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Abstract

We	propose	a	new	strategy	for	dissecting	macroeconomic	data	and	use	its	properties	to	appraise
models	of	both	the	parsimonious	and	the	medium-scale	variety. Our	findings	support	the	existence
of	a	main	business-cycle	driver	but	rule	out	the	following	candidates	for	this	role: technology	or
other	shocks	that	map	to	TFPmovements; news	about	future	productivity; and	inflationary	demand
shocks	of	the	textbook	type. Prominent	members	of	the	DSGE literature	also	lack	the	propagation
mechanism	seen	in	our	anatomy	of	the	data. Models	that	aim	at	accommodating	demand-driven
cycles	even	without	sticky	prices	and	Philips	curves	appear	promising.

*This	paper	subsumes	prior	empirical	work	that	appeared	in	Section	2	of Angeletos, Collard, and	Dellas (2015)	and	the
2013	Schumpeter	Lecture	at	the	North	American	Summer	Meeting	of	the	Econometric	Society. For	useful	comments, we
thank	Patrick	Feve, Lars	Hansen, Franck	Portier, Juan	Rubio-Ramirez	and	participants	at	various	seminars	and	conferences.
Angeletos	acknowledges	the	financial	support	of	the	National	Science	Foundation	(Award	#1757198). Collard	acknowl-
edges	 funding	 from	 the	French	National	Research	Agency	 (ANR) under	 the	 Investments	 for	 the	Future	 (Investissements
d’Avenir)	program, grant	ANR-17-EURE-0010.



“One	is	led	by	the	facts	to	conclude	that, with	respect	to	the	qualitative	behavior	of	co-
movements	among	series, business	cycles	are	all	alike. To	theoretically	inclined	economists,
this	conclusion	should	be	attractive	and	challenging, for	it	suggests	the	possibility	of	a	uni-
fied	explanation	of	business	cycles.” Lucas (1977)

1 Introduction

In	their	quest	to	explain	macroeconomic	fluctuations, macroeconomists	have	often	relied	on	models
in	which	a	single, recurrent	shock	acts	as	the	main, or	even	the	sole, driver	of	the	business	cycle.1

This	practice	 is	grounded	not	only	on	 the	desire	 to	offer	a	parsimonious, unifying	explanation	as
suggested	by	Lucas, but	also	on	 the	belief	 that	 such	a	model	may	capture	diverse	business-cycle
episodes	if	different	triggers	share	a	common	propagation	mechanism.2

What	are	the	dynamic	properties	of	a	model	in	this	class, or	equivalently, what	propagation	mech-
anism	can	best	account	 for	observed	business	cycles? We	provide	a	template	of	 this	propagation
mechanism	by	using	information	extracted	from	the	data	with	the	help	of	a	new	empirical	strategy.

The	strategy	involves	 taking	multiple	cuts	of	 the	data, each	cut	corresponding	 to	a	VAR-based
shock	designed	to	account	for	the	maximal	amount	of	the	volatility	of	a	particular	variable	over	a
particular	frequency	band. Whether	these	reduced-form	shocks	have	a	direct	structural	counterpart
or	not, their	properties	form	a	rich	set	of	cross-variable, static	and	dynamic	restrictions, which	can
inform	macroeconomic	theory. We	call	this	set	the	“anatomy.”

A core	subset	of	 the	anatomy	 is	 the	collection	of	shocks	 that	 target	 the	main	macroeconomic
quantities	over	the	business-cycle	frequencies. These	shocks	turn	out	to	be	interchangeable	in	the
sense	of	giving	rise	to	similar	impulse	response	functions	(IRFs), a	finding	that	supports	the	existence	of
a	main, unifying, propagation	mechanism. The	common	empirical	footprint	of	these	shocks	provides
the	sought-after	template.

