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Abstract

We study the impact of technological change on GDP growth, income inequal-

ity, and the interconnectedness of the economy. Technological advances in goods that

complement labor increase productivity but do not change the interdependencies across

sectors nor the relative wages between high-skilled and low-skilled labor. In contrast,

technological advances that (directly or indirectly) affect goods that substitute for labor

(e.g., robots, AI) have impacts that depend on the state of the economy. An improve-

ment in a good that substitutes for labor pushes that labor into other less productive

processes, but wages also adjust and slow that displacement. The resulting growth in

overall productivity is attenuated and income inequality between low- and high-skilled

workers grows. The less productive alternative opportunities are for labor, the greater

the decrease in wages and the lower the productivity growth is that results from the

technological improvement. At the same time, the production network becomes denser

and interconnectedness grows with automation, changing the centralities of different

sectors and enhancing the impact of some future technological changes. Once automa-

tion has fully substituted for labor in some process, further technological advances

translate directly into productivity gains. Our findings imply that i) the growth effects

of recent technological developments in automation technologies should emerge grad-

ually, and at an initial cost of increased income inequality, ii) technological advances

that displace labor propagate both downstream and upstream via wage changes, and

iii) the reliance on different skill levels of labor in various production processes deter-

mine the alternative uses of labor in the economy, and thus the reallocation of labor

and the macroeconomic impacts of technological advances.
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1 Introduction

The production of goods and services has become increasingly complex and networked. Many

involve multiple tasks or parts, some even hundreds or hundreds of thousands. Moreover,

some intermediate goods are not only complements in production, but can substitute for

or completely replace others. For instance, robots and AI substitute for labor in manufac-

turing (e.g., assembly lines), distribution (e.g., warehouses and drivers), and services (e.g.,

computer-based markets and apps and data collection systems); and Kevlar and other syn-

thetic materials substitute for metals and fabrics. In this paper, we study the effects of

technological advances in such a world that is extensively networked and in which goods not

only complement each other in production, but can also substitute for other inputs; and, in

particular, for labor.

Despite the complexity of such a world, we show that there are tractable formulas that

describe the impacts of various technological advances. Including the possibility of goods

that substitute for others is important for two reasons. One is that many technological

advances change the mix of labor and other inputs. We have seen this historically, as tech-

nological advances reduced the use of labor in agriculture and manufacturing, and are seeing

at present as automation and AI are displacing labor in the production of an increasingly

wide variety of goods and services. The second is that the effects of technological advances

on the production network in the presence of substitution effects differ fundamentally from

the case of pure complements. Since traditional input-output analysis has focused on the

case of complements, it offers an erroneous view of many important and basic effects of

technological improvements on the economy.

In particular, a main feature of our analysis is a general equilibrium effect of changes in

wages in reaction to technological advances. These effects counteract the impact of techno-

logical advances that substitute for labor. The extent to which they mitigate such advances

depends on where the labor displaced by new technologies can be re-employed, which depends

on the full production network in a way that we characterize.1

Let us briefly illustrate the intuition behind our analysis before more fully describing our

analysis and the contribution relative to the existing literature.

Consider the production of some good, Y , that uses high-skilled labor, H, low-skilled

labor, L, and an input good that can substitute for low-skilled labor, X. Suppose that the

production function takes the form

Y = (L+ AX)αH1−α, (1)

where α ∈ (0, 1) tracks the relative shares of the high and low-skilled inputs. The good X

(e.g., a robot or AI) substitutes for low-skilled labor at a rate A. A change in A reflects a

technological advance in the input X that makes it a better substitute for labor, for instance

1We focus on the displacement of labor, but the analysis applies directly to the displacement of other

productive inputs as well.
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a faster robot, or enhanced abilities of some software. Let us examine the effect of a change

in A on the value of production Y :2

∂Y

∂A
= αX(L+ AX)α−1H1−α = αX

Y

L+ AX
.

This expression is decreasing in L and increasing inX. Early in the substitution/automation

process, L is high and X is low, and so the impact of an advance in A is low. As substitution

takes place, L falls and X increases, and thus the derivative increases as well. This shows

the basic force at work: the impact changes depending on the stage of automation and the

values of L and X. As substitution is just beginning X = 0 and L > 0, and so the deriviative

is 0 and there is no effect. As substitution continues, L drops and X increases, and so does
∂Y
∂A

(as a function of the level of Y , which is also increasing). Eventually, when substitution

is complete and L = 0, then ∂Y
∂A

= αY
A

, which then looks like a standard complementary

input.

The impact of a change in A, thus depends on the levels of L and X. The second key

insight is that the levels of L and X depend on how productive L is in other sectors of the

economy. This is where the general equilibrium analysis is vital. If L is relatively productive

elsewhere, then as A increases, L decreases rapidly in the production of this good and moves

to the production other goods, and correspondingly the use of good X rises rapidly.3 If

instead, L is not so productive elsewhere, then the main change is a drop in the wage and

only a slight decrease in L and increase in X. Thus, the changes of L and X in response to

a technological advance depend critically on the overall production network, and therefore

so does the relative level of the derivative ∂Y
∂A

.

Although how Y is impacted by a change in the productivity A of the X input has

general equilibrium effects also for complements, there is a big difference in how this works

with substitutes. If X is a complement to L, then when L has worse alternative uses in the

economy, the derivative of Y with respect to A increases as it becomes easier to attract L in

the current production process. In contrast, in the case of substitutes, as L is less productive

elsewhere, this slows the movement of L to its alternative uses and hence the adoption of

X and which decreases the derivative - at any given level of Y - producing a counter-acting

force. So, the general equilibrium effects of the alternative uses of labor have opposite signs

for complements and substitutes.

With this intuition in hand, there are three main contributions of our study. First, we

provide a network model of production that enables us to contrast the effects of changes

in intermediate goods that substitute for labor with those that complement labor. Second,

we show how such contrasting technological changes have correspondingly very different im-

plications for GDP growth and income inequality, and how these depend on the phase of

2L, H, and X adjust with A, but by the Envelope Theorem, their effect washes out of the derivative.
3 The effect is not discontinuous, as one might superficially expect given the linear substitution of X for

L in equation (1), since the low-skilled wage drops as L shifts into sectors where it was initially marginally

less productive. As we show below, that shift is continuous.
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substitution. Accordingly, by using a network centrality measure of the impact of productiv-

ity changes in different sectors, we discuss how network centralities evolve with technological

progress. Third, we show how the overall effect on total consumption from technological

change depends on the alternative uses of labor in the economy.

In particular, we build an input-output model where intermediate goods that are com-

plements for or substitutes to labor are produced within the economy. To analyze the

substitutability of labor and intermediate goods, we consider two different types of labor:

high- and low-skilled. The difference between these types of labor is that low-skilled labor

performs routine and repetitive tasks that can be substituted by “automation goods” (e.g.,

robots, software, driverless trucks, drones...), while high-skilled labor instead complements

all other goods used in the production process. Dividing labor into these two classes4 allows

us to characterize how different types of labor are affected by technological changes, and also

to identify new types of network effects in how change ripples through the economy.

We first analyze a three-sector model that consists of a final good sector; an intermediate

good sector that is a complement to labor in production of the final good - a “resource

sector”; and an intermediate good sector that can substitute for labor in the production of

the final good - an “automation sector”. In the three-sector model part, we provide the

main results of our study, which we later extend and generalize to an n-sector economy. Our

first two results fully characterize how technological advances affect the total consumption,

low- and high-skilled labor wages, and the relative wage (income inequality); as well as how

these depend on the extent to which substitutable labor is still partly used or whether that

substitution is already complete.

During the substitution (or transition) phase, low-skilled labor is displaced by automa-

tion. In this phase, the demand for low-skilled labor, and hence low-skilled wages, decreases

as the productivity of the automation sector rises. Correspondingly, the productivity gains

that arise due to the substitution to a more productive factor are captured by high-skilled

labor that is complement to other inputs including the automation goods. Specifically,

the high-skilled to low-skilled wage gap rises following a technology improvement in the

automation sector during the substitution phase. Moreover, this phase leads to increased

interconnectivity in the economy, as productivity changes in automation sector now have up-

and down-stream effects via changes in relative wages. The impact of technological changes

on total consumption gradually increase as the interconnectivity rises throughout this stage.

The substitution phase is not abrupt, but can be prolonged since the wage adjusts and so the

adoption of automation is continuous in the change in its productivity, and this adjustment

depends on the alternative uses of labor.

Eventually, the substitution phase is complete and low-skilled labor is no longer used

in this particular process. Further technological improvements then have a classical input-

output effect (i.e., wages and consumption rise) and have no impact on the relative wage.

4The term “high” and “low” skilled are artificial, as what is really relevant is whether a particular form of

labor is substituted for or complemented by a change in some good. We use the terms since it is frequently

the case that this corresponds to skill level.
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Following these results, next discuss how the macroeconomic impacts of technological

advances during the substitution phase depend on the properties of each production process

in the economy. We discuss how the new employment of displaced workers depends on the

skill dependencies in the production processes of each sector. We first provide an example of a

three-sector model and show how sectoral skill dependencies affect the impact of technological

advances on total consumption. Next, we detail how the substitution phase works. We show

how the impact of automation on macroeconomic variables depends on the length of the

substitution process. With less attractive alternatives for low-skilled labor, the substitution

phase is more gradual and greater technological advances are required to produce the same

impact on the economy. In a similar vein, the skill dependency of automation sector itself is

also critical in determining the price of the automation good and firms’ automation decisions,

and thus the change in macroeconomic variables and the length of the automation process.

Following the three-sector model, we extend our analysis to an n-sector economy. Here,

we consider substitutable and non-substitutable tasks in each sector. In the general model,

substitution can be quite indirect. For example, a technological advance in the production

of a material like Kevlar can replace metal, which then makes robots lighter and more

efficient, and thus spurs their use in warehouses. So, any good in a long supply chain

can end up affecting the substitution. In this part, we investigate how these direct and

indirect effects end up having overall effects on total consumption, income inequality and

the interconnectedness of the economy.

In the analysis of the general model, we first discuss how Hulten’s Theorem [37] relates

to our setup. Hulten’s Theorem states that the impact of a technological change in a given

sector on net-output is summarized by

∂logC

∂logAi
=

piYi
GDP

,

where piYi
GDP

is the Domar [28] weight of sector i: the ratio of total sales of sector i to GDP.

Our first result in this part shows that a modified version of Hulten’s Theorem extends to

our setting, and the impact of a shock to any sector, including the automation sectors, on

GDP is summarized by its Domar weight. The key difference is that the Domar weights in

our model depend on which of the phases the economy is in. During the substitution phase,

the Domar weights change. The expressions that we develop for the first-order impact of

small technological changes during the substitution phase shed light into how Domar weights

change.5

Our last results characterize changes in the network influences of sectors due to automa-

tion. We define network influence of a sector as the first-order impact of small technological

5Given that Hulten’s Theorem provides a first-order approximation, it is inaccurate during the transition

phase for non-infintessimal changes due to changes in the Domar weights during this phase, while the theorem

applies with no approximation error in other phases. The discussion of the higher-order effects in the three

sector model is in the Appendix. See Baqaee and Farhi [16] for the importance of higher order effects in a

different model.
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changes in that sector. We show that an increase in the current level of automation for

a given set of tasks results in increased network influence of the producer of that set of

automation goods and their direct and indirect suppliers. This result implies that an in-

crease in level of automation increases the network influence of automation good producers

and their direct and indirect suppliers, whereas sectors that are not in the supply chain of

automation goods (up or downstream) do not have increased network influences following

the substitution effects in the economy. As a result, as productivities of the producers of

automation goods and/or their suppliers rise, the production network becomes denser and

the interconnectedness between sectors gets stronger until the substitution phase is over for

each automatable task. Furthermore, the evolution of the production network enhances the

absolute and relative impacts of future technological changes on GDP growth. Moreover,

in contrast to classical input-output studies that involve only complements (e.g., Acemoglu,

Carvalho, Ozdaglar, and Tahbaz-Salehi [3]), our results imply that the propagation of supply-

side shocks is not limited to downstream (direct and indirect customer) sectors. Technological

changes affect the demand for different types of labor, and, therefore, ultimately affect the

wages and level of production in all sectors including ones not upstream or downstream from

those with technological changes.

1.1 Relation to the Literature

Understanding how technological changes can ripple through an economy is more important

than ever, and has been an area of renewed research.6 This has been studied both theo-

retically and empirically. For example, Carvalho, Nirei, Saito, and Tahbaz-Salehi [25] show

how the supply chain disruptions in Japan after the Great East Japan Earthquake of 2011

led to wider disruption, both downstream and upstream. Similarly, Barrot and Sauvagnat

[17] and Acemoglu, Akcigit, and Kerr [1] show evidence of network-based propagation of

idiosyncratic shocks. Acemoglu, Carvalho, Ozdaglar and Tahbaz-Salehi [3] showed how id-

iosyncratic shocks can actually become amplified through a production network.

Our advance, as mentioned above, is to extend an input-output analysis to include sub-

stitutes while remaining tractable. We show how there are countervailing wage-adjustment

forces that slow the impact of technological advances on the economy. We also show how

these depend on the alternative uses for labor, while also showing how a version of Hulten’s

Theorem and expressions for the Domar weights extend to the substitute setting, but now

6Following Leontief [41], the early (e.g., Hulten [37], Long and Plosser [42], Basu [19], Dupor [28], Horvath

[35, 36], Basu and Fernald [20], and Shea [44]) and recent literatures (e.g., [31], Carvalho and Gabaix [27],

Jones [38, 39], Acemoglu, Carvalho, Ozdaglar and Tahbaz-Salehi [3], Acemoglu, Ozdaglar and Tahbaz-Salehi

[4], Boehm, Flaaen and Pandalai-Nayar [23], Atalay [9], Bartleme and Gorodnichenko [18], Bigio and La’O

[22], Baqaee [13], Fadinger, Ghiglino and Teteryatnikova [30], Baqaee and Farhi [14, 15], Bernard, Dhyne,

Magerman, Manova, and Moxnes [21]) on the macroeconomic consequences of interconnectedness have made

it clear that the productivity changes in one part of an economy can ripple through the economy and have a

wide impact, and that idiosyncratic shocks do not all cancel out, but some can be magnified via the network

(e.g., Acemoglu, Carvalho, Ozdaglar and Tahbaz-Salehi [3] and Acemoglu, Ozdaglar and Tahbaz-Salehi [4]).
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vary with the level of automation (and so are only valid locally).

As a by product of our analysis, we provide expressions for how inequality grows in

response to technological change, as well as how growth is attenuated by wage adjustments.

The same technological change can have very different impacts depending on the rest of the

economy and production network.

The role of complements versus substitutes in production has been discussed in important

studies from Griliches [33] and Stokey [45] to Krusell, Ohanian, Rios Rull, and Violante [40],

Autor and Dorn [10], and Hémous and Olsen [34].7 For example, Krusell et al. [40] show

how this difference can help explain the growth in income inequality and the growing skill

premium observed over past decades.

Our analysis helps show how that depends on the alternative uses of various forms of

labor in the overall economy and wider production network. If low-skilled labor is easily and

productively absorbed in new tasks, or can be easily retrained, then the inequality effect will

be small, while if labor is pushed into less productive roles, then inequality will grow, which

seems to be the modern case. This contrasts with the movement of labor from agriculture

to manufacturing that took place in the mid twentieth century. Now low-skilled labor (and

middle-skilled) is being moved from relatively productive tasks to less valuable ones and the

wage level is falling.

Our model also helps shed light on the Solow Paradox and slow growth in response

to technological advances that seemingly should have a large effect on the economy. For

instance Brynjolfsson, Rock, and Syverson [24] detail the modern version of this paradox,

and examine four explanations. A leading one that they emphasize is that it takes time to

develop complementary technologies that can take advantage of new advances and inventions.

