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Abstract

The selection of mechanisms to allocate school seats in public school dis-

tricts can be highly contentious. At the same time the standard statistics

of student outcomes calculated from districts’ data are very similar for many

mechanisms. This paper contributes to the debate on mechanism selection by

explaining the similarity puzzle as being driven by the invariance properties of

the standard outcome statistics: outcome measures are approximately similar

if and only if they are approximately anonymous.
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1 Introduction

The allocation of school seats is a canonical example of the allocation of discrete

resources.1 In many public school districts—in countries as varied as Australia, Chile,

China, Finland, France, Ghana, Hungary, Ireland, the Netherlands, Norway, Poland,

Romania, Spain, Taiwan, Turkey, US, and the UK—the applicants are consulted and

asked to submit their rankings of schools. School seats are then allocated taking these

rankings into account. The applicants’ willingness to pay is not elicited.

The choice of the mechanism used to allocate seats can be highly contentious

and many allocation mechanisms have been proposed in the economic literature.2

At the same time, the empirical analyses of school choice uncovered a puzzle: many

aggregate measures of student outcomes are the same or very similar for a variety of

different mechanisms. This equivalence occurs in empirical data from school districts

in Amsterdam, Boston, Cambridge, New Orleans, and New York. The empirical

studies and the presented analysis allows multidimensional measures. For instance,

the standard reported aggregate measure of a matching mechanism performance re-

ports the number of applicants obtaining their first choice outcome, the number of

applicants receiving their second choice outcome, etc.3

1The analysis of this paper is presented in the context of the allocation of school seats but the
presented results are also applicable to other problems in which objects are allocated instead of being
sold, e.g. to the matching of refugees and resettlement countries (or communities).

2Pathak and Sethuraman (2011) discuss the controversies surrounding the choice. For examples
of the lively economic literature constructing new, mostly ordinal, mechanisms, see e.g.: Balinski and
Sönmez (1999), Pápai (2000), Bogomolnaia and Moulin (2001), Abdulkadiroğlu and Sönmez (2003),
Kesten (2010), Pycia and Ünver (2011), Budish, Che, Kojima, and Milgrom (2014), Ashlagi and Shi
(2014), Abdulkadiroğlu et al. (2015), Morrill (2015), Nguyen, Peivandi, and Vohra (2016), Hakimov
and Kesten (2018), He, Miralles, Pycia, and Yen. (2018), and Abdulkadiroglu, Che, Pathak, Roth,
and Tercieux (2017b).

3To see how close the equivalence is in empirical data, consider Abdulkadiroglu, Che, Pathak,
Roth, and Tercieux (2017b) who report the number of students obtaining seats in their respective
first, second, third, fourth, and fifth or worse most preferred school for four different efficient mech-
anisms. The rank numbers are nearly identical with the largest difference below 6 per mille of the
number of students participating (and typical differences below 1 per mille). They report similar
numbers for Boston. See also e.g. De Haan, Gautier, Oosterbeek, and van der Klaauw (2015)
(Amsterdam), and Abdulkadiroglu et al. (2017a) (New York). Pathak (2017) survey highlights this
empirical puzzle.
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The present paper explains this empirical puzzle and in so doing throws light on

the controversies surrounding the selection of school choice mechanisms. The main

results establish that the near equivalence of the aggregate measures of student out-

comes are driven by three factors: market size, the efficiency and incentive properties

of the underlying mechanisms, and the anonymity of the aggregate measures.4 An

aggregate measure is anonymous (or invariant) if it is invariant with respect to permu-

tations of students’ outcomes. For instance, in counting the number of students who

received their first, or second, or third choice outcome the identities of these students

are not relevant, only their allocations and their preferences. Also measures such as

how many students attend schools on the right side of the river (or train tracks) are

anonymous. The anonymity of the aggregate measures is crucial for the equivalence

insight. An example of a non-anonymous measure is the number of students whose

allocation is better under a new mechanism than under the status quo. For this and

other non-anonymous measures the equivalence fails.5

The equivalence holds in both positive and normative sense. The positive theorem

relies on two assumptions: the matching market is large in the sense that there are

many applicants relative to the number of schools and the mechanisms are robust

in that a change of report by one agent affects the allocations only for a bounded

number of other agents; this robustness assumption is satisfied by standard allocation

mechanisms such as Serial Dictatorship, Top Trading Cycles based mechanisms, and

the Boston mechanism. Under these assumptions, the positive theorem of the paper

establishes that any two strategy-proof and Pareto efficient mechanisms result in

anonymous aggregate statistics that are very similar for most possible preference
4The paper focuses on Pareto efficient mechanisms but the equivalence insight is also valid for

stable and constrained efficient mechanisms such as Gale and Shapley’s Deferred Acceptance (see
Section 3.2).

5This failure of equivalence is also in line with regularities reported in empirical literature. For
studies of the improvement over status quo see He 2011, Calsamiglia and Miralles (2012), and Agar-
wal and Somaini (2018). The number of violations of stability (Kesten, 2010) is also non-anonymous
and the equivalence fails e.g. in the data on stability violations reported by Abdulkadiroglu, Che,
Pathak, Roth, and Tercieux (2017b).
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profiles.6 Asymptotically, as the number of seats grows, the statistics become identical

for all but measure zero of possible preference profiles.

From a normative perspective of a social planner who does not yet know the

participants’ preferences and assumes that they are exchangeable draws from any

full-support distribution, the above positive equivalence implies as a corollary that

in expectation any two mechanisms satisfying the above incentives and efficiency as-

sumptions generate the same expected anonymous aggregate measures. We further-

more prove several finite-market theorems establishing that for the standard class of

mechanisms introduced by Abdulkadiroğlu and Sönmez (2003) and called Top Trad-

ing Cycles, this normative corollary remains true regardless of the market size. This

standard class of mechanisms contains for instance Serial Dictatorships and, on the

house allocation subdomain, all Pápai (2000) fixed-endowment Hierarchical Exchange

mechanisms.7

The equivalence of anonymous statistics of standard allocation mechanisms es-

tablished in the paper does not mean that the mechanisms themselves are outcome-

identical: the equivalence of the anonymous statistics is not the same as the equiv-

alence of mechanisms. Even within the class of serial dictatorship mechanisms—in

which one-by-one market participants receive seats in their most favorite still not

oversubscribed school—the order in which the seats are assigned matters for individ-

ual participants: being the first to receive the seat is better than having a random

position in the ordering, and the random position is better than being last. Only the

aggregate statistics are the same in all these mechanisms.

At the same time the results suggest that to choose between various standard al-

location mechanisms the school districts need to look beyond the usually considered
6For allocation mechanisms that are deterministic, the strategy-proofness assumption can be

relaxed to there being a pure strategy Nash equilibrium. However, as de Haan et al. (2015) and
Kapor, Neilson, and Zimmerman (2018) recently shown, participants’ heterogenous beliefs may lead
to welfare losses in non strategy-proof school choice mechanisms.