Whether	alone	or	 in	combination	with	other	elements	of	our	anatomy, this	 template	rules	out
the	following	candidates	for	the	main	driver	of	the	business	cycle: technology	or	other	shocks	that
map	to	TFP movements; news	about	future	productivity; and	inflationary	demand	shocks	of	the	text-
book, New	Keynesian	type. Prominent	members	of	the	DSGE literature	also	lack	the	propagation
mechanism	seen	in	the	data	through	our	lenses. A model	belonging	to	a	recent	literature	that	aims	at
accommodating	demand-driven	cycles	outside	the	realm	of	sticky	prices	and	Philips	curves	fits	better
the	provided	template.3

The	empirical	strategy. We	first	 estimate	a	VAR (or	 a	VECM) on	the	 following	 ten	macroeco-
nomic	variables	over	the	1955-2017	period: the	unemployment	rate; the	per-capita	levels	of	GDP,

1This	is	the	monetary	shock	in Lucas (1973, 1975), the	TFP shock	in Kydland	and	Prescott (1982), the	sunspot	in Benhabib
and	Farmer (1994), the	investment	shock	in Justiniano, Primiceri, and	Tambalotti (2010), the	risk	shock	in Christiano, Motto,
and	Rostagno (2014), and	the	confidence	shock	in Angeletos, Collard, and	Dellas (2018).

2To	echo Cochrane (1994): “The	study	of	shocks	and	propagation	mechanisms	are	of	course	not	separate	enterprises.
Shocks	are	only	visible	if	we	specify	something	about	how	they	propagate	to	observable	variables.”

3Examples	of	this	literature	include Angeletos	and	La’O (2010, 2013), Bai, Ríos-Rull, and	Storesletten (2017), Beaudry
and	Portier (2018), Beaudry, Galizia, and	Portier (2018), Benhabib, Wang, and	Wen (2015), Huo	and	Takayama (2015),
and Ilut	and	Saijo (2018). Closely	related	is	also	the	earlier	literature	on	coordination	failures.
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investment	(inclusive	of	consumer	durables), consumption	(of	non-durables	and	services), and	total
hours	worked; labor	productivity	in	the	non-farm	business	sector; utilization-adjusted	TFP;	the	labor
share; the	inflation	rate	(GDP deflator), and	the	federal	funds	rate. We	next	compile	a	collection	of
reduced-form	shocks, each	of	which	is	identified	by	maximizing	its	contribution	to	the	volatility	of
a	particular	variable	over	either	business-cycle	frequencies	(6-32	quarters)	or	long-run	frequencies
(80-∞). We	finally	inspect	the	empirical	patterns	encapsulated	in	each	of	these	shocks, namely	the
implied	IRFs	and	variance	contributions.

This	procedure	produces	multiple	(but	not	necessarily	orthogonal)	cuts	of	the	data, one	per	tar-
geted	variable	and	frequency	band. For	example, one	cut	is	obtained	by	targeting	unemployment
over	the	business-cycle	frequencies, another	by	targeting	TFP over	the	long-run	frequencies, and	so
on. The	collection	of	all	these	cuts	comprises	our	“anatomy”	of	the	data	and	forms	the	basis	of	the
lessons	we	draw	for	theory.4

The	Main	Business	Cycle	Shock. Consider	the	shocks	that	target	any	of	the	following	variables
over	the	business-cycle	frequencies: unemployment, total	hours	worked, GDP,	and	investment. These
shocks	are	nearly	indistinguishable	in	terms	of	IRFs. Furthermore, any	one	of	them	accounts	for	about
three-quarters	of	the	business-cycle	volatility	of	the	targeted	variable	and	for	more	than	one	half	of
the	business-cycle	 volatility	 in	 the	 remaining	variables, and	 triggers	 strong	positive	 co-movement
in	all	variables. The	shock	that	 targets	consumption	is	 less	 tightly	connected	in	terms	of	variance
contributions, but	still	similar	in	terms	of	comovements/IRFs.