Our model provides a fifth explanation that differs from the four they offer. Ours is that

many recent technological advances substitute in some way for labor or other inputs, and

the wage/price adjustments due to the general equilibrium effects attenuates the impact of

a technological advance.

Similarly, the productivities in different sectors depend on how productive various forms

of labor are in various sectors (e.g., see Carvalho and Voigtländer [26]). Our results on the

evolution of the input-output network provide additional insights into how technologies are

adopted in different sectors.

In our model, we use a Cobb-Douglas production technology, with the twist that some

tasks involve the possibility of substituting one good (e.g., technology) for another (e.g.,

low-skilled labor). This sort of perfect substitutability of machines (or automation) for low-

skilled labor and the unit elasticity of substitution between these two and another type of

labor is used by Autor, Levy, and Murnane [11], who provide a detailed discussion of this

specific modeling choice by giving examples on the characteristics of tasks (i.e. routine vs

non-routine tasks). In a setup capturing different elasticities of substitution between factors,

7 Beyond these papers, there is also a broader literature on the impact of automation that includes Autor,

Katz and Krueger [12], Acemoglu and Restrepo [5, 6, 7], Aghion, Jones, and Jones [8]; but which is less

directly related to our paper.
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Krusell et al. [40] find that the key elasticity of substitution between low-skilled workers and

capital is higher than the elasticity of substitution between high-skilled workers and capital.

In addition to the papers already mentioned above, our paper is also related to Baqaee

and Farhi [16]. Both papers focus on the impacts of technological changes that can be

divided into two main categories: a pure technology effect and a reallocative effect. However,

our model can be thought of as a generalization that provides explanations for how given

technological changes have different implications depending on the source of the change,

the substitution versus complementarities in various parts of the downstream production

network, the level of productivities, and the weights of various inputs in different production

functions throughout the economy. In other words, we investigate the factors that places

one type of technological change into one category, and another technological change into

another category. For instance, our model provides explanations for how the technological

improvements that result in exactly the same productivity change in a resource good instead

of the automation sector might have different implications. In particular, our model allows

us to interpret the changes in the Domar weights due to the substitution effects. A more

technical difference is that, differently from Baqaee and Farhi [16], (and also Baqaee [13],

Grassi [32], and Bigio and La’O [22]), we focus on competitive rather than imperfectly

competitive equilibrium, and Hulten’s Theorem (appropriately extended) still holds locally

in our set-up.8

Lastly, our study is also loosely related to the literature on the endogenous formation of

production networks, such as Acemoglu and Azar [2], Carvalho and Voigtländer [26], and

Oberfield [43]. In our model, firms do not choose their set of suppliers, yet the production

network changes following technological advances, and so there is a form of endogenous

network. For instance, as the productivity of an automation sector rises, it can start to

supply goods to other sectors, forming new links and increasing the interconnectedness of

the economy.

The remainder of the paper is organized as follows. In Section 2, we introduce our

production network model and discuss the network interactions. Section 3 includes our

analysis of the impact of technological changes on wages and income inequality in a three-

sector model. In Section 3.3 we discuss the transition to automation and reallocation of

labor in a three-sector model. In particular, we analyze how the impact of technological

advances depends on alternative uses for low-skilled labor in the economy. In Section 4, we

extend our analysis to an n-sector model and characterize the implications of technological

change. In Section 5 we conclude.

8One could extend our analysis to an imperfectly competitive model or with other sorts of production

functions, but both topics are beyond the scope of the present paper.
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2 The Model

2.1 Production Processes

We consider a perfectly competitive economy consisting of a set of N = {1, ..., n} sec-

tors/firms, with a representative firm denoted by i.

We use the terms ‘firm’ and ‘sector’ interchangeably, although clearly one can distin-

guish them if one prefers – it will not make a difference in the analysis of our model. We

also abstract away from the use of capital in our analysis. It can be added but is of no

particular consequence in our model. We focus on the interactions of labor with other goods

in production processes, but with a simple change of notation one could also allow these to

involve substitution effects for capital.

In particular, a firm uses labor in two forms: high-skilled and low-skilled. We denote the

amount of high and low skilled labor used by firm i by Hi and Li, respectively. The difference

is that low-skilled labor can be substituted for by the goods produced in automation sectors

(i.e. robots, software, etc), while high-skilled labor does not have a direct substitute. One

can simply think of defining high and low skills in this way - the words “high” and “low”

have no other particular meaning in our model. We use the terminology since they often

correspond to higher and lower skills in the data - as new technologies tend to enhance

high skilled labor while replacing more routine tasks that are associated with lower skills.

For instance, high skilled labor might include management, R&D, and some engineering,

while low-skilled labor would include warehouse workers, drivers, manufacturing line workers,

various secretarial workers, customer service workers, and so forth. Moreover, there are tasks

which are performed by low-skilled labor in each firm, but do not have a direct substitute.

We thus think of different inputs having different roles in the production process. In

particular, some tasks that low-skilled labor perform can be replaced by some input good -

e.g., a box packer can be replaced by a robot. While there are other input goods, such as

the boxes, that are used in the production process but do not substitute for labor. We thus

divide the inputs in the production by firm i by whether they can substitute for some low

skilled labor, or whether they do not:

• j ∈ ai: “automation” inputs, which can substitute for low-skilled labor in some tasks

(e.g., software, industrial robots),

• j ∈ ni: “non-automation” inputs, the goods from another sector that do not replace

labor (e.g., electricity, raw materials).

The sets ai and ni are sector specific

We let Yi be the total production of each i ∈ N , and APi be a productivity multiplier.

We let Xij denote the amount of input from j ∈ ai ∪ ni that i uses in production. We let

Li0 denote the amount of low-skilled labor that firm i employs outside of automatable tasks,

and Lij denote the amount of low-skilled labor that is used that can be replaced by the
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automation input j. In addition, AQj represents the productivity (or quality) of good j. The

production function of each (representative) firm i ∈ N has the form:

Yi = APi (Li0)α
L
i0(Hi)

αHi

[∏
j∈ai

[Lij + AQj Xij]
αLij

]∏
j∈ni

(AQj Xij)
αnij . (2)

Production exhibits constant returns to scale and we take the exponents to be non-

negative and to sum to 1:

αHi + αLi0 +

(∑
j∈ai

αLij

)
+

(∑
j∈ni

αnij

)
= 1. (3)

We further assume that there is always some use of low and/or high skilled labor in each

sector. Thus,

(∑
j∈ai

αLij

)
+

(∑
j∈ni

αnij

)
< 1 holds, which implies that αLi0 > 0 and/or αHi > 0

holds ∀i ∈ N .9

2.2 Labor Supply

Each type of labor is supplied perfectly inelastically. The total available supply of low-skilled

and high-skilled labor are constant and denoted by L and H, respectively. In our model, we

abstract away from labor market dynamics such as changes in labor supply L and H via skill

training, in reaction to automation, or labor movement accross tasks requiring different skill

types. The analysis of such labor market reactions are left for future research.

2.3 Consumption

The good produced in any firm i can be used for consumption if it is not used as an inter-

mediate good in other firms.

Letting Ci denote the amount of production of firm i used for consumption, the total

production of firm i satisfies:

Yi =
∑
j∈N

Xji + Ci.

The consumption goods are evaluated by a utility function, or equivalently aggregated

into a single final consumption good by an overall production function, that takes a Cobb-

Douglas form:

C =
∏
i∈N

(
AQi Ci

)βi
,

where βi > 0 for all i ∈ N and
∑
i∈N

βi = 1.

9This assumption implies that all elements of the Leontief inverse of a given input-output matrix are

non-negative.
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CL and CH denote the consumption of the final good by low- and high-skilled labor,

respectively. Thus, total consumption is given by:

C = CL + CH

2.4 Competitive Equilibrium

In a competitive equilibrium, the representative firm in each sector maximizes profit, and

market clearing conditions hold for each good and each type of labor.

In particular:10

A competitive equilibrium is a set of prices {pi}i∈N , wages , wL and wH , and quantities{
Yi, Hi, {Lij}j∈ai∪0, {Xij}j∈N , CL

i , C
H
i ,
}
i∈N such that

I. Firms maximize profits: For each i ∈ N , {Lij}j∈ai∪0, Hi, {Xij}j∈N solve

max{Lij}j∈ai∪0,Hi,{Xij}j∈N pi

(
APi (Li0)α

L
i0(Hi)

αHi

[ ∏
j∈ai

(
Lij + AQj Xij

)
αLij

][ ∏
j∈ni

(AQj Xij)
αnij

])

−

( ∑
j∈ai∪0

wLLij + wHHi +
∑
j∈N

pjXij

)
.

II.
{
CL
i

}
(and similarly

{
CH
i

}
) solve the utility maximization problem of the representa-

tive worker:

max
{CLi }:

∑
ipiC

L
i ≤wLL

∏
i∈N

(
AQi C

L
i

)βi
.

III. Markets clear:

– goods: Yi =
∑
j∈N

Xji + CL
i + CH

i ,

– and labor markets: L =
∑
i∈N

∑
j∈ai∪0

Lij and H =
∑
i∈N

Hi.

We remark that the utility maximization by the consumers (II) is exactly equivalent to

having a representative firm in a perfectly competitive “final goods” market sell bundles of

goods that solve

max
{Ci}

pf
∏
i∈N

(
AQi Ci

)βi
−
∑
i∈N

piCi,

10With constant returns to scale, profit maximization in equilibrium implies that there are 0 profits, and

so we do not specify who earns the profits, as those shares are irrelevant and would just add more notation.
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and then having the low and high-skilled workers consume the bundled final good C =∏
i∈N

(
AQi Ci

)βi
such that they exhaust their budgets: pfC

L = wLL and pfC
H = wHH, and

C = CL + CH .

This alternative formulation allows us to let the price of the final good C be the numeraire

(pf = 1), which enables us to highlight relative changes of the low-skilled labor wage, wL,

and high-skilled labor wage, wH .

There exists a competitive equilibrium in our model by standard arguments.

In fact, since βi > 0 for each i, then all goods are consumed in equilibrium, and in relative

proportions that are determined by the βis and relative prices, and it can be shown that

there exists a unique equilibrium set of prices {pi}i∈N , wages wL and wH , and quantities

{Ci, }i∈N . So, for Sections 3.3 -4 we maintain the assumption that βi > 0 for each i, while

in the next section we allow for some 0’s to simplify some examples.

2.5 The Equilibrium Level of Automation and the Input-Output

Network

We define some notation that tracks the input-output network.

Let tij ∈ [0, 1] denote the equilibrium share of expenditures on automation good j ∈ ai
in sector i ∈ N , where

tij =
pjXij

wLLij + pjXij

.

The equilibrium share of expenditures on labor in an automatable task j ∈ ai in sector i ∈ N
is then 1− tij. During the substitution phase, tij will vary from 0 up to 1.

We then define two different input-output matrices. One considers all of the possible

structural relationships if automation were complete in the economy, and the other represents

a current equilibrium (or actual) input-output network, as some automatable tasks might

still have 0 automation at some point.

The “structural” (or most connected possible) n× n input-output network is denoted by

ΩS = Ωn + ΩL.

Ωn summarizes the input-output linkages in the economy via the non-automatable tasks.

The ijth entry of the Ωn is the weight of non-automatable task j ∈ ni in the production

function of firm i, αnij. Second, ΩL summarizes the potential linkages via automatable tasks,

where the ijth entry of the ΩL is αLij.

The structural input-output network and the equilibrium input-output network might

differ, depending on extent of automation. The equilibrium input-output network is denoted

by

Ω = Ωn + Ωa,

where Ωa is determined by the equilibrium: Ωa
ij = tijα

L
ij.

11



As a result, the structural input-output network is the extreme case network where all

substitution is complete and only automation goods are used in each automatable task in

the economy. On the other hand, the equilibrium level of interconnectedness is summarized

by the Leontief inverse matrix:

(I − Ω)−1 = (I − Ωn − Ωa)−1.

The Leontief inverse matrix represents the dependencies across sectors at equilibrium.

Broadly, if there exists a directed path between industry i and industry j at equilibrium,

then the ijth entry of the Leontief inverse matrix is positive, and it is zero otherwise. Thus,

switching to automation in certain tasks increase the connectivity among industries and

creates additional direct and indirect network effects.

In summary, the equilibrium input-output network has the following properties:

i) Ωij = tijα
L
ij ∈ [0, αLij] for all ij s.t. j ∈ ai.

ii) Ωij = αnij for all ij s.t. j ∈ ni.
iii) Ωij = 0 for all ij s.t. j ∈ N \ ai ∪ ni.

3 Technological Changes, Total Consumption, and In-

come Inequality in a Three-Sector Economy

In this section, we study how technological changes affect automation decisions and labor

allocation, productivity, total consumption, wages, and income inequality, in a three-sector

economy.

The three sectors are resource sector, an automation sector, and a final good sector;

denoted by n, a, and f , respectively. In particular, the good produced in the automation

sector is a substitute for the low-skilled labor in final good production, while the non-

automation (resource) good is not.

The Cobb-Douglas production functions are:

Ya = APa (La0)α
L
a0(Ha)

αHa (4)

Yn = APn (Ln0)α
L
n0(Hn)α

H
n (5)

Yf = APf (Lf0)α
L
f0(Hf )

αHf [Lfa + AQaXfa]
αLfa(AQnXfn)α

n
fn . (6)

In this three sector setting, we simplify things and set βn = βa = 0 while βf = 1, and so

the only good that is directly consumed is the “final good”. We also normalize AQf = 1, and

hence Yf = C = CL + CH .

3.1 Technological Changes and Total Consumption

First, we analyze the implications of technological improvements on total consumption, con-

trasting the impact of improvements in the non-automation sector with the automation

sector. We start with Example 1.
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Figure 1: Technological change and the level of automation in the final good sector in

Example 1

Example 1 We set the productivity of the final good sector to APf = 1, and weight of tasks

in each sector to 1
2
. We also set L = H = 1. The production functions are as follows:

Yn = APnL
0.5
n H0.5

n ,

Ya = APa L
0.5
a H0.5

a ,

Yf = (Lf + AQaXfa)
0.5
(
AQnXfn

)0.5
.

The first thing that we examine is how automation progresses as a function of the pro-

ductivity of sector a.

Figure 1 summarizes the transition to automation in sector f and depicts how the use

of the automation input, denoted by tfa, changes as the automation sector’s productivity

improves. In this case, what matters in terms of the productivity of sector a is the product

of the two parameters: APaA
Q
a .

As shown in Figure 1, for sufficiently small productivity values of the automation sector

(APaA
Q
a ), there is no automation in sector f and sector a produces zero output at equilibrium.

Once the productivity of the automation sector reaches a sufficiently high level (APaA
Q
a ≥ A∗),

sector f starts to use automation good and firm a starts to produce positive amounts of

output.

Given the Cobb-Douglas production function with constant returns to scale and zero

profit conditions, the final good producer’s total spending for task a at equilibrium is always

equal to αLaYf . Accordingly, for the intermediate levels of productivity of automation sector

such that A∗ < APaA
Q
a < A∗∗, sector f spends a fraction of 0 < tfa < 1 of its total cost for task

a on automation and (1− tfa) fraction of its total cost for task a on low-skilled labor. In this

intermediate range of productivity, as the automation sector becomes more productive, sector

13



Figure 2: The changes in total consumption in response to technological changes in automa-

tion sector and resource sector in Example 1

.

f ’s demand for the automation good rises and its demand for low-skilled labor falls. This is

partly offset by a falling low-skilled wage, and a rising high-skilled wage, which makes this

transition continuous. As the productivity increases further and reaches APaA
Q
a ≥ A∗∗, sector

f eventually is fully automated. Note that although the fraction of automation expenditures

in the final good sector is increasing gradually in response to improvements in productivity

of automation sector and replacing some low skilled labor expenses, the fraction of expenses

on the resource good is constant at αnfn.

