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Abstract 

 
Engineers, as implementers of technology, are highly complementary to the intangible 
knowledge assets that firms accumulate. This paper seeks to address whether technical talent is a 
source of rents for corporate employers, both in general and in the specific case of the surprising 
open-source launch of TensorFlow, a deep learning software package, by Google. First, I present 
a simple model of how employers can use job design as a tool to exercise monopsony power by 
partially allocating employee time to firm-specific tasks. Then, using over 180 million position 
records and over 52 million skill records from LinkedIn, I build a panel of firm-level investment 
in technological human capital (information technology, research, and engineering talent 
quantities) to measure the market value of technological talent. I find that on average, an 
additional engineer at a firm is correlated with approximately $854,000 more market value. Firm 
fixed effects and instrumental variables analyses using land-grant colleges and state-level 
changes in covenant-to-not-compete enforceability eliminate the statistical significance of this 
positive association, suggesting that engineering talent is correlated with the presence of 
complementary firm-specific intangible assets. Consistent with that hypothesis, AI-intensive 
companies rapidly gained market value following the launch of TensorFlow, while companies 
with opportunities to automate relatively larger quantities of labor with machine learning did not. 
Using a difference-in-differences approach, I show that the launch of TensorFlow is associated 
with an approximate increase of $2.7 million in firm market value per unit of Artificial 
Intelligence skills captured by LinkedIn.  
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“I was originally supposed to become an engineer but the thought of having to expend my 
creative energy on things that make practical everyday life even more refined, with a loathsome 
capital gain as the goal, was unbearable to me.”  

– Albert Einstein 
 

1. Introduction 
 
 Technological labor is a well-established driver of corporate market value, innovation, 

and productivity (Hall 1993, 2006; Tambe and Hitt 2012; Tambe 2014). Technical knowledge is 

scarce as well. Engineers, research scientists, information technology workers, and other types of 

technically-skilled labor must invest for years in school and training to build their technical 

human capital. Their reward for devoting their creative energies to these pursuits is, in part, 

higher average wages. Still, the capital gains in applying highly specialized knowledge can be 

partially bargained away by employers in markets with competitive labor supply. There is 

enduring disagreement about how and to what extent firms can appropriate the human capital 

investments of their workers (Acemoglu and Pischke 1998; Acemoglu and Pischke 1999; 

Brynjolfsson et al. 2018). There are many ways in which the returns to worker investments in 

human capital might lead to employer value gains. Engineers, as implementers of technology, are 

highly complementary to the intangible knowledge assets that firms accumulate.  

Firms hire engineers to build. The specifics of what technical workers build are subject to 

the discretion of their employers (presumably with capital gain as the goal). When workers 

prefer some tasks over others for non-pecuniary reasons, the firm gains monopsony power. In 

some cases, technological workers might sacrifice compensation for other perks or allowances 

(e.g. the right to publish scientific findings or working with cutting-edge technology) (Stern 

2004; Mas and Pallais 2017). In labor market contexts where both supply and demand are 

competitive, there is little excess surplus to split. Each party earns the marginal product of what 

it provides. For employees with accumulated firm-specific knowledge and little competition 
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(CEOs and high-level executives, for example), some of the surplus from firm-specific assets can 

be bargained away by the worker (Brynjolfsson 1994; Hart and Moore 1994). Some kinds of 

occupations, like managers and tech workers, have a mixture of both kinds of tasks. They do 

activities that require firm-specific capital that grow productivity and they also implement 

production processes in tasks that are more competitive.  

This paper seeks to address whether technical talent is a source of rents for corporate 

employers. The answer to this question informs whether strategic technological labor resources 

are a direct source of sustainable competitive advantage or operate via other factors (Barney 

1986; Crook et al. 2011). I approach this question in two ways: firstly by investigating the 

relationship between market value and aggregated measures of technological talent, and secondly 

by exploiting the unexpected open-sourcing of Google’s TensorFlow, a machine learning 

software package particularly well-suited for deep learning, at the end of 2015. The overall 

engineering value estimation aggregates across many different technologies, whereas the 

TensorFlow analysis illustrates a case where engineering talent is highly scarce. As an emergent 

technology, I find that the marginal value net of wages of additional AI talent is still well above 

the breakeven point for the average publicly traded firm. 

  If technological human capital is highly complementary to the firm’s asset base and 

both cause market value, for example, then failure to invest in worker retention may impair the 

value of the firm’s non-human capital. Technological human capital should cause market value 

in the case that tech workers are employed building firm-specific assets (even if those assets 

remain in the workers’ heads). In the first section of the empirical results, I use a firm-level panel 

of employment by worker type from LinkedIn merged to firm performance and value data to 

describe the component of market value attributable to technical talent. I estimate the causal 
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effect of additional engineering investment using proximity to land-grant colleges (Moretti 2004; 

Bloom et al. 2018) and changes in state-level covenant-to-not-compete (CNC) policy (Marx, 

Strumsky, and Fleming 2009; Marx 2011; Ewens and Marx 2017; Starr, Balasubramanian, and 

Sakakibara 2017; Balasubramanian et al. 2018; Jeffers 2017) as instruments for the engineering 

human capital in firms. I find that while engineering talent expenses and quantities are strongly 

correlated with market value the causal specifications using instrument variables and 

correlational estimates including firm fixed effects eliminate statistical significance. This is 

indicative of the presence of firm-level intangible asset service flows complementing the labor of 

technological workers, consistent with Brynjolfsson, Hitt, and Yang (2002); Tambe, Hitt, and 

Brynjolfsson (2012). The marginal technological hire seems to add little to the firm’s market 

value, but the average value of these workers is high in equilibrium. I find that each additional 

engineering worker is correlated with another $855,000 of market value for the firm, and in wage 

terms $1 of engineering wages is correlated with approximately $11.9 of market value. These 

values, however, are statistically indistinguishable from zero in the presence of firm fixed effects 

and instrument variables specifications. This suggests that the relationship between market value 

and technological talent is generated by firm-specific assets that are complementary to 

generalized engineering labor.  

In the current market environment, there are few, if any, technologies with the 

transformative potential of artificial intelligence and machine learning (Brynjolfsson, Rock, and 

Syverson 2017; Brynjolfsson, Mitchell, and Rock 2018b; Cockburn, Henderson, and Stern 2018; 

Agrawal, Gans, and Goldfarb 2018). One of the primary obstacles to widespread adoption of 

artificial intelligence is the available labor supply, with top-tier scientists earning more than $1 
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million in some cases.2 But the market is responding and the supply of machine learning 

engineers is increasing. Accordingly, to further understand the mechanism generating the large 

average correlational value of engineering talent and how it might be related to labor, the second 

part of the paper exploits the Google’s open-source launch of TensorFlow in November 2015. 

TensorFlow has a Python-based application programming interface (API) which greatly 

facilitates the ease and efficiency in building (and learning to build) deep learning models. The 

TensorFlow launch serves as a shock to the fixed costs of learning how to build deep neural nets 

(DNNs) for software engineers and analysts. Prior to TensorFlow, the ability to train DNNs was 

rare and highly specialized. The launch of this tool both effectively commodified deep learning 

as a skill amongst those with Python ability and accelerated expectations for how soon deep 

learning would be easy to learn more generally.  

Following the introduction of TensorFlow, I find a rapid increase in the rate and quantity 

of addition of Artificial Intelligence skills on LinkedIn. Mapping these increases to publicly-

traded firms, I find that the TensorFlow shock had differential effects on firm market value. The 

value of companies making investments in AI grew more following TensorFlow, even 

controlling for a wide variety of other complementary skills and including firm fixed effects. 

Each additional Artificial Intelligence (AI) skill record on LinkedIn is correlated with an increase 

in firm market value of nearly $2.7 million following the introduction of TensorFlow. The 

TensorFlow launch provides evidence that talent scarcity can be an important bottleneck to the 

realization of returns on technological assets. Lowering the barriers to acquiring a formerly rare 

and valuable skill, as TensorFlow does, makes technological supply competitive. This increased 

competition of technology suppliers (i.e. engineers) enables their employers to earn returns on 

                                                
2 https://www.nytimes.com/2018/04/19/technology/artificial-intelligence-salaries-openai.html 
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firm-specific assets. Additionally, I test whether it is firm-level opportunities to apply machine 

learning causing the increase in market value using the Suitability-for-Machine Learning (SML) 

measures in (Brynjolfsson, Mitchell, and Rock 2018a, 2018b). If anything, higher average firm 

SML scores are negatively correlated with market value. While it would be premature to assume 

that the stock market has fully priced in the automation potential of machine learning, this 

difference-in-differences result suggests AI-related repricing of corporate assets in 2016. 

The set of mechanisms by which technology workers might generate market value is 

generally applicable to all kinds of human capital. However, technological skills can change or 

depreciate much faster than other kinds of human capital. What makes technology workers, and 

engineers in particular, useful for understanding the underlying value creation processes of 

workers in firms is this capacity for discrete changes in the competitive environment. 

TensorFlow’s introduction is one such example among many. Technological shifts therefore 

supply outside researchers with a chance to study the outcomes of employment-related relational 

contracts. Analogous shifts to TensorFlow for managerial workers, for example, might be more 

challenging to find. Still, studying technological changes can supply insight into how companies 

and employees divide the gains from business activity. These conclusions, in some cases, can be 

applied to other kinds of employees. Ordinarily it is a substantial challenge to look within the 

firm with granular information about specific types of employed workers and the skills they 

have. This study is among the first to normalize and deploy detailed data on firm employment 

over time and how workers contribute to the value of their employers.  

The paper is organized as follows: Section 2 describes the relevant literature in the 

economics and strategy of human capital, technology, and market value. Section 3 describes a 

theoretical model of how human capital can enter the valuation of firms. Section 4 details the 
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construction of the datasets. Section 5 describes and analyzes the relationship between market 

value and aggregated engineering talent. Section 6 offers an empirical case study of the 

TensorFlow launch and discusses the market value effects of making AI talent more abundant. 

Section 7 concludes. 

 

2. Related Research on Human Capital, Technology, and Market Value 

 This study fits within a tradition of human capital and technology studies that can be 

traced back to (Becker 1962). How human capital is accumulated and why firms are motivated to 

invest in it has long been a puzzle for social scientists. A key question is how easy it is for 

workers to apply their human capital across different employers. Transferrable skills and 

knowledge (general human capital) are subject to competitive bidding pressure from firms, while 

the returns to firm-specific investments are subject to bargaining arrangements in contracting. 

Labor market frictions might therefore create the right incentives for employers to invest in their 

workers’ human capital (Acemoglu 1997; Acemoglu and Pischke 1998; Acemoglu and Pischke 

1999). A related literature considers the market power aspect of these frictions, studying 

monopsony power (Bhaskar, Manning, and To 2002; Ashenfelter, Farber, and Ransom 2010). 

Firms insulate themselves from competitive pressure in myriad ways, including (but not limited 

to) regional concentration (Azar et al. 2018), organizational design and technology (Stole and 

Zwiebel 1996b), and incomplete contracts (Stole and Zwiebel 1996a).  

Match-specific value between employer and employee also leads to productivity-ability 

sorting, at which point larger surplus values are split between elite matches. Tervio (2008) offers 

an assignment model approach to understanding the value of CEOs that is instructive for the 

skilled worker context considered here. If part of the work activities bundled into a given 
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technical job are investments in match-specific value and the remaining portion is assigned to 

competitive labor tasks, the firm pays wages at the competitive labor margin while appropriating 

the bundled match-specific value. This will not be the case, as in Tervio (2008), when all of the 

labor effort is devoted to match-specific tasks or, as in traditional neo-classical labor supply 

functions, the labor effort is competitive and commodified. The context considered here is in-

between: engineers, much like managers, spend part of their time building non-marketable firm-

specific assets and part of their time maintaining or implementing production in competitive 

arenas. This generates an incentive for the firm to use the allocation of tasks (job design) as an 

instrument of monopsony power. Of course, firms can modify how workers perceive the firm-

specificity of their human capital investments, wherein workers might be more willing to learn 

firm-specific skills if they believe them to be marketable (and conversely, less willing if the 

skills were perceived as unmarketable) (Coff and Raffiee 2015; Raffiee and Coff 2016). This 

paper makes a simplifying assumption that workers and firms correctly understand the firm-

specificity of their human capital. Campbell, Coff, and Kryscynski (2012) argue for mobility 

constraints as a stronger influence than firm-specificity of human capital. Supply-side factors 

affecting worker bargaining power and the propensity for workers with firm-specific assets to 

start new firms (as in (Campbell et al. 2012; Eisfeldt and Papanikolaou 2014; Jovanovic 1979)) 

are an important component of the firm’s share of created value. Monopsony power can be 

related to employer concentration (Azar et al. 2018; Benmelech, Bergman, and Kim 2018) and 

financial constraints also affect hiring decisions (Benmelech, Bergman, and Seru 2011). The 

mechanism for engineer value in this paper is the interaction of task allocation and firm-specific 

assets with engineering labor complements.  
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 Fixed costs of capital investment apply to human capital as well, wherein quasi-rents can 

accrue to firms which have already sunk the necessary recruitment and training expenses 

required to make an employee productive (Hall 2001). The process for valuation of labor assets 

in these studies is functionally identical to the valuation of capital assets. Because the marginal 

adjustment costs of competitors set the price at which the asset is available, firms will hire 

capital until the marginal adjustment costs of competitors is equal to the marginal value created 

with that capital (Tobin’s Q) (Hayashi 1982; Tobin et al. 1976; Kaldor 1966).3 The difference 

between the firm’s adjustment costs and those of its competitors pin down the excess profit of 

the firm in the short-run. These adjustment values for “vanilla” labor have been estimated at low 

values in the past (Hall 2004; Hall 2017).  