These	findings	offer	support	for	theories	featuring	a	dominant	shock/propagation	mechanism	and
motivate	the	concept	of	the	“Main	Business	Cycle	shock”	(henceforth, MBC shock). We	use	this	term
to	refer	to	the	common	empirical	footprint, in	terms	of	IRFs, of	the	aforementioned	reduced-forms
shocks. This	in	turn	provides	the	template	mentioned	earlier.5

A central	 feature	of	 this	 template	 is	 the	 interchangeability	property	already	mentioned: target-
ing	any	of	the	key	macroeconomic	quantities	produces	the	same	IRFs. Below, we	describe	a	few
additional	features	of	the	MBC shock	and	of	the	overall	anatomy, and	discuss	their	implications	for
parsimonious, single-shock	theories. Afterwards, we	switch	to	a	multi-shock	models	and	discuss	the
use, challenges	and	benefits	of	applying	our	method	to	such	models.

Disconnect	from	TFP and	from	the	long	run. The	MBC shock	is	disconnected	from	TFP at any
frequency. It	also	accounts	for	little	of	the	long-term	variation	in	output, investment, consumption,
and	labor	productivity. Symmetrically, the	shocks	identified	by	maximizing	the	long-term	volatility	in
any	of	these	variables	make	a	negligible	contribution	to	the	business	cycle.

These	findings	are	inconsistent	not	only	with	the	baseline	RBC model	but	also	with	models	that
map	other	shocks, including	financial, uncertainty	and	sunspot	shocks, to	endogenous	TFP fluctua-
tions.6 In	these	models, the	productivity	movements	over	the	business-cycle	frequencies	ought	to	be

4The	basic	idea	of	 identifying	a	shock	by	maximizing	its	variance	contribution	to	a	variable	is	borrowed	from Faust
(1998)	and Uhlig (2003). What	distinguishes	our	contribution	is	the	multitude	of	such	shocks	considered, the	empirical
regularities	recovered, and	the	lessons	drawn	for	theory.

5Additional	support	for	the	existence	of	a	main	business-cycle	driver	is	provided	by	recovering	the	first	principle	com-
ponent	of	the	business-cycle	frequencies	of	the	data. However, principal	component	analysis	(PCA) does	not	allow	the
construction	of	IRFs	and	therefore	does	not	provide	the	template	sought	after.

6Benhabib	and	Farmer (1994), Bloom	et al. (2018)	and Bai, Ríos-Rull, and	Storesletten (2017)	are	notable	examples	of
such	models: the	first	generates	procyclical	TFP movements	out	of	sunspots, the	second	out	of	uncertainty	shocks, and	the
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tightly	tied	to	the	MBC shock, which	is	not	the	case.
These	findings	also	challenge	models	that, following Beaudry	and	Portier (2006), emphasize	news

of	productivity	and	income	in	the	future. If	such	news	was	the	main	driver	of	the	business	cycle, the
MBC shock	would	have	been	a	strong	signal	of	future	TFP movements, which	is	not	the	case.

These	findings	instead	match	the	picture	painted	in Blanchard	and	Quah (1989)	and Galí (1999),
who	point	towards	the	importance	of	demand	shocks	unrelated	to	TFP and	the	long	run. However,
as	discussed	below, existing	formalizations	of	such	shocks	face	their	own	challenges.

Disconnect	from	inflation. The	MBC shock	is	nearly	orthogonal	to	inflation	at	all	frequencies.
For	 instance, the	shock	that	 targets	unemployment	accounts	 for	almost 74% of	 the	business-cycle
variation	in	that	variable	and	only	for 7% of	the	business-cycle	variation	in	inflation. And	conversely,
the	shock	that	targets	inflation	explains 83%of	the	variation	in	inflation	and	only 4%of	the	variation	in
unemployment. Moreover, the	magnitude	of	the	inflation	response	to	the	MBC shock	is	close	to	zero.
Finally, a	similar	disconnect	characterizes	the	relationship	between	inflation	and	the	labor	share, an
often-used	proxy	of	the	real	marginal	cost	in	the	New	Keynesian	literature.