Next, we examine the impact of changes in productivity in Example 1 on overall produc-

tion/consumption. Figure 2 illustrates the following:

• in the pre-automation phase, a technological change in automation sector has no impact

on total consumption, whereas a technological change in the non-automation good

sector increases total consumption,

• during automation, a technological change in automation sector has an increasing

impact on total consumption, but a smaller impact than that of a technological change

in the non-automation good sector,

• in the post-automation phase, technological changes in either sector leads to the same

increase in total consumption.

Example 1 illustrates that exactly the same changes in productivities in different sec-

tors have different implications on total consumption, depending on whether the goods are

complements or substitutes for labor, and how much labor is being used in production.
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We now describe how this extends to the more general three-sector model, beyond the

specific parameters of Example 1.

Proposition 1 In the three-sector model, there exist two threshold levels of productivity

of automation sector A∗ and A∗∗ such that there is no automation in final good sector if

APaA
Q
a ≤ A∗; the level of automation gradually increases in between A∗ and A∗∗; and the

automation replaces all low-skilled labor employed in the automatable task in final good sector

if APaA
Q
a ≥ A∗∗. The impact of technological changes on total consumption during pre-

automation, automation, and post-automation phases are given by:

dlogC=:



Γ if APa A
Q
a < A∗

Γ +

 H
L

(
APa A

Q
a (αHa )α

H
a (αLa0)

αLa0

) 1
αHa

αHa

(
1+H

L

(
AQa APa (αHa )α

H
a (αLa0)

αLa0

) 1
αHa

) − (αnfnα
H
n +αHf )
αHa

dlog(APa A
Q
a ) if A∗ < APa A

Q
a < A∗∗

Γ + αLfadlog(APa A
Q
a ) if APa A

Q
a > A∗∗

where Γ = dlog(APf ) + αnfndlog(APnA
Q
n ).

Proposition 1 shows that the macroeoconomic impact of technological changes depends

on both the sources of the technological changes and the phase of the economy. During

the automation phase, the change in total consumption in response to technological changes

in automation sector is a function of the labor supply for each type of worker, initial pro-

ductivity level in the automation sector, and the weights of low- and high- skilled labor

in all production processes. More specifically, that impact is increasing in technology of

automation sector (APaA
Q
a ) and high-skilled labor supply; and decreasing in the low-skilled

labor supply, high-skilled labor weight in resource sector’s (αHn ) and final good sector’s (αHf )

production processes. The impact of the high-skilled labor weight (αHa ) is ambiguous, and

discussed in more detail in Section ??. In contrast, the change in total consumption in

response to technological changes in resource sector is constant and equal to its weight in

final good production (αnfn).

3.2 Wage Adjustments, Inequality, and the Duration of Automa-

tion

Next, we analyze how technological improvements lead to general equilibrium wage adjust-

ments that provide for a continuous and prolonged transition despite the linear substitution

specification; and also increase wage inequality along the way.

We start with an example with just two sectors to make things transparent: so we are

dropping n for now, so that the final good sector uses only the automation good as an

intermediate input.

Example 2 αLa0 = αHa = αLfa = αHf = 0.5, and APf = L = H = 1, and the production

functions are as follows:
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Figure 3: Automation in final good sector and its impact on wages in Example 2

Ya = APa L
0.5
a H0.5

a

Yf = H0.5
f (Lfa + AQaXfa)

0.5.

As we discussed previously, there are essentially two key phases of automation (beyond a

degenerate one where the automation good is so inefficient not to be used in the automatable

task). The first key phase is when automation takes place and the final good producer uses

both the automation input and low-skilled labor in combination. As this phase progresses,

the demand for low-skilled labor decreases and the productivity gains that arise due to

automation are captured by high-skilled labor. Eventually, the economy is fully automated,

and then any technological shock has only the classical input-output effect – all wages and

consumption rise – and there is no impact on relative wages.

Figure 3 panel a summarizes the transition to automation in sector f . Figure 3 pan-

els b,c,d depict how absolute and relative wages change in Example 2 as we change the

productivity in the automation sector.

Table 1 shows the threshold levels of productivities and the wages in Example 2.
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Phases wL wH
wH
wL

APaA
Q
a ≤ 2 (pre-automation) 1

2
1
2

1

2 < APaA
Q
a < 2

√
3 (automation phase) 1

APa A
Q
a

APa A
Q
a

4

(APa AQa )
2

4

APaA
Q
a ≥ 2

√
3 (post-automation phase) 1 3 3

Table 1. The changes in automation, wages and income inequality in Example 2

Next, Proposition 2 shows how technological changes in the automation sector impact

wages and inequality, that formalize the numerical example above in the more general case.

Proposition 2 The impact of technological changes on wages and income inequality (or

relative wage) are:

• (pre-automation) for APaA
Q
a < A∗, low-skilled labor wage and high-skilled labor wage

change at the same rate, and hence the income inequality (wH
wL

) remains constant,

• (transition to automation) for A∗ < APaA
Q
a < A∗∗, high-skilled labor wage rises at a

higher rate than the low-skilled labor wage, and hence the income inequality increases,

• (post-automation) for APaA
Q
a > A∗∗, low-skilled labor wage and high-skilled labor wage

change at the same rate, and hence the income inequality remains constant.

In particular:

dlogwL =:


Γ if APa A

Q
a < A∗

Γ−
(
αHf +αnfnα

H
n

αHa

)
dlog

(
APa A

Q
a

)
if A∗ < APa A

Q
a < A∗∗

Γ + αLfadlog
(
APa A

Q
a

)
if APa A

Q
a > A∗∗

dlogwH =:


Γ if APa A

Q
a < A∗

Γ +

(
1−αHf −α

n
fnα

H
n

αHa

)
dlog

(
APa A

Q
a

)
if A∗ < APa A

Q
a < A∗∗

Γ + αLfadlog
(
APa A

Q
a

)
if APa A

Q
a > A∗∗

dlog

(
wH
wL

)
=:


0 if APa A

Q
a < A∗

dlog(APa A
Q
a )

αHa
if A∗ < APa A

Q
a < A∗∗

0 if APa A
Q
a > A∗∗

where Γ = dlogAPf + αnfndlog
(
APnA

Q
n

)
.

First, as Proposition 2 shows, wage inequality is constant during the pre-automation and

post-automation phases; which follows since any shock in these stages does reallocate labor.

In contrast, income inequality rises in the automation phase. In that phase high-skilled
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labor wage increases, while low-skilled labor wage might increase or decrease depending

on whether productivity effect or substitution effect dominates. Regardless, the low-skilled

wage continues to fall behind the increase in the high-skilled wage. The key parameters

determining the change in wage gap are the weights of high- and low-skilled labor tasks

in each sector; i.e., the skill dependencies of sectors. For higher values of αHa , the wage

gap (once the automation is complete) is greater since the good that replaces low-skilled

labor is more high-skilled intensive. However, as shown in Proposition 2, for higher values

of αHa , the growth in relative wages is lower. Lastly, in response to the same technological

changes, the (constant) rate of change in wages within the productivity range APaA
Q
a > A∗∗

is weakly higher than the (constant) rate of change in wages within the productivity range

APaA
Q
a < A∗.

In Section 6.2 of the Appendix, we revisit Propositions 1 and 2 for nonsmall changes. As

wages adjust in equilibrium, the overall effects on total output change, and so the derivatives

are constantly adjusting. The large effects are still tractable, and we compare them to the

local approximations.

3.3 Alternative Uses of Labor and the Reallocation Effect

As we have seen, wages adjust as automation improves which attenuates the impact of

technological improvements in automation. The extent to which that happens depends on

how labor can be reallocated, which depends on its productivity elsewhere in the economy.

We begin with Example 3, which illustrates one aspect of this.

Example 3 Again, L = H = 1, and now production functions are:

Yn = AnL
αLn
n H

1−αLn
n

Ya = Aa

Yf = Af (Lf +Xfa)
αLfaX

1−αLfa
fn

In this example the low-skilled labor used in the final good production isLf =
αLfa−Aa(αLn(1−αLfa))

αLfa+αLn(1−αLfa)
0 < Aa <

αLfa
αLn(1−αLfa)

Lf = 0 Aa ≥
αLfa

αLn(1−αLfa)

and the corresponding final good production isYf = AfA
1−αLfa
n ( 1+Aa

αLfa+αLn(1−αLfa)
)α

L
fa+αLn(1−αLfa)(αLfa)

αLfa [αLn(1− αLfa)]
αLn(1−αLfa) if 0 < Aa <

αLfa
αLn(1−αLfa)

Yf = (Aa)
αLfa (An)1−αLfa if Aa ≥

αLfa
αLn(1−αLfa)

.

We can see from the expressions for the labor used in final good production, it is lower

as αLn increases: the more useful low-skilled labor in the resource sector, the faster it is

substituted for by automation. This then leads to a greater increase in final good production

as well, as we see in the first expression for Yf .

This is then illustrated in Figure 4 which shows how the low-skilled labor dependency of

the resource sector, αLn , plays a key role in determining the change in total consumption in
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Figure 4: The change in total consumption in response to a change in productivity of the

automation sector for different values of low-skilled labor dependency of the resource sector

in Example 3

response to technological improvements in automation. As shown in Figure 4, the impact

of technological changes in automation is increasing in αLn , because labor becomes more

productive in its alternative uses and the displacement is faster.

Another way to see the interaction between automation and the uses of labor elsewhere

in the economy is to examine how the thresholds A∗ and A∗∗ that define when automation

starts and stops displacing labor as a function of improvements in automation.

First, we revisit Example 1 and consider two different values for L
H

. As shown in Figure

5, the threshold levels of productivity in the automation sector to start and stop displacing

labor depend on the ratio of L
H

as well as how important low-skilled labor is in the resource

sector. For instance, as L
H

increases, the threshold levels A∗ and A∗∗ both increase, so that

automation only happens at much higher levels of productivity. For higher levels of L
H

, there

is much more low-skilled labor available and so it becomes relatively cheap and thus is harder

to replace (wL
pa

is smaller and so APaA
Q
a needs to be larger to trigger sector f to switch to

automation). This is depicted in Figure 5 panel b. A similar interpretation also holds for the

skill dependencies in resource sector, as shown in Figure 5 panel a: in which the threshold

levels A∗ and A∗∗ are decreasing in the low-skilled labor dependency of the resource sector,

αLn . As αLn rises, the low-skilled labor wage rises and it is demanded more in the resource

sector, and low-skilled labor is more easily displaced. Table 5 in the Appendix provides the

threshold levels of technology for different levels of labor supply.
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Figure 5: Transition to automation and changes in total consumption in response to tech-

nological changes for different levels of L
H

or skill dependencies in Example 1

More generally, the threshold levels A∗ and A∗∗ are as follows:

A∗ =
1

(αHa )αHa (αLa0)α
L
a0

(
L

H

(
αnfnα

H
n + αHf

)
1−

(
αnfnα

H
n + αHf

))αHa

and

A∗∗ =
1

(αHa )αHa (αLa0)α
L
a0

(
L

H

(
αLfaα

H
a + αnfnα

H
n + αHf

)
1−

(
αLfaα

H
a + αnfnα

H
n + αHf

))αHa

.

Proposition 3 provides the corresponding comparative statics for the general three sector

model.

Proposition 3 • A∗ and A∗∗ are increasing in L
H

,

• A∗ and A∗∗ are decreasing in αLn (and increasing in αHn ),

• For constant αnfn and αLfa, A
∗ and A∗∗ are decreasing in αLf0 (and increasing in αHf ),

• There exists an (αLa )′ ∈ (0, 1) such that A∗ is decreasing in αLa for (αLa )′ < αLa < 1 and

A∗ is increasing in αLa for 0 < αLa < (αLa )′.

We already discussed the first two parts of Proposition 3. The third part is about the skill

dependencies and can be interpreted similarly. Lastly, as shown in Figure 6, the threshold

level A∗ has the maximum value at an interior level of αLa . The reason is that the price of

automation good is increasing in both wages and, thus, for given sectoral productivities, wL
pa
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Figure 6: The impact of labor supply and skill dependencies in automation sector on the

threshold technology levels in Example 1

is minimized at an interior level of αLa . Figure 6 also shows how the interior level for αLa
depends on the supply of each type of labor.

As a result, in addition to the input-output network structure, the labor supply and

skill dependencies of each sector play key role in switch to automation, the level of au-

tomation (tfa), and the completeness of the automation phase, which altogether determine

the macroeconomic impact of technological changes. Importantly, in a given economy with

Cobb-Douglas production functions, the productivity parameters of sectors that do not cause

any substitution effect have no implications for the threshold level of technologies and for

the level of automation. The change in such productivity parameters translate into a similar

effect for low- and high-skilled labor, which is the classical input-output effect.

Proposition 4 summarizes the role of alternative uses of labor on the impact of techno-

logical changes.

Proposition 4 Consider a technological change in some sector ∆log(APi A
Q
i ) for which:

before the technological change the final good sector only uses labor in the automatable task,

and after the change the automatable task uses no labor. Then, everything else held constant:

• ∆logC

∆log(APi A
Q
i )

is weakly increasing in αLn
αHn

,

• ∆logC

∆log(APi A
Q
i )

is weakly increasing in
αLf0
αHf

,

• ∆logC

∆log(APi A
Q
i )

is weakly decreasing in
αLa0
αHa

.

Proposition 4 shows that as low-skilled labor becomes more productive in tasks that are

not related to the production of automation goods, the level of change in final production
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resulting from technological advances increases. On the other hand, the result reverses when

we consider the low-skilled dependency of the automation sector.

4 Technological Changes and Automation in an n-Sector

Economy

With most of the basic insights in hand from the analysis of the 3-sector model, we now

extend our analysis to a full n-sector economy.

One added feature is that now improvements in automation can be triggered by an

improvement in any input into the production of an automation good and so supply chains

play a nontrivial role. Another important added feature is that now wage effects impact all

of the production processes, and can have further feedback into production decisions.

In this general version of the model, arbitrary combinations of automatable and non-

automatable tasks are admitted in each sector and the production function of each sector is

of the form:

Yi = APi (Li0)α
L
i0(Hi)

αHi

[∏
j∈ai

[Lij + AQj Xij]
αLij

]∏
j∈ni

(Xij)
αnij

In what follows, we focus on changes in the basic productivity of various goods APi ’s,

and simply normalize the quality parameters, AQi = 1, for all i ∈ N . The analysis of specific

changes in AQi is an easy extension, and the normalization saves on notation.

4.1 Indirect Automation

An increase in automation might occur via direct and/or indirect network effects. For in-

stance, a productivity increase in some material that is used in the production of industrial

robots can lead to switches to usage of industrial robots in some sectors. To illustrate this

point, we first consider an example. Differently from our previous three sector analysis, now

the automation sector uses the resource good:

Example 4 APa = APf = L = H = 1, βf = 1 and βa = βn = 0, and the production functions

are as follows.

Yn = APnLn
Ya = H0.5

a (Xan)0.5

Yf = H0.5
f (Lf +Xfa)

0.5

In this example, following technological improvement in sector n, product n gets cheaper,

and hence product a becomes cheaper as well. This causes ripple effects to sector f , which

starts to use product a. More specifically, for APn < 4, sector f uses no automation good,

for 4 ≤ APn ≤ 12, good a becomes as cheap as the low-skilled labor and sector f starts to

automate task a, and for APn > 12 sector f is fully automated in task a.
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4.2 Hulten’s Theorem

One way to encapsulate all of the direct and indirect effects is via Hulten’s Theorem. In

particular, Hulten [37] shows that in competitive economies a total factor productivity (TFP)

change for some producer i (a change in Ai):

dlogC = midlogAi,

where C =
∑
i∈N

Ci is the total net-output in the economy, and Ai is the TFP of producer i.