Nevertheless, the firm’s value share of some types of human capital has been estimated 

as large and meaningful. Specialized labor is highly sought-after by corporate employers. The H-

1B visa program, which expands the talent pool for technically-savvy workers, is typically 

oversubscribed such that eligible talent from outside the U.S. must file for a lottery. This 

increased quantity of STEM workers from the H-1B program led to greater productivity (Peri, 

Shih, and Sparber 2015), within-firm employment (Kerr, Kerr, and Lincoln 2015), and rates of 

innovation and entrepreneurship (Kerr 2013). Technological talent is deployed not only in 

implementing the production function, but also in building the knowledge and business process 

assets of the firm which facilitate growth. Shifts in the availability of technological talent 

therefore cause valuation changes via many channels, including but not limited to: price effects 

on existing assets, appropriability of human capital, marginal labor productivity, and future 

innovation opportunities.  

                                                
3 This leads to the main market value equation I apply in the empirical section. 
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Research and development expenses, of which a substantial component is researcher 

salaries, are reliably strongly correlated with market value and drivers of patenting and other 

innovative activity (Hall 1993, 2006). The estimated average Q-value of R&D assets is nearly an 

order of magnitude above that of property, plant, and equipment in Compustat firms (Peters and 

Taylor 2017; Brynjolfsson, Rock, and Syverson 2018). This is suggestive that R&D-intensive 

firms tend to also accumulate hidden intangible complements – business processes, training, 

knowledge, and even firm culture – which contribute to market value in ways that are difficult to 

capitalize on a balance sheet. These factors, even with relatively coarse measures of 

organizational investment, have predictive power in the cross-section of stock returns (Eisfeldt 

and Papanikolaou 2013). 

 Intangible assets are complementary to and correlated with investment in technological 

human capital (Bresnahan, Brynjolfsson, and Hitt 2002; Brynjolfsson, Hitt, and Yang 2002; 

Saunders and Tambe 2015; Saunders and Brynjolfsson 2016). Further, the shift toward intangible 

assets in the digital age has opened up a research agenda into the productivity effects of IT 

capital, with technology diffusion serving as a leading explanation for the widening productivity 

differences between firms at the frontier and firms at the median productivity level (Syverson 

2011; Lustig, Syverson, and Van Nieuwerburgh 2011; Andrews, Criscuolo, and Gal 2015). 

Intangible assets are inherently hard to measure and constitute an increasingly large component 

of the U.S. economy’s asset stock. One explanation for the high market value of engineers in the 

empirical results of this paper is that firms with more engineers also tend to build up intangible 

assets which are left off of the corporate balance sheet. Firms often fail to capitalize software 

expenses, for example, causing correlational analyses to attribute market value to the observable 

complements (wage value, in this case). This quantity is the focal object of study in (Tambe et al. 
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2018). This study begins at the aggregated level of technological labor, and then studies the labor 

shock of TensorFlow in AI as a means of understanding specifically how scarce labor can serve 

as a bottleneck to firm value creation. 

 Similar studies of technological tool-based and technological knowledge-based 

exogenous events have addressed how such changes impact various performance measures for 

firms and other entities. Thompson (2017) studies the economic effects on firm productivity of 

the switch to multicore processing. Ewens, Nanda, and Rhodes-Kropf (2018) analyze the 

entrepreneurial effects of the launch of Amazon Web Services (AWS). AWS bundled a number 

of general-purpose technologies together and made computing infrastructure rentable.4 This was 

a major reduction in the fixed costs of starting a new technology-oriented business. Teodoridis 

(2017) shows that the hack of the Microsoft Kinect made motion-sensing much cheaper, 

reducing the need for research teams to collaborate with specialists in motion-sensing 

technology. The hack democratized the technology, similar to the way in which the launch of 

TensorFlow has (partially) democratized deep learning. Technological advances need not have 

such an effect; burden-of-knowledge (Jones 2009) effects might dominate in the case that there is 

an exogenous increase in knowledge capital that is costly to process (Agrawal, Goldfarb, and 

Teodoridis 2016). This kind of change might necessitate the use of subject matter specialists in 

increased proportions. Most recently, (Zyontz 2018) has studied the team expertise structure of 

cell biology researchers following the advent of CRISPR, a precise gene editing tool.  

These studies of how production changes in response to inventive activity have in 

common a theoretical underpinning in the value of “discovery information” (Hirshleifer 1978). 

Discovery information refers to “detection of properties of Nature that permit the development of 

                                                
4 Though not in 2006, AWS now includes AI services. 
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new tools or the utilization of new techniques”. In Hirshleifer’s example, the prices of state-

contingent claims adjust when the knowledge of the new state probabilities (e.g. the probability 

that deep learning will be made easier) will be obtained publicly before the close of trading. As 

with Eli Whitney’s cotton gin, a “route to profit” other than patent protection for new intellectual 

property is in speculation on the business prospects of firms technologically exposed industries. 

In AI, the pecuniary benefits of open-source innovation, by revealed preference, outstripped the 

benefits of private IP for Google in TensorFlow’s case.  AI shares characteristics of both types 

(tool and knowledge) of exogenous changes, though one of Google’s stated aims in open-

sourcing TensorFlow was to increase usability and accessibility of deep learning for engineers 

throughout the economy.5 A primary pecuniary benefit of making AI models easier to build is an 

expected subsequent drop in marginal wage rates for AI-intensive human capital. 

 Like ICT, Artificial Intelligence-related assets are mostly intangible and the returns are 

mostly in the future at this point (Brynjolfsson, Rock, and Syverson 2017). The recent progress 

in AI is mostly a result of advances in deep learning techniques, a specific kind of machine 

learning approach. Deep learning and neural net algorithms are decades old, but have only 

recently grown in popularity as large-scale datasets and cheap computational power have made 

them viable in new domains (White and Rosenblatt 1963; Rumelhart, Hinton, and Williams 

1986; LeCun et al. 1998; LeCun, Bengio, and Hinton 2015). AI is an umbrella discipline, 

including machine learning (which itself includes deep learning) as well as rules-based or expert 

systems approaches to problem solving. As a new kind of software, however, deep learning and 

AI more broadly is a general purpose technology (Bresnahan and Trajtenberg 1995; Bresnahan 

2010). It is potentially pervasive, improves over time as better and more data arrive, and can 

                                                
5 https://www.wired.com/2015/11/google-open-sources-its-artificial-intelligence-engine/ 
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spawn complementary innovation. AI is a general purpose prediction technology (Agrawal, 

Gans, and Goldfarb 2017, 2018). Of course, deep learning is not the only prediction technology 

of its kind – similar problems might be solved by simpler methods like linear regression. Yet the 

performance of deep learning on formerly insurmountable tasks (e.g. image and speech 

recognition) has marked a watershed moment in the cost of prediction.  

Since prediction is pervasive throughout the economy, the promise of AI is that it will 

lead to business process innovation, job redesign, and new engineering advances across many 

domains in the economy (Furman and Seamans 2018; Brynjolfsson, Mitchell, and Rock 2018b). 

Critically, deep learning overcomes the obstacle of Polanyi’s Paradox where “we know more 

than we can tell” (Polanyi 1966; D. H. Autor 2014). For deep learning models, we need only 

measure inputs and outputs. The map between them is learned by the algorithm. Artificial 

General Intelligence (AGI), where machine intelligence equals or surpasses human intelligence 

in all cognitive tasks, is technologically far away at the moment. But the relatively brittle, 

bespoke applications of deep learning could feasibly cause large shifts in labor demand and 

economic value creation processes (Brynjolfsson, Hui, and Liu 2018).6  

Since the effects are mostly in the future, market value is one of a handful of measures 

which is sufficiently forward-looking to account for returns to investment activity in the present 

day. Further, as noted by (Raj and Seamans 2018), relatively little data on AI at the firm-level is 

available. This study builds and measures firm-level proxies for AI investment as of the end of 

2017. As a GPT, the effects of machine learning on firms and labor markets will likely be diffuse 

across many industries (Brynjolfsson, Mitchell, and Rock 2018a; Felten, Raj, and Seamans 

2018). Like prior waves of automation, machine learning will differentially impact tasks that are 

                                                
6 Applications so far include: Self-driving cars, call center automation, insurance claims processing, materials 
discovery, drug discovery, and language translation 
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technologically and socially feasible (Autor, Levy, and Murnane 2003; Acemoglu and Autor 

2011; Autor and Dorn 2013). Yet for engineering value, we can study now how the decision to 

make an advanced tool widely available lowered workers’ entry costs and facilitated a shift in 

technological investment. 

 

3. Theoretical Framework for Valuing the Firm’s Share of Human Capital Investment 

 Standard investment theory requires little modification for human capital to enter into 

market valuations of firms (Tervio 2008). Here I follow a setup common to (Lucas 1967; 

Hayashi 1982; Wildasin 1984; Hayashi and Inoue 1991; Yang and Brynjolfsson 2001; 

Brynjolfsson, Rock, and Syverson 2018). The firm must choose the right investment and labor 

quantities to maximize profits: 

max
$,&

𝑉(0) = 	- 𝜋(𝑡)𝑢(𝑡)𝑑𝑡
2

3
; 			𝜋(𝑡) = 𝑝𝑓(𝐾, 𝐼, 𝐿, 𝑡) − 𝑤<𝐿 − 𝑧<𝐼 − 𝑟<𝐾		(1)	 

Profits are denoted by 𝜋(𝑡); 𝑢(𝑡) denotes the compound discount factor and p is the price of 

output. F is assumed nondecreasing and concave in capital (K) and labor (L), and nonincreasing 

and convex in investment I. W and Z refer to the price vectors at time t for wages and 

investment, respectively (superscript t is dropped from now on). Assume F is homogeneous in 

the first degree. We have the following growth constraint on capital stocks of varieties indexed 

by j: 

𝑑𝐾@
𝑑𝑡 = 𝐼@ − 𝛿@𝐾@				∀𝑗 = 1,2,… , 𝐽 

Then the firm’s Hamiltonian to maximize is: 

𝐻(𝐾, 𝐼, 𝐿, 𝑡) = (𝑝𝑓(𝐾, 𝐼, 𝐿, 𝑡) − 𝑤𝐿 − 𝑧𝐼)𝑢(𝑡) +	I𝜆@K𝐼@ − 𝛿@𝐾@L						(2)
M

@NO
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With the following constraints7: 

𝜕𝐻
𝜕𝜆@

= 𝐾Q̇ = 𝐼@ − 𝛿@𝐾@							∀𝑗	𝑎𝑛𝑑	∀𝑡	 ∈ [0,∞] 

𝜕𝐻
𝜕𝐾@

= −𝜆Q̇ = 𝑝𝐹Z𝑢 − 𝜆@𝛿@												∀𝑗, 𝑡 

𝜕𝐻
𝜕𝐼@

= 0 = [𝑝𝐹$\ − 𝑧@] 𝑢 + 𝜆@							∀𝑗, 𝑡 

𝜕𝐻
𝜕𝐿^

= 0 = K𝑝𝐹&_ − 𝑤^L𝑢									∀𝑖 = 1,2,3,… , 𝐿	𝑎𝑛𝑑	∀𝑡 

lim
<→2

𝝀(𝑡)𝑲(𝑡) = 0 

This implies that the firm’s market value is the sum of the quantities of its capital assets 

multiplied by their replacement value prices added to the installed value (where 𝜆 is the installed 

asset price). The solution for the firm’s market value under the condition that marginal and 

average wages are equivalent in all cases is then8: 

𝑉(0) = 	I𝜆@(0)𝐾@(0)
M

@NO

								(3) 

We can relax the assumption that wages are equal to marginal and average products of labor. 

	- 	gI[𝑝𝐹h\𝐾@ + 𝑝𝐹$@𝐼 − 𝑧@𝐼@] +IK𝑝𝐹&^𝐿^ − 𝑤^L
&

^NO

M

@NO

i 𝑢(𝑡)𝑑𝑡 = 𝑉(0) = 𝑉𝐾 + 𝑉𝐿								(4)
2

3
 

And now we are primarily concerned with the value of labor term 𝑉& , and labor varieties are 

indexed by i. 

                                                
7 �̇� ≡ mn(<)

m<
		∀𝑥(𝑡) 

8 𝑉(0) = 	∑ 𝜆@(0)𝐾@(0)
M
@NO = 	∑ (𝜆@(0)𝐾@(0) −	 lim<→2𝜆@(𝑡)𝐾@(𝑡)) = 	∑ ∫ (−𝜆Q̇𝐾@ − 𝜆@𝐾Q̇)𝑑𝑡

2
3

M
@NO

M
@NO =

	∫ (	∑ [𝑝𝐹h\𝐾@ + 𝑝𝐹$@𝐼 − 𝑧@𝐼@] + ∑ (𝑝𝐹&^𝐿^ − 𝑤^))𝑢(𝑡)𝑑𝑡 = 𝑉(0)&
^NO

M
@NO

2
3  
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𝑉& = - 𝑉&<𝑢(𝑡)𝑑𝑡
2

<N3
= - IK𝑝𝐹&^𝐿^ − 𝑤^L

&

^NO

𝑢(𝑡)𝑑𝑡						(5)
2

<N3
 

In the case that wages and marginal products of labor are equivalent for all labor types, at all 

employment quantities, and in all time periods, this term in equation (5) is zero. Since wages are 

set competitively by the market and the asset holdings of different firms vary, it is unlikely to be 

the case that all firms individually face the same marginal productivity of labor as the aggregate. 