These	findings	challenge	the	textbook	formalization	of	demand-driven	business	cycles: this	for-
malization	requires	the	MBC shock	to	be	strongly	inflationary, which	is	not	the	case. Related	obser-
vations	have	led	the	DSGE literature	to	flatten	the	Phillips	curve	and	attribute	the	inflation	movements
to	mysterious	markup	shocks. An	alternative	is	that	demand	shocks	operate, in	large	part, outside	the
realm	of	sticky	prices	and	Philips	curves.

The	anatomy	through	the	lenses	of	medium-scale	DSGEmodels. When	viewed	through	the	lenses
of	simple, single-shock	models, the	findings	reported	above	paint	a	clear	picture	of	what	the	dominant
driver	of	the	business	cycle	could	and	could	not	be. Do	these	lessons	generalize	to	medium-scale
models	that	feature	multiple	shocks? Does	the	MBC template	and	our	anatomy	more	generally	retain
their	probing	power	in	such	models?

Such	models	pose	a	challenge	for	the	interpretation	and	use	of	the	MBC shock, as	this	may	corre-
spond	to	a	combination	of	theoretical	shocks, none	of	which	individually	has	its	properties.7 But	at
the	same	time, such	models	give	rise	to	a	larger	set	of	cross-variable, static	and	dynamic	restrictions
that	can	be	confronted	with	our	anatomy	of	the	data. For	instance, one	can	ask	whether	such	a	model
replicates	the	interchangeability	property	of	the	MBC template. Which	of	these	two	countervailing
forces	associated	with	model	richness	prevails	is	an	empirical	matter	that	can	be	determined	for	any
model	under	consideration	but	not	in	the	abstract.

We	demonstrate	these	ideas	in	Section 6 using	state-of-the-art, medium	scale	DSGE models. One
is	 the	 sticky-price	model	 of Justiniano, Primiceri, and	Tambalotti (2010), which	 is	 essentially	 the
same	as	that	developed	in Christiano, Eichenbaum, and	Evans (2005)	and Smets	and	Wouters (2007).
Another	one	is	the	flexible-price	model	found	in Angeletos, Collard, and	Dellas (2018); this	is	an
extension	of	the	RBC model	that	disentangles	the	expectations	of	the	short-term	economic	outlook
from	expectations	of	fundamentals	such	as	TFP and	allows	business	cycles	to	be	driven	by	variation
in	the	level	of	confidence	about	the	behavior	of	others. We	view	the	former	as	representative	of	the

third	out	of	demand	shocks.
7This	difficulty	is	not	specific	to	our	approach. It	concerns	any	approach	that	requires	a	single	shock	to	drive	some

conditional	variance	in	the	data. For	instance, Galí (1999)	requires	that	a	single	shock	drives	productivity	in	the	long	run,
an	assumption	inconsistent	with	the	literature	on	news	shocks.
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New	Keynesian	paradigm	and	the	latter	as	an	example	of	the	literature	cited	in	footnote 3, which
aims	at	disentangling	demand-driven	fluctuations	from	nominal	rigidities	and	Philips	curves.

In	each	model, we	perform	an	anatomy	similar	to	that	carried	out	in	the	data: we	consider	different
linear	combinations	of	the	theoretical	shocks, each	one	constructed	by	maximizing	the	business-cycle
volatility	of	a	different	macroeconomic	quantity. We	then	compare	the	model-based	objects	to	their
empirical	counterparts.