The term mi is the Domar weight of producer i; that is,

mi =
piYi∑

i∈N
piCi

,

where pi is the price of good i, Yi is the total production of sector i (so, piYi is the total sales

of sector i), and
∑
i∈N

piCi is total GDP.

The key implication of Hulten’s Theorem is that, to a first-order approximation in logs,

one can ignore the full details of the network structure and use the observable sales shares

of each firm/industry to derive the effects of technology changes on net-output.

An important difference in our setting from the usual Hulten’s Theorem is that (as one

can also see from Eq. (34) in the Appendix) when we consider the higher order impacts

of technological changes – as captured by changes in the Domar weights – the second-order

term following a productivity change in the automation sector depends on the high-skilled

and low-skilled labor supply, weights of tasks in each production process, and the initial level

of productivity in automation sector. Therefore, the first order approximation that does not

capture the labor market reactions is only locally valid and is otherwise misleading during the

automation phase, while the theorem applies with no approximation error in other phases.

One can infer from Proposition 1 that a version of Hulten’s Theorem extends to our

setup even though the economy enters into a transition path with changing growth levels.

For the n-sector economy, we start with Proposition 5, which states that a version of Hulten’s

Theorem extends to our general setup.

Proposition 5 In the general n-sector economy, let mi = piYi
C

be the equilibrium Domar

weight of sector i: [ ~mi] = (I − Ω′)−1
[
~βi

]
. Then, the impact of small (infinitesimal) techno-

logical changes on total consumption and wages are:

dlogC =
∑
i∈N

midlogAPi ,

dlogwH =
∑
i∈N

midlogAPi + dlog

(∑
i∈N

αHi mi

)
,

dlogwL =
∑
i∈N

midlogAPi + dlog

(∑
i∈N

αLi mi

)
,
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where αLi = αLi0 +
∑
j∈ai

(1− tij)αLij is the equilibrium share of low-skilled labor in sector i.

Of course, the Domar weights mi and all the equilibrium values depend on the full pro-

duction network, which determines the levels of automation which are critical in determining

how much of each input is being used where. Still, the implication of the theorem is that to

see the impact of small productivity changes, one can simply look at the current equilibrium

expenditure levels.

4.3 Automation, and the Evolution of the Input-Output Network

Our next result sheds light on how the Domar weights and the network influences change as

the substitution occurs in the economy.

It is useful to normalize production processes to separate out their TFP, so let Fi = Yi
APi

denote the normalized production process of sector i.

The following partial order is useful.

Consider two economies E =
({
APi
}
, {Fi} , L,H

)
and E ′ =

({
APi
}′
, {Fi} , L,H

)
that

have identical {Fi}, L, and H. We say that economy E ′ is weakly more automated than

economy E if the equilibrium share of expenditures on automation in every automatable

task j ∈ ai in every sector i ∈ N is weakly greater in E ′ than in E. And we say that it is

more automated if in addition, the equilibrium share of expenditures on automation in some

j ∈ ai for some i ∈ N is strictly greater in E ′ than in E.

Let the network influence of sector i be defined as dlogC
dlogAPi

.

The network influence of a sector measures the overall growth effect of a productivity

change in that sector. Following Proposition 5, the network influence of any sector is equal

to its Domar weight. Given that the Domar weights evolve during automation phase, we

provide an analysis of the change in sectoral network influences, which can be obtained by

ordering the Domar weights as an economy changes.

Proposition 6 If economy E ′ is more automated than economy E, then:

• the network influence of each sector i is weakly higher in the economy E ′ than in the

economy E, and

• the network influence of sector i is strictly higher in the economy E ′ than in the economy

E if and only if i is one of the more automated tasks or there exists a directed upstream

(supplier) path from i to at least one of the more automated tasks j 6= i (i is either

direct or indirect supplier of at least one of the more automated tasks j) in E ′.

Proposition 6 shows how interconnectedness in the economy changes following automa-

tion substitution in the economy. As the substitution of labor by automation goods occurs,

the size of the interactions in the economy get larger due to the increasing share of expen-

ditures on automation goods. Proposition 6 shows that following an increase in the level
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of automation in a given set of tasks, which would occur due to the technological changes,

the Domar weights of the producers of those automation goods and their direct and indirect

suppliers rise. Given that the Domar weights represent the network influences of sectors, this

result implies that the automation good producers and their direct and indirect suppliers

experience a growing network influence over time due to the substitution effects that results

in increased connectivity in the economy.

4.4 Reallocation Effects in an n-Sector Economy

Proposition 5 provides an expression for the (local) macroeconomic impacts of technologi-

cal changes in an n-sector economy, and Proposition 6 shows how these impacts (network

influences) change with automation in the economy. We thus close by examining the overall

impact of non-small technological changes when capturing the reallocation effect.

With multiple automation goods, supply chains involving automation goods make the

general equilibrium effects more complex. More specifically, decisions to automate depend on

how technological advances propagate in the economy through supply chains as well as how

wages are determined and indirectly affect other sectors. Nonetheless, we can still develop

expressions for these effects.

First of all, similar to the three sector economy, for parameter regions in which there

is no automation in any sector or each automatable task is fully automated in all sectors,

then productivity changes translate into gains by both types of workers with constant rel-

ative wages: since the input-output network remains fixed for each sector, wH
wL

also remains

constant. Therefore, if the economy is in the pre-automation or post-automation phase,

then:

∆logC = ∆logwL = ∆logwH =
∑
i∈N

mi(∆logAPi )

Next, consider an economy for which some automation good j is in the transition phase.

Note that pj = wL. Therefore, any sector i that has this automatable task is indifferent

between using the automation good and low-skilled labor. The equilibrium levels of pi
wL

are

thus described by:

~
log

(
pi
wL

)
= (I − Ω)−1

[
~

logBi + αHi log

(
wH
wL

)]

where

Bi =

(
(APi )(αHi )α

H
i (αLi0)α

L
i0

[∏
j∈N

(αLij)
αLij

][∏
j∈N

(αnij)
αnij

])−1

.

For such an automation good j, log
(
pj
wL

)
= 0 and therefore the jth entry of the vector of[

~
logBP

i + αHi log
(
wH
wL

)]
is equal to zero. As one can see from the equation above, that entry
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being zero depends on the task dependencies and productivity parameters of each sector, as

well as the actual automation levels for different automation goods.

In summary, for a given automation good the threshold levels for automation depend on

the wage levels, which depend on the automation levels in other tasks. Low-skilled labor

becomes relatively cheaper as the level of automation level rises for a given automatable task,

which then implies that a higher technology is required for switching to automation in other

tasks compared to the case where there is no automation in that given automatable task.

These general equilibrium effects help us to understand how future technological changes

together with labor market reactions will shape the automation decisions of firms.

We provide a simple example to illustrate this point.

Example 5 L = H = 1 and the production functions are:

Ya = Aa
Yb = Ab
Yf = AfHf (Lf0)α

L
f0(Lfa +Xfa)

αLfa(Lfb +Xfb)
αLfb

This example is a two-step example. First, we consider that Aa = 0 and find the threshold

levels for Ab for automation in task b. Next, we consider a value for Ab such that automation

in task b is completed, and then find the threshold levels for Aa for automation in task a.

Case i) Aa = 0.

As shown in the Appendix, the threshold level for completing the automation in task b

is given by

A∗∗b =
αLfb

αLf0 + αLfa

Case ii) Ab ≥
αLfb

αLf0+αLfa
.

The threshold level for completing the automation in task a is given by

A∗∗a =
αLfa
αLf0

For αLfa = αLfb, it then follows that

A∗∗a > A∗∗b .

Section 6.7 in the Appendix, shows how changes in wages and the overall consumption in

response to technological changes during a transition phase capture the reallocation effects,

and how those depend on the skill dependencies in production processes.
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5 Concluding Remarks

We have analyzed the impact of technological change on an economy in which both comple-

ment and substitute inputs are present. Our results show that when there exists different

types of labor and intermediate goods that can substitute for labor, then the input-output

structure, the skill-dependencies and sector level productivities play key roles in determining

the income inequality and the macroeconomic impacts of technological changes, since these

factors all together determine the allocation of labor and wages, prices of goods and services,

and the usage of substitutable intermediate goods (low-skilled labor).

Besides the fact that a local version of Hulten’s Theorem extends to our setting, our model

allows us to quantify the changes in the Domar weights following technological changes, and

also enables us to provide further predictions as to conditions under which the final good

sector will switch to automation, how long the transition to automation phase will last, and

how the impact of technological advancements on net-output depends on alternative uses for

labor.

Our results shed light on productivity paradoxes and wage inequality, and suggest that

understanding the impact of technological change must account for substitution in produc-

tion processes.
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6 APPENDIX

6.1 Equilibrium Conditions in the Three-Sector Model

The cost minimization problem for firm i ∈ {a, n} is

min
Li0,Hi

wLLi0 + wHHi subject to 1 = APi (Hi)
αHi (Li0)α

L
i0

The Lagrangian function is:

L =wLLi0 + wHHi − λi
(
APi (Hi)

αHi (Li0)α
L
i0 − 1

)
The first order conditions are:

• ∂L
∂Hi

= wH − λ∗
iα

H
i A

P
i (H∗

i )
αHi (L∗

i0)
αLi0

H∗
i

= 0

H∗i =
λ∗
iα

H
i A

P
i (H∗

i )
αHi (L∗

i0)
αLi0

wH
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• ∂L
∂Li0

= wL − λ∗
iα

L
i0α

H
i A

P
i (H∗

i )
αHi (L∗

i0)
αLi0

Li0
= 0

L∗i0 =
λ∗
iα

L
i0α

H
i A

P
i (H∗

i )
αHi (L∗

i0)
αLi0

wL

• ∂L
∂λi

= 1−APi (H∗i )α
H
i (L∗i0)α

L
i0 = 0

The FOCs above imply:

1

λ∗i
= APi (

αHi
wH

)α
H
i

(
αLi0
wL

)αLi0
Then, the zero profit condition implies that λ∗i = wHH

∗
i + wLL

∗
i0 = Ci(p, wL, wH , 1) = pi.

The factor demands and prices can be written as follows:

La0 =
αHa paYa
wL

and Ha =
αHa paYa
wH

Ln0 =
αHi piYi
wL

and Hn =
αHn pnYn
wH

pa =
1

APa (αHa )α
H
a (αLa0)α

L
a0

(wL)
αLa0 (wH)

αHa (7)

pn =
1

APn (αHn )α
H
n (αLn0)α

L
n0

(wL)
αLn0 (wH)

αHn (8)

Next, we solve for the cost minimization for firm f .

min
Lf0,Lfa,Hf ,Xfa,Xfn

wL(Lf0 + Lfa) + wHHf + paXfa + pnXfn subject to

1 = APf (Hf )α
H
f (Lf0)α

L
f0 [Lfa +AQaXfa]α

L
fa(AQnXfn)α

n
fn

The Lagrangian function is:

L =wL(Lf0 + Lfa) + wHHf + paXfa + pnXfn

−λ
(
APf (Hf )α

H
f (Lf0)α

L
f0 [Lfa +AQaXfa]α

L
fa(AQnXfn)α

n
fn − 1

)
The FOCs imply:

• ∂L
∂λ = APf (H∗f )α

H
f (L∗f0)α

L
f0 [L∗fa +AQaX

∗
fa]α

L
fa(AQnX

∗
fn)α

n
fn = 1

By plugging the equation above into the other FOCs, we get:

• ∂L
∂Hf

= wH − λ∗f
αHf
H∗
f

= 0

H∗f = λ∗f
αHf
wH

• ∂L
∂Lf0

= wL − λ∗f
αLf0
L∗
f0

= 0

L∗f0 = λ∗f
αLf0
wL

• ∂L
∂Xfn

= pn − λ∗f
αnfn
Xn∗
fn

= 0

X∗fn = λ∗f
αnfn
pn
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• ∂L
∂Lfa

=

(
wL − λ∗f

αLfa

L∗
fa+A

Q
a X

∗
fa

)
≥ 0 and L∗fa

(
wL − λ∗f

αLfa

L∗
fa+A

Q
a X

∗
fa

)
= 0

∂L
∂Xfa

=

(
pa −AQa λ∗f

αLfa

L∗
fa+A

Q
a X

∗
fa

)
≥ 0 and X∗fa

(
pa −AQa λ∗f

αLfa

L∗
fa+A

Q
a X

∗
fa

)
= 0

Both L∗fa and X∗fa can not be zero, otherwise Yf = 0. Then,

Case 1. wL = λ∗f
αLfa

L∗
fa+A

Q
a X

∗
fa

, L∗fa = λ∗f
αLfa
wL

; and pa > AQa λ
∗
f

αLfa

L∗
fa+A

Q
a X

∗
fa

, X∗fa = 0 . In this case,

wL
pa

< 1

AQa
.

Case 2. wL > λ∗f
αLfa

L∗
fa+A

Q
a X

∗
fa

, Lfa = 0; and pa = AQa λ
∗
f

αLfa

L∗
fa+A

Q
a X

∗
fa

, X∗fa = λ∗f
αLfa
pa

. In this case,

wL
pa

> 1

AQa
.

Case 3. wL = λ∗f
αLfa

L∗
fa+A

Q
a X

∗
fa

, L∗fa = λ∗f
(1−tfa)αLfa

wL
; pa = AQa λ

∗
f

αLfa

L∗
fa+A

Q
a X

∗
fa

, X∗fa = λ∗f
tfaα

L
fa

pa
. In this

case, wL
pa

= 1

AQa
.