Wages, on the other hand, are more likely to be consistent given ability or skills in the same 

region and industry, though there is evidence to suggest wage inequality can also be driven by 

firm characteristics (Song et al. 2015).  

 Equation (5) describes the potential surplus that an employer receives from the 

aggregated marginal products of its employees. The worker problem is deliberately simple: 

workers seek to maximize their wage subject to a constraint that it be above their reservation 

wage. Workers have one divisible unit of labor to supply. Assume now that the production 

function can be decomposed as follows as a function of the inputs in (1), but now firms can 

choose to assign workers to firm-specific labor (H) or general labor (L).  

max
$,r,&

𝑉(0) = 	- 𝜋(𝑡)𝑢(𝑡)𝑑𝑡
2

3
; 	𝜋(𝑡) = 𝑝𝐴<𝐹(𝐾, 𝐼, 𝐻, 𝐿, 𝑡) − 𝑤r< 𝐻 − 𝑤&<𝐿 − 𝑧<𝐼 − 𝑟<𝐾								(6) 

Subject to additional constraints for workers indexed by l: 

𝐻u + 𝐿u = 1	∀𝑙	 ∈ 1,2,3,… , 𝑁	 

𝐻u ≥ 0, 𝐿u ≥ 0			∀𝑙	 ∈ 1,2,3,… , 𝑁	 

𝑤ry ≥ 𝑤3,𝑤&y ≥ 𝑤3	∀𝑙	 ∈ 1,2,3,… , 𝑁	∀𝑡 

So that all workers have only one unit to supply, that negative labor is not possible, and that the 

reservation wage for all workers 𝑤3 is met, guaranteeing participation. Of course, every 

employer has some tasks that are firm-specific and that value, rather ironically, will be 
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compensated as part of a general wage because workers can foresee some of what their 

employers will have them do. The firm-specific value I consider here is “extra” and arises from 

an incomplete ex-ante contracting problem. The worker does not really know everything their 

employer might ask of them. Realistically extra firm-specificity might have its roots in job 

search frictions, worker preferences for more specialized tasks, unique business strategies and 

production functions, or even programs where workers are allowed to spend some proportion of 

their time as they choose (Stern 2004). Given that this firm-specificity of tasks exists, however, 

the job design is a channel for the exercise of monopsony power in the labor market.    

 The firm will maximize the present value of all future discounted profits (productivity 

term A is included to note that productivity can change over time). 𝐹(𝐾, 𝐼, 𝐻, 𝐿, 𝑡) serves to 

transform capital, investment, firm-specific labor, and general labor into production output. In 

addition to the same set of assumptions on equation (1) to get the solution in equation (4), I 

assume that F is nondecreasing and concave in H and L. Firms therefore know the ability of the 

workers they hire, and choose for them whether they work on “H” tasks or on “L” tasks. I also 

assume that the surplus from firm-specific tasks H are more appropriable to the firm than non-

specific tasks, and that there are strictly increasing differences in the marginal value of H and L 

tasks (this guarantees a single-crossing of the marginal values of firm-specific and general labor 

task marginal products). Assume the firm’s share of firm-specific task marginal products of labor 

is 𝛽 ∈ [0,1].	Formally, if Q = H + L, 

∃𝑄∗ = 𝐻∗ + 𝐿∗	𝑠. 𝑡. 

𝛽
𝜕𝐹
𝜕𝐻

(𝑄, 𝐾, 𝐼) >
𝜕𝐹
𝜕𝐿

(𝑄,𝐾, 𝐼)				∀𝑄 < 𝑄∗ 

and 
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𝛽
𝜕𝐹
𝜕𝐻

(𝑄, 𝐾, 𝐼) ≤
𝜕𝐹
𝜕𝐿

(𝑄,𝐾, 𝐼)			∀𝑄 ≥ 𝑄∗	 

∵
𝜕�𝐹
𝜕𝐻𝜕𝐿

(𝐻, 𝐿, 𝐾, 𝐼) > 0			∀(𝐻, 𝐿, 𝐾, 𝐼)				(7) 

 This assumption characterizes firm-specific and general labor as complements, both 

required as part of the production function. Though I assume this for tractability purposes, future 

work could investigate relaxing this assumption. The firm now observes its hired labor pool and 

assigns each worker l to some proportion 𝛼u of firm-specific tasks, with the remainder of the 

worker’s time spent on non-specific tasks (or general tasks).9 The employers make these 

decisions perhaps with the workers’ skills or abilities in mind. The assignment function for the 

employer seeks simply to maximize the marginal product of each worker’s labor given the other 

inputs factor vectors. 𝜶 denotes the Nx1 vector of assignments to firm-specific tasks and each 

worker has 1 unit of labor to supply: 

𝜶∗ = argmax
𝜶

{𝛽
𝜕𝐹
𝜕𝐻

(𝐻𝜶, 𝐿𝜶, 𝐾, 𝐼)	 +
𝜕𝐹
𝜕𝐿

(𝐻𝜶, 𝐿𝜶, 𝐾, 𝐼)	}					(8) 

𝐻𝜶 = - 𝛼u𝑑𝑙
�

uN3
 

𝐿𝜶 = - (1 − 𝛼u)𝑑𝑙 = 𝑁 − 𝐻𝜶
�

uN3
 

𝑠. 𝑡.		𝛼u ∈ [0,1]	∀𝑙 

Here the firm only receives 𝛽 units of marginal product for each unit of H tasks; workers 

bargain away the remaining proportion. The employer’s share of the marginal product of each 

worker is a sum of the task-specific marginal products. We guarantee participation of each of the 

workers with the participation constraint in (6). Sorting workers in order of their proportion of 

                                                
9 Assume, for example, that each worker has an endowed positive productivity level in H and L tasks (𝜔r, 𝜔&), drawn 
from a stable distribution, that the firm can observe. 
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work in the firm-specific task (index the highest proportion worker at 0, lowest at N), we get the 

period-specific employers’ and workers’ returns to labor in equations (9) and (10) (given t). The 

workers in general tasks earn a wage 𝑤&  for which the firm is a price-taker. Bargaining enters in 

a specific way – while the share is fixed, workers bargain away surplus proportional to the 

marginal product of firm-specific tasks at their rank l. The workers’ share of firm-specific 

surplus would be lower if all workers accepted the same share of the aggregate marginal value of 

firm-specific labor.10 

𝑉&< = 	- �𝛼u∗𝛽
𝜕𝐹
𝜕𝐻

(𝐻u, 𝐿u, 𝐾, 𝐼) + (1 − 𝛼u∗) �
𝜕𝐹
𝜕𝐿

(𝐻u, 𝐿u, 𝐾, 𝐼) − 𝑤&�� 𝑑𝑙
�

uN3
				(9) 

𝑤u = 𝛼u∗(1 − 𝛽)
𝜕𝐹
𝜕𝐻

(𝐻	, 𝐿	, 𝐾, 𝐼) + (1 − 𝛼u∗)𝑤&							(10) 

where 

𝑋u = -
𝜕𝑋
𝜕𝑗 𝑑𝑗

u

@N3
	𝑓𝑜𝑟	𝑋 = 𝐻, 𝐿 

And at l = N where N is chosen to maximize profits11: 

𝛼�𝛽
𝜕𝐹
𝜕𝐻

(𝐻�, 𝐿�,𝐾, 𝐼) + (1 − 𝛼�) �
𝜕𝐹
𝜕𝐿

(𝐻�, 𝐿�, 𝐾, 𝐼) − 𝑤&� ≤ 0 

The firm’s returns to labor investments come from two sources: the share of total surplus 

they recover from firm-specific labor H and the difference between the marginal product of 

general-task labor and the general labor wage set by the market. Under the standard neoclassical 

assumptions that general-task labor is competitive and the demand curve for L is perfectly 

elastic, this second term under the integral in equation (9) goes to zero. If employers do not 

                                                
10 Again for tractability, I assume the rate of change in labor of both types to be differentiable in the index of the 
workers l. This could easily be discretized and summed instead.  
11 If the share of general tasks is 1 at l=N, this reduces to difference between the marginal product of general labor and 
the prevailing general wage in the market (which we expect is close to zero). High frictions are also important, though 
not directly included in the model (they can be thought of as entering through the firm’s bargained share). 
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invest in firm-specific labor tasks, the market value of labor will be zero. Otherwise, the first 

term in the integrand in (9) represents the employer share of firm-specific labor. Maintaining the 

assumption that the firm surplus for general task labor is close to zero, the correlation between 

human capital measures and market value is affected by 1) changes in the firm’s share of surplus 

𝛽 and 2) The quantity of firm-specific labor at the firm, and 3) complementarities (or substitution 

effects) between capital and firm-specific labor. Market value regressions without firm-specific 

labor measures may therefore be sensitive to omitted variable bias.  

On the labor side, earnings come from two sources: general-purpose labor marginal 

wages and the workers’ bargained shares of marginal firm-specific labor value. Differences 

between average and marginal wages accrue to the firm. Incidentally this model may partly 

explain the recent separation between labor productivity growth and wage growth (Brynjolfsson 

and McAfee 2014; Bivens and Mishel 2015; Stansbury and Summers 2017). If general labor 

wages are falling, perhaps due to outsourcing or increased labor supply, wage growth must come 

from either increased bargaining for firm-specific surplus or larger overall firm-specific surplus 

from labor. If employers, perhaps because of specialization or insulation from competition in 

labor markets, shift their share of work to firm-specific tasks, this could also put downward 

pressure on wages.1213 The single-crossing property in (7) suggests too that as employers 

increase total employment past 𝑄∗, general-task labor will increase as a share of total labor in the 

firm.14  

                                                
12 The bargained firm-specific wage must be as least as large as the general wage, or workers can move to a firm that 
will pay them for entirely general labor.  
13 Lippman and Rumelt (1982) suggest another possible explanation in business complexity. Competitive pressure is 
ameliorated when business processes are especially difficult to reverse-engineer. Technology has expanded the 
combinatorial space of viable business models. In the long-run profits are competed away, but in the short-run a 
curse of economic dimensionality with scarce productive inputs can make competitive effects slow to act. I leave the 
exploration of the cardinality of competition to future work. 
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The model can be applied to specific occupations as well. Hiring larger quantities of a 

given occupations will mean that more of the available firm-specific surplus is captured. As 

bottlenecks of expensive firm-specific labor are alleviated, the firm comes closer to realizing the 

maximal value of complementary assets. Sample inverse labor demand curves are displayed 

below in the figure. The figure shows wage as a function of quantity demanded (𝑄�) for general-

task labor (blue), firm-specific task labor less the baseline wage for general labor (red), and the 

aggregate attainable by varying alpha in a linearly decreasing manner (purple). The single-

crossing point is where the red and blue curves intersect. 

 

Figure 1 – Labor Inverse Demand Curves with Firm-Specific Tasks 

These dynamics provide a motivation for why the labor buyer surplus in (5) might vary 

as a function of the productivity of firm-specific assets and labor. Since wages are a function of 

supply of labor conditional on skills and abilities, a technological shock increasing supply and 

driving wages for general-task labor down (or expected future wages) would change the firm’s 

valuation. This mechanism works both through the direct effect of lower wages, but also through 
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the marginal productivity of firm-specific capital and installed capital assets, i.e. changes in 𝝀, at 

the new equilibrium. TensorFlow is the expected future labor supply-increasing shock I now turn 

to for the case of AI. Machine learning talent is an expensive complement to machine learning 

capital assets like data and computational power. TensorFlow leads to more abundant machine 

learning labor, alleviating a bottleneck preventing employers with machine learning assets from 

realizing larger returns. For the case of machine learning talent, the expectation is that 

TensorFlow or similar software cause a future increase in the available labor supply. The figure 

below displays a simplified version of the intended supply shift from the green supply curve to 

the orange one. This moves the labor market equilibrium from the intersection of the purple 

inverse demand function (as above) and the green supply curve to the intersection of the inverse 

demand function and the orange supply curve. Wages are set by the intersection of the supply 

curves with the purple demand curve, and therefore the shift from the green supply to the yellow 

supply increases the firm’s surplus as the buyer of labor (in red). In the last part of equation (9), 

the firm sets N such that the marginal surplus of an additional worker is less than or equal to 

zero. The alleviation of large search frictions and/or inelastic supply (omitted from the model, 

but a major concern for AI employers) would cause the equilibrium hiring breakeven point to 

increase. In Section 6 I provide evidence that this is what happens following the launch of 

TensorFlow. 
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Figure 2 – Labor Market Equilibria with Firm-Specific Tasks and Increasing Skill Supply 
 

 
 

4. Dataset Construction  

 Member profile information from LinkedIn serves as my main data source. Part of the 

reason the firm value of engineering and technological talent has been difficult to measure in the 

past is because of a relative paucity of granular data in this area. Online platforms like LinkedIn 

present an opportunity to tie organizations to the skills, education, career histories, and 

professional networks of their staff. Outside of governmental and administrative datasets, data at 

this scale and level of detail is unusual. LinkedIn has over 575 million members in over 200 

countries and territories (more than 150 million U.S. members, 15 million in Canada, and 25 

million in the U.K.). Additionally, over 26 million companies, 60 thousand schools, and 35 
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thousand skills are represented on LinkedIn.15 The LinkedIn platform has become a standard tool 

for job seekers in many labor markets. With over 180 million individual position records 

spanning from 2000 to 2017, I build firm-level aggregates of worker years of education as well 

as counts and total wage bills (employee counts multiplied by Bureau of Labor Statistics average 

wages) of specific varieties of worker. Engineering, information technology, and research worker 

talent counts and wage bills are some of the aggregated firm variables I construct. The process is 

similar to the variable construction in (Brynjolfsson et al. 2018; Benzell, Lagarda, and Rock 

2018). Figures 3a-c show a representative LinkedIn profile. 