7On this subdomain, we show that all Li (2017) obviously strategy-proof mechanisms have also
the same expected (and median) anonymous statistics; a result which builds on recent work by Pycia
and Troyan (2019).
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anonymous statistics.8 As discussed above, the districts might compare the mecha-

nisms to the status quo, which by definition is not anonymous. Or the district might

pay attention to the simplicity of mechanisms, e.g. defined as in Li (2017) or Pycia

and Troyan (2019).

Furthermore, the results suggest that school districts that primarily care about

anonymous statistics cannot improve upon the standard mechanisms while eliciting

only ordinal rankings of schools. To construct better mechanisms we need to elicit

preference intensity. There is a small but growing literature devoted to this problem

in the school choice environment starting with the seminal work by Hylland and Zeck-

hauser (1979) (cf. also Abdulkadiroğlu, Che, and Yasuda (2015), He, Miralles, Pycia,

and Yen. (2018), Azevedo and Budish (2011), Miralles and Pycia (2014), and Nguyen,

Peivandi, and Vohra (2016)).9 And, indeed, mechanisms eliciting preference-intensity

do better than purely ordinal ones as shown by Miralles (2008), Abdulkadiroğlu et al.

(2011), and Featherstone and Niederle (2016).10

Methodologically, the results rely on a simple, yet unexpected, link between point-

wise properties of symmetric mechanisms and population properties of asymmetric

mechanisms. The paper formalizes this link as a duality principle between these two

types of environments, and it exploits it in obtaining both large market and small

market results.11 The asymptotic equivalence results for strategy-proof mechanisms

build on Liu and Pycia (2011), who proved the general large-market equivalence

of symmetric, strategy-proof, and efficient mechanisms.12 The proofs of the finite-
8We also refer to anonymous statistics as invariant outcome measures.
9This school choice literature builds on pioneering analysis of mechanisms eliciting preference

intensities without transfers in other environments, e.g. Sönmez and Ünver (2010), Budish (2010),
Budish and Cantillon (2010), Budish, Che, Kojima, and Milgrom (2014). (For recent examples see
also e.g. Bogomolnaia et al. (2017)and Babaioff et al. (2017)).

10For more general analysis see also Troyan (2012), Pycia (2011a), Ashlagi and Shi (2015), Ab-
dulkadiroglu, Agarwal, and Pathak (2017a). For multi-unit-demand assignment, Budish and Cantil-
lon (2010) showed that strategy-proof ordinal mechanisms incur even more substantial welfare losses
than those encountered in single-unit-demand school choice.

11The paper is also one of the first economic applications of the group concentration inequalities.
For an earlier use of other concentration inequalities, see e.g. Kalai (2004) study large games.

12Cf. also Pycia (2011b). A narrower asymptotic equivalence for environments with copies was
earlier proved by Che and Kojima (2010), who showed the asymptotic equivalence of two symmetric
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market results for standard allocation mechanisms also build on the duality principle,

but the finite-market analysis of symmetric standard mechanisms in many-to-one

environments has been missing, and hence the current paper provides this analysis.

In particular, one of the paper’s auxiliary contributions is the first finite-market

equivalence for symmetric standard school choice mechanisms for environments in

which schools can have more than one seat each. Our school choice symmetric equiv-

alence builds on the rich literature studying various classes of symmetric mechanisms,

but only in the environment without copies (usually referred to as house allocation).

Abdulkadiroğlu and Sönmez (1998) were the first to prove an equivalence of two

symmetric mechanisms: Random Priority and the Core from Random Endowment.

Carroll (2014) proved the equivalence for all standard mechanisms and his result is

the main basis for ours.13

The present paper results do not hinge on the symmetry of the mechanisms. This

is important as many of the mechanisms for which the equivalence of anonymous

statistics have been observed in the data are not symmetric; also the mechanisms

among which school districts are choosing are often not symmetric. We show that

in large markets even in the absence of symmetry the outcome measures are nearly

identical for a typical preference profile in many mechanisms. While this paper is

the first to address the positive question without restricting attention to symmetric

assumptions, a special case of the normative question we study was analyzed by Che

and Tercieux (2018). They restrict attention to payoff-distributions—which is an

mechanisms: Random Priority and Bogomolnaia and Moulin (2001) Probabilistic Serial. Miralles
(2008) independently established the equivalence of these two mechanisms in the continuum economy
limit; for differences between continuum limit economies and large finite market economies, see
Miralles and Pycia (2015). Azevedo and Leshno (2016) proved related limit results for Deferred
Acceptance and Ashlagi, Kanoria, and Leshno (2017) showed that when the market sides differ in
size, the mean outcome ranks of agents on the proposing side in Random Deferred Acceptance are
close to their ranks in Random Priority. Less related to our work is Immorlica and Mahdian (2005)
and Kojima and Pathak (2008) who provided the first large market matching analysis in two-sided
environments.

13Cf. also Pathak and Sethuraman (2011) and Lee and Sethuraman (2011). Pycia and Troyan
(2019) proved finite-market equivalence of all symmetric mechanisms that are simple to play and
efficient.
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example of an anonymous statistic—and show that asymptotically in large markets

the theoretical distributions converge.14 In contrast, most of our normative results do

not rely on any large market assumptions and they apply to a much broader range

of market-outcome statistics.15

2 Model

Let A be a finite set of schools; each school a ∈ A has |a| > 0 seats.16 Let N be a

finite set of agents, to whom we also refer to as applicants; each agent i demands a

single seat and has a strict preference ranking ≻i over schools. Let Θ be the set of

agents’ rankings over schools, to which we also refer to as agents’ types.

An allocation (or matching) µ specifies for each agent i the school µ (i) the agent

is assigned. An allocation is Pareto efficient if no other allocation is weakly better

for all agents and strictly better for at least one agent.

For each allocation µ, we code the outcome a = µ (i) of agent i of type ≻∈ Θ

as as an element of set K = {1, ..., k} for some k = 2, 3, .... The set of codes K is

assumed to be fixed throughout the paper, except for the duality analysis of Lemmas

1 and 4. The coding is given by a function f : N ×Θ×A→ K and we say that the

coding function is anonymous (or invariant) if it does not depend on the individual

identity, that is

f (i,≻, a) = f (j,≻, a)

for all agents i, j ∈ N , rankings ≻∈ Θ, and outcomes a ∈ A. We then write f (≻, a) for

the common code. A statistics (or outcome measure) F : (Θ× A)i∈N → [0, 1]K is an

empirical distribution of individual outcome codes. We call the statistics anonymous

(or invariant) if the coding function is anonymous.

Examples of anonymous statistics include: how many applicants obtain their top
14The market is large in that there are many schools relative to the number of seats per school.
15Che and Tercieux’ complex and impressive proof does not rely on the duality principle.
16We may allow for a null object ⊘ that has many copies, |⊘| ≥ |N |.
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outcome; how many applicants obtain their two top outcomes; how many applicants

are assigned to school a or school b; how many applicants obtained an outcome they

prefer to school a. An example of a non-anonymous statistics is how many applicants

obtained an outcome they prefer to their local school.