{L∗fa, X∗fa} =:


{λ∗f

αLfa
wL

, 0} if wL
pa

< 1

AQa

{λ∗f
(1−tfa)αLfa

wL
, λ∗f

tfaα
L
fa

pa
if wL

pa
= 1

AQa

{0, λ∗f
αLfa
pa
} if wL

pa
> 1

AQa

The FOCs above together imply:

λ∗f =



1

APf (
αH
f

wH
)
αH
f

(
αL
f0
wL

)αL
f0
[
αL
fa
wL

]αL
fa
[
AQn

αn
fn
pn

]αn
fn

if wL
pa

< 1

AQa

1

APf (
αH
f

wH
)
αH
f

(
αL
f0
wL

)αL
f0
[
αL
fa
wL

]αL
fa
[
AQn

αn
fn
pn

]αn
fn

if wL
pa

= 1

AQa

1

APf (
αH
f

wH
)
αH
f

(
αL
f0
wL

)αL
f0
[
AQa

αL
fa
pa

]αL
fa
[
AQn

αn
fn
pn

]αn
fn

if wL
pa

> 1

AQa
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Under the zero profit conditions and the normalization of pf = 1, it follows that:

APf (
αHf
wH

)α
H
f

(
αLf0
wL

)αLf0 [
αLfa
wL

]αLfa [
AQnα

n
fnA

P
n (αHn )α

H
n (αLn0)

αLn0

(wL)
αLn0 (wH)α

H
n

]αnfn
= 1 if wL

pa
< 1

AQa

APf (
αHf
wH

)α
H
f

(
αLf0
wL

)αLf0 [
αLfa
wL

]αLfa [
AQnα

n
fnA

P
n (αHn )α

H
n (αLn0)

αLn0

(wL)
αLn0 (wH)α

H
n

]αnfn
= 1 if wL

pa
= 1

AQa

APf (
αHf
wH

)α
H
f

(
αLf0
wL

)αLf0 [
AQa α

L
faA

P
a (αHa )α

H
a (αLa0)

αLa0

(wL)
αLa0 (wH)α

H
a

]αLfa [
AQnα

n
fnA

P
n (αHn )α

H
n (αLn0)

αLn0

(wL)
αLn0 (wH)α

H
n

]αnfn
= 1 if wL

pa
> 1

AQa

Lastly, by plugging pa and pn into the equation above, it follows that:

APf (
αHf
wH

)α
H
f

(
αLf0
wL

)αLf0 [
αLfa
wL

]αLfa [
AQnα

n
fnA

P
n (αHn )α

H
n (αLn0)

αLn0

(wL)
αLn0 (wH)α

H
n

]αnfn
= 1 if AQa A

P
a (αHa )α

H
a (αLa0)α

L
a0w

1−αLa0
L w

−αHa
H < 1

APf (
αHf
wH

)α
H
f

(
αLf0
wL

)αLf0 [
αLfa
wL

]αLfa [
AQnα

n
fnA

P
n (αHn )α

H
n (αLn0)

αLn0

(wL)
αLn0 (wH)α

H
n

]αnfn
= 1 if AQa A

P
a (αHa )α

H
a (αLa0)α

L
a0w

1−αLa0
L w

−αHa
H = 1

APf (
αHf
wH

)α
H
f

(
αLf0
wL

)αLf0 [
AQa α

L
faA

P
a (αHa )α

H
a (αLa0)

αLa0

(wL)
αLa0 (wH)α

H
a

]αLfa [
AQnα

n
fnA

P
n (αHn )α

H
n (αLn0)

αLn0

(wL)
αLn0 (wH)α

H
n

]αnfn
= 1 if AQa A

P
a (αHa )α

H
a (αLa0)α

L
a0w

1−αLa0
L w

−αHa
H > 1

(9)

Then, the conditional factor demands are:

Hf =:



αHf Yf

wHAPf (
αH
f

wH
)
αH
f

(
αL
f0
wL

)αL
f0
[
αL
fa
wL

]αL
fa
[
AQn

αn
fn
pn

]αn
fn

if wL
pa

< 1

AQa

αHf Yf

wHAPf (
αH
f

wH
)
αH
f

(
αL
f0
wL

)αL
f0
[
αL
fa
wL

]αL
fa
[
AQn

αn
fn
pn

]αn
fn

if wL
pa

= 1

AQa

αHf Yf

wHAPf (
αH
f

wH
)
αH
f

(
αL
f0
wL

)αL
f0
[
AQa

αL
fa
pa

]αL
fa
[
AQn

αn
fn
pn

]αn
fn

if wL
pa

> 1

AQa

(10)

Lf0 =:



αLf0Yf

wLAPf (
αH
f

wH
)
αH
f

(
αL
f0
wL

)αL
f0
[
αL
fa
wL

]αL
fa
[
AQn

αn
fn
pn

]αn
fn

if wL
pa

< 1

AQa

αLf0Yf

wLAPf (
αH
f

wH
)
αH
f

(
αL
f0
wL

)αL
f0
[
αL
fa
wL

]αL
fa
[
AQn

αn
fn
pn

]αn
fn

if wL
pa

= 1

AQa

αLf0Yf

wLAPf (
αH
f

wH
)
αH
f

(
αL
f0
wL

)αL
f0
[
AQa

αL
fa
pa

]αL
fa
[
AQn

αn
fn
pn

]αn
fn

if wL
pa

> 1

AQa

(11)
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Xfn =:



αLfnYf

pnAPf (
αH
f

wH
)
αH
f

(
αL
f0
wL

)αL
f0
[
αL
fa
wL

]αL
fa
[
AQn

αn
fn
pn

]αn
fn

if wL
pa

< 1

AQa

αLfnYf

pnAPf (
αH
f

wH
)
αH
f

(
αL
f0
wL

)αL
f0
[
αL
fa
wL

]αL
fa
[
AQn

αn
fn
pn

]αn
fn

if wL
pa

= 1

AQa

αLfnYf

pnAPf (
αH
f

wH
)
αH
f

(
αL
f0
wL

)αL
f0
[
AQa

αL
fa
pa

]αL
fa
[
AQn

αn
fn
pn

]αn
fn

if wL
pa

> 1

AQa

(12)

{Lfa, Xfa} =:



{ αLfaYf

wLAPf (
αH
f

wH
)
αH
f

(
αL
f0
wL

)αL
f0
[
αL
fa
wL

]αL
fa
[
AQn

αn
fn
pn

]αn
fn

, 0} if wL
pa

< 1

AQa

{ (1−tfa)αLfaYf

wLAPf (
αH
f

wH
)
αH
f

(
αL
f0
wL

)αL
f0
[
αL
fa
wL

]αL
fa
[
AQn

αn
fn
pn

]αn
fn

,
tfaα

L
faYf

paAPf (
αH
f

wH
)
αH
f

(
αL
f0
wL

)αL
f0
[
αL
fa
wL

]αL
fa
[
AQn

αn
fn
pn

]αn
fn

} if wL
pa

= 1

AQa

{0, αLfaYf

paAPf (
αH
f

wH
)
αH
f

(
αL
f0
wL

)αL
f0
[
AQa

αL
fa
pa

]αL
fa
[
AQn

αn
fn
pn

]αn
fn

} if wL
pa

> 1

AQa

(13)

6.2 Non-Small Changes, and Proof of Proposition 4

Proposition 7 shows how reallocation effect changes the rate of change in total consumption in the three-sector model. As shown

in Proposition 7, the net-effect of technological changes in automation phase depend on skill dependencies of each sector, supply

of both types of labor, and the level of technology in automation sector that becomes especially important whenever there is

an alternative use of low-skilled labor in automation sector.

Proposition 7 In a three-sector economy, the change in log consumption and log wages in response to sectoral technological

changes are described by:

i) in pre-automation:

∆logwL = ∆logwH = ∆logC = Γ

ii) during automation :

∆logC = Γ + ∆log

L(AQa APa (αHa )α
H
a (αLa0)α

L
a0

)−αHf −αHn α
n
fn

αHa +H
(
AQa A

P
a (αHa )α

H
a (αLa0)α

L
a0

) 1−αHf −αHn α
n
fn

αHa


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∆logwL = Γ−

(
αHf + αHn α

n
fn

αHa

)
∆log

(
APaA

Q
a

)
∆logwH = Γ +

(
1− αHf − αHn αnfn

αHa

)
∆log

(
APaA

Q
a

)
iii) post-automation:

∆logwL = ∆logwH = ∆logC = Γ + αafa∆log(AQa A
P
a )

where Γ = ∆log(APf ) + αnfn∆log
(
APnA

Q
n

)
.

Let us compare the expressions in Proposition 7 to those from Propositions 1 and 2. For simplicity, we hold the productivity

of resource sector and final good sector constant. We start with comparison of the changes in total consumption in response to

technological changes in automation sector. One way to rewrite the expression for consumption change in Proposition 1 is as

follows:

dlogC =

(
sH
αHa

)
dlog(APaA

Q
a )−

(
αnfnα

H
n + αHf
αHa

)
dlog(APaA

Q
a )

where sH = wHH
wLL+wHH

is the income share of high-skilled labor. Proposition 1 shows that for small technological changes, the

initial level of high-skilled (or low-skilled) labor share and the skill dependencies in production processes are the key that explain

the macroeconomic impact of such changes. On the other hand, in Proposition 7, for discrete changes in the productivity of

automation sector, the expression in Proposition 7 can be written as:

∆logC = ∆log

(
L

sL

)
−

(
αnfnα

H
n + αHf
αHa

)
∆log(APaA

Q
a )

where sL = wLL
wLL+wHH

is the income share of low-skilled labor.

As one can see from above, the change in total consumption for non-small technological changes reflects the (higher-order)

reallocation effects, and so changes in wages, as well. In the equation above, the reallocation effect is captured by the log change

in L
sL

that depends on the total demand for the displaced labor. In contrast, the expression for small-changes in technology
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does not capture that reallocation effect. For small changes in technology, we have a formula similar to a growth accounting

formula that gives us the change in log consumption based on the initial level of automation.

The expressions for the wages can be rewritten as follows:

dlogwL = −

(
αHf + αHn α

n
fn

αHa

)
dlog

(
APaA

Q
a

)
, and ∆logwL = −

(
αHf + αHn α

n
fn

αHa

)
∆log

(
APaA

Q
a

)
dlogwH =

(
1− αHf − αHn αnfn

αHa

)
dlog

(
APaA

Q
a

)
, and ∆logwH =

(
1− αHf − αHn αnfn

αHa

)
∆log

(
APaA

Q
a

)
The set of equations above show that the changes in log wages in response to (small or large) technological changes depend on

the importance of each type of labor in each production process. The skill dependencies in each sector determine the alternative

usage of labor and hence, the productivity of labor whenever the reallocation occurs.

6.2.1 Proof of Proposition 4

Before automation, sL = αLf0 + αLn0α
n
fn + αLfa holds, and after automation displace all labor in task a in the final good sector,

s∗L = αLf0 + αLn0α
n
fn + αLfaα

L
a0 holds, where

αLf0 + αLn0α
n
fn + αLfaα

L
a0 < αLf0 + αLn0α

n
fn + αLfa for αHa < 1

Then, the proof of the first two parts follow from plugging these two equations into the Equation 6.2 and taking the

derviatives w.r.t
αLn0
αHn

and
αLf0
αHf

, respectively.

Next, the last part follows from an extra set of equations. Equation 29 shows that

∆log

(
wH
wL

)
=

1

αHa
∆log

(
APaA

Q
a

)
wH
wL

= L
H

αHf +αHn α
n
fn

αLf0+αLn0α
n
fn+αLfa

holds before the automation, and
(
wH
wL

)∗
= L

H

αHf +αHn α
n
fn+αHa α

L
fa

αLf0+αLn0α
n
fn+αLfa(1−αHa )

holds after the automation.

Therefore, from A∗ to A∗∗, we have
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∆logC =
(
1− (αnfnα

H
n + αHf )

)
log

αLf0 + αLn0α
n
fn + αLfa

αLf0 + αLn0α
n
fn + αLfaα

L
a0

− (αnfnα
H
n + αHf )log

(
αHf + αHn α

n
fn +

(
1− αLa0

)
αLfa
)(

αHf + αHn α
n
fn

)
By some line of algebra, d(∆logC)

d(αLa0)
< 0.

Lastly, outside of the transition area, the implications of technological change is independent from the skill-dependencies.

Therefore, for any given technological change in the Proposition, we can consider the technology having three components: A0

(initial technology) to A∗, A∗ to A∗∗, and A∗∗ to A1 (end technology). Consequently, by summing up the changes in these

regions will give us the ultimate change in total consumption. Thus, the only region that the consumption change depends

on skill-dependencies is the transition region, which has the properties discussed above and varying implications for different

skill-dependencies as shown above.

This completes, the proof.

6.3 Proofs of Proposition 1, 2, 3, and 7

Combining the budget constraint and FOCs of the utility maximization leads to:

CL = wLL (14)

CH = wHH (15)

Yf = C = wLL+ wHH (16)

By combining the market clearing conditions, factor demands for low-skilled and high-skilled labor, we get:

L =:


pnYnα

L
n0+pfYf(α

L
f0+α

L
fa)

wL
if wL

pa
< 1

AQa
paYaα

L
a0+pnYnα

L
n0+pfYf(α

L
f0+(1−tfa)αLfa)

wL
if wL

pa
= 1

AQa
paYaα

L
a0+pnYnα

L
n0+pfYfα

L
f0

wL
if wL

pa
> 1

AQa

(17)

H =:


pnYnα

H
n +pfYfα

H
f

wH
if wL

pa
< 1

AQa
paYaα

H
a +pnYnα

H
n +pfYfα

H
f

wH
if wL

pa
= 1

AQa
paYaα

H
a +pnYnα

H
n +pfYfα

H
f

wH
if wL

pa
> 1

AQa

(18)
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Market clearing for goods, factor demands, and pf = 1 together imply:

paYa = paXfa = tfaα
L
faYf (19)

where tfa = 1 for wL
pa

> 1

AQa
, tfa = 0 for wL

pa
< 1

AQa
, and 0 ≤ tfa ≤ 1 for wL

pa
= 1

AQa
.

pnYn = pnXfn = αnfnYf (20)

Next, we write the condition for tfa for further simplification.

Then, by using Eq. (16), Eq. (19), and Eq. (20), we can rewrite the market clearing for labor as follows:

L =:


(αLn0α

n
fn+α

L
f0+α

L
fa)(wLL+wHH)

wL
if wL

pa
< 1

AQa
(tfaαLfaα

L
a0+α

n
fnα

L
n0+α

L
f0+(1−tfa)αLfa)(wLL+wHH)

wL
if wL

pa
= 1

AQa
(αafaα

L
a0+α

n
fnα

L
n0+α

L
f0)(wLL+wHH)

wL
if wL

pa
> 1

AQa

(21)

H =:


(αnfnα

H
n +αHf )(wLL+wHH)

wH
if wL

pa
< 1

AQa
(tfaαLfaα

H
a +αnfnα

H
n +αHf )(wLL+wHH)

wH
if wL

pa
= 1

AQa
(αLfaα

H
a +αnfnα

H
n +αHf )(wLL+wHH)

wH
if wL

pa
> 1

AQa

(22)

wH
wL

=:


L
H

(αnfnα
H
n +αHf )

1−(αnfnαHn +αHf )
if wL

pa
< 1

AQa

L
H

(tfaαLfaα
H
a +αnfnα

H
n +αHf )

1−(tfaαLfaαHa +αnfnα
H
n +αHf )

if wL
pa

= 1

AQa

L
H

(αLfaα
H
a +αnfnα

H
n +αHf )

1−(αLfaαHa +αnfnα
H
n +αHf )

if wL
pa

> 1

AQa

(23)

Then, we derive wL by plugging Eq. (23) into the Eq. (9):

wL =:



APf

(
αHf

)αHf (
αLf0

)αLf0 [
αLfa

]αafa [
AQnα

n
fnA

P
n (αHn )α

H
n (αLn0)α

L
n0

]αnfn (H
L

1−(αnfnα
H
n +αHf )

(αnfnαHn +αHf )

)αHf +αHn α
n
fn

if AQa A
P
a < A∗

APf

(
αHf

)αHf (
αLf0

)αLf0 [
αLfa

]αafa [
AQnα

n
fnA

P
n (αHn )α

H
n (αLn0)α

L
n0

]αnfn (H
L

1−(tfaαLfaα
H
a +αnfnα

H
n +αHf )

(tfaαLfaαHa +αnfnα
H
n +αHf )

)αHf +αHn α
n
fn

if A∗ ≤ AQa APa ≤ A∗∗

APf

(
αHf

)αHf (
αLf0

)αLf0 ∏
i=a,n

[
AQi α

i
fiA

P
i (αHi )α

H
i (αLi0)α

L
i0

]αLfi (H
L

1−(αLfaα
H
a +αnfnα

H
n +αHf )

(αLfaαHa +αnfnα
H
n +αHf )

)αHf +αHa α
L
fa+α

H
n α

n
fn

if AQa A
P
a > A∗∗

(24)

where
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
A∗ = 1

(αHa )α
H
a (αLa0)

αLa0

(
L
H

(αnfnα
H
n +αHf )

1−(αnfnαHn +αHf )

)αHa
A∗∗ = 1

(αHa )α
H
a (αLa0)

αLa0

(
L
H

(αLfaα
H
a +αnfnα

H
n +αHf )

1−(αLfaαHa +αnfnα
H
n +αHf )

)αHa (25)