 

Figure 3a, 3b, 3c – LinkedIn Profile, Experience, Education and Skills 

 

 The LinkedIn data covers a substantial portion of the global knowledge and human 

capital-intensive worker population. The representativeness of the LinkedIn panel is imperfect, 

with predictably sparser coverage of smaller (non-public) organizations, less educated workers, 

blue-collar workers, and non-U.S. firms. Further the sample quality varies by year as LinkedIn’s 

                                                
15 Source: The LinkedIn Economic Graph Research team. About 70% of platform membership is outside the U.S. The 
growth rate of membership is approximately 2 members per second as of July 2018. 
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adoption diffused through the workforce. While there are data going back substantially farther 

than 2000, the coverage at that point relies upon members populating their pages with highly 

detailed work histories. Additionally, the incentives governing whether to post certain 

information differ across workers. The selection of workers observed on LinkedIn is likely to 

differ in meaningful ways from the underlying employee population. Workers seeking 

employment, for example, are more likely to have updated employment history and skills 

information on their profiles. 

I pursue a number of strategies to mitigate these potential sources of bias. The simplest is 

the inclusion of combinations of firm, industry-time, and time fixed effects in all regression 

specifications. In all specifications, however, I correct for occupation, year, and firm-based 

discrepancies between LinkedIn and administrative labor datasets from the Bureau of Labor 

Statistics Occupational Employment Survey (BLS-OES). The BLS-OES survey provides 

detailed industry-level measures of occupational employment and wage. As in Brynjolfsson et al. 

(2018) and Benzell, Lagarda, and Rock (2018), I build a crosswalk between LinkedIn’s internal 

occupational classification system and the BLS-OES Standard Occupational Classification 

(SOC) Code by year. For firm-level aggregate employment data, I use the Compustat/Capital IQ 

North America database value of EMP. In the case that the EMP value is missing or erroneous, I 

substitute the predicted value of EMP from a linear model trained on known EMP values of the 

following form16: 

𝐸𝑀𝑃�<� = 𝛼 + 𝐿𝐼 <� 𝛽 + 𝛾@< + 𝜖^< 						(10) 

The predicted EMP for firm i in year t is a function of the intercept, the LinkedIn total 

count for that firm in that year, a fixed effect for that industry-year combination, and an error 

                                                
16 Prediction accuracy gains from models with higher complexity (e.g. tree-based models or support vector 
machines) were relatively small 
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term. With knowledge of the total firm-year varying employment, the industry classification (3-

Digit NAICS Code), the LinkedIn employment counts by LinkedIn occupational category, and 

the industry-level employment composition according to the BLS-OES, I build a firm-year-

occupation-level coverage ratio for all of the publicly traded firms in Compustat/Capital IQ. 

Whereas omitting the occupational coverage differences within firm implicitly assumes all 

workers in the same firm face the same incentives to post information to their profile, this 

adjustment assumes that all workers with the same occupation in the same firm in the same year 

are subject to similar data supply incentives. Firm-level differences and year-level differences in 

coverage are even more substantial, and handled by this procedure. Meanwhile this adjustment 

does make a potentially significant assumption that workers employed by U.S. publicly traded 

firms but working elsewhere are employed in similar proportions to the BLS-OES industrial 

occupational employment shares. The appendix has the regression results for equation (10) in 

Table A1. Typically firms have about 1.9 times as many employees as are available on LinkedIn, 

controlling for the asset base size and industry-year.  

In detail, first I take the occupational employment shares by industry-year from the BLS-

OES. I then calculate the industry-employment shares by industry from Compustat using either 

EMP or predicted EMP from (10). Re-weighting the BLS-OES occupation-industry-year shares 

by the Compustat industry-year shares and summing by occupation yields the Compustat 

occupation-year shares. These Compustat occupation-year shares are multiplied by total 

Compustat employment (emp or predicted emp) to get the total Compustat employment by 

occupation-year. The total employment by occupation in publicly traded firms on LinkedIn is 

compared to this Compustat employment by occupation value to get a job-year-level coverage 

value 𝜆@< for the proportion of Compustat employment in job j and year t captured on LinkedIn. 
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The total LinkedIn count in year t  at the firm i is then divided by the total Compustat 

employment in that firm to get 𝜃^<, the firm-year coverage ratio. Multiplying these two factors is 

analogous to flipping two biased coins – one for if the worker in firm i is captured by Compustat 

and LinkedIn, and another for if the worker with job j is on Compustat and LinkedIn. Since these 

coverages will double-count the employment weighted average coverage ratio by firm 𝜃Q<    , we 

divide that out such that total adjusted LinkedIn employment is equal to total Compustat 

employment. The relatively simple normalization function to convert observed LinkedIn 

occupation-firm-year counts into BLS-OES-Compustat standard occupation-firm-year counts is 

as follows: 

𝐿𝐼 @< =
(𝜃^<𝜆@<)
𝜃Q<    

𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡^<							(11) 

The end result is Compustat-BLS-OES-consistent firm-year-occupation employment 

coverage ratios. Occupations like software engineer, unsurprisingly, have high fidelity and near 

complete coverage for U.S. firms. A few other titles, like dentist or transportation specialists, 

have lower baseline levels of coverage but are adjusted to BLS-OES consistency with this 

process. Nevertheless, the occupations and firms for which LinkedIn membership is relatively 

sparse will have noisier adjusted employment shares as well. To handle these issues as well as to 

effectively tackle the research questions in the paper, fixed effects at the industry, year, and firm-

level are included in regression specifications. For engineering, research, and IT worker stocks, 

the relative presence on LinkedIn is higher in comparison to other occupations.17 LinkedIn 

defines Engineering, Information Technology, and Research as separate functional areas within a 

                                                
17 IT, Research, and Engineering are all defined as functional areas by LinkedIn. Workers of specific job titles in 
specific job functions are mapped into these functional areas. I aggregate counts, wage bills, and human capital after 
applying the normalization procedure detailed above. 
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firm. When members submit their profile information, they are additionally classified into a 

given functional area. Occupations are distributed across these different domains, not always into 

the same functional area of the company. Software engineers are most frequently included in the 

Engineering category (as are most occupations with “engineer” in the title), but may also be 

categorized in Information Technology. I calculate the total employee counts in each of these 

different categories. The normalized counts of workers are taken as the output of the adjustment 

represented in (11). Those employee counts are multiplied by their BLS-OES wage in the 

relevant respective year to construct the wage bill variables. 

I also construct a total education years variable for each firm in each year as a control for 

the overall level of human capital at each firm. For this variable, following Brynjolfsson et al. 

(2018), I aggregate the educational records of the workers according to the years of education 

required to achieve each listed degree.18 That is, an Associate’s degree counts as two years, a 

Bachelor’s degree counts for four years, a Master’s degree counts for two years, a research 

doctorate or medical doctor degree counts as six years. High school, for an alternative measure 

of education years, is counted as 12 years. These values are adjusted for coverage in the 

procedure above, and summed by firm-year to generate a total education years control.19 

Descriptive statistics for the LinkedIn human capital measures for 2006 and 2016 can be found 

in Table 1 below. 

                                                
18 The normalization of education years to adjust for coverage is an identical process to the count normalization 
process. 
19 Can be considered as the answer to the question “how many years has the firm gone to school?” 
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Table 1: Descriptive Statistics of Employment Measures 2006 and 2016 

The final set of LinkedIn-derived values come from the relatively recently constructed 

panel of detailed skills detail. LinkedIn first rolled out the skills product in 2011, though 

collection of high-fidelity records of member additions of skills began in 2014. Recently, 

LinkedIn has categorized and standardized the over 35,000 unique skills on its standard platform 

into a set of skills clusters using nonlinear embedding spaces.2021 These clusters are seeded by 

humans and subsequently applied to co-occurrences of skills on profiles across the entire 

platform. Skills are related by distance in “skill space” as a result of this machine learning-driven 

encoding. Skills that tend to be closer in this space are more likely to be associated together and 

tagged with a common human-curated cluster name. Likewise, skills that co-occur less 

frequently are classified in separate clusters. I make use of the production neural skills 

embeddings supplied by the LinkedIn engineering team.  

The result is a series of aggregated counts of skills additions in different categories which 

I then aggregate, accumulate, and normalize at the firm-year-occupation and firm-year levels. I 

also extract specific skill counts for deep learning, machine learning, R, SPSS, and a handful of 

other data science skills. All of these measures are then joined to Compustat measures of 

                                                
20 Clusters including Agronomy, Artificial Intelligence, People Management, and Digital Literacy (amongst others) 
and rely upon user-supplied data. Because the user-supplied data is highly variable, all skills go through a 
standardization algorithm before being made available for analysis. 
21 See https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction for a set of useful embedding algorithms. 
TensorFlow can be used to build some of these models. 

2016 Summary Stats Market Value (MM USD) Total Assets (MM USD) IT Employment Research Employment Engineering Employment IT Wage Bill Research Wage Bill Engineering Wage BillEducation Years

Count 7,365 7,365 1,828 1,828 1,828 1,828 1,828 1,828 2,249

Mean 17,081.06 14,133.41 972.40 198.57 1,556.18 96,903,181.60 27,533,898.31 120,046,634.46 35,189.00

Standard Deviation 112,933.43 109,319.50 4,024.43 692.30 4,759.50 405,197,401.23 93,265,923.08 387,763,106.94 115,419.34

0.25 70.24 40.51 35.01 5.21 42.96 3,374,545.19 827,245.57 3,142,992.88 1,053.44

0.50 694.88 436.15 140.77 22.91 239.57 13,708,210.73 3,350,099.03 16,838,521.82 5,495.35

0.75 4,260.37 2,712.24 539.67 109.90 977.20 52,722,407.66 15,822,372.62 70,194,131.19 23,867.57

2006 Summary Stats Market Value (MM USD) Total Assets (MM USD) IT Employment Research Employment Engineering Employment IT Wage Bill Research Wage Bill Engineering Wage BillEducation Years

Count 8,453 8,453 2,211 2,211 2,211 2,211 2,211 2,211 2,994

Mean 11,290.06 9,080.16 517.95 128.16 1,089.52 35,424,886.64 9,797,113.28 63,189,456.84 24,032.11

Standard Deviation 85,117.95 80,507.76 2,033.99 567.22 3,935.39 141,847,510.53 34,689,741.29 242,870,484.33 90,667.33

0.25 77.53 35.89 16.87 2.55 26.54 1,126,353.06 286,148.23 1,584,233.32 600.57

0.50 441.37 246.90 69.90 11.11 128.77 4,666,854.58 1,162,623.08 7,112,400.35 2,647.09

0.75 2,282.32 1,394.58 278.49 51.24 543.20 18,859,136.17 4,921,754.10 29,885,631.95 13,434.37
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financial performance by firm and year. Figures 4A-D show the aggregate skill additions for AI-

related skills and advertising. There is some seasonality in the data, with more skills getting 

added in the beginning of the year. The table below shows some example skills for different 

aggregated categories. 

 
Example Skills Table 

Note: Example skills are not exhaustive – some categories have hundreds of skills. 
 

 



 31 

Figure 4A – Artificial Intelligence Skills 2014-2017 

 

Figure 4B – Machine Learning Skills 2014-2017 

  



 32 

Figure 4C – Deep Learning Skills 2014-2017

 

Figure 4D – Advertising Skills 2014-2017 

 

Compustat also indicates the state, zip code, and county for the corporate headquarters. I 

link these states to changes in covenant-to-not-compete (CNC) policy changes at the state-level 

using the set of states in (Ewens and Marx 2017) and (Jeffers 2017) separately. These changes in 

CNC policy are known to impact knowledge workers with greater propensity than other kinds of 

employees (Balasubramanian et al. 2018), and they constitute a first-order supply-side shock as 

mobility restrictions on human capital when the enforceability of these contracts increases. CNC 

enforceability changes should therefore serve as an instrument for the technical talent hired by 

the firm. Following Ewens and Marx (2017) and Jeffers (2017), I code increased enforceability 

by state courts as a 1, unchanged values as a 0, and weakened enforceability as -1. I also merge 

the corporate headquarters zip and county codes to the zip and county codes of the land-grant 

universities. Land-grant universities, established by the Morill Acts of 1862 and 1890, provided 

for the creation of colleges in each state following the sale of federal lands. As in Moretti (2004), 
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worker proximity to land-grant institutions predicts higher likelihood of human capital 

accumulation. To attempt to recover a causal estimate of the market value of technological 

workers controlling for overall human capital, I include a dummy variable in instrumental 

variables specifications for proximity to land-grant institutions of the corporate address at the 

county level.  

 
Figure 4 – Land-grant Colleges 

The Compustat component of the dataset is mostly taken as-is, with market value (MV) 

constructed as the total book value of the firm plus the market value of equity at the end of the 

fiscal year less the book value of common equity. Total Assets (TA) is included in most 

regression specifications as a control for the capital size of the firm.  
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I also join in measures of Suitability for Machine Learning (SML) at the occupation 

level. SML measures are from Brynjolfsson, Mitchell, and Rock (2018a), wherein they use the 

crowdsourced evaluation of thousands of rubric surveys to construct measures of task SML and 

measurability for each of the detailed work activities (DWAs) supplied in the O*NET database 

(Brynjolfsson and Mitchell 2017). High relative values of SML indicate an opportunity to use 

machine learning (and deep learning in particular) to automate aspects of a task. These scores are 

aggregated across tasks to the occupational level, and I subsequently aggregate the occupation-

level SML scores to the firm-year by generating wage bill-weighted averages of SML scores. If 

TensorFlow is a shock to the availability of talent, it is also a shock to the opportunities for 

automation (but not necessarily at the same firm!). With measures of which firms have an 

opportunity to deploy deep learning talent and which firms have an opportunity to use what deep 

learning engineers build, I can address whether it is the firms who create or the firms who 

consume technology who capture the rents to technology’s effects on labor.  