Both	models	match	 the	 disconnect	 of	 the	MBC shock	 from	TFP and	 inflation. However, the
first	model	does	not	match	the	interchangeability	property	of	the	MBC template: the	reduced-form
shocks	obtained	by	targeting	the	key	macroeconomic	quantities	are	less	similar	in	the	model	than
their	empirical	counterparts. This	 is	because	 this	model—like	many	other	members	of	 the	DSGE
literature—attributes	the	business	cycle	to	a	fortuitous	combination	of	specialized	shocks, none	of
which	generates	the	empirically	relevant	comovement	patterns	in	the	key	macroeconomic	quanti-
ties. By	contrast, the	second	model	fits	the	patterns	seen	in	the	data	because	it	contains	a	dominant
shock/mechanism	that	alone	generates	these	patterns.

As	an	additional	demonstration	of	the	value	of	our	method, we	use	it	to	evaluate	the	model	of
Christiano, Motto, and	Rostagno (2014). This	model	is	a	leader	in	a	new	strand	of	the	DSGE literature
that	includes	financial	frictions	and	uses	financial	(risk)	shocks	to	drive	the	business	cycle. We	find
that	 this	model	has	difficulties, not	only	 in	 the	dimension	discussed	above, but	also	 in	 satisfying
the	cross-variable, dynamic	restrictions	between	the	MBC shock	and	the	new, financial	variables	it
contains, in	particular	the	credit	spread	and	the	level	of	credit.

To	summarize: Although	there	is	no	presumption	that	the	reduced-form	shocks	identified	via	our
method	can	always	have	a	meaningful	structural	interpretation	in	the	realm	of	arbitrary	multi-shock
models, they	prove	quite	effective	in	the	evaluation	of	the	shock	structure/propagation	mechanisms
in	models	actually	used	in	literature. We	hope	that	our	findings	will	help	guide	future	attempts	either
to	fix	the	limitations	of	existing	models	or	to	develop	new	ones.

Layout. The	rest	of	the	paper	is	organized	as	follows. Section 2 describes	the	empirical	method.
Section 3 reviews	our	empirical	findings. Section 4 reports	the	various	robustness	exercises. Section 5
offers	an	interpretation	of	the	main	empirical	findings. Section 6 contains	the	application	to	medium-
scale	models. Section 7 concludes.

2 Data	and	Method

The	data	used	in	our	main	specification	consists	of	quarterly	observations	on	the	following	ten, key
macroeconomic	variables: the	unemployment	rate	(u); the	real, per-capita	levels	of	GDP (Y ), invest-
ment	(I), consumption	(C); hours	worked	per	person	(h); labor	productivity	in	the	non-farm	business
sector	(Y /h); the	level	of	utilization-adjusted	total	factor	productivity	(TFP);	the	labor	share	(Wh

Y ); the
inflation	rate	(π), as	measured	by	the	rate	of	change	in	the	GDP deflator; and	the	nominal	interest	rate
(R), as	measured	by	the	federal	funds	rate. The	sample	starts	in	the	first	quarter	of	1955, the	earliest
date	of	availability	for	the	federal	funds	rate, and	ends	in	the	last	quarter	of	2017.

Following	standard	practice, and	to	ensure	compatibility	with	the	models	used	in	Section 6, our
measure	of	investment	includes	consumer	expenditure	on	durables, while	that	of	consumption	con-
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sists	of	expenditure	on	non-durables	and	services. Both	measures	are	herein	deflated	by	the	GDP
deflator. Section 4 establishes	the	robustness	of	our	results	to	the	use	of	component-specific	defla-
tors; to	different	samples, such	as	the	pre-	and	post-Volcker	periods	or	excluding	the	Great	Recession
and	the	ZLB period; and	to	the	inclusion	of	additional	variables, such	as	stock	prices	and	financial
variables. Appendix A contains	the	definitions	and	data	sources.

We	now	turn	to	the	description	of	the	empirical	method. As	mentioned	in	the	Introduction, the
method	involves	running	a	VAR on	the	aforementioned	ten	variables	and	recovering	certain	“shocks.”
As	in	the	SVAR literature, any	of	the	shocks	constructed	here	represents	a	particular	linear	combination
of	 the	VAR residuals. What	distinguishes	our	approach	is	the	criterion	used	in	the	identification	of
such	a	linear	combination.