A mechanism ϕ maps profiles of messages to allocations. We focus on mechanisms

in which agents report their rankings of schools. Mechanism ϕ is strategy-proof if, at

any profile of preferences ≻N , for any agent i, reporting ≻i weakly dominates reporting

any ≻′
i. While we focus on deterministic mechanisms, the analogues of our results for

random strategy-proof mechanisms follow immediately. A random mechanism maps

profiles of messages to lotteries over allocations and it is strategy-proof if reporting

the truth weakly first-order stochastically dominates all other reports.17

A mechanism is robust with ratio c > 0 at preference profile ≻ if, starting at this

profile, a change of report by one agent affects the allocations of at most c agents.

A mechanism is robust with ratio c > 0 if it is robust with this ratio at all prefer-

ence profiles.18 For instance, deterministic mechanisms such as serial dictatorships,

Abdulkadiroğlu and Sönmez (2003) top trading cycles, Boston mechanism, Papai’s

(2000) hierarchical exchange and Pycia and Unver’s (2017; 2011) trading cycles with

fixed endowments are robust with ratio |A|. To see it observe that a preference change

by one agent affects another agent only if this agent took, or just missed, the last

copy of an object. There is only one affected agent per object because if an agent

who took the last copy is affected (and doesn’t get the object after the change) then

the agent who originally just missed the object, still cannot obtain it.19

17A profile of strategies ≻̂N in mechanism ϕ is in a (pure-strategy) Nash equilibrium if, for any
agent i, reporting ≻̂i weakly dominates reporting any ≻′

i. For deterministic mechanisms, the ana-
logues of our results are true for pure strategy Nash equilibria.

18In pre-2017 drafts and presentations, I referred to robustness as weak continuity. When extend-
ing our results to random mechanisms we can weaken robustness by allowing slight impact on the
marginal allocations of the remaining agents. Furthermore, at the cost of added conceptual and
notational complication, Theorem 1 and its lemmas can be extended to sequences of mechanisms
such that for every ϵ > 0 there is δ > 0 such that changing the reports of a fraction δ of agents
affects at most fraction ϵ of agents.

19The robustness ratio of stable mechanisms, such as Deferred Acceptance, depends on the pref-
erence profile. Under the assumptions in the analysis of incentives in Kojima and Pathak (2008),
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3 Positive Equivalence

The first result of this section is formulated for finite markets with sufficiently many

applicants (or agents).

Theorem 1. Let F be an anonymous statistics. For every ϵ, c > 0 and for |N |

sufficiently large relative to ϵ,c and |A|, for any two Pareto efficient and strategy-

proof mechanisms ϕ and ψ that are robust with ratio c, we have:

|K|∑
ℓ=1

|Fℓ (≻, ϕ (≻))− Fℓ (≻, ψ (≻))| < ϵ,

for at least fraction 1− ϵ of all preference profiles ≻.

In this result, instead of counting preference profiles we can measure them by any

distribution satisfying the assumptions of Theorem 6.

The normative analysis of this paper—in particular, Theorem 6—is key to the

proof of Theorem 1. The normative analysis gives us estimates for the means of

Fℓ (≻, ϕ (≻)) and Fℓ (≻, ψ (≻)) and allows us to use the probabilistic concentration

theory to estimate for how many preference profiles the aggregate statistics are far

from the mean, and hence for how many preference profiles the bound of Theorem 1

fails. The details are in the appendix.

Theorem 1 establishes the asymptotic equivalence of many standard mechanisms

including:

• Serial Dictatorships, in which agents are ordered, and the first agent in the

ordering obtains the seat in his or her most favorite school, the second agent

obtains the seat in his or her most favorite school that still has available seats,

etc.
the ratio of Deferred Acceptance is low at typical preference profiles. In Section 3.3 on priorities, we
formulate the our positive result for stable mechanisms.
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• Top Trading Cycles mechanisms of Abdulkadiroğlu and Sönmez (2003). Each

Top Trading Cycle mechanism takes as input a profile of orderings of agents,

one at each object. We call these orderings priority lists. The allocation is then

determined in rounds similarly to the original Gale’s Top Trading Cycles. In

each round, each agent who did not receive a school seat in previous rounds

points to his most preferred school with available seats, and each such school

points to the pointing agent who is highest in the school priority list. There

is at least one cycle in which an agent i points to a school, which points to an

agent, etc, till a school points to agent i. We then allocate to each agent in

such a cycle a seat in the school he pointed to, and for each such allocation we

decrease the number of the available seats in this school by one.

For these standard mechanisms, we provide bounds on the precision of the ap-

proximation in finite markets; see the next subsection. With this analysis in mind, let

us denote by MStandard the above class of Top Trading Cycles mechanisms. Notice

that it is a broad class of mechanisms that contains Serial Dictatorship mechanisms

as a special case in which priority lists at all schools are the same. Indeed, in the

subdomain of house allocation environments—that is the class of environments de-

lineated by the assumption |a| = 1 for all a ∈ A—this class of mechanisms contains

all of Pápai (2000) Fixed-Endowment Hierarchical Exchange mechanisms.

3.1 Equivalence Precision Bounds

Denote by P any distribution on preference profiles that is iid across agents.

Theorem 2. If ϕ and ψ are mechanisms from MStandard and F is an anonymous

statistics then

P

 |K|∑
ℓ=1

|Fℓ (≻, ϕ (≻))− Fℓ (≻, ψ (≻))| > t

 ≤ 8 exp

(
− t2N

16|A|2

)
,
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and

P (|Fℓ (≻, ϕ (≻))− Fℓ (≻, ψ (≻))| > t) ≤ 8 exp

(
− t2N

4|A|2

)
, ∀ℓ = 1, ..., |K| .

If, for instance, P is the uniform distribution on all preference profiles, the es-

timates above tell us for how few preference profiles the anonymous statistics are

further away than t.20

This theorem remains true if we include in MStandard all mechanisms that are

Pareto-efficient and strongly obviously strategy-proof mechanisms in the sense of Py-

cia and Troyan (2019). It also extends to Generalized Top Trading Cycles mechanisms

discussed in the Appendix. The proof—provided in the Appendix—is based on the

finite-market normative equivalence results of Section 4 and a concentration inequal-

ity of Talagrand (1995).

Example 1. The University of California system has 9 campuses that offer under-

graduate education. 221,788 prospective undergraduates applied to at least one cam-

pus in 2017. For problem this size, any two mechanisms from MStandard have

anonymous aggregate statistics of enrollment different for each coding category by

10% or more of the relevant range (t = .1) for only 8 exp
(
− .12∗221788

4∗92

)
≈ .008 possible

preference profiles.

Example 2. In 2015, 1.2 mln first-time applicants applied for asylum in the Euro-

pean Union, 1.8 mln migrants were caught crossing the border illegally, and 2.2 mln

migrants were discovered being illegally present in the EU.21 Were EU to match them
20As discussed in appendix, our approach leads to only slightly weaker bounds for Pycia and

Ünver (2011) extension of Pápai (2000) Hierarchical Exchange mechanisms (with and without fixed
endowments) to the school choice environment, a much larger class of mechanisms than the standard
mechanisms in MStandard. Furthermore, the proof of Theorem 1 implies weaker bounds that
however are applicable to all mechanisms studied in that theorem.