 

5. Overall Engineering: Empirical Results and Discussion 

 Technological human capital assets, if they contribute to the market value of the firm, can 

be priced following an equilibrium relationship that the asset’s marginal Q-value above the asset 

replacement cost must equal the marginal adjustment costs of competitors (Wildasin 1984; 

Hayashi and Inoue 1991; Hall 2001). Summing over assets within firm and year, we get that the 

market value of the firm is equal to the sum of the market value of its constituent assets priced at 

Q. In other words, a regression of market value on measures of the assets of the firm will recover 

as coefficients the value per unit (dollars) for the asset in equilibrium. To find the value of 
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different types of technological labor, I estimate the coefficient vector for the following 

regression: 

𝑀𝑉< = β ∗ Total	Assetsª« + 𝛾 ∗ 𝐻𝐾<¬<u^< + I 𝛿®𝑇𝑒𝑐ℎ𝐻𝐾®^< + 𝒁𝒊𝒕� 𝝀
¶

®NO

+ 𝜖^<						(12) 

In this regression, i indexes the firm, t indexes the year, and m indexes the variety of 

technological labor. The equation therefore describes the decomposition of the panel of firm 

market values on the total book value of assets (Total Assets), the total education years in the 

firm at year t (HK_total), and each type of technological labor TechHK.22 A vector Z of controls 

including industry-year fixed effects and firm fixed effects in some of the specifications are also 

included. This is a standard market value regression of the sort in (Hall 1993; Brynjolfsson, Hitt, 

and Yang 2002; Brynjolfsson et al. 2018). However, as suggested by the results in equations (4) 

and (9), the market value of the firm is also a function of the integrated differences between 

worker marginal products and worker wages. Equation (12) therefore sets a specification by 

which we can decompose market value into the value of observable assets and the value of labor-

correlated inputs. The coefficient vector for technological talent recovers the “installed” average 

price of the talent itself and the value of omitted yet talent-correlated assets. 

The results for the set of OLS regressions from (12) are in Tables 2 (counts) and 3 (wage 

bills), revealing strong correlations between market value and engineering talent where firm 

fixed effects are left out. While IT workers and Research workers appear not to be correlated 

with market value after controlling for the total education years attained by the firm and the total 

book value of assets, along with the appropriate fixed effects, an additional engineer is correlated 

with an increase of approximately $855,000 of market value (Table 2, column 5), and each dollar 

                                                
22 Depending on specification, wage bill or counts might be included here 
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of engineering wage bill is correlated with an additional $11-12 of market value (Table 3, 

column 5). However, when including firm-level fixed effects, the correlation between all types of 

technological talent and market value is no longer statistically significant and the point estimates 

on engineering talent drop. This is consistent with an explanation of firm-specific assets driving 

the returns to investments in technological labor. That is, there is either a valuable (priced) 

intangible correlate asset for technological labor that is firm-specific generating a correlation 

between market value and engineering labor as an omitted variable, or the component of 

engineering labor that causes market value is firm-specific and primarily time-invariant.23 That 

firm fixed effects drive the coefficient on engineering talent to lose statistical significance is 

consistent with either omitted firm-specific assets being the primary source of the correlation 

between market value and engineering talent or the marginal value of firm-specific labor being 

close to zero. The former explanation suggests off-balance sheet capital is the source of the 

empirical relationship. This latter explanation would describe a marginal causal effect of 

engineering talent on market value. Both explanations are consistent with monopsony power 

coming from the firm-specificity of human capital. Monopsonists will hire less than the socially 

optimal amount if they have to pay all employees the same wage. They receive a mark-down on 

wages. Supply-increasing shocks will increase both the market value of the firm and the quantity 

of labor hired if wages for existing workers are renegotiable. Wages might be sticky though. The 

fact that CNCs also affect existing workers by shifting the optimal balance of firm-specific and 

general tasks means that even if the firms keep their hiring the same, the market value of firms 

will respond to CNC policy changes. This job design effect is a potentially important channel for 

monopsony power.  

                                                
23 As a sanity check, the correlations between total assets and market value are close to replacement cost ($1) and 
the market value of human capital is positive and statistically significant. 
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 The wage regressions (Table 3) compare the flow of wages to workers of a given type to 

the market value stock outcome variable, equal to the present value of all future cash flows. 

Since the wages are what the worker earns, the coefficient on the wage is the present value per 

$1 of wages paid in a given year of all future flows to the firm. That is, the wage is what workers 

earn in a year; the table coefficient is the discounted value of what the firm will get in all future 

years. This inflates the coefficient value because each year’s wages must represent all future 

wages to be comparable to the firm’s value. Either representing wages as a stock or representing 

market value as a one-year flow fixes the comparison problem. Unfortunately, the former 

approach requires knowledge of the initial stock of firm capital in wages and the depreciation 

rate (to calculate a perpetual inventory) and the latter requires knowledge of the appropriate 

discount rate for engineering capital’s share of market value. As a back-of-the-envelope 

calculation, the stock of assets in wages paid to technological talent is 14.3 to 20 times the wage 

value.24. This would imply that engineer wages as a stock are worth about 59 to 83 cents per 

dollar net of what the worker is paid if there are no omitted variables. In the case that marginal 

and average products are equal to wages, the 59 to 83 cents estimate is the value of off-balance 

sheet assets correlated with the presence of engineering talent.25  

 

 (1) (2) (3) (4) (5) (6) (7) 
Table 2: Market Value – 
Worker Count 
Regressions 

No Tech IT Value Engineering 
Value 

Research 
Value 

All Tech 
Value 

All Tech 
Value 

(Firm FE) 

Tech w/o 
HK 

Value 
        
Total Assets 1.012*** 1.012*** 1.013*** 1.014*** 1.012*** 1.003*** 1.004*** 
 (0.00768) (0.00691) (0.00627) (0.00751) (0.00615) (0.0122) (0.0119) 
Total Years of Education 0.0187*** 0.0138*** 0.0125*** 0.0125** 0.00622 0.00873  

                                                
24 Assuming an aggregated human capital depreciation rate of between 5% and 7%, the approximate rate of interest 
for acquiring human capital: https://studentaid.ed.gov/sa/types/loans/interest-rates 
25 Actual discount rates for this kind of talent vary by firm. Some firms will have much higher (lower) discount 
rates, in which case the employer share of wage value would be substantially higher (lower).  
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 (0.00451) (0.00429) (0.00362) (0.00524) (0.00448) (0.00988)  
IT Employees  1.301**   0.496 -0.111 0.0737 
  (0.498)   (0.475) (0.302) (0.273) 
Engineering Employees   1.129***  0.855*** 0.567 0.817* 
   (0.289)  (0.276) (0.422) (0.478) 
Research Employees    7.164* 6.745 0.843 2.208 
    (4.231) (4.428) (2.288) (2.391) 
        
Observations 50,501 37,813 37,813 37,813 37,813 37,825 37,825 
R-squared 0.984 0.984 0.984 0.984 0.984 0.994 0.994 
Industry-Year FE Yes Yes Yes Yes Yes No No 
Firm and Year FE No No No No No Yes Yes 

Table Notes: Robust standard errors in parentheses, Standard errors clustered at the industry (3-Digit NAICS) for 
columns 1-5, firm for columns 6-7. Market value is in millions USD.  

*** p<0.01, ** p<0.05, * p<0.1 
 

12 
Table 2 – OLS Market Value Regressions on Worker Counts 

 (1) (2) (3) (4) (5) (6) 
Table 3: Market Value – 
Wage Bill Regressions 

IT Value Engineering 
Value 

Research 
Value 

All Tech 
Value 

All Tech 
Value 

Tech w/o 
HK Value 

       
Total Assets 1.012*** 1.013*** 1.011*** 1.010*** 1.003*** 1.004*** 
 (0.00693) (0.00638) (0.00690) (0.00609) (0.0122) (0.0119) 
Total Years of 
Education 

0.0148*** 0.0134*** 0.0136*** 0.00985*** 0.00912  

 (0.00431) (0.00366) (0.00424) (0.00359) (0.00931)  
IT Wage Bill 1.30e-05**   1.68e-06 -5.13e-06 -3.63e-06 
 (5.10e-06)   (3.92e-06) (3.38e-06) (2.89e-06) 
Engineering Wage Bill  1.57e-05***  1.19e-05** 1.02e-05 1.33e-05* 
  (4.75e-06)  (4.93e-06) (6.62e-06) (7.57e-06) 
Research Wage Bill   7.32e-05** 6.04e-05 9.91e-06 1.51e-05 
   (3.20e-05) (4.00e-05) (1.17e-05) (1.13e-05) 
       
Observations 37,813 37,813 37,813 37,813 37,825 37,825 
R-squared 0.984 0.984 0.984 0.984 0.994 0.994 
Industry-Year FE Yes Yes Yes Yes No No 
Firm and Year FE No No No No Yes Yes 

Table Notes: Robust standard errors in parentheses 
Standard errors clustered at the industry (3-Digit NAICS) for columns 1-4, firm for columns 5-6. Market value is in 
millions USD. The wage bill is equal to the prevailing wage for a given occupation-year grouping, where the 
occupational wage is the employment-weighted average wage of all BLS-OES occupation categories within a given 
LinkedIn occupational category, matched many-to-one. The wage bill is then a flow measure and the market value is 
a stock equal to the present value of all future flows.  

*** p<0.01, ** p<0.05, * p<0.1 
 

Table 3 – OLS Market Value Regressions on Worker Wage Bills 
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 In the case that the human capital value is firm-specific, a causal shift in employee supply 

driven by CNC enforceability tightening, for example, would suggest market values should 

increase. In this scenario, the policy change forecloses on employment alternatives for employed 

workers. On the margin, newly lower opportunity costs for employees might make further capital 

accumulation attractive. If the instrumented engineering labor does not cause market value, it is 

suggestive evidence that (for compliers), the correlation between market value and engineering 

talent is driven by hidden intangible assets owned by the firm. If this is instead the case, the 

valuation of off-balance sheet assets correlated with engineering talent values is less sensitive to 

employee opportunity cost changes.  

As described above, I will use the proximity of the corporate headquarters to land-grant 

universities and changes in state-level covenant-to-not-compete (CNC) policy as instruments for 

the relative local abundance of human capital (land-grant) and as supply shocks for engineering 

talent wherein increased (decreased) enforceability reduces (increases) the quality of workers’ 

outside options. The nature of the instruments does not allow inclusion of firm fixed effects in 

the specification as the covariate matrix will be of deficient rank. But interacting the CNC policy 

changes with the land-grant proximity dummies permits an overidentified model. In all 

specifications, the weak identification test F statistic is well above 20 and the overidentification 

test (a joint test of local average treatment effect homogeneity and correlation of residuals and 

instruments) fails to reject the null. This is reassuring, though not dispositive, with respect to 

endogeneity concerns of some subset of the instruments. The second stage results for engineering 

employee counts and wage bills are in Tables 4 and 5 (respectively). The first stage results are 

reported in Tables 6 and 7. 
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 (1) (2) (3) (4) (5) 
Table 4: IV MV 
Regressions: 
Engineering Labor 

Land-
grant 

CNC-
Jeffers 

CNC-Ewans-
Marx 

LG+CNC-Ewans-
Marx 

LG+CNC-Ewans-
Marx 

      
Engineering 
Employees 

0.965 4.297 0.404 1.067 1.484 

 (1.973) (33.29) (5.717) (1.844) (1.692) 
Total Assets 1.035*** 1.023*** 1.027*** 1.035*** 1.032*** 
 (0.0113) (0.0339) (0.0117) (0.0110) (0.0104) 
Total Years of 
Education 

0.0139 -0.00137 0.0162 0.0134 0.00232 

 (0.0102) (0.151) (0.0263) (0.00947) (0.00423) 
IT Employees     1.052 
     (1.684) 
Research 
Employees 

    6.740 

     (4.447) 
      
Observations 31,822 32,622 32,622 31,375 31,375 
R-squared 0.973 0.976 0.977 0.973 0.974 
Industry-Year FE Yes Yes Yes Yes Yes 

Table Notes: Robust standard errors in parentheses, SEs Clustered by 3-Digit NAICS. Market value is represented in 
millions USD. 

*** p<0.01, ** p<0.05, * p<0.1 
 

Table 4 – IV Market Value Regressions on Engineering Worker Counts 

 

 (1) (2) (3) (4) (5) 
Table 5: IV MV 
Regressions: 
Engineering Wage 
Bill 

Land-grant CNC-
Jeffers 

CNC-Ewans-
Marx 

LG+CNC-Ewans-
Marx 

LG+CNC-Ewans-
Marx 

      
Engineering Wage 1.51e-05 -5.60e-05 7.74e-06 1.68e-05 2.12e-05 
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Bill 
 (3.10e-05) (0.000524) (0.000109) (2.90e-05) (2.87e-05) 
Total Assets 1.035*** 1.032*** 1.027*** 1.035*** 1.029*** 
 (0.0112) (0.0448) (0.0130) (0.0109) (0.00974) 
Total Years of 
Education 

0.0141 0.0332 0.0159 0.0137 0.00452 

 (0.00972) (0.142) (0.0300) (0.00907) (0.00339) 
IT Wage Bill     7.27e-06 
     (1.98e-05) 
Research Wage 
Bill 

    9.88e-05* 

     (5.55e-05) 
      
Observations 31,822 32,622 32,622 31,375 31,375 
R-squared 0.973 0.963 0.977 0.973 0.975 
Industry-Year FE Yes Yes Yes Yes Yes 

Table Notes: Robust standard errors in parentheses, SEs clustered by Industry (1-3), Firm (4-5). Wage bill is 
calculated as in Table 3 (see table notes). 