By plugging Eq. (24) into the Eq. (23), we get:

wH =:



APf

(
αHf

)αHf (
αLf0

)αLf0 [
αLfa

]αafa [
AQnα

n
fnA

P
n (αHn )α

H
n (αLn0)α

L
n0

]αnfn ( L
H

(αnfnα
H
n +αHf )

1−(αnfnαHn +αHf )

)1−αHf −α
H
n α

n
fn

if AQa A
P
a < A∗

APf

(
αHf

)αHf (
αLf0

)αLf0 [
αLfa

]αafa [
AQnα

n
fnA

P
n (αHn )α

H
n (αLn0)α

L
n0

]αnfn ( L
H

(tfaαLfaα
H
a +αnfnα

H
n +αHf )

1−(tfaαLfaαHa +αnfnα
H
n +αHf )

)1−αHf −α
H
n α

n
fn

if A∗ ≤ AQa APa ≤ A∗∗

APf

(
αHf

)αHf (
αLf0

)αLf0 ∏
i=a,n

[
AQi α

i
fiA

P
i (αHi )α

H
i (αLi0)α

L
i0

]αLfi ( L
H

(αLfaα
H
a +αnfnα

H
n +αHf )

1−(αLfaαHa +αnfnα
H
n +αHf )

)1−αHf −α
H
a α

L
fa−α

H
n α

n
fn

if AQa A
P
a > A∗∗

(26)

Next, we derive the fraction tfa from Eq. (26):

tfa =:



0 if AQa A
P
a < A∗

H
L

(
APa A

Q
a (αHa )α

H
a (αLa0)

αLa0

) 1
αHa (1−αnfnα

H
n −α

H
f )−(αnfnα

H
n +αHf )

(αLfaαHa )

(
1+H

L

(
AQa APa (αHa )α

H
a (αLa0)

αLa0

) 1
αHa

) if A∗ ≤ AQa APa ≤ A∗∗

1 if AQa A
P
a > A∗∗

(27)

We can rewrite it as follows:

tfa =:



0 if AQa A
P
a < A∗

H
L

(
APa A

Q
a (αHa )α

H
a (αLa0)

αLa0

) 1
αHa

(αLfaαHa )

(
1+H

L

(
AQa APa (αHa )α

H
a (αLa0)

αLa0

) 1
αHa

) − (αnfnα
H
n +αHf )

(αLfaαHa )
if A∗ ≤ AQa APa ≤ A∗∗

1 if AQa A
P
a > A∗∗

(28)

Then, we plug Eq.(27) into Eq. (24) and Eq. (26), and get:

wH
wL

=:


L
H

(αnfnα
H
n +αHf )

1−(αnfnαHn +αHf )
if AQa A

P
a < A∗(

APa A
Q
a (αHa )α

H
a (αLa0)α

L
a0

) 1

αHa if A∗ ≤ AQa APa ≤ A∗∗

L
H

(αLfaα
H
a +αnfnα

H
n +αHf )

1−(αLfaαHa +αnfnα
H
n +αHf )

if AQa A
P
a > A∗∗

(29)
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Then, for constant weights and labor supply, by taking the logs and the total derivatives of each side of Eq. (29) (excluding the values for AQa A
P
a

where wH
wL

is non-differentiable), we get:

dlog

(
wH
wL

)
=:


0 if AQa A

P
a < A∗

1
αHa

dlog
(
AQa A

P
a

)
if A∗ < AQa A

P
a < A∗∗

0 if AQa A
P
a > A∗∗

(30)

Lastly, by plugging Eq. (27) into Eq. (24) and Eq. (26), we get:

wL =:



APf

(
αHf

)αHf (
αLf0

)αLf0 [
αLfa

]αafa [
AQnα

n
fnA

P
n (αHn )α

H
n (αLn0)α

L
n0

]αnfn (H
L

1−(αnfnα
H
n +αHf )

(αnfnαHn +αHf )

)αHf +αHn α
n
fn

if AQa A
P
a ≤ A∗

APf

(
αHf

)αHf (
αLf0

)αLf0 [
αLfa

]αafa [
AQnα

n
fnA

P
n (αHn )α

H
n (αLn0)α

L
n0

]αnfn (
APa A

Q
a (αHa )α

H
a (αLa0)α

L
a0

)−αHf −αHn α
n
fn

αHa if A∗ < AQa A
P
a < A∗∗

APf

(
αHf

)αHf (
αLf0

)αLf0 ∏
i=a,n

[
AQi α

i
fiA

P
i (αHi )α

H
i (αLi0)α

L
i0

]αLfi (H
L

1−(αLfaα
H
a +αnfnα

H
n +αHf )

(αLfaαHa +αnfnα
H
n +αHf )

)αHf +αHa α
L
fa+α

H
n α

n
fn

if AQa A
P
a ≥ A∗∗

(31)

wH =:



APf

(
αHf

)αHf (
αLf0

)αLf0 [
αLfa

]αafa [
AQnα

n
fnA

P
n (αHn )α

H
n (αLn0)α

L
n0

]αnfn ( L
H

(αnfnα
H
n +αHf )

1−(αnfnαHn +αHf )

)1−αHf −α
H
n α

n
fn

if AQa A
P
a < A∗

APf

(
αHf

)αHf (
αLf0

)αLf0 [
αLfa

]αafa [
AQnα

n
fnA

P
n (αHn )α

H
n (αLn0)α

L
n0

]αnfn (
APa A

Q
a (αHa )α

H
a (αLa0)α

L
a0

) 1−αHf −αHn α
n
fn

αHa if A∗ ≤ AQa APa ≤ A∗∗

APf

(
αHf

)αHf (
αLf0

)αLf0 ∏
i=a,n

[
AQi α

i
fiA

P
i (αHi )α

H
i (αLi0)α

L
i0

]αLfi ( L
H

(αLfaα
H
a +αnfnα

H
n +αHf )

1−(αLfaαHa +αnfnα
H
n +αHf )

)1−αHf −α
H
a α

L
fa−α

H
n α

n
fn

if AQa A
P
a > A∗∗

(32)

Then, by taking the logs and the total derivatives of the equation above (we exclude the values for AQa A
P
a where wL and wH are non-differentiable),

we get:

dlogwL =:


dlogAPf + αnfndlog

(
APnA

Q
n

)
if APa A

Q
a < A∗

dlogAPf + αnfndlog
(
APnA

Q
n

)
−
(
αHf +αHn α

n
fn

αHa

)
dlog

(
APa A

Q
a

)
if A∗ < APa A

Q
a < A∗∗

dlogAPf + αnfndlog
(
APnA

Q
n

)
+ αLfadlog

(
APa A

Q
a

)
if APa A

Q
a > A∗∗

dlogwH =:


dlogAPf + αnfndlog

(
APnA

Q
n

)
if APa A

Q
a < A∗

dlogAPf + αnfndlog
(
APnA

Q
n

)
+

(
1−αHf −α

H
n α

n
fn

αHa

)
dlog

(
APa A

Q
a

)
if A∗ < APa A

Q
a < A∗∗

dlogAPf + αnfndlog
(
APnA

Q
n

)
+ αLfadlog

(
APa A

Q
a

)
if APa A

Q
a > A∗∗
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This is the end of the proof of Proposition 2.

Next, we derive wHH + wLL = C by multiplying Eq. (24) by L and multiplying Eq. (26) by H and summing up these two, the consumption

level in three phases are as follows with the ordering of pre-automation, automation, and post-automation phases:

C =:



APf

(
αHf

)αHf (
αLf0

)αLf0 [
αafa

]αafa [
AQnα

n
fnA

P
n (αHn )α

H
n (αLn0)α

L
n0

]αnfn L
1−αHf −αHn α

n
fn

(
H
L

1−(αnfnα
H
n +αHf )

(αnfnαHn +αHf )

)αHf +αHn α
n
fn

APf

(
αHf

)αHf (
αLf0

)αLf0 [
αafa

]αafa [
AQnα

n
fnA

P
n (αHn )α

H
n (αLn0)α

L
n0

]αnfn L(AQa APa (αHa )α
H
a (αLa0)α

L
a0

)−αHf −αHn α
n
fn

αHa +H
(
AQa A

P
a (αHa )α

H
a (αLa0)α

L
a0

) 1−αHf −αHn α
n
fn

αHa


APf

(
αHf

)αHf (
αLf0

)αLf0 ∏
i=a,n

[
AQi α

i
fiA

P
i (αHi )α

H
i (αLi0)α

L
i0

]αLfi L

1−(αafaαHa +αnfnα
H
n +αHf )

(
H
L

1−(αafaα
H
a +αnfnα

H
n +αHf )

(αafaαHa +αnfnα
H
n +αHf )

)αHf +αHa α
a
fa+α

H
n α

n
fn

(33)

Then, by taking the logs of and totally differentiating both sides, we get:

dlogC =



dlogAPf + αnfndlog(AQnA
P
n ) if AQa A

P
a < A∗

dlogAPf + αnfndlog(AQnA
P
n ) + dlog

L(AQa APa (αHa )α
H
a (αLa0)α

L
a0

)−αHf −αHn α
n
fn

αHa +H
(
AQa A

P
a (αHa )α

H
a (αLa0)α

L
a0

) 1−αHf −αHn α
n
fn

αHa

 if A∗ < AQa A
P
a < A∗∗

dlogAPf + αnfndlog(AQnA
P
n ) + αLfadlog(APa A

Q
a ) if AQa A

P
a > A∗∗

Call L
(
AQa A

P
a (αHa )α

H
a (αLa0)α

L
a0

)−αHf −αHn α
n
fn

αHa +H
(
AQa A

P
a (αHa )α

H
a (αLa0)α

L
a0

) 1−αHf −αHn α
n
fn

αHa = B

Next, we derive dlogB

dlog(AQa APa )
=

(AQa A
P
a )

B
dB

d(AQa APa )

dB

d(AQa APa )
=

(
AQa A

P
a (αHa )α

H
a (αLa0)

αLa0

)−αHf −αHn α
n
fn

αHa

(
H(1−αHf −α

H
n α

n
fn)

(
AQa A

P
a (αHa )α

H
a (αLa0)

αLa0

) 1
αHa +L(−αHf −α

H
n α

n
fn)

)
αHa A

Q
a APa

Then,

dlogB

dlog(AQa APa )
=

(
AQa A

P
a (αHa )α

H
a (αLa0)

αLa0

)−αHf −αHn α
n
fn

αHa

(
H(1−αHf −α

H
n α

n
fn)

(
AQa A

P
a (αHa )α

H
a (αLa0)

αLa0

) 1
αHa +L(−αHf −α

H
n α

n
fn)

)

αHa

L(AQa APa (αHa )α
H
a (αLa0)

αLa0

)−αH
f

−αHn α
n
fn

αHa +H
(
AQa APa (αHa )α

H
a (αLa0)

αLa0

) 1−αH
f

−αHn α
n
fn

αHa



=

(
AQa A

P
a (αHa )α

H
a (αLa0)

αLa0

)−αHf −αHn α
n
fn

αHa

(
H(1−αHf −α

H
n α

n
fn)

(
AQa A

P
a (αHa )α

H
a (αLa0)

αLa0

) 1
αHa +L(−αHf −α

H
n α

n
fn)

)

αHa L
(
AQa APa (αHa )α

H
a (αLa0)

αLa0

)−αH
f

−αHn α
n
fn

αHa

(
1+H

(
AQa APa (αHa )α

H
a (αLa0)

αLa0

) 1
αHa

)
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=

(
H
L (1−αHf −α

H
n α

n
fn)

(
AQa A

P
a (αHa )α

H
a (αLa0)

αLa0

) 1
αHa −(αHf +αHn α

n
fn)

)

αHa

(
1+H

L

(
AQa APa (αHa )α

H
a (αLa0)

αLa0

) 1
αHa

) .

Eq. (27)implies that for 0 < tfa < 1:

tfaα
L
fa =

H
L

(
AQa A

P
a (αHa )α

H
a (αLa0)

αLa0

) 1
αHa (1−αnfnα

H
n −α

H
f )−(αnfnα

H
n +αHf )

αHa

(
1+H

L

(
AQa APa (αHa )α

H
a (αLa0)

αLa0

) 1
αHa

)
Thus, dlogB = tfaα

L
fadlog(AQa A

P
a ) for A∗ < AQa A

P
a < A∗∗. Then, we get

dlogC =


dlogAPf + αnfndlog(AQnA

P
n ) if AQa A

P
a < A∗

dlogAPf + αnfndlog(AQnA
P
n ) + tfaα

L
fadlog(AQa A

P
a ) if A∗ < AQa A

P
a < A∗∗

dlogAPf + αnfndlog(AQnA
P
n ) + αLfadlog(APa A

Q
a ) if AQa A

P
a > A∗∗

This completes the proof of Proposition 1.

Lastly, the expressions in Proposition 7 also follows from Equation (33).

Proof of Proposition 3: 
A∗ = 1

(αHa )α
H
a (αLa0)

αLa0

(
L
H

(αnfnα
H
n +αHf )

1−(αnfnαHn +αHf )

)αHa
A∗∗ = 1

(αHa )α
H
a (αLa0)

αLa0

(
L
H

(αLfaα
H
a +αnfnα

H
n +αHf )

1−(αLfaαHa +αnfnα
H
n +αHf )

)αHa
i) A∗ and A∗∗ are increasing in L

H

∂A∗

∂( LH )
=
(
L
H

)αHa −1 (
aHa
αLa0

)1−α
H
a

(
αnfnα

H
n +αHf

1−(αnfnαHn +αHf )

)αHa
> 0

∂A∗∗

∂( LH )
=
(
L
H

)αHa −1 (
aHa
αLa0

)1−α
H
a

(
αLfaα

H
a +αnfnα

H
n +αHf

1−(αLfaαHa +αnfnα
H
n +αHf )

)αHa
> 0

ii) A∗ and A∗∗ are increasing in αHn

∂A∗

∂(αHn )
=

(
aHa
αLa0

)α
L
a0αnfn

(
L
H

(αnfnαHn +αHf )
1−(αnfnαHn +αH

f )

)αHa
(1−αnfnαHn −αHf )(αnfnαHn +αHf )

> 0

∂A∗∗

∂(αHn )
=

(
aHa
αLa0

)α
L
a0αnfn

(
L
H

αLfaα
H
a +αnfnα

H
n +αHf

1−(αLfaαHa +αn
fn
αHn +αH

f )

)αHa
(1−αLfaαHa −αnfnαHn −αHf )(αLfaαHa +αnfnα

H
n +αHf )

> 0
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iii) For constant αnfn and αLfa, A
∗ and A∗∗ are increasing in αHf (decreasing in αLf0).

∂A∗

∂(αHf )
=

(
aHa
αLa0

)α
L
a0

(
L
H

(αnfnαHn +αHf )
1−(αnfnαHn +αH

f )

)αHa
(1−αnfnαHn −αHf )(αnfnαHn +αHf )

> 0

∂A∗∗

∂(αHf )
=

(
aHa
αLa0

)α
L
a0

(
L
H

(αLfaαHa +αnfnα
H
n +αHf )

1−(αLfaαHa +αn
fn
αHn +αH

f )

)αHa
(1−αLfaαHa −αnfnαHn −αHf )(αLfaαHa +αnfnα

H
n +αHf )

> 0

Moreover, the Domar weight of firm a is given by αLfatfa. Thus,

d2logC

d2log(APa A
Q
a )

=
d(αLfatfa)

dlog(APa A
Q
a )

=
HL
(
AQa A

P
a (αHa )α

H
a (αLa0)

αLa0

) 1
αHa

αHa

(
H
(
AQa APa (αHa )α

H
a (αLa0)

αLa0

) 1
αHa +L

)(
H(αnfnα

H
n +αHf −1)

(
AQa APa (αHa )α

H
a (αLa0)

αLa0

) 1
αHa +L(αnfnαHn +αHf )

) (34)

As one can see from the equation above, the second order term depends on the high-skilled and low-skilled labor supply, weights of tasks in each

production process and the initial level of productivity in automation sector.