21Source: The statistical office of the European Union (Eurostat) official statistics. There is some
overlap among these numbers; e.g. someone turned away from the border might be then discovered
as being illegally in the EU. In this illustrative calculation, I ignore this overlap but even under the
conservative estimates of the total as 2.2 mln, the bound on the fraction of preference profiles would
be .007.

11



to its 28 countries via one of the standard mechanisms from MStandard, the selec-

tion of the mechanism would impact any coding category of any anonymous statistics

by less than 10% under all but 8 exp
(
− .12∗5200000

4∗282

)
≈ .0000005 of possible prefer-

ence profiles.22 In the same year 2015, 749, 487 refugees and asylum-seekers officially

registered in Germany.23 Were Germany to match them to its 16 lands via one of

the standard mechanisms from MStandard, the selection of the mechanism would

impact the coding categories of anonymous statistics by less than 10% under all but

8 exp
(
− .12∗749487

4∗162

)
≈ .005 of possible preference profiles.

3.2 Converse

Does an analogue of Theorem 1 hold true for non-anonymous statistics? We es-

tablish a converse of Theorem 1, first however we need to recognize that the large

market approximate equivalence for anonymous statistics immediately implies such

an approximate equivalence for approximately anonymous statistics. We say that an

aggregate statistics F : (Θ× A)i∈N → [0, 1]K is ϵ-approximately anonymous if for

every permutation σ and strategy-proof and Pareto efficient mechanism ϕ24

|K|∑
ℓ=1

∣∣Fℓ (≻N , ϕ (≻N))− Fℓ

(
≻σ(N), σ (ϕ (≻N))

)∣∣ > ϵ (1)

for no more than the fraction ϵ of preference profiles ≻N . If we can take ϵ to zero

along a sequence of statistics as the population N increases, we say that the sequence

is asymptotically anonymous. With these terms in place, Theorem 1 implies

Corollary 1. Let FN be an asymptotically anonymous sequence of aggregate statis-
22The closeness would be within 5% for all but .1 of possible preference profiles. I do not take

stance on the question to what extent the asylum seekers had preferences over EU countries (or
German lands); they might well did so e.g. because of the location of other migrants they knew.

23Source: The United Nations Refugee Agency (UNHCR) official statistics.
24Notice the slight abuse of notation in writing the argument of the aggregate statistics F as

(≻N , ϕ (≻N )). By ≻σ(N) and σ (ϕ (≻N )) we denote respectively the permutations of the preference
profile and allocation.
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tics. For every ϵ, c > 0 and for |N | sufficiently large relative to ϵ,c, |A|, and the

sequence of statistics, for any two Pareto efficient and strategy-proof mechanisms ϕ

and ψ that are robust with ratio c, and for at least fraction 1 − ϵ of all preference

profiles ≻, we have:

|K|∑
ℓ=1

∣∣FN
ℓ (≻, ϕ (≻))− FN

ℓ (≻, ψ (≻))
∣∣ < ϵ.

This preparation allows us to formulate the partial converse of Theorem 1.

Theorem 3. If FN is a sequence of aggregate statistics that is not asymptotically

anonymous, then there exists ϵ > 0 such that for all n∗ there exists N such that

|N | > n∗ and there are two Pareto efficient and strategy-proof mechanisms ϕ and ψ

and at least 1− ϵ fraction of all preference profiles ≻ such that

|K|∑
ℓ=1

∣∣FN
ℓ (≻, ϕ (≻))− FN

ℓ (≻, ψ (≻))
∣∣ > ϵ. (2)

Proof. The failure of asymptotic anonymity means that for all n∗ there exists N

such that |N | > n∗, a permutation σ, at least fraction ϵ of preference profile ≻N , and

a strategy-proof and Pareto efficient mechanism ϕ for which (1) holds. Setting ψ to

be the σ permutation of ϕ allows us to verify that (2) holds true. Because ψ is then

strategy-proof and Pareto efficient, this concludes the proof. QED

3.3 Priorities

Some school choice districts run priority-based mechanisms, such as Deferred Accep-

tance, in order to guarantee outcomes that are stable. Stability in the school choice

context is also known also as the lack of justified envy; a more precise term.

To define and consider stability we need to assume that schools are endowed with

priorities. We assume that there is a finite set K of priority types, and the agents

are partitioned across the types. The priority types K (i) and K (j) of two agents i

13



and j determines their priority ranking at each school. The rankings are strict iff the

two agents have different priority type. An allocation is stable if there is no pair of

agents i and j such that i has higher priority at the school j is assigned and i prefers

this school over his or her assignment.

Our analysis carries through to the setting with priorities with no major changes.

Theorem 4. Let F be an anonymous statistics. For every c, ϵ > 0 and for sufficiently

many agents in each priority group relative to ϵ, c, and |A|, for any two stable,

constrained-Pareto-efficient, and strategy-proof mechanisms ϕ and ψ, we have

|K|∑
ℓ=1

|Fℓ (≻, ϕ (≻))− Fℓ (≻, ψ (≻))| < ϵ,

for at least 1 − ϵ fraction of all preference profiles at which ϕ and ψ are robust with

ratio c.

It is important that Theorem 4 relies only on the robustness of mechanisms on a

subset of preference profiles.25 In contrast, to the setting without priorities—where

standard mechanisms are robust with ratio equal to the number of schools |A|—this

local assumption matters in the results stated for the settings with priorities . For

instance, the robustness ratio of Deferred Acceptance, the standard stable mechanism,

depends on the preference profile and at some preference profiles the ratio is larger

than |A| .

3.4 Random Mechanisms

Our results extend to random mechanisms. Theorem 2 remains true for lotteries over

mechanisms from MStandard, and its proof follows essentially the same steps. In

Theorem 1, we can relax strategy-proofness to asymptotic strategy-proofness.
25A local analogue of Theorem 1 is a special case of Theorem 2.
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4 Normative Results

We study populations of agents whose preferences are drawn from exchangeable dis-

tributions. A distribution of types is exchangeable if the probability of the type profile

θN is the same as the probability of the profile θσ(N) for any permutation σ : N → N .

For instance, iid distributions are exchangeable. We can also construct exchange-

able distributions by drawing preferences from a mixture of iid distributions: with

probability πi, i = 1, ..., I, the preferences are drawn iid from a distribution Fi. A

natural interpretation of this procedure is that the draw of one of the iid distributions

reflects an aggregate shock; the constructed distribution is then iid conditional on an

aggregate shock.

4.1 Normative results for large markets

From a normative perspective the anonymous statistics of the mechanisms we study

are asymptotically equivalent in large market. For the special case when the pref-

erences of agents are drawn uniformly the asymptotic normative result takes the

following form.

Theorem 5. Let F be an anonymous statistics. For every ϵ, c > 0 and for |N |

sufficiently large relative to ϵ, c, and |A|, for any two Pareto efficient and strategy-

proof mechanisms ϕ and ψ that are robust with ratio c, we have:

E
|K|∑
ℓ=1

|Fℓ (≻, ϕ (≻))− Fℓ (≻, ψ (≻))| < ϵ,

where the expectation is taken over the uniform distribution over all preference pro-

files.