*** p<0.01, ** p<0.05, * p<0.1 
 

Table 5 – IV Market Value Regressions on Engineering Wage Bill 
 

 The causal estimates for the land-grant and CNC local average treatment effects (LATEs) 

of engineering human capital on market value are imprecise and statistically indistinguishable 

from zero. While the point estimates are large ($7.7 to $21.2 per dollar of wages for 

specifications including the Ewens-Marx CNC data), the causal shift in market value due to 

instrumented engineering labor lends support to the firm-specific intangible capital hypothesis.  

Firm fixed effects soak up the variation generating a statistically significant relationship 

between market value and engineering talent measures. Broadly, this indicates that the average 

product of engineering talent in firms is weakly larger than the wages paid over all employed 

engineers.26 Nevertheless, there is little case that employers can extract freely available rents by 

                                                
26 And strictly larger for some engineers 
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hiring more engineers. The imprecisely estimated zero marginal value of an engineer net of 

wages is consistent with value at or below the opportunity cost of recruiting search frictions, 

training. and adjustment costs for employers. That engineers are so highly correlated on average 

with market value is suggestive of complementarities between engineers and firm-specific assets. 

The land-grant instrument is designed to approximate (statically) a measure of the available 

supply of engineers to the firm. Ideally there would be an experiment randomly assigning assets 

and workers of different types to different companies. Under the assumption that sharing county 

locations with land-grant universities (as opposed to other universities) is otherwise excluded 

from market value, the land-grant IV detects contribution of wage changes to firm market value. 

The first stage suggests that, controlling for worker education and the other inputs, firms near a 

land-grant college are less likely to hire more engineers. CNC policy changes, however, shift the 

outside options of incumbent workers, making it potentially more attractive for firms to invest in 

firm-specific training for those workers as departure is less likely. At the same time, hiring 

prospects are somewhat diminished. So CNC changes primarily operate through the price of 

human capital assets. Since neither of these instruments reveal a causal effect of engineering 

employment on market value, to the extent that the sample has sufficient size to detect causal 

changes, I conclude that there is little marginal gain to the firm for technological human capital 

in absence of conditions which otherwise change equilibrium investment. As a caveat, this is to 

be expected if equilibria are insufficiently changed by the instruments. Further, the inclusion of 

firm fixed effects and ensuing lack of statistically significant market value correlation with 

engineering talent is evidence against a large marginal value of engineering labor investment, 

but not on average. The firm fixed effects control for time-invariant omitted variables. The 

correlation between market value and engineering talent diminishes within firm. The difference 
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between specifications with firm fixed effects and without them is suggestive then of a possible 

omitted asset generating rents. A large, statistically significant effect in the IV regressions would 

suggest the talent itself as the source of rents on the hiring margin. 

The IV regressions fail to provide such evidence. The first stage coefficients on CNC 

policy changes are not statistically significant, but they are for land-grant university proximity. 

The technological talent markets seem to be in equilibrium with respect to CNCs. The value of 

engineering talent is high on average, but nearly zero on the margin of the local average 

treatment effects given by the CNC and land-grant instruments (as suggested by firm fixed 

effects and both sets of IV regressions). If land-grant proximity does predict hiring, but shows no 

statistically significant estimated causal effect of hiring on market value, then on the margin we 

fail to reject the hypothesis that wages are equal to worker product. In the case that labor is 

relatively abundant, we might expect that the marginal hire is devoted principally to general 

tasks and contributes little to market value net of wages. In the case of engineers, the average 

value is high but the marginal value is not. There is little evidence of abundant rents for firms 

seeking to hire more technological talent in general. This is possibly because the firm-specific 

tasks have already reached the point at which general tasks are more valuable to the employer. 

Some talent is bottlenecked, i.e. finding and recruiting workers of that type is very costly. 

For these workers, it is more likely that they work on firm-specific tasks which are higher 

marginal value. Workers for which there is a bottleneck will have high marginal and average 

contribution to market value as the frictions to find and/or train them will create a wedge 

between their wages and the value they create for their employers. AI talent offers a recent 

technological case study for what can happen when the market expects a previously bottlenecked 

talent to become much more abundant.  
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 (1) (2) (3) (4) (5) 
Table 6: IV 
Regression First 
Stage 
(Worker Counts) 

Land-grant CNC-
Jeffers 

CNC-
Ewans-
Marx 

LG+CNC-Ewans-
Marx 

LG+CNC-
Ewans-Marx 

      
Total Assets 0.00178 0.000999 0.00100 0.00165 -0.000599 
 (0.00209) (0.00180) (0.00180) (0.00194) (0.000848) 
Total Years of 
Education 

0.00453*** 0.00452*** 0.00452*** 0.00447*** 0.00114 

 (0.00138) (0.00137) (0.00137) (0.00135) (0.000931) 
CNC (Ewens-Marx)   87.11 64.02 -64.22 
   (88.37) (289.3) (203.1) 
Land-grant County 
Dummy 

-485.4***   -460.9*** -324.6** 

 (174.5)   (168.6) (127.5) 
CNC (Ewens-Marx) 
X Land-grant 

   36.13 163.4 

    (271.1) (196.6) 
CNC (Jeffers)  21.59    
  (112.7)    
IT Employees     0.983*** 
     (0.175) 
Research Employees     0.0738 
     (0.262) 
      
Observations 31,822 32,622 32,622 31,375 31,375 
Industry-Year FE Yes Yes Yes Yes Yes 
Firm and Year FE No No No No No 

Robust standard errors in parentheses, SEs Clustered by 3-Digit NAICS 
*** p<0.01, ** p<0.05, * p<0.1 

 

Table 6 – Worker Counts First Stage Regression (Companion Table to Table 4) 

 

 

 (1) (2) (3) (4) (5) 
Table 7: IV Regression First 
Stage 
(Engineering Wage Bill) 

Land-grant CNC-
Jeffers 

CNC-
Ewans-
Marx 

LG+CNC-
Ewans-Marx 

LG+CNC-
Ewans-Marx 
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Total Assets 130.6 82.06 82.34 122.9 -26.08 
 (136.6) (118.0) (118.1) (127.6) (47.90) 
Total Years of Education 272.0*** 271.4*** 271.5*** 268.3*** 67.41 
 (93.71) (93.16) (93.12) (91.67) (58.16) 
CNC (Ewens-Marx)   4.548e+06 909,957 -7.630e+06 
   (6.071e+06) (1.872e+07) (1.390e+07) 
Land-grant County Dummy -3.092e+07***   -2.938e+07*** -2.010e+07** 
 (1.125e+07)   (1.091e+07) (9.199e+06) 
CNC (Ewens-Marx) X Land-
grant 

   4.899e+06 1.397e+07 

    (1.739e+07) (1.340e+07) 
CNC (Jeffers)  -1.658e+06    
  (7.834e+06)    
IT Employees     0.712*** 
     (0.0776) 
Research Employees     0.210** 
     (0.0891) 
      
Observations 31,822 32,622 32,622 31,375 31,375 
Industry-Year FE Yes Yes Yes Yes Yes 
Firm and Year FE No No No No No 

Table Notes: Robust standard errors in parentheses, SEs Clustered by 3-Digit NAICS. Outcome for first stage is the 
dollar wage bill (wage times worker counts). 

*** p<0.01, ** p<0.05, * p<0.1 
 

Table 7 – Worker Wage Bill First Stage Regression (Companion Table to Table 5) 

 

 

6. TensorFlow, the Deep Learning Toolkit, and Bottlenecked Talent 

 The open-source launch of Google Brain’s TensorFlow machine learning toolkit on 

November 9, 2015 was a departure from expectations that Google would try to safeguard all of 

its AI-related intellectual property.27 The project grew out of a 2011 Google Brain initiative 

                                                
27 As noted in Wired (https://www.wired.com/2015/11/google-open-sources-its-artificial-intelligence-engine/): 
“With TensorFlow, however, the company has changed tack, freely sharing some of its newest—and, indeed, most 
important—software. Yes, Google open sources parts of its Android mobile operating system and so many other 
smaller software projects. But this is different. In releasing TensorFlow, Google is open sourcing software that sits 
at the heart of its empire. ‘It's a pretty big shift,’ says Dean, who helped build so much of the company's 
groundbreaking data center software…” 
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called DistBelief to build and train deep neural nets for research and commercial applications 

(Abadi et al. 2016).28 TensorFlow was unique in that it was designed to serve as a single system 

that could run on a variety of platforms, ranging from mobile devices to “large-scale training 

systems running on hundreds of specialized machines with thousands of GPUs”. Its release 

meant the wide availability of production-level software packages with greater stability  and 

simplicity than other popular packages at the time (e.g. Theano, Caffe, and Torch). TensorFlow 

can be installed as a Python module or in C++, taking advantage of popular programming 

languages to make deep learning available to as many people as possible.  

The package also includes a set of software pipelining tools such as TensorBoard, which 

helps machine learning engineers visualize the computational graph they have built, and 

performance tracing which helps track threads as they are processed. At the time, few of the 

comparable systems (Caffe, Chainer, Theano, and Torch) simultaneously supported symbolic 

differentiation, was written C++ to facilitate high performance production code, and could easily 

be mapped to many machines at once. Further, the Python interface and training documentation 

provided a baseline on which the open-source community could improve. What had been an 

experts’ game was, at least in the near future, going to be something any reasonably talented 

coder could implement. Soon after, additional abstraction layers like Keras (Chollet and others 

2015) and PyTorch (Paszke et al. 2017), a Pythonized version of the popular Torch software 

developed by employees at Facebook, would enter as competitors for TensorFlow.29 

                                                
 
28 Usually called “deep” when a standard neural net architecture has 4 or more layers. 
29 Keras and TensorFlow are now implemented for R as well. PyTorch and TensorFlow both have another 
abstraction layer module called fast.ai which is gaining popularity. Its creators, Rachel Thomas and Jeremy Howard, 
frequently implement new technical advances into the fast.ai module. PyTorch remains a favorite package in the 
research community. 
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But was the TensorFlow launch decision about talent? Oren Etzioni, a machine learning 

expert and executive director of the Allen Institute for Artificial Intelligence, at the time stated 

that Google was trying to “attract developers and new hires to its technology”.30 With new 

technologies, especially open-source software packages, adoption dynamics and value creation 

can be highly sensitive to network effects (Von Hippel and Krogh 2003). One interpretation then 

is that the TensorFlow open-source strategy meant Google could capture more of the rents in the 

economic applications of machine learning. Another is that their software platform would 

improve with the benefit of a community of contributors. Indeed, to date TensorFlow’s GitHub 

project has over 40,000 code commits, 20 branches, 68 releases, and over 1,600 contributors.  

 

Figure 5 – TensorFlow Searches 

                                                
30 https://bits.blogs.nytimes.com/2015/11/09/google-offers-free-software-in-bid-to-gain-an-edge-in-machine-
learning/?mtrref=undefined 
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Figure 5 shows the Google Trends searches for TensorFlow. Figures 6A and 7 show 

TensorFlow code and TensorBoard output, respectively. Given that TensorFlow constitutes a 

surprising reduction in the barriers to learn how to deep learn, it serves as an opportunity to 

understand an important talent bottleneck to the diffusion of the machine learning general-

purpose technology. Figure 6B shows a code snippet for autograd, one of the core functions 

performed by TensorFlow. This is one of the necessary steps (and hundreds of lines as a module) 

for computing optimal parameter vectors in deep learning models, reduced to only a couple lines 

in TensorFlow. Google is now working to automate more of the deep learning model 

construction process with AutoML. The goal of AutoML, according to Google CEO Sundar 

Pichai, is to “take an ability that a few PhDs have today and will make it possible in three to five 

years for hundreds of thousands of developers to design new neural nets for their particular 

needs”.31 Building and launching TensorFlow was a first step in service of that goal.  

 

                                                
31 https://blog.google/technology/ai/making-ai-work-for-everyone/ 
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Figure 6A, 6B – TensorFlow Code (source: TensorFlow.org) and Autograd Code (source: 
https://github.com/HIPS/autograd/blob/master/autograd/core.py) 

 

 

Figure 7 – TensorBoard Embedding Interface 

 

This explicit objective on Google’s part is evidence of the talent bottleneck to realizing 

the economic possibilities of machine learning. Though TensorFlow is the most popular package 
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in use today, Google was and is not the only organization trying to make deep learning more 

accessible. Many other deep learning packages emerged around the same time as competition. 

PyTorch, developed by Facebook’s AI research group, is a favorite amongst researchers. 

PyTorch supports a number of common optimization algorithms and a convenient neural net 

module for building more complicated networks. Fast.ai, a module built and maintained by 

researchers Rachel Thomas and Jeremy Howard, is explicitly dedicated to “making the power of 

deep learning accessible to all” and implements many state-of-the-art techniques as they are 

published.32 These packages emerged as improvements to the existing toolkits between 2015 and 

2018 in response to the growing disparity between the demand for AI talent and the difficulty in 

building and implementing deep learning models.  