6.4 Derivations behind the Examples

6.4.1 Example 2

Ya = APa L
0.5
a0 H

0.5
a ,

Yf = H0.5
f (Lfa +AQaXfa)0.5.

We plug the given parameters into Eq.(25) and Eq. (27), and get:

tfa =:


0 if AP1 A

Q
21 < 2(

2(APa A
Q
a )2−8

(APa A
Q
a )2+4

)
if 2 ≤ AP1 A

Q
21 ≤ 2

√
3

1 if AP1 A
Q
21 > 2

√
3

(35)

which can be rewritten as:

tfa = min

{
max

{
0,

(
2(APa A

Q
a )2 − 8

(APa A
Q
a )2 + 4

)}
, 1

}
By using the equation for tfa, we derive the following equations:

pf = 1
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pa =


1
APa

if APa A
Q
a < 2

1
APa

if 2 ≤ APa AQa ≤ 2
√

3√
AQa

2
√
3APa

if APa A
Q
a ≥ 2

√
3

(36)

wL =:


1
2 if APa A

Q
a < 2

1

APa A
Q
a

if 2 ≤ APa AQa ≤ 2
√

3√
APa A

Q
a

2
√
3

(
1

2
√
3

)
if APa A

Q
a > 2

√
3

(37)

wH =:


1
2 if APa A

Q
a < 2

APa A
Q
a

4 if 2 ≤ APa AQa ≤ 2
√

3√
APa A

Q
a

2
√
3

(
2
√
3

4

)
if APa A

Q
a > 2

√
3

(38)

wH
wL

=:


1 if APa A

Q
a < 2

(APa A
Q
a )

2

4 if 2 ≤ APa AQa ≤ 2
√

3

3 if APa A
Q
a > 2

√
3

(39)

Phases tfa pa pf wL wH
wH
wL

Ya Yf = C

APa A
Q
a ≤ 2 (pre-automation phase) 0 1

APa
1 1

2
1
2 1 0 1

2 < APa A
Q
a < 2

√
3 (automation phase) 2

(
(APa A

Q
a )

2−4

(APa A
Q
a )

2
+4

)
1
APa

1 1

APa A
Q
a

APa A
Q
a

4

(APa A
Q
a )

2

4 APa

(
(APa A

Q
a )

2−4
4(APa A

Q
a )

)
4+(APa A

Q
a )

2

4(APa A
Q
a )

APa A
Q
a ≥ 2

√
3 (post-automation phase) 1

√
AQa

APa 2
√
3

1 1 3 3
APa√

3

√
2APa A

Q
a

3
√
3
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6.4.2 Example 1

The derivations for Example 1 follow from the equilibrium conditions in a similar fashion. Thus, we omit

the derivations for Example 1 here, and provide only the result regarding parameter tfa. The equilibrium

level of Yf = C in Example 1 are depicted in Table 4.

Phases Yf = C

APa A
Q
a ≤ 2√

3
(pre-automation phase)

(
4
27

) 1
4
(
AQnA

P
n

) 1
2

2√
3
< APa A

Q
a < 2 (automation phase) 1

2
√
2

(
AQnA

P
n

) 1
2

((
APa A

Q
a

2

)− 1
2

+
(
APa A

Q
a

2

) 3
2

)
APa A

Q
a ≥ 2 (post-automation phase) 1

2

(
APnA

Q
n

) 1
2
(
AQa A

P
a

) 1
2

Table 4. Total consumption (or net-output) in Example 1

tfa



0 if APa A
Q
a ≤ 2√

3

(
L
H

)0.5
H
L

(
A
Q
a A

P
a

2

)2

( 3
4 )−( 1

4 )

( 1
2 )

(
1+H

L

(
A
Q
a A

P
a

2

)2
) 2√

3

(
L
H

)0.5
< APa A

Q
a < 2

(
L
H

)0.5
1 APa A

Q
a ≥ 2

(
L
H

)0.5
Cases Phases Yf = C

Case 1. L = 4 and H = 1

APa A
Q
a ≤ 4√

3
(pre-automation phase)

(
4
27

) 1
4
(
AQnA

P
n

) 1
2 L

3
4H

1
4

4√
3
< APa A

Q
a < 4 (automation phase) 1

2
√
2

(
AQnA

P
n

) 1
2

(
L
(
APa A

Q
a

2

)− 1
2

+H
(
APa A

Q
a

2

) 3
2

)
APa A

Q
a ≥ 4 (post-automation phase) 1

2

(
APnA

Q
n

) 1
2
(
AQa A

P
a

) 1
2 (LH)

1
2

Case 1. L = 1
4 and H = 1

APa A
Q
a ≤ 1√

3
(pre-automation phase)

(
4
27

) 1
4
(
AQnA

P
n

) 1
2 L

3
4H

1
4

1√
3
< APa A

Q
a < 1 (automation phase) 1

2
√
2

(
AQnA

P
n

) 1
2

(
L
(
APa A

Q
a

2

)− 1
2

+H
(
APa A

Q
a

2

) 3
2

)
APa A

Q
a ≥ 1 (post-automation phase) 1

2

(
APnA

Q
n

) 1
2
(
AQa A

P
a

) 1
2 (LH)

1
2

Table 5. Total consumption (or net-output) in Example 1 under two additional cases for

the labor supply.

6.5 Equilibrium Analysis of the n-Sector Economy

The cost minimization problem for each firm i ∈ N is:

min
{Lij}j∈0∪K ,Hi,{Xij}j∈N

∑
j∈0∪K

wLLij + wHHi +
∑
j∈N

pjXij

subject to 1 = APi (Li0)α
L
i0(Hi)

αHi

[ ∏
j∈ai

(Lij +Xij)
αLij

][ ∏
j∈ni

(Xij)
αnij

]
The Lagrangian function is:

L =
∑

j∈0∪K
wLLij + wHHi +

∑
j∈N

pjXij − λi

APi (Li0)α
L
i0(Hi)

αHi

∏
j∈ai

(Lij +Xij)
αLij

∏
j∈ni

(Xij)
αnij

− 1


The first order conditions are:
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• ∂L
∂λi

= 1− APi (L∗i0)α
L
i0(H∗i )α

H
i

[ ∏
j∈ai

(
L∗ij +X∗ij

)
αLij

][ ∏
j∈ni

(X∗ij)
αnij

]
= 0

1 = APi (L∗i0)α
L
i0(H∗i )α

H
i

[ ∏
j∈ai

(
L∗ij +X∗ij

)
αLij

][ ∏
j∈ni

(X∗ij)
αnij

]
∂L
∂Hi

= wH − λ∗i α
H
i

H∗i
= 0

H∗i =
λ∗i α

H
i

wH

• ∂L
∂Li0

= wL − λ∗i α
L
i0

L∗i0
= 0

L∗i0 =
λ∗i α

L
i0

wL

• ∂L
∂{Xij}j∈ni

= pj −
λ∗i α

n
ij

{X∗ij}j∈ni
= 0

{X∗ij}j∈ni =
λ∗i α

n
ij

pj

• {L∗ij, X∗ij}j∈ai =:


{λ∗i

αLij
wL
, 0} if wL

pj
< 1

{λ∗i
(1−t∗ij)αLij

wL
, λ∗i

t∗ijα
L
ij

pj
if wL

pj
= 1

{0, λ∗i
αLij
pj
} if wL

pj
> 1

• {L∗ij,X∗ij}j/∈ai∪ni
= 0

The FOCs above together imply:

1 = APi (
λ∗
iα

L
i0

wL
)α
L
i0(

λ∗
iα

H
i

wH
)α
H
i

[ ∏
j∈ai

(
L∗ij +X∗ij

)
αLij

][ ∏
j∈ni

(
λ∗
iα

n
ij

pj
)α
n
ij

]

1 = APi (
λ∗
iα

L
i0

wL
)α
L
i0(

λ∗
iα

H
i

wH
)α
H
i

 ∏
j∈ai

(
λ∗
iα

L
ij

wL

)(1−t∗ij)α
L
ij

[ ∏
j∈ai

(
λ∗
iα

L
ij

pj

)t∗ijαLij][ ∏
j∈ni

(
λ∗
iα

n
ij

pj
)α
n
ij

]
Lastly, profit maximization implies that the unit cost for each i is equal to pi. Thus

λ∗i = pi can be rewritten as:

pi = Bi

[∏
j∈N

(pj)
t∗ijαij

]
(wL)

αLi0+
∑
j∈N

(1−t∗ij)αLij
(wH)α

H
i (40)

where

Bi =
1

(APi )(αHi )α
H
i (αLi0)α

L
i0

[ ∏
j∈N

(αLij)
αLij

][ ∏
j∈N

(αnij)
αnij

] (41)

and T ∗ is the equilibrium expenditure-weight matrix satisfying the following conditions:

t∗ij = 1 for all j ∈ ni
t∗ij ∈ [0, 1] for all j ∈ ai.
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Then, the equilibrium input-output matrix, Ω, is the Hadamard product of two matrices:

Ω = T ∗ ◦ ΩS

where ΩS is the structural input-output matrix satisfying the conditions below:

[ΩS]ij = αnij > 0 is the task-weight of non-automatable task j ∈ ni in sector i.

[ΩS]ij = αLij > 0 is the task-weight of automatable task j ∈ ai in sector i.

[ΩS]ij = 0 for any j ∈ N such that j /∈ ai ∪ ni.
Then, we can write the equation for prices as follows:

pi = Bi

[∏
j∈N

(pj)
ωij

]
(wL)α

L
i (wH)α

H
i (42)

where

• αLi = αLi0 +
∑
j∈N

(1− t∗ij)αLij

• ωij = tijα
L
ij for all pairs (i, j) such that j ∈ ai

• ωij = αnij for all pairs (i, j) such that j ∈ ni .

i) Low- and High-skilled labor wages

Ci = βiC
pi

Yi = (
∑
j∈N

ωjipjYj
pi

) + βi(wLL+wHH)
pi

piYi = (
∑
j∈N

ωjipjYj) + βi(wLL+ wHH)

In matrix notation:−−→
piYi = (I − Ω′)−1

[−−−−−−−−−−−→
βi(wLL+ wHH)

]
Then, we can write piYi as follows:

piYi = mi(wLL+ wHH)

where mi =
∑
j∈N

[(I − Ω′)−1]ijβj.

αHi piYi = αHi [mi(wLL+ wHH)]∑
i∈N

αHi piYi =
∑
i∈N

[
αHi [mi(wLL+ wHH)]

]
wHH =

∑
i∈N

[
αHi [mi(wLL+ wHH)]

]
wHH =

∑
i∈N

[
αHi miwLL+ αHi miwHH

]
wHH(1−

∑
i∈N

αHi mi) =
∑
i∈N

[
αHi miwLL

]
Thus:

wL
wH

=

(
H

L

) 1−
∑
i∈N

αHi mi∑
i∈N

αHi mi

(43)

where mi is the Domar weight of firm i.
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6.6 Proofs of Propositions 5, ??, 6

Proof of Proposition 5.

Proof of part i :

The growth of consumption in response to sectoral productivity growth can be rewritten

as follows:
dlogC

dlogAPi
=

APi
C

dC
dAPi

If we show dC
dAPi

= piYi
APi

, then we are done. We derive dC
dAPi

. The social planner’s problem

is as follows:

max
{Ci},{Xij},{Lij},{Li0},{Hi}

φCL+(1− φ)CH+
∑
i

λi

(
APi Fi −

∑
j

Xji − Ci

)
+η

(
L−

∑
i

∑
j∈ai∪0

Lij

)
+

µ

(
H −

∑
i

Hi

)
For φ = 1

2
, social planner’s problem is equivalent to

max
{Ci},{Xij},{Lij},{Li0},{Hi}

(
CL + CH

)
+
∑
i

λi

(
APi Fi −

∑
j

Xji − Ci

)
+η

(
L−

∑
i

∑
j∈ai∪0

Lij

)
+

µ

(
H −

∑
i

Hi

)
Then, the envelope theorem implies:
dC
dAPi

= −λi YiAPi .

If −λi = pi, then we are done.

The social planner’s problem also implies that:
dC
dCi

= −λi
Moreover, FOCs of the profit maximization of the representative firm in the final good

sector imply that:

piCi = βipfC, which further implies∑
i

piCi = C.

Thus, dC
dCi

= pi. By combining this result with the FOCs of the social planner’s problem,

we get −λi = pi, which completes the proof.

Proof of part ii and iii :

mi is the Domar weight of sector i, which implies:

piYi = mi(wLL+ wHH)

We multiply both sides by αHi and sum across sectors:

αHi piYi = αHi mi(wLL+ wHH)∑
i∈N

αHi piYi =
∑
i∈N

αHi mi(wLL+ wHH),

The FOCs of firm maximization imply that
∑
i∈N

αHi piYi = wHH. Thus,

wHH =
∑
i∈N

[
αHi miwLL+ αHi miwHH

]
wHH(1−

∑
i∈N

αHi mi) =
∑
i∈N

[
αHi miwLL

]
and so
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wLL = (wHH)

1−
∑
i∈N

αHi mi∑
i∈N

αHi mi

.

For C = wLL+ wHH, it follows that:

C =
wHH∑

i∈N
αHi mi

and C =
wLL

1−
∑
i∈N

αHi mi

By taking logs of both sides and totally differentiating both sides, we get:

dlogwH = dlogC + dlog(
∑
i∈N

αHi mi)

dlogwL = dlogC − dlog(1−
∑
i∈N

αHi mi).

Proof of Proposition 6

Proof of part i)

Lemma 1 Consider the n×n matrix D = (I −Ω′)−1, where Ω′ is the transpose of the given

matrix Ω. Then, the following conditions hold:

Dij =
∑
k

DikΩjk for all pairs [i, j} s.t. i 6= j

Dii = 1 +
∑
k

DikΩik

Proof of Lemma 1.

For D = (I − Ω′)−1, we claim that D = I + DΩ′ holds. Supposr it holds. Then, by

plugging D = (I −Ω′)−1 into D = I +DΩ′, we get (I −Ω′)−1 = I + (I −Ω′)−1Ω′, which can

be rewritten as (I − Ω′)−1(I − Ω′) = I. Thus, our claim holds. Then, D = I +DΩ′ implies

that:

[Dij]i 6=j =
∑
k

DikΩ
′
kj

Dii = 1 +
∑
k

DikΩ
′
ki

Then, by using Ω′kj = Ωjk and Ω′ki = Ωik, we can write:

[Dij]i 6=j =
∑
k

DikΩjk

Dii = 1 +
∑
k

DikΩik

This completes the proof of Lemma 1.

By Lemma 1,

• Dii = 1 +
∑
k∈N

DikΩik for all i,
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• Dij = DiiΩji +
∑
k 6=i
DikΩjk for all pairs {i, j} such that i 6= j and Ωji > 0 (i is a direct

supplier of j), and

• Dij =
∑
k 6=i
DikΩjk for all pairs {i, j} such that i 6= j and Ωji = 0 (i is not a direct

supplier of j).

Given that Ωij ≥ 0 for all pairs {i, j}, the set of equations above imply that each element of

matrix D is

i) non-negative,

ii) non-decreasing in each element of matrix Ω.

Proof of part ii):

Denote the initial economy given in part ii) by E0, and denote the equilibrium input-

output matrix of economy E0 by Ω.