This result follows from the stronger, but more complex, normative result for

exchangeable distributions. In its formulation a special role is played by the following

class of preference profiles
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Pδ = {≻N : (∀ ≻) |{i ∈ N :≻i=≻}| > δ |N |}

where δ > 0 is arbitrarily fixed.

Theorem 6. Let F be an anonymous statistics. For every ϵ, c > 0 and for |N |

sufficiently large relative to ϵ, c, δ, and |A|, for any two Pareto efficient and strategy-

proof mechanisms ϕ and ψ that are robust with ratio c, we have:

E
|K|∑
ℓ=1

|Fℓ (≻, ϕ (≻))− Fℓ (≻, ψ (≻))| < ϵ,

where the expectation is taken over any exchangeable distribution P on preference

profiles such that P (Pδ) ≥ 1− ϵ
3
.

The uniform distribution version of the result, stated first, follows because for

sufficiently large N , the condition P (Pδ) > 1 − ϵ
3

is satisfied by the iid uniform

distribution on all preference profiles. Equivalently, as we take |N | → ∞ and δ → 0,

the fraction of preference profiles in Pδ to all preference profiles goes to 1.

The proof of this result builds on the analysis of Liu and Pycia (2011), who stud-

ied random mechanisms and showed that symmetric, asymptotically strategy-proof,

asymptotically ordinarily efficient mechanisms satisfying their regularity condition

are equivalent not only in terms of anonymous statistics but, more strongly, in terms

of marginal outcome distributions. They also proved asymptotic ordinal efficiency

of symmetric mechanisms built by uniformly randomizing over mechanisms that are

Pareto efficient, provided the randomization satisfies their regularity condition. The

challenge of the proof is two-fold: taking care of their regularity assumption and

translating the result on symmetric mechanisms into a result on population means.

We discuss the second challenge in Section 5 and provide the details on both in the

Appendix.

For replica economies, the above general result can be expressed in a simpler
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manner. For every base economy (N,≻) the q-fold replica economy Nq has q ∈

{1, 2, ...} copies of each agent from N ; each copy has preferences inherited from the

agent in N . We assume that all preference rankings are represented in the base

economy.

Corollary 2. Let Fq be an invariant outcome measure on Nq. For every ϵ > 0 and

and sufficiently large q, for any two Pareto efficient and strategy-proof mechanisms ϕ

and ψ, we have:

E
|K|∑
ℓ=1

|Fℓ (≻, ϕ (≻))− Fℓ (≻, ψ (≻))| < ϵ,

where the expectation is taken over any exchangeable distribution.

Some of our other results also take simpler form for replica economies; see Ap-

pendix C.

4.2 Normative results for finite markets

We now show that the standard mechanisms from MStandard have exactly identical

means and medians of anonymous statistics already in any size finite markets.

Theorem 7. The population mean and median of any anonymous statistics, with

respect to any exchangeable distribution, do not vary on the class of standard mecha-

nisms, MStandard.

This theorem remains true if we include in MStandard all mechanisms that are

Pareto-efficient and strongly obviously strategy-proof mechanisms in the sense of Py-

cia and Troyan (2019). It also extends to Generalized Top Trading Cycles mechanisms

discussed in the Appendix.

As a step in proving this theorem, we establish the following result for symmetric

random mechanisms constructed as follows. We identify a random mechanism φ

with the marginal probabilities agents are allocated objects, that is the probabilities

φ (i, s) (≻) that i obtains a. The deterministic mechanisms are naturally embedded
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in this notation. The symmetrization ϕS of (deterministic or stochastic) mechanism

ϕ is then given by

ϕS (i, a) (≻) =
∑

σ:N
1−1→ N

1

|N |!
ϕ (σ (i) , a) (≻σ) .

The class of Symmetric Top Trading Cycles mechanisms consists of symmetrizations

of Top Trading Cycles mechanisms from MStandard.

Theorem 8. Any two Symmetric Top Trading Cycles mechanisms generate exactly

the same distribution over matchings.

The proof—provided in the appendix—builds on Carroll (2014), who proved a

related result for Pápai (2000) Fixed-Endowment Hierarchical Exchange mechanisms

in the house allocation environment, in which no object has a copy. The Fixed-

Endowment Hierarchical Exchange are exactly Top Trading Cycles mechanisms for

the house allocation subdomain of our problem.26

The next section focuses on the relationship between results such as Theorem 8

and Theorem 7.

5 Population–Symmetry Duality

We establish duality between population properties of a mechanism and pointwise

properties of its symmetrized version. This duality enables our analysis of normative

questions in school choice mechanism design. We first formulate the duality for means

in finite markets, and later discuss extensions to medians as well as approximate and

asymptotic results.
26In pre-June 2019 drafts, I erroneously credited a version of Theorem 8 to Pathak and Sethuraman

(2011); however they only studied the environment in which each school has only one seat, that is
the house allocation environment. To the best of my current knowledge, Pycia and Troyan (2019)
result on Strong Obviously Strategy-Proof mechanisms and Theorem 8 above are the first finite
market equivalence result for school choice environments with multiple-seats schools.

18



Lemma 1. (Finite Population-Symmetry Duality).

(1) Consider two mechanisms, ϕ and ψ, such that their symmetrizations have

identical marginal distributions of outcomes. If agents’ types are drawn from an ex-

changeable distribution then the mean of any anonymous statistics under ϕ is the

same as under ψ.

(2) Conversely, consider two mechanisms, ϕ and ψ, such that for any exchangeable

distribution of preferences the mean of any anonymous statistics under ϕ is the same

as under ψ, then the symmetrizations of ϕ and ψ have identical marginal distributions

of outcomes.

To prove Lemma 1, let us first show

Claim. The distribution of anonymous statistics for ϕS and fixed preference profile

≻N is the same as for ϕ and the uniform distribution over all permutations of ≻N .

To prove it, let us fix label k ∈ K, and agent i ∈ N . By invariance of the coding

function f , for any permutation σ on N we have

f
(
≻σ(i), ϕ

(
σ (i) ,≻σ(I)

))
= f (≻i, σ (ϕ) (i,≻I)) .

Averaging over all permutations on N we conclude that the probability

f
(
≻σ(i), ϕ

(
σ (i) ,≻σ(I)

))
= k

where permutation σ is drawn uniformly from all permutations on N is equal to the

probability

f
(
≻i, ϕ

S (i,≻I)
)
= k

where ϕS is the symmetrization of ϕ. Hence, the corresponding aggregate statistics

F (which is just the profile of probabilities of outcome codes) are the same for the

population drawing its preferences from permutations of the preference profile ≻

and submitting them to ϕ as from the single preference profile ≻ submitted to the
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symmetrized mechanism ϕS.

By definition, an exchangeable distribution is a mechanical sum of improper uni-

form distributions over permutations of preference profiles.27 Hence, the mean ag-

gregate statistics of ϕ is the weighted sum of the means of aggregate statistics from

ϕS summed up over equivalence classes of preference profiles (where two profiles are

equivalent is they are each other permutations).