Now I return to the case that a skill goes from being specialized to generalized in 

expectation. This is the context for TensorFlow, when returns to firm-specific assets are 

otherwise bottlenecked by a lack of available talent at attractive prices. In spite of the rapid 

growth in the deep learning-skilled community, it still may be the case that deep learning talent 

is capacity-constrained. Yet the change that the TensorFlow API, PyTorch, Keras, fast.ai, and 

similar packages introduce is the expectation that in the future these skills will be generalized 

instead of specialized. To test the market value effects of the democratization of deep learning 

via TensorFlow, I use a differences-in-differences continuous treatment specification of the 

following familiar form: 

𝑀𝑉< = 	β ∗ Total	Assetsª« + 𝛾 ∗ 𝐻𝐾<¬<u^< + 𝜆< + 𝜂^ + 𝜈 ∗ (𝑃𝑂𝑆𝑇»¼ ∗ 𝐴𝐼𝑆𝐾𝐼𝐿𝐿^<) + 𝒁𝒊𝒕
� 𝜹 + 𝜖^<								(13) 

 Market value for firm i  at time t  is a function of total assets, human capital (as total 

education years), a time fixed effect, a firm fixed effect (which absorbs the firm’s average AI 

                                                
32 Coders with basic python knowledge can build and train a high quality image classifier in only a couple hours of 
training using the fast.ai tutorial. See: http://www.fast.ai/about/ 
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skill level), and an interaction between the post-TensorFlow launch dummy and the cumulative 

AI skill counts for the firm in period t. Z denotes the vector of additional cumulative skills 

indices and the AI skills index which might otherwise confound the analysis. I consider a number 

of related skills, and a handful of seemingly unrelated ones (e.g. advertising) to test the 

relationship between AI skills and market value following the launch of TensorFlow.33 These 

regressions are pooled over the course of the year, testing for a structural break related to the 

acquisition of AI-related skills. 

 Table 8 has the results of the difference-in-difference analysis. AI skills have an 

economically and statistically significant relationship with market value. Each additional AI skill 

for the firm is associated with an increase in market value of $2.77 to $4.3 million in the post-

TensorFlow period, with standard errors of approximately $1.5 million.  Including lagged market 

value (Table 8, Column 7) and fixing the sample to be a balanced panel from 2014-2017 lowers 

the coefficient values by a meaningful factor, but the association between AI and market value in 

the post period remains high. Digital Literacy, a category including Microsoft Office and other 

standard computer skills, and Advertising skills indices are highly correlated with market value 

as well. Business Management skills tend to be negatively correlated with market value. 

Multiplying the index value by a 1-year lead (Table 9) suggests that the market prices the value 

of commoditized AI talent at the end of 2015 while the 1 year lead coefficient is not statistically 

significant. In other words, a year prior to the launch of TensorFlow, AI skills increases 

predicted no change in market value.  

 

 

                                                
33 Google is excluded from the analysis for obvious reasons. 
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 (1) (2) (3) (4) (5) (6) (7) (8) 
Table 8: Market 
Value - AI Skills 
Difference-in-
Difference 

AI 
Cluster 

+Data 
Science 

+Cloud 
Computing 

+Data 
Storage 

+Digital 
Literacy 

+Bus.Mgmt 
and 

Advertising 

+Lagged 
MV 

Balanced 
Panel 

         
Lagged Market 
Value 

      0.0433  

       (0.0339)  
Total Assets 1.086*** 1.089*** 1.084*** 1.084*** 1.067*** 1.045*** 1.006*** 1.064*** 
 (0.0398) (0.0402) (0.0377) (0.0377) (0.0324) (0.0286) (0.0374) (0.0249) 
Total Education 
Years 

0.0137 0.0135 0.0110 0.0110 0.0130 0.0101 0.00976 0.0128 

 (0.0143) (0.0141) (0.0116) (0.0116) (0.0116) (0.00846) (0.00849) (0.00820) 
AI Skills X Post-
TensorFlow 

3.261*** 3.983*** 5.350*** 5.350*** 5.046*** 2.839*** 2.769*** 2.676*** 

 (1.189) (0.694) (0.714) (0.714) (0.715) (0.782) (0.774) (0.707) 
Data Science Skill 
Index 

 -0.250 -0.102 -0.102 -1.112*** 0.713 0.750 0.143 

  (0.190) (0.204) (0.205) (0.305) (0.788) (0.780) (0.580) 
Cloud Computing 
Skill Index 

  -0.769 -0.769 -0.751* -0.608* -0.583* -0.403 

   (0.469) (0.469) (0.439) (0.357) (0.347) (0.289) 
Data Storage Skill 
Index 

   -5,474 115.4 -3,047 -1,778 -6,605 

    (9,669) (9,542) (8,560) (7,853) (7,369) 
Digital Literacy 
Skill Index 

    0.418*** 0.284** 0.286** 0.266** 

     (0.0820) (0.125) (0.120) (0.133) 
Business 
Management Skill 
Index 

     -0.489** -0.490** -0.290** 

      (0.204) (0.203) (0.138) 
Advertising Skill 
Index 

     4.414*** 4.176*** 3.929*** 

      (1.506) (1.431) (1.185) 
         
Firm and Year FE Yes Yes Yes Yes Yes Yes Yes Yes 

Robust standard errors (clustered by Firm) in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Table 8: AI Skill Difference-in-Differences 

 (1) (2) (3) 
Table 9: AI Difference-in-Difference Leads  AI Cluster +Data Science +Other Indices 
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Total Assets 1.065*** 1.065*** 1.050*** 
 (0.0547) (0.0545) (0.0522) 
Total Education Years -0.0154*** -0.0155*** -0.0148*** 
 (0.00469) (0.00466) (0.00461) 
AI Skills Index X Post-TensorFlow + 1 Year -2.846 -2.699 -0.974 
 (2.938) (5.333) (5.603) 
AI Skills Index X Post-TensorFlow 2.402** 2.359 2.365 
 (1.090) (1.742) (1.517) 
    
Data Science Skill Index  -0.00739 -0.244 
  (0.173) (0.763) 
Cloud Computing Skill Index   0.212** 
   (0.0831) 
Data Storage Skill Index   -0.492 
   (0.306) 
Digital Literacy Skill Index   -6,156 
   (9,356) 
Business Management Skill Index   -0.0572 
   (0.165) 
Advertising Skill Index   -0.452 
   (1.056) 
    
Observations 2,642 2,642 2,642 
Firm and Year FE Yes Yes Yes 

Robust standard errors in parentheses, SEs Clustered by Firm 
*** p<0.01, ** p<0.05, * p<0.1 

Table 9: Lead Check for AI Skill Difference-in-Difference 

Tables 10 and 11 shows the results of the same analysis run for Suitability for Machine 

Learning (SML) scores aggregated to the firm level (wage bill-weighted averages) and in logged 

terms (respectively). Notably the launch of TensorFlow has a statistically significant negative 

association with the value of firms with higher potential to automate tasks with machine 

learning. A 1% increase in the overall SML of a firm is correlated with a 0.5% decrease in the 

firm’s market value post-2016. This is consistent with the idea that the assets complementary to 

machine learning engineering are valuable, but potentially productivity-enhancing (not 

profitability) innovations without a source of rents might force firms to invest more rapidly than 

they would have otherwise done. Convex ex-ante fixed costs of investment therefore might drive 
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down market value for firms that have to change their business models.  Figure 8 shows the 

correlation between market value and SML for 2016, which is very close to zero. Asset 

managers need not have the granular detail of the SML scores for these price effects to be 

incorporated. Since high SML tasks tend to be clerical and data-intensive routine work, the firms 

employing lots of these types of workers with intangible assets optimized for these purposes 

might newly be vulnerable to ML and AI-powered competition. 

 

Figure 8: Firm-Level Suitability for Machine Learning (SML) vs. Log Market Value 

 

 

 

 (1) (2) (3) (4) (5) (6) 
Table 10:  
Market Value (SML) 
Difference-in-Differences 

SML +Data 
Science 

+Cloud 
Computing 

+Data 
Storage 

+Digital 
Literacy 

+Bus.Mgmt 
and Advertising 
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Total Assets 1.062*** 1.099*** 1.100*** 1.100*** 1.078*** 1.043*** 
 (0.0287) (0.0446) (0.0447) (0.0447) (0.0384) (0.0302) 
Total Education Years 0.0185 0.0190 0.0192 0.0192 0.0210 0.0137 
 (0.0183) (0.0177) (0.0179) (0.0179) (0.0176) (0.00933) 
SML X Post-TensorFlow -4,336* -3,684 -3,667 -3,661 -6,477** -5,920** 
 (2,257) (2,791) (2,803) (2,790) (2,821) (2,476) 
Data Science Skill Index  0.503 0.365 0.365 -0.870* 1.584** 
  (0.310) (0.402) (0.402) (0.483) (0.769) 
Cloud Computing Skill Index   0.261 0.261 0.213 0.0218 
   (0.761) (0.761) (0.690) (0.432) 
Data Storage Skill Index    1,534 6,843 -1,527 
    (10,438) (10,318) (8,721) 
Digital Literacy Skill Index     0.498*** 0.360*** 
     (0.0858) (0.130) 
Business Mgmt. Skill Index      -0.717*** 
      (0.198) 
Advertising Skill Index      4.523*** 
      (1.586) 
       
Observations 8,764 6,437 6,437 6,437 6,437 6,437 
Firm and Year FE Yes Yes Yes Yes Yes Yes 

Robust standard errors in parentheses, SEs clustered by Firm 
*** p<0.01, ** p<0.05, * p<0.1 

Table 10: Suitability for Machine Learning (SML) Difference-in-Differences 

 

 (1) (2) (3) (4) (5) (6) 
Table 11: 
Log Market Value – SML 
Difference-in-Differences 

SML +Data 
Science 

+Cloud 
Computing 

+Data 
Storage 

+Digital 
Literacy 

+Bus.Mgmt 
and Advertising 

       
Log(Total Assets) 0.607*** 0.584*** 0.583*** 0.584*** 0.582*** 0.582*** 
 (0.0660) (0.0849) (0.0849) (0.0850) (0.0851) (0.0851) 
Log(Education Years) 0.0232 0.0307 0.0316 0.0311 0.0296 0.0290 
 (0.0153) (0.0207) (0.0207) (0.0207) (0.0206) (0.0206) 
Log(SMLxPost-TF) -0.484** -0.520** -0.514** -0.506** -0.525** -0.499* 
 (0.235) (0.257) (0.256) (0.256) (0.255) (0.255) 
Log(Data Science)  -0.00454 0.000376 -0.000913 -0.0150 -0.0123 
  (0.0187) (0.0190) (0.0193) (0.0188) (0.0196) 
Log(Cloud Computing)   -0.0154 -0.0166 -0.0187* -0.0183* 
   (0.0109) (0.0108) (0.0106) (0.0105) 
Log(Data Storage Tech.)    1.036 0.925 0.945 
    (0.871) (0.857) (0.868) 
Log(Digital Literacy)     0.0299* 0.0344** 
     (0.0160) (0.0156) 
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Log(Business Management)      -0.0292 
      (0.0237) 
Log(Advertising)      0.0136 
      (0.0165) 
       
Observations 8,764 6,437 6,437 6,437 6,437 6,437 
Firm and Year FE Yes Yes Yes Yes Yes Yes 

Robust standard errors in parentheses, SEs Clustered by Firm 
*** p<0.01, ** p<0.05, * p<0.1 

Table 11: Market Value and Log(SML) Difference-in-Difference 

Robustness Checks 

 The launch of TensorFlow and other deep learning packages might have coincided with 

other conditions or endogenous firm decisions which limit any chance to make causal claims. So 

far, a causal interpretation of the difference-in-differences coefficients in the above tables 

assumes that market value does not cause adoption of AI, that there are parallel trends in the AI 

using and non-AI using firms, and the stable unit treatment value assumption (SUTVA) holds.34 

The first condition is mitigated by including lagged market value as a control, and the latter 

condition can be investigated partially with a balanced panel assuming no spillovers between 

firms. The parallel trends assumption is trickier and requires a more granular time series analysis. 

