0.56
(0.16) (0.13) (0.07) (0.03) (0.09) (0.04)

σt−1,t−6 0.27 0.07 0.06 0.12 0.30
(0.14) (0.07) (0.02) (0.07) (0.04)

V IXt − σt 0.81
(0.21)

V IXt -0.02
(0.16)

N 335 341 341 341 264 166 335 335
Adj. R2 2.3% 5.5% 0.0% 1.2% 0.8% 5.5% 55.6% 67.7%
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Table 9: Change in volatility, equity risk premium, and variance risk
premium. We run three forecasting regressions yi,t+1 = ai + b∆6σt + εi,t+1 where
∆6σi,t is the 6 month change in volatility of the stock market index for country i. As
dependent variables, y, we use the equity risk premium (future index return over the
risk free rate, ri,t+1−rfi,t labeled ERP), future volatility (σi,t+1), and the volatility risk
premium (difference between volatility index and future realized volatility, V IXi,t−
σi,t+1 labeled VRP). Data are monthly. The first columns use all countries, the last
use only US data. In our panel regressions standard errors are clustered by time.

Panel A: Volatility

All Countries US Only
(1) (2) (3) (4) (5) (6)

ERP Vol VRP ERP Vol VRP

∆6σt -0.15* 0.27*** -0.06*** -0.25*** 0.32*** -0.09***
(0.09) (0.08) (0.02) (0.08) (0.05) (0.02)

N 1,786 1,786 1,786 340 340 340
R-squared 0.01 0.15 0.05 0.03 0.13 0.04
Country All All All USA USA USA

Panel B: Variance

All Countries US Only
(1) (2) (3) (4) (5) (6)

ERP Vol VRP ERP Vol VRP

∆6σ
2
t -0.88*** 0.23** 0.04 -1.66*** 0.36*** -0.13***

(0.34) (0.10) (0.10) (0.39) (0.04) (0.03)

N 1,786 1,786 1,786 340 340 340
R-squared 0.02 0.10 0.01 0.05 0.19 0.05
Country All All All USA USA USA
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Figure 6: Impulse Response to Variance Shock: Robustness. VAR of re-
alized variance, market excess returns (denoted ERP for equity risk premium), the
variance risk premium (VRP), and the log price dividend ratio (labeled Prices). VRP
is implied variance (V IX2) minus next period realized variance. Responses are for
a one-standard deviation shock to realized variance at time 0. Vertical dashed lines
at time 1 highlight the predicted, rather than realized, ERP and VRP. X-axis is in
months. Price and equity returns are in percent (monthly), while RV and the VRP
are in terms of standard deviations of variance shocks. Shaded regions indicate 95%
confidence intervals constructed using bootstrap. Panel A weights the observations
by the inverse of lagged realized volatility (weighted least squares). Panel B uses
logs of RV and the VIX in place of levels. See text for more detail.
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Figure 7: Stylized facts for US data. We run regressions of returns, variance risk
premiums, and realized variance on lags of realized variance and plot coefficients by
horizon. Variance risk premiums are measured either as squared VIX minus realized
variance, using the negative for variance swap returns (e.g., selling variance), or using
the negative of VIX futures (shorting the VIX). We also plot stock returns on the
lagged variance risk premium (squared VIX minus realized variance). The x-axis is
in months.

2 4 6 8 10 12

-2

0

2
Returns on RV

2 4 6 8 10 12

0

0.5

1
RV on RV

2 4 6 8 10 12

-0.4

-0.2

0

0.2
VRP on RV

2 4 6 8 10 12

-5

0

5

Returns on VRP

2 4 6 8 10 12

-0.5

0

0.5
Var Swap on RV

2 4 6 8 10 12

-0.1

-0.05

0

0.05
VIX Futures on  Vol

62



Figure 8: Stylized facts for US data: Post 2010. We replicate our main
stylized facts using only US data from 2010 onwards, thus excluding the financial
crisis. We run regressions of returns, variance risk premiums, and realized variance
on lags of realized variance and plot coefficients by horizon. Variance risk premiums
are measured either as squared VIX minus realized variance, using the negative for
variance swap returns (e.g., selling variance), or using the negative of VIX futures
(shorting the VIX). We also plot stock returns on the lagged variance risk premium
(squared VIX minus realized variance). The x-axis is in months.
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Figure 9: Longer Sample of US Data. We plot regression coefficients of returns
on lags of realized variance and of realized variance on lags of realized variance. Our
top sample includes all US data from 1926 while the bottom sample includes only
post War US data (since 1950). Note the negative coefficient of returns on realized
variance is weaker using the longer sample of returns, though even in this sample
there is no strong evidence of a positive risk-return tradeoff.
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