The same analysis can be repeated for ψ and ψS. If the mean aggregate statistics

of ϕS and ψS are equal—which is the case under our assumption that for each agent

the marginal distributions of the schools the agent obtains is the same under both

symmetrizations—then the first claim of Lemma 1 obtains.

To prove the second claim take two mechanisms, ϕ and ψ. Fix a preference profile

≻ and consider the exchangeable distribution obtained by uniformly randomizing over

all permutations of ≻. Fix a∗ ∈ A and an individual preference ranking ≻∗∈ Θ and

consider an invariant coding function such that f (≻, a) = 1 iff a = a∗ and ≻=≻∗.

The equality of this outcome measure for ϕ and ψ on this population means that the

marginal probability that some agent with type ≻∗ obtains a∗ under ϕS and ψS are

identical. Since under ϕS and ψS any two agents with identical type have the same

marginal probabilities of receiving a∗, we can conclude that the marginal probability

distributions induced by ϕS and ψS are the same. QED

In light of the last paragraph of the proof, the second claim of Lemma 1 can be

strengthened: we could weaken the assumption by restricting it to uniform distribu-

tions and the coding functions considered therein.

Remark 1. When the symmetrizations of the two mechanisms, ϕ and ψ, have not only

identical marginal distributions of outcomes but also identical distributions of entire

allocations, then the Claim from the previous lemma tells us that for any uniform
27Indeed, we can take any preference profile that has positive probability and remove it and

all its permutations; by exchangeability all these permutations have the same probability and the
remaining improper distribution is also exchangeable. After a finite number of such steps we have
represented the original distribution as a mechanical sum of uniform distributions over permutations
of preference profiles.
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distribution on any closed-under-permutations set of preference profiles the medians

of ϕ and ψ are the same. In particular, this observation about medians obtains if

agents’ preferences are drawn iid.

Approximate and asymptotic analogues of Lemma 1 are presented in Appendix

B.3.

6 Conclusion

The paper shows that Pareto efficient deterministic mechanisms are asymptotically

equivalent—profile-by-profile—for invariant outcome statistics. An analogous result

holds true for stable and constrained efficient mechanisms. The positive results pro-

vide an explanation of the empirical puzzle posed by the equivalence of various mech-

anisms in measures reported in empirical work. Furthermore, the paper shows that

many standard mechanisms are exactly equivalent in terms of mean invariant outcome

statistics.

The anonymity (also referred to as invariance) of the outcome statistics is crucial:

the paper shows that the asymptotic equivalence only holds for statistics that are

at least asymptotically anonymous. The prediction that all invariant statistics have

these property, and only them, is testable, and the literature summarized in the

introduction is consistent with this prediction.

The results highlight two dimensions of the mechanism selection. How do the

mechanisms differ with respect to non-invariant outcome measures? How do the

mechanisms differ with respect to non-outcome measures, such as simplicity of playing

them? The results also suggest that optimizing the mechanisms with regard to these

objectives comes without losses in terms of anonymous statistics as long as we restrict

attention to the broad class of mechanisms studied in this paper.

Furthermore, the positive and normative results suggest that to make welfare gains

we need to go beyond strategy-proof ordinal mechanisms, for which the equivalence

21



obtains. We can do it by eliciting the intensity of preferences or by incorporating

exogenous sources of information about applicants’ preferences.28

The techniques developed to prove these results are of use in other environments.

28The former approach is taken e.g. in Hylland and Zeckhauser (1979); Abdulkadiroğlu et al.
(2015); He et al. (2018); Nguyen et al. (2016), and the latter in Leshno and Lo (2018).
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A Proofs

A.1 Proof of Theorem 1

From Theorem 5—proven without any direct or indirect reliance on Theorem 1—we

know that

E
|K|∑
ℓ=1

|Fℓ (≻, ϕ (≻))− Fℓ (≻, ψ (≻))| < ϵ,

where the expectation is taken over the uniform distribution on all preference pro-

files.29 The displayed inequality implies its counterpart for all ℓ = 1, ... |K|,

E |Fℓ (≻, ϕ (≻))− Fℓ (≻, ψ (≻))| < ϵ.

Since ϕ and ψ are robust with ratio c, we can conclude that a change of report by

one agent changes Fℓ (≻, ϕ (≻)) by at most c
|N | , and hence Fℓ (≻, ϕ (≻)) is Lipschitz

29For the analogue of the positive result for distributions satisfying the assumptions of Theorem
6, we base the above estimate on Theorem 6 (whose proof is also does not rely on Theorem 1).
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in Hamming metrics, and the above Talagrand concentration inequality for product

spaces allows us to conclude that for nearly all preference profiles, Fℓ (≻, ϕ (≻)) is

close to its mean. The same obtains for Fℓ (≻, ψ (≻)). On the intersection of this

nearly full measure sets of profiles Fℓ (≻, ϕ (≻)) and Fℓ (≻, ψ (≻)) are close, and hence

so is the sum of the absolute differences. Hence, Theorem 1 obtains.30 QED

A.2 Proof of Theorem 2

Theorem 7—proven without direct or indirect reliance on Theorem 2—tells us that

for any two mechanisms in MStandard the medians of anonymous statistics over any

exchangeable population are the same. Let us fix the population and the exchangeable

distribution, and denote the common median of F by FM . Fix also a coding label ℓ.

The mechanisms in MStandard are robust with ratio c = |A|; cf. the discussion

after the robustness definition. Thus Fℓ is Lipschitz with constant L = c
|N | . By

Talagrand (1995) concentration inequality

P (|Fℓ (≻, ϕ (≻))− FM | > t) ≤ 4 exp

{
− t2

L2N

}
.

Because the same holds true for ψ, we infer that

P (|Fℓ (≻, ϕ (≻))− Fℓ (≻, ψ (≻))| > 2t) ≤ 8 exp

{
− t2

L2N

}
.

Plugging in for L and halving t delivers the first claim of the theorem. The proof

of the second claim is analogous except that L = 2c
|N | because a change of report by

one agent can affect allocation of c agents and each allocation change can impact two

codes in F . QED
30For the version of Theorem 1 formulated under the distributional assumptions of Theorem 6,

instead of the product-space concentration inequalities, we use Maurey Theorem quoted above.
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A.3 Proof of Theorem 6

The key to the proof is to first consider symmetric versions of mechanisms ϕ and ψ and

then to apply our asymptotic duality Theorem 5. The analysis of symmetrizations

of ϕ and ψ builds on Liu and Pycia (2011). They establish a general asymptotic

equivalence of symmetric mechanisms—a class that includes symmetrizations—but

their analysis relies on regularity conditions we did not impose. Because of this some

work beyond their paper is needed.

We need to establish that the effect of reports of any small groups of agents

other than j on the allocation of an agent j vanishes as |N | → ∞. We will prove

something stronger than they required for their analysis, but only for preferences

≻∈ Pδ. While they imposed a regularity condition on all preference profiles, the

restricted condition below is sufficient for a version of their equivalence restricted to

Pδ. We say a mechanism ϕ is continuous with ratio C > 0 if for every ϵ > 0 and any

preference profiles ≻,≻′ if

|{i ∈ N | ≻′
i ̸=≻i}| <

1

C
ϵ |N | , (3)

then for all agents j ∈ N such that ≻′
j=≻j we have:

max
a∈A

|ϕN (≻N) (j, a)− ϕN (≻′
N) (j, a)| < ϵ. (4)

Lemma 2. Suppose ≻∈ Pδ. If a mechanism ϕ is robust with ratio c then, its sym-

metrization ϕS is continuous with any ratio C ≥ c
δ
.