I create new group variables “AI Quintile” and “SML Quintile” for the quintile groups in which 

each firm falls in AI skill employment and SML ranking (respectively) as of the fourth quarter of 

2015. The median firm has no listed AI skills at that time. In these specifications, I calculate the 

log indices of the input skills to recover a “percentage increase per quantile change” 

interpretation of the coefficients.35 Using a balanced panel, I estimate the following specification, 

where total assets and education years are included in the Z vector: 

𝐿𝑜𝑔(𝑀𝑉<) = 	𝜆< + 𝜂^ + 𝜈< ∗ (𝐷< ∗ 𝐴𝐼𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒^) + 𝒁𝒊𝒕� 𝜹 + 𝜖^<								(14) 

                                                
34 This assumes that spillovers and compositional changes in the sample are not confounding. 
35 Technically each index is shifted by 1, so the log of market value variable is log(MV+1). 
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Each year is represented as a dummy Dt and interacted with the AI Quantile dummy 

variable. The results are in the Figure 9 below, showing an increase in market value of 

approximately 4-7% for all AI-using firms relative to non-AI firms (bottom, second, and part of 

the third quintile) in the quarter of the TensorFlow launch. This is the only quarter for which the 

change in market value by AI quintile is statistically significant for the second-highest AI-

intensive quintile, and one of two for the third quintile. The quarters themselves are not 

statistically significantly different, but the pooled estimates from Table 8 suggest a structural 

break. The top AI using firms appear to have a non-parallel trend relative to non-AI firms in the 

pre-launch period. As seen in green, this high end of AI-using firms has a statistically 

significantly higher growth rate. This would invalidate the parallel trends assumption for a 

quintile group-based difference-in-difference estimate above and motivates the continuous skill 

value regression with firm fixed effects. The Appendix has the corresponding table of estimates, 

including interactions for SML quintile. Interestingly, the SML quintiles interacted with time 

dummies fail to reflect an effect of Tensorflow. Instead, the market value for those firms 

decreases later in the same year. This calls into question whether the TensorFlow (and AI talent) 

shock expectation is driving the downward trend in high SML firms. It is possible that this high 

SML revaluation occurs with a lag, or that another effect is driving the negative correlation 

between SML value and market value. Figure 10 shows the continuous treatment version of the 

effect on deep learning skills in particular. The effect precision narrows as more LinkedIn 

members post deep learning skills, but here again there is an increase in the market value of 

firms following the launch of TensorFlow in Q4 2015. This launch is statistically significant 

from zero AI use (the baseline), while all of the previous quarters are not statistically 

significantly different from the zero baseline. We fail to rule out parallel trends for the 
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continuous treatment version, though it may be that the statistically significant market value pop 

due to deep learning skills was by chance. It is convincing, however, that the effects diminish to 

an imprecisely measured zero in the quarters following Q4 2015. Figures 11A-C have data 

science skill, linear regression, and management skill index specifications (respectively) for 

comparison. All specifications include the full set of skill index controls, firm fixed effects, 

industry-time fixed effects, lagged market value, education years, and total asset controls. The 

error bars are the 95% confidence interval using standard errors clustered by firm. The pooled 

and time-series regressions suggest strong market value effects on AI-using companies from the 

launch of TensorFlow and related packages. Of course, any shock affecting AI-using companies 

in the same quarter will also show up in the coefficient estimates. These concurrent unobserved 

shocks are a threat to any causal interpretation. At a minimum, however, it appears that there was 

a strong upward repricing of all companies employing AI talent at the same time that Google 

made the decision to make TensorFlow open-source. The evidence that this launch caused a 

decrease in the value of companies with high SML tasks is weaker unless the effects occurred 

with nearly a one-year lag. At the same time, the value of other types of skills do not seem to 

have responded to the TensorFlow launch. 
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Figure 9 - AI Quintile Effects 

 

 

Figure 10 – Market Value Change per Deep Learning Skill 
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Figure 11A - Data Science Skills 

 

Figure 11B – Linear Regression Skills 
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Figure 11C – Management Skills 

These results would seem at first glance to stand in stark contrast to the previous 

section’s results on the general value of engineering talent, but instead may indicate that the 

firm-specific assets already accumulated by companies are strongly complementary to the 

general deep learning talent pool. The $2.7 million per LinkedIn AI skill increase predicted by 

the difference-in-difference analysis is unexpectedly large given that even high salaries for AI 

workers are typically less than $2 million at the moment. This suggests instead an iteration of 

Hirshleifer’s pecuniary benefits of technological change. Having AI talent in 2015 is a signal that 

there are other assets at the firm that are complementary to AI talent. TensorFlow makes a 

specialist skill into a generalist skill. As a result, more workers can build engineering value using 

commodity deep learning packages, and firms receive the capital service flow from their assets 

(for example, large scale databases or automation projects) formerly bottlenecked by the scarcity 

of available talent. TensorFlow, by making a scarce complement cheaper and more abundant, 

increases the value of firms positioned to invest in AI. 
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7. Conclusion 

 It remains an open and context-specific question whether the market value of firms is 

driven by appropriation of the value of technological human capital. Not all varieties of 

technological human capital are correlated with market value after controlling for generalized 

education level and the firm’s asset base. Engineering talent, however, is. Using a panel of 

corporate fixed assets and human capital, I have measured the average and marginal returns to 

investments in technological labor. I find that on average, engineering talent is strongly 

correlated with market value, but the marginal causal effect of hiring more engineers as 

estimated by instrumental variables analyses and controlling for time-invariant firm-specific 

factors is indistinguishable from zero. Nevertheless, exciting growth in market value can occur 

when formerly specialized skillsets are converted into general ones, as is the case with Google’s 

launch of TensorFlow. The reduced barriers to entry in AI led to growth of roughly $2.7 million 

per AI-enabled employee in 2016. This is the case even controlling for growth in other kinds of 

related skillsets, like Cloud Computing or Data Science. Further, Suitability for Machine 

Learning (SML) is unlikely to be a pathway via which TensorFlow positively impacted market 

value. If higher SML companies increased in value following the launch of TensorFlow, it would 

indicate that in expectation companies currently employing lots of high SML labor might 

appropriate the productivity gains for automating tasks with machine learning in the future. 

There is little evidence that the SML scores are positively related to market value following the 

launch of TensorFlow.  

This kind of discrete technological change is informative about the processes which limit 

diffusion of new general-purpose technologies before they become generally-applied 
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technologies. Namely, the tools or training have to be available to the engineers who are to build 

the assets that generate the technology’s value. The choice to make specialized technology with 

large potential more widely available is sometimes one that can be made by corporate actors in 

industry. Talent is not always a bottleneck, but when it is firms may be more likely to designate 

firm-specific tasks with high marginal value to workers with scarce skills. This makes it more 

difficult for competitors to bid up the wages of those types of workers, but at the same time more 

abundant skills are likely to be competitively priced. This combination of firm-specific assets 

with complementary applications of engineering skills means that firms can appropriate some of 

their employees’ investments in human capital. The paradox that, controlling for non-human 

capital assets, technological talent can have high value on average but marginally low value is 

resolved when firms can assign tasks which their competitors do not value (on average) but do 

value (on the margin).  

Managers expecting to pay all incoming workers the same amount as their incumbent 

staff are faced with a challenge when talent is scarce. Do they want to give everyone a raise just 

to hire one more person? When competition on the bases of wages is difficult, the assignment of 

firm-specific tasks is a potential mechanism to bargain away part of the employees’ talent value. 

Managers therefore force workers to compete with each other inside the firm while insulating 

their employer from outside competition. It is therefore potentially lucrative to expand the 

available talent pool to capture the full possible value of firm-specific tasks. TensorFlow made 

expectations of future deep learning talent, a previously scarce skillset, much higher. This 

suggests that all AI employers expected to find more AI talent in the coming years, permitting 

assignment of a greater range of firm-specific tasks. This suggests, for example, that open-source 

production decisions may generate rents for adopting firms via the talent channel. Many previous 
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studies of employer power in the labor market have focused on employer-occupation-market 

concentration or policy changes changing the bargaining power of employees. Yet if firms are 

benefitting from exercise of labor market monopsony power, it should show up in their 

valuations. This paper shows that for a specific type of technological talent – engineers – it can 

be the case that firm value is in part driven by employer appropriation of employee human 

capital. Companies can do this by allocating their employees to firm-specific job tasks and 

finding an employment niche. Meanwhile, workers should carefully consider their contractual 

arrangements and how their employers are engineering value. In the case that work tasks are not 

competitively decided, the distribution of value might not reward the employee for their full 

contribution.  
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Appendix: Additional Regression Results 

 

 (1) 
LinkedIn Coverage Compustat 

Count 
(Thousands) 

  
LinkedIn Count 0.00190*** 
 (1.59e-05) 
Total Assets 4.27e-05*** 
 (1.70e-06) 
  
Observations 52,767 
R-squared 0.422 
Industry-Time FE Yes 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note: Coefficients represent the predicted per LinkedIn user employee count (in thousands) for 
Compustat firms with employee count data populated. This regression is used to predict the 

employee count in the case that Compustat is missing data. 
 

 
 

 (1) (2) 
Log(Market Value) SML Quintiles AI Quintiles 
   
Log(Lagged Market Value) 0.646*** 0.645*** 
 (0.0169) (0.0170) 
Log(Total Assets) 0.305*** 0.307*** 
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 (0.0181) (0.0181) 
Log(Education Years) -0.00521 -0.00500 
 (0.00840) (0.00840) 
Log(Business Mgmt.) -0.0128 -0.0128 
 (0.00823) (0.00831) 
Log(Cloud Computing) 0.00300 0.00114 
 (0.00454) (0.00460) 
Log(Data Science) -0.00590 -0.00662 
 (0.00755) (0.00753) 
Log(Digital Literacy) 0.00977 0.00870 
 (0.00643) (0.00649) 
Log(Data Storage) -0.00268 -0.00266 
 (0.00513) (0.00509) 
Log(Big Data) -0.00111 -0.00276 
 (0.00326) (0.00353) 
Quintile 2x6  -0.00201  
 (0.0149)  
Quintile 2x7  -0.00638  
 (0.0143)  
Quintile 2x8  -0.0240  
 (0.0158)  
Quintile 2x9  -0.0224  
 (0.0160)  
Quintile 2x10  -0.0110  
 (0.0209)  
Quintile 2x11  -0.0255  
 (0.0179)  
Quintile 2x12  -0.00180  
 (0.0183)  
Quintile 2x13  -0.00327  
 (0.0207)  
Quintile 2x14  -0.0440**  
 (0.0206)  
Quintile 2x15  -0.0169  
 (0.0166)  
Quintile 2x16  -0.0484**  
 (0.0194)  
Quintile 2x17  -0.0454**  
 (0.0179)  
Quintile 2x18  -0.0187  
 (0.0181)  
Quintile 2x19  -0.0330*  
 (0.0189)  
Quintile 3x6  -0.0156 0.0181 
 (0.0174) (0.0167) 
Quintile 3x7  -0.00405 0.0124 
 (0.0166) (0.0207) 
Quintile 3x8  0.000366 0.0305 
 (0.0207) (0.0211) 
Quintile 3x9  -0.0340* 0.0155 
 (0.0198) (0.0228) 
Quintile 3x10  -0.00357 0.00974 
 (0.0208) (0.0191) 
Quintile 3x11  -0.00515 0.00940 
 (0.0207) (0.0206) 
Quintile 3x12  -0.00215 0.0682*** 
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 (0.0209) (0.0244) 
Quintile 3x13  -0.00881 0.0341 
 (0.0210) (0.0236) 
Quintile 3x14  -0.0146 0.0424* 
 (0.0211) (0.0236) 
Quintile 3x15  -0.0232 0.0481* 
 (0.0214) (0.0248) 
Quintile 3x16  -0.0339 0.0483** 
 (0.0223) (0.0237) 
Quintile 3x17  -0.0249 0.0354 
 (0.0210) (0.0239) 
Quintile 3x18  0.00932 0.0393* 
 (0.0197) (0.0230) 
Quintile 3x19  -0.0306 0.0336 
 (0.0222) (0.0238) 
Quintile 4x6  -0.0190 0.00950 
 (0.0167) (0.0120) 
Quintile 4x7  -0.0159 0.0190 
 (0.0159) (0.0132) 
Quintile 4x8  -0.00286 0.0151 
 (0.0190) (0.0153) 
Quintile 4x9  -0.0203 0.0146 
 (0.0186) (0.0137) 
Quintile 4x10  -0.00866 0.0175 
 (0.0190) (0.0138) 
Quintile 4x11  0.0180 0.0157 
 (0.0183) (0.0162) 
Quintile 4x12  -0.00516 0.0385** 
 (0.0199) (0.0153) 
Quintile 4x13  -0.00899 0.0249 
 (0.0194) (0.0160) 
Quintile 4x14  -0.0311 0.00957 
 (0.0200) (0.0174) 
Quintile 4x15  -0.0131 0.0244* 
 (0.0204) (0.0143) 
Quintile 4x16  -0.0416* 0.0179 
 (0.0231) (0.0160) 
Quintile 4x17  -0.0301 0.0243 
 (0.0197) (0.0152) 
Quintile 4x18  -0.00189 0.00740 
 (0.0197) (0.0157) 
Quintile 4x19  -0.0357* -0.00713 
 (0.0209) (0.0162) 
Quintile 5x6  -0.0394* 0.0213** 
 (0.0209) (0.0103) 
Quintile 5x7  -0.0365 0.0482*** 
 (0.0223) (0.0107) 
Quintile 5x8  -0.0356 0.0244** 
 (0.0264) (0.0123) 
Quintile 5x9  -0.0338 0.0337*** 
 (0.0229) (0.0120) 
Quintile 5x10  -0.0280 0.0156 
 (0.0211) (0.0122) 
Quintile 5x11  -0.0290 0.0484*** 
 (0.0247) (0.0136) 
Quintile 5x12  -0.0366 0.0513*** 
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 (0.0232) (0.0133) 
Quintile 5x13  -0.0502* 0.0401*** 
 (0.0264) (0.0147) 
Quintile 5x14  -0.0437* 0.0360** 
 (0.0253) (0.0151) 
Quintile 5x15  -0.0272 0.0416*** 
 (0.0229) (0.0141) 
Quintile 5x16  -0.0613** 0.0282* 
 (0.0259) (0.0156) 
Quintile 5x17  -0.0388 0.0337** 
 (0.0252) (0.0149) 
Quintile 5x18  -0.0107 0.0380** 
 (0.0262) (0.0153) 
Quintile 5x19  -0.0433* 0.0254 
 (0.0247) (0.0163) 
   
Observations 20,522 20,526 
R-squared 0.998 0.998 

Table Note: Robust standard errors in parentheses, SEs Clustered by Firm. TensorFlow Launch corresponds to year-
quarter 12. Quintile 5x12 is the coefficient on the fourth quarter of 2015 dummy interacted with the highest quintile 
for SML (1) and AI (2). None of the second quintile data are available for AI because the second quintile still does 

not use AI skills. Other values are relative differences to the first quintile. 
*** p<0.01, ** p<0.05, * p<0.1 

 