Let	the	VAR take	the	form
A(L)Xt = νt,

where	the	following	definitions	apply: Xt is	a N ×1 vector, containing	the	macroeconomic	variables
under	consideration; A(L) ≡

∑p
τ=0AτL

τ is	a	matrix	polynomials	in	the	backshift	operator L, with
A(0) = A0 = I; p is	the	number	of	lags	included	in	the	VAR;	and ut is	the	vector	of	VAR residuals,
with E(utu

′
t) = Σ for	some	positive	definite	matrix Σ. Our	baseline	specification	sets p = 2, which	is

the	number	of	lags	suggested	by	standard	Bayesian	criteria. Appendix F establishes	the	robustness	of
our	findings	to	the	inclusion	of	additional	lags, as	well	as	to	the	use	of	a	VECM instead	of	a	VAR.8

We	assume	the	existence	of	a	linear	mapping	between	the	residuals, νt, and	some	mutually	inde-
pendent	“structural”	shocks, εt, that	is, we	let

νt = Sεt

where S is	an	invertible N ×N matrix	and εt is	i.i.d. over	time, with E(εtε′t) = I. These	“structural”
shocks	may	or	may	no	correspond	to	the	kind	of	structural	shocks	featured	in	theoretical	models;
they	are	transformations	of	the	VAR residuals, whose	interpretation	is	inherently	delicate	and	always
debatable.

Notwithstanding	this	point, we	can	always	write S = S̃Q, where S̃ is	the	Cholesky	decomposition
of Σ, the	covariance	matrix	of	the	VAR residuals, and Q is	an	orthonormal	matrix, namely	a	matrix
such	that Q−1 = Q′. We	then	have	that εt = S−1νt = Q′S̃−1νt, which	means	that	each	one	of	the
shocks	in εt corresponds	to	a	column	of	the	matrix Q.

By	construction, Q must	satisfy QQ′ = I, which	is	equivalent	to S satisfying SS′ = Σ. But	this	by
itself	does	not	suffice	to	identify	any	of	the	underlying	shocks: additional	restrictions	must	be	imposed
on Q in	order	to	identify	any	of	them. These	restrictions	are	based	on	the	analyst’s	priors	about	the
behavior	of	various	shocks	or	perhaps	some	on	some	other	criterion. The	typical	SVAR exercise	in	the
literature	employs	exclusion	or	sign	restrictions	motivated	by	specific	theories. We	instead	identify	a
shock	by	the	requirement	that	it	contributes	the	maximum	to	the	volatility	of	a	particular	variable	in
a	particular	frequency	band.

8A VECM may	be	recommended	if	the	analyst	believes, perhaps	on	the	basis	of	theory, that	certain	variables	are	co-
integrated. But	a	VECM is	also	sensitive	to	the	assumed	co-integration	relations, which	explains	why	we, as	much	of	the
related	empirical	literature, use	the	VAR as	our	baseline	specification.
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Let	us	fill	in	the	details. The	Wold	representation	of	the	VAR is	given	by

Xt = B(L)νt

where B(L) = A(L)−1 is	an	infinite	matrix	polynomial	of	the	form B(L) =
∑∞

τ=0BτL
τ . Replacing

νt = S̃Qεt, we	can	rewrite	the	above	as	follows:

Xt = C(L)Qεt = Γ(L)εt,

where C(L) and Γ(L) are	infinite	matrix	polynomials	of	the	form C(L) =
∑∞

τ=0CτL
τ and Γ(L) =∑∞

τ=0 ΓτL
τ , with Cτ ≡ Bτ S̃ and Γτ ≡ CτQ for	all τ ∈ {0, 1, 2, . . .}. The	sequence {Γτ}∞τ=0 represents

the	IRFs	of	the	variables	to	the	structural	shocks. This	is	obtained	from	the	sequence {Cτ}∞τ=0, which
encapsulates	the	Cholesky	transformation	of	the	VAR residuals.