Then, Ω has the following properties:

i) [Ω]ij = tijα
L
ij ∈ [0, αLij] for all i ∈ N , j ∈ ai.

ii) [Ω]ij = αnij for all i ∈ N , j ∈ ni.
iii) [Ω]ij = 0 for all i ∈ N , j ∈ N \ {ai ∪ ni}.
In economy E0, consider the set

[
S0
j

]
such that there exists a directed upstream supply

path from each s ∈ S0
j \ j to j and j ∈ S0

j as well.

Thus, for any given j, S0
j is the set of sectors including sector j and its all direct and

indirect suppliers in Economy E0. In addition, denote the set of sectors that has no upstream

supply path to sector j by
{
S0
j

}C
. For any given economy, we can find these sets for each

j ∈ N .

Step 1) First, we show that if there exists any j ∈ N such that
{
S0
j

}C 6= ∅ , then

D0
kl = [(I − Ω′)−1]kl = 0 holds for all pairs {k, l} such that k ∈

{
S0
j

}C
and l ∈ S0

j .

In order to show this, first, we show the condition below holds:

• D0
kl > 0 if and only if there exists a directed path from k to l.

In order to show this, we use Lemma 1.

Take any k ∈
{
S0
j

}C
. For any such k, there exists no directed upstream path from k to

any l ∈ S0
j holds. Otherwise, if there exists a directed path from k to at least one l ∈ S0

j ,

then k ∈ S0
j must hold as well.

Then, by Lemma 1:

Dkl =
∑
i 6=k
DkiΩli for all pairs {k, l} such that k ∈

{
S0
j

}C
and l ∈ S0

j .

For any Ωli > 0 , i ∈ S0
l . If i ∈ S0

l , then i ∈ S0
j also holds since there exists a directed

path from i to l and from l to j.

Then, for each ordered pair {k, l} such that k ∈
{
S0
j

}C
and l ∈ S0

j , we have a set of

equations:

[Dkl]l∈S0
j

=
∑
i∈S0

j

DkiΩli
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The same argument applies for each k ∈
{
S0
j

}C
. Then, we have a system of equations,

which has a unique solution. Otherwise, for given Ω, the matrix D wouldn’t be unique as

well, because Lemma 1 implies that the set of equations above is the full set of equations

that consists any [Dkl]k∈{S0
j}C ,l∈S0

j

.

Dkl = 0 for each ordered pair {k, l} such that k ∈
{
S0
j

}C
and l ∈ S0

j is a solution, which

gives us the unique values for each such Dkl.

Next, we show that D0
kl > 0 if there exists a directed path from k to l.

Suppose that there exists at least one directed upstream path from k to l. Consider any

of these directed paths from k to l, and order the firms in a selected directed path as follows:

S0
kl = {i0, i1, i2, .., in} where i0 = k and in = l, and Ωit+1,it > 0 for all 0 ≤ t ≤ n− 1.

Then, by using Lemma 1:

Di0i1 = Di0i0Ωi1i0 +
∑
j 6=i0

Di0jΩi1j

Moreover, Lemma 1 implies that Dii ≥ 1 for all i. Thus, for Ωi1i0 > 0, Di0i1 > 0 holds.

Lastly, the property Dij =
∑
k 6=i
DikΩjk for all i, j : Ωji = 0 (i is not a direct supplier of j)

implies that Dijij+t > 0 holds for all t ≤ n− j, which further implies Dkl > 0.

Step 2) Next, consider the economy E∗ that is more automated than E. Then, the

following conditions hold for the equilibrium input-output network at the economy E∗:

i) [Ω∗]ij ≥ [Ω]ij = tijα
L
ij ∈ [0, αLij] for all i ∈ N , j ∈ ai.

ii) [Ω∗]ij = t∗ijα
L
ij > [Ω]ij = tijα

L
ij for some i ∈ N for some j ∈ ai.

iii) [Ω∗]ij = [Ω]ij = αnij for all i ∈ N , j ∈ ni.
iv) [Ω∗]ij = [Ω]ij = 0 for all i ∈ N , j ∈ N \ {ai ∪ ni}.
Take one increase in automation at a time. In order to do that, take any one of the

ordered pairs {i, j} such that [Ω∗]ij > [Ω]ij.

Consider the matrix Ω1 such that Ω1 differs from Ω only in its (ij)th element, all else

equal, where [Ω1]ij = [Ω∗]ij. Call it economy E1.

Similarly, in economy E1, consider the set
[
S1
j

]
such that there exists a directed upstream

supply path from each l ∈ S1
j \ j to the given more automated task j. In addition, denote

the set of sectors that has no direct upstream supply path to sector j by
{
S1
j

}C
.

If there is no change in the set of existing paths from Economy E0 to the economy E1,

but only the weight of an existence link increase, then the result in Step 1 above still holds.

Consider that Ωij = 0 and an increase in Ωij results in a new upstream link from j to i

in Economy E1. However, in such a case, the set of upstream suppliers of sector j does not

change and the following conditions hold:

S0
j = S1

j{
S0
j

}C
=
{
S1
j

}C
Thus for any k such that k ∈

{
S1
j

}C
and l ∈ S1

j , [D0] kl = [D1] kl = 0 holds.

Next, we show that for each ordered pair {k, l} such that k ∈
{
S1
j

}C
and l ∈

{
S1
j

}C
, the

following condition holds.

D1
kl = D0

kl
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In order to show this, first, by Lemma 1:

D0
kl = D0

kkΩlk +
∑
s 6=k
D0
ksΩls

D1
kl = D1

kkΩ
1
lk +

∑
s 6=k
D1
ksΩ

1
ls

For any l ∈
{
S0
j

}C
and k ∈

{
S0
j

}C
, Ωlk = Ω1

lk and Ωli = Ω1
li holds if l 6= i, where

i is the sector that uses more of automation good j. On the other hand, if l = i, then

since Ωij rises, D0
kjΩij enters into the equation above. However since D0

kj = D1
kj = 0 holds,

D0
kjΩij = D1

kjΩ
1
ij = 0 holds. Moreover, the set

{
S0
j

}C
remains same. Thus, the system of

equations above remain same in both Economy E0 and economy E1. Similar to the previous

part, there must exists a unique solution for the system of equations above. Therefore, the

unique solution in Economy E0 is exactly the same as in Economy E1.

Lastly, the vector of Domar weights (so the centralities) is equal to m = (I − Ω′)−1−→β .

Thus, in Economy E0, mi =
∑
j

D0
ijβj, and in economy E1, we have m1

i =
∑
j

D1
ijβj.

For constant β, for any k ∈
{
S0
j

}C (
=
{
S1
j

}C)
,
∑
i

D1
kiβi =

∑
i

D0
kiβi holds, which implies

that:

m1
k = mk holds for all k ∈

{
S1
j

}C
.

Step 3) Next, we show that D1
li > D0

li for all l ∈ S0
j , where i is the sector that increases

its automation in task j.

In order to show that,

[D0
li]l∈S0

j
= D0

llΩil +
∑
k 6=l
D0
lkΩik

[D1
li]l∈S1

j
= D1

llΩ
1
il +

∑
k 6=l
D1
lkΩ

1
ik, which can be rewritten as:

[D1
li]l∈S0

j
= D1

llΩ
1
il +

∑
k 6=l
D1
lkΩ

1
ik,

For l = j, we have

D0
ji = DjjΩij +

∑
k 6=l
DjkΩik

D1
ji = D1

jjΩ
1
ij +

∑
k 6=l
D1
jkΩ

1
ik

Since, each [Dij]i,j∈N is non-decreasing in any element [Ωkl]k,l∈N and since Ω1
ij > Ωij , we

conclude from above that D1
ji > D0

ji.

Next, consider any l ∈ S1
j and l 6= j:

[D0
li]l∈S0

j \j
= D0

llΩil +D0
ljΩij +

∑
k 6=j
D0
lkΩik

[D1
li]l∈S1

j \j
= D1

llΩ
1
il +D1

ljΩ
1
ij +

∑
k 6=j
D1
lkΩ

1
ik, which can be rewritten as

[D1
li]l∈S0

j \j
= D1

llΩ
1
il +D1

ljΩ
1
ij +

∑
k 6=j
D1
lkΩ

1
ik

Next, by combining:

i) for each l ∈ S0
j \ j, Dlj > 0,

ii) each [Dij]i,j∈N is non-decreasing in any element [Ωkl]k,l∈N , and

iii) Ω1
ij > Ωij,
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we conclude that {D1
li} > {D0

li} for each l ∈ Sj.
Thus, any sector k that is direct or indirect supplier of sector j (k ∈ S0

j = S1
j ) has a

higher dependency to sector i.

Lastly, for constant β, for any l ∈ S0
j = S1

j ,
∑
i

D1
liβi >

∑
i

D0
liβi holds, which implies that:

m1
i > mi holds for all l ∈ Sj.

Step 4) We do this iteration one by one for each increase in automation for an ordered

pair {i, j} such that [Ωt+1] ij > [Ωt] ij > 0 until we reach the equilibrium input-output

network Ω∗, where the same results above hold at each step, which concludes the proof.

6.6.1 An Example with Non Cobb-Douglas Production Function

Here, we consider production technologies different than the Cobb-Douglas form that we

studied so far. We now illustrate how the impact of technological advances depends on how

useful low-skilled labor is in other sectors for other forms of production functions. If low-

skilled labor is very productive elsewhere, then the technological advances in the automation

technology have a higher impact on total consumption.

Example 6 The production functions are:

Yn = AnLn
Ya = Aa
Yf = AfH

α
f (Lfa +Xfa)

1−α +Xfn

We set L = H = 1.

Here, we simplify things by having Xfn enter into the production function of the final good

in an additively separable way rather than in a Cobb-Douglas form. The expressions have

all of the same signs with the Cobb-Douglas form and we report those in the appendix, but

this simplifies the expressions substantially.

We also simplify the automation process not to use any labor at all, so that its increase

does not impact the production of the other goods other than via the technological advance.

6.6.2 Example 6

In this simple economy, the equilibrium can be understood by maximizing11 Yf = Af (Lf +

Aa)
1−α + An(1− Lf ) where we use that L = H = 1.

The maximizing Lf is
Lf = 1 if Aa <

(
(1−α)Af

An

)1/α

− 1

Lf =
(

(1−α)Af
An

)1/α

− Aa if
(

(1−α)Af
An

)1/α

− 1 ≤ Aa ≤
(

(1−α)Af
An

)1/α

Lf = 0 if Aa >
(

(1−α)Af
An

)1/α

.

11It is straightforward that the competitive equilibrium in this simple economy is equivalent to a planner

maximizing total final good production.
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and the corresponding Yf is then
Yf = Af (1 + Aa)

1−α if Aa <
(

(1−α)Af
An

)1/α

− 1

Yf = Af

(
(1−α)Af

An

)(1−α)/α

+ An

(
1 + Aa −

(
(1−α)Af

An

)1/α
)

if
(

(1−α)Af
An

)1/α

− 1 ≤ Aa ≤
(

(1−α)Af
An

)1/α

Yf = Af (Aa)
1−α + An if Aa >

(
(1−α)Af

An

)1/α

.

It then follows that the corresponding
∂Yf
∂Aa

is:
∂Yf
∂Aa

= (1− α)Af (1 + Aa)
−α if Aa <

(
(1−α)Af

An

)1/α

− 1,

∂Yf
∂Aa

= An if
(

(1−α)Af
An

)1/α

− 1 < Aa <
(

(1−α)Af
An

)1/α

,

∂Yf
∂Aa

= (1− α)Af (Aa)
−α if Aa >

(
(1−α)Af

An

)1/α

.

Here, we see directly that during automation the rate at which overall production changes

in response to technological advances in the automation sector are proportional to the use-

fulness of labor in the non-automation sector. That is,
∂Yf
∂Aa

= An.

Next, we compare the changes in total consumption in different phases. Following the

same rate of increase in Aa such that Aa becomes zAa, the rate of change in Yf depends

on the phase of the economy. The rate of change in C = Yf during the automation and

post-automation phases are given by:

(∆logC)autom = log

(
1 + 4A2

n(1 + zAautoma )

1 + 4A2
n(1 + Aautoma )

)

(∆logC)post−autom = log

(
(zApost−automa )

1
2 + An

(Apost−automa )
1
2 + An

)

Example 6 shows that the rate of change in total consumption rises as the productivity of

labor on the alternative uses rises. This result is different than the previous Cobb-Douglas

economy example, where only the productivity level of the automation good producer is

important, and the level of productivity in resource sector does not play role in the reallo-

cation effect. However, when we consider the general case for the Cobb-Douglas economy

including both direct and indirect substitution effects, the actual levels of productivites in

various sectors would play role in determining the reallocation effect. Therefore, as shown in

this example, how low-skilled labor is productive in its alternative usage is the main factor

that determines how reallocation of labor alters the net-effect of technological changes.

These two examples provide an important lens into why it can be that substitution for

labor can have very different effects depending on the alternative uses for labor. These

provides new insights into the Solow Paradox and the findings of Brynjolfsson, Rock, and

Syverson [24], for instance.
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6.7 Discussion of the Reallocation Effects in an n-Sector Economy

By using (I −Ω)−1
[

~αLi + αHi

]
= 1 , we can rewrite Eq. (??) as follows

log

(
pi
wL

)
= (I − Ω)−1

[
~

logBP
i + αHi log

(
wH
wL

)]
Consider an automation good sector j that is in transition, which implies that pj = wL.

Then, following the changes in productivities, pj = wL still holds for any such sector j and,

thus, dlog
(
pj
wL

)
= 0 holds. Then, for K = (I − Ω)−1, we have dlog

(
wH
wL

)
=

∑
i∈N

Kji
dlogAPi
αH
i∑

i∈N
Kji

.

Next, we show the change in total consumption during a transition phase.[
~logpi

]
= (I − Ω)−1

[
logBi + αLi logwL + αHi logwH

]
We multiply both sides by

[
~βi

]′
from left, and get∑

i∈N

βilogpi =
∑
i∈N

milogBi +
∑
i∈N

(
αLi mi

)
logwL +

∑
i∈N

(
αHi mi

)
logwH (44)

By taking logs of both sides of βiC = piCi, we get:

logC + logβi = logCi + logpi

By multiplying both sides with βi and summing up, we get:∑
i∈N

βilogC +
∑
i∈N

βilogβi =
∑
i∈N

βilogCi +
∑
i∈N

βilogpi

C = Cβi
i implies

∑
i∈N

βilogCi = logC, which then implies∑
i∈N

βilogβi =
∑
i∈N

βilogpi (45)

By plugging this Equation 45 into the Equation 44, we get:∑
i∈N

βilogβi =
∑
i∈N

milogBi + sLlogwL + sH logwH (46)

Then we get

∆ (sLlogwL + sH logwH) = −∆

(∑
i∈N

milogBi

)

∆ (sLlogwL + sH logwH) =
∑
i∈N

mi

(
4logAPi

)
−
∑
i∈N

log (B∗i )
after (∆mi)
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(sL∆logwL + logw∗L∆sL + sH∆logwH + logw∗H∆sH) =
∑
i∈N

mi

(
4logAPi

)
−
∑
i∈N

logB∗i (∆mi)

By using ∆logwL = ∆logC + ∆log (sL), and ∆logwH = ∆logC + ∆log (sH), we can

rewrite the equation above as follows:

∆logC =
∑
i∈N

mi

(
4logAPi

)
−
∑
i∈N

logB∗i (∆mi)−[sL (∆logsL) + sH (∆logsH) + logw∗L (∆sL) + logw∗H (∆sH)]

where

B∗i =
1

(APi )∗(αHi )α
H
i (αLi0)α

L
i0

[ ∏
j∈N

(αLij)
αLij

][ ∏
j∈N

(αnij)
αnij

] .
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