To use Liu and Pycia equivalence approach we also need to ensure approximate

ordinal efficiency of the symmetrizations under our assumptions. Following their

terminology, for any ϵ > 0, we say that a random allocation µ is (1− ϵ)-efficient

with respect to a preference profile ≻ iff (i) for no n ≥ 2 there is a cycle of agents

i1, ..., in who can improve by trading ϵ probability shares of some objects a1, ..., an
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that is µ (ik, ak) > ϵ and ak+1 ≻ik ak for all k = 1, ..., n (modulo n), and (ii) if a ≻i b

and µ (i, b) > ϵ, then no more than probability ϵ of a is unallocated.

Lemma 3. For any ≻∈ Pδ, if a Pareto efficient deterministic mechanism ϕ is robust

with ratio c then its symmetrization ϕS is (1− ϵ)-efficient for any ϵ ≥ 4
√
c 4
√
log (2 |A|)n− 1

4 .

The above two lemmas—proved below—allow us to recover an analogue of the

main equivalence result of Liu and Pycia (2011) restricted to Pδ. We can hence

conclude that for all ϵ > 0, and sufficiently large N , and any strategy-proof, Pareto-

efficient, and robust deterministic mechanisms ϕ and ψ, their symmetrizations are

approximately identical:

∣∣ϕS (i, a) (≻)− ψS (i, a) (≻)
∣∣ < ϵ

for all i ∈ N , a ∈ A, and ≻∈ Pδ.

This approximate equivalence of symmetrized mechanisms allows us to apply our

approximate duality Lemma 4 because Pδ is permutation invariant. Hence for the

distribution P conditioned on ≻∈ Pδ, the analysis of symmetrizations ϕS and ψS in

Section 3 and our asymptotic duality Theorem 5 imply that

EPδ

|K|∑
ℓ=1

|Fℓ (≻, ϕ (≻))− Fℓ (≻, ψ (≻))| < ϵ

3

(where we substituted ϵ
3

for ϵ in applying the analysis referenced). On the complement

of Pδ, we have
|K|∑
ℓ=1

|Fℓ (≻, ϕ (≻))− Fℓ (≻, ψ (≻))| ≤ 2.

By averaging these bounds in the worst case scenario of P (Pδ) = 1− ϵ, we obtain

E
|K|∑
ℓ=1

|Fℓ (≻, ϕ (≻))− Fℓ (≻, ψ (≻))| < ϵ

3
(1− ϵ) + 2

ϵ

3
≤ ϵ,
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as required. QED

Proof of Lemma 3.31 Consider a sequence of preference profiles (≻N)N={1},{1,2},....

The key step in our proof is the following.

Claim. Let θ be a preference ranking, let a be an object, and let ψS be a symmetriza-

tion of a robust deterministic mechanism ψ with ratio c. If (≻N) ∈ Pδ,N and there is

an agent with preference ranking θ who obtains a under ψS with probability at least

ϵ ∈ (0, 1), then the fraction of permutations σ at which no agent of type θ is allocated

object a under σ
(
ψS

)
is at most 2e−

ϵ4δ2n
162c2 .

Proof of the Claim. Let Σ̂ ⊆ ΣN be the set of permutations σ such that no agent

of type θ obtains a at σ (ψ). Because we are bounding the size of Σ̂ from above, we

can without loss of generality assume that there is at least one permutation τ ∗ ∈ Σ̂.

Let B ⊆ ΣN be the set of permutations σ ∈ ΣN such that at least the fraction ϵ
2

of agents of type θ obtains a under ψσ. Notice that B contains at least the fraction
ϵ
2

of all permutations. Indeed, if not then at most the fraction ϵ
2

of the permutations

of ψ contains more than fraction ϵ
2

of agents of type θ obtaining a, and at all other

permutations at most fraction ϵ
2

of these agents obtain a. Thus the average probability

an agent of type θ obtains a is bounded above by ϵ
2
∗ 1+

(
1− ϵ

2

)
ϵ
2
< ϵ. By symmetry

of the randomization, all these agents have the same probability of obtaining a, and

because this probability is at least ϵ, we obtain a contradiction.

Because ψ is robust with ratio c, so is σ (ψ) for any σ ∈ ΣN . Because there is at

least fraction δ of agents of type θ, if weakly more than the fraction ϵ
2

of agents of

type θ obtain a under σ (ψ) then at least the fraction ϵ
2c
δ of agents must have changed

their reports between σ and τ ∗ and hence f (σ) = d (σ, τ ∗) ≥ 1
|N |

ϵ
2c
δ |N | = ϵ

2c
δ. From

this and the bound on B we can conclude that Ef =
∑

τ∈ΣN
f(τ)

|ΣN | ≥ ϵδ
2c
∗ ϵ

2
.

Because f equals zero on Σ̂, we conclude that all σ ∈ Σ̂ belong to
{
σ ∈ ΣN :

∣∣∣f (σ)− ∑
τ∈ΣN

f(τ)

|ΣN |

∣∣∣ ≥ t
}

for t = ϵ2δ
4c

. We can use Maurey’s (1979) concentration theorem: If f : Σ
N

→
31The proof slightly refines the analysis of symmetric mechanisms and asymptotic efficiency in

Liu and Pycia (2016).
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R is Lipschitz with constant L with respect to the Hamming distance d (σ, σ′) =

1
|N | |{i ∈ N : σ (i) ̸= σ′ (i)}|, then:

∣∣∣∣{σ ∈ ΣN :

∣∣∣∣f (σ)−
∑

τ∈ΣN
f (τ)

|ΣN |

∣∣∣∣ ≥ t

}∣∣∣∣ ≤ 2e−
t2n
16L2 |ΣN | .

Setting f (σ) = d (σ, τ ∗) where τ ∗ ∈ Σ̂ is fixed above observe that this function is

Lipschitz with respect to the distance d with constant L = 1. By Maurey’s Theorem

Σ̂ can contain at most 2e−
ϵ4δ2n
162c2 |ΣN | permutations and the claim obtains. QED

To finish the proof of the efficiency lemma, suppose that ϵ-efficiency fails for

preference profile ≻N . Thus, either condition (i) or (ii) fails. The analyses of these

two cases are similar; let us consider the slightly more complex case when (i) fails.

Then, at each N , there is a cycle of ℓ agents i1, ..., iℓ that have a profitable swap

of size ϵ, that is µ (ik, ak) > ϵ and ak+1 ≻ik ak for all k = 1, ..., ℓ. Notice that the

uniformity of randomization implies that the agents with the same preference type

obtain the same probability shares. The resulting symmetry of allocations allows us

to assume that ℓ ≤ |A| as otherwise we could shorten the cycle.

By Pareto efficiency of ψ, at each σ ∈ ΣN at least one agent of type from the cycle

does not obtain the corresponding object; that is this claim obtains with probability

1. Because Claim 1 puts an upper bound of |A| 2e−
ϵ4δ2n
162c2 on the total probability this

might happen , we infer that for

ϵ ≥ 4
√
c 4
√

log (2 |A|)n− 1
4

condition (i) cannot fail. The failure of condition (ii) would give us a less tight bound

on ϵ. QED

Proof of Lemma 2. We are to show that no agent i’s random allocation is

changed by more than ϵ when an agent j ̸= i changes his or her report. By way of

contradiction suppose that there are two different agents i, j, object a, and such that
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when j changes the reported preferences from ≻j to ≻′
j then

∣∣ϕS (≻N) (i, a)− ϕS
(
≻′

j,≻N−{j}
)
(i, a)

∣∣ ≥ ϵ.

By symmetry, the change by j affects in the same way all agents of the same preference

type as i, and by assumption there are at least δ |N | such agents.

For each σ, agent j affects at most c agents of same type as i, and by symmetry ϵ

is bounded above by the probability that i is one of c uniform random draws (without

replacement) from δ |N | agents, that is ϵ ≤ c
δN

. QED

A.4 Proof of Theorem 7

The Theorem follows from Theorem 8 and the median-version of Lemma 1 (cf. Re-

mark 1). QED

A.5 Proof of Theorem 8

Consider a school choice environment and fix a preference profile (≻i)i∈N . Let ϕS be

a Symmetric Top Trading Cycles mechanism and let ϕ be its underlying Top Trading

Cycles mechanism. Consider an auxiliary house allocation environment, with the

same set of agents the school choice environment we study and the set of objects O

constructed as a union of all seats in all schools; let us associate each seat in school a

with a unique number in 1, ..., |a|. Let us construct each agent i’s preference ranking

≻̃i over these objects as follows: if o1, o2 ∈ O are seats in different schools a1 and

a2 (respectively) then o1≻̃io2 iff a1 ≻i a2; if o1, o2 ∈ O are seats in the same school

then o1≻̃io2 iff the number associated with seat o1 is strictly lower than the number

associated with seat o2.

Let us construct the auxiliary mechanism ϕ̃ on the auxiliary house allocation

problem so that ϕ̃ is Top Trading Cycles in which each seat o has the same priority

ranking over agents as the school a of this seat. The key observation is that ϕ is
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identical to the projection of the allocation of ϕ̃ into the space of allocation of schools

to applicants. The same obtains for any permutation of roles in ϕ and correspondingly

in ϕ̃, and hence ϕS is equivalent to the projection of ϕ̃S into the space of allocation

of schools to applicants. By Carroll (2014), all ϕ̃S are equivalent in the auxiliary

house allocation problem, and hence we can conclude that all ϕS are equivalent in

the original problem. QED

B Additional Results and Remarks

B.1 Subdomains of Preference Profiles

We can restrict the definition of anonymous statistics to a support of an exchangeable

distribution that is to a subset of preference profiles that is closed under permutations

of agents: a class C of preference profiles is closed under permutations if for every

≻N∈ C and every permutation of agents σ the permuted profile ≻σ(N)∈ C. All the

results of this paper—including Theorem 1—would remain valid.

B.2 Replica Economies

Restricting attention to replica economies would simplify some of our results. For

instance, in Lemma 3 we may drop the restriction to ≻∈ Pδ and we do not need to

replace it with any full support assumptions. In the formula for efficiency tolerance

ϵ, we then substitute the share of the least frequent preference profile for δ.

B.3 Approximate and Asymptotic Duality

The proofs of the following additional duality lemmas are essentially the same as that

of the finite-market duality Lemma 1.

Lemma 4. (Approximate Population-Symmetry Duality). Suppose that class

C of preference profiles is closed under permutations. Then:
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(1) Take two mechanisms, ϕ and ψ, such that their symmetrizations have approx-

imately identical marginal distributions of outcomes

∣∣ϕS (i, a) (≻)− ψS (i, a) (≻)
∣∣ < ϵ for ≻∈ C, i ∈ N, a ∈ A (5)

If agents’ types are drawn from an exchangeable distribution then the mean of any

invariant measure of outcomes under ϕ is approximately the same as under ψ,

EC

|K|∑
ℓ=1

|Fℓ (≻, ϕ (≻))− Fℓ (≻, ψ (≻))| < ϵ. (6)

(2) Conversely, if for two mechanisms, ϕ and ψ, and any exchangeable distribu-

tion of preferences the mean of any invariant measure of outcomes under ϕ is approx-

imately the same as under ψ in the sense of inequality 6, then the symmetrizations

of ϕ and ψ have nearly identical marginal distributions of outcomes in the sense of

inequality 5.

Lemma 5. (Asymptotic Population-Symmetry Duality).

(1) Take two sequences of populations N and corresponding mechanisms, ϕN and

ψN such that the symmetrizations ϕS
N and ψS

N have asymptotically equivalent marginal

distributions of outcomes. If agents’ types are drawn from a exchangeable distribution

then the mean of any invariant measure of outcomes under ϕN is asymptotically the

same as under ψN .

(2) Conversely, for two sequences of populations N and corresponding mecha-

nisms, ϕN and ψN such that for any exchangeable distribution of preferences the

mean of any invariant measure of outcomes under ϕ is the same as under ψ, then the

symmetrizations ϕS
N and ψS

N have asymptotically equivalent marginal distributions of

outcomes.
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B.4 Further Equivalences for Symmetric School Choice Mech-

anisms

The proof approach from Theorem 8 allows us to derive other equivalences of symmet-

ric mechanisms in school choice. For instance, it allows us to leverage the analysis

in Lee and Sethuraman (2011) to conclude that any two Pycia and Ünver (2011)

extensions of Pápai (2000) Hierarchical Exchange mechanisms to school choice envi-

ronment have identical marginal distributions of outcomes; that is the lottery over

schools an agent obtains is the same for all these mechanisms.

Furthermore, the same proof as in Theorem 8 allows us to establish the analogue

of this theorem for the following larger class of school choice mechanisms, which

we call Generalized Top Trading Cycles. There are two inputs into each of these

mechanisms: a profile of priority orderings separate for each seat in each school, and

sets of rankings of seats in schools, one set of rankings per agent. Given these two

inputs, the outcome of Generalized Top Trading Cycles is the same as the outcome of

Top Trading Cycles in which each seat is treated as a school and agents’ preferences

among seats are constructed so that if o1, o2 ∈ O are seats in different schools a1 and

a2 (respectively) then o1≻̃io2 iff a1 ≻i a2; if o1, o2 ∈ O are seats in the same school

then o1≻̃io2 iff agent i ranks seat o1 above o2 in line with his ranking of seats in this

school.32

32As mentioned above, Top Trading Cycles restricted to this domain are identical to Pápai (2000)
Fixed-Endowment Hierarchical Exchange. The strategy-proofness and Pareto efficiency properties
of Generalized Top Trading Cycles are inherited from Top Trading Cycles.
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