For	any	pair (k, j) ∈ {1, ..., N}2, take	the k-th	variable	in Xt and	the j-th	shock	in εt. As	already
noted, this	shock	corresponds	to	the j-th	column	of	the	matrix Q. Let	this	column	be	the	vector q. For
any τ ∈ {0, 1, . . .}, the	effect	of	this	shock	on	the	aforementioned	variable	at	horizon τ is	given	by	the
(k, j) element	of	the	matrix Γτ ≡ CτQ, or	equivalently	by	the	number C [k]

τ q, where C [k]
τ henceforth

denotes	the k-th	row	of	the	matrix Cτ . Similarly, the	contribution	of	this	shock	to	the	spectral	density
of	this	variable	over	the	frequency	band [ω, ω] is	given	by

Υ(q; k, ω, ω) ≡
∫
ω∈[ω,ω]

(
C [k](e−iω)q C [k](e−iω)q

)
dω = q′

(∫
ω∈[ω,ω]

C [k](e−iω)C [k](e−iω)dω

)
q

where, for	any	vector v, v denotes	its	complex	conjugate	transpose.
Consider	the	matrix

Θ(k, ω, ω) ≡
∫
ω∈[ω,ω]

C [k](e−iω)C [k](e−iω)dω

This	matrix	captures	the	entire	volatility	of	variable k over	the	aforementioned	frequency	band, ex-
pressed	in	terms	of	the	contributions	of	all	the	Cholesky-transformed	residuals. It	can	be	obtained
directly	from	the	data	(i.e., from	the	estimated	VAR),	without	any	assumption	about Q. The	contribu-
tion	of	any	structural	shock	can	then	be	re-written	as

Υ(q; k, ω, ω) = q′Θ(k, ω, ω)q, (1)

where, as	already	explained, q is	the	column	vector	of Q corresponding	that	shock.
The	above	is	true	for	any	shock, no	matter	how	it	is	identified. Our	approach	is	to	identify	a	shock

by	maximizing	its	contribution	to	the	volatility	of	a	particular	variable	over	a	particular	frequency
band, that	is, to	choose q so	as	to	maximize	the	number	given	in	(1). It	follows	that q is	the	eigenvector
associated	to	the	largest	eigenvalue	of	the	matrix Θ(k, ω, ω).

This	 identification	strategy	 reminds	principle	component	analysis; we	expand	on	 this	point	 in
Section 3.3. It	is	also	similar	to	that	employed	in Faust (1998), Uhlig (2003), Barsky	and	Sims (2011)
and Francis	et al. (2014), except	for	two	differences. The	first, and	mostly	technical, difference	is	that
we	work	on	the	frequency	domain	rather	than	the	time	domain.9 The	second, and	more	substantial,

9As	shown	in	Appendix C,	similar	results	obtain	if	we	repeat	our	exercises	on	the	time	domain.
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difference	 is	 that	we	systematically	vary	 the	 targeted	variable	and/or	 the	 targeted	 frequency	band
instead	of	committing	to	a	specific	such	choice.

In	the	next	section, we	start	by	targeting	unemployment	and	setting [ω, ω] = [2π/32, 2π/6], which	is
the	frequency	band	typically	associated	with	the	business	cycle. We	then	proceed	to	vary	both	the
targeted	variable	and	the	targeted	frequency	band. This	produces	many	different	cuts	of	the	data, the
collection	of	which	comprises	the	“anatomy”	offered	in	this	paper	and	forms	the	basis	of	the	lessons
we	draw	for	theory.

3 Empirical	findings

This	section	presents	the	main	findings	of	our	empirical	method	and	discusses	a	few	tentative	lessons
for	macroeconomic	theory. These	lessons	are	sharpest	under	our	preferred	perspective, namely, when
seeking	to	understand	the	business	cycle	as	the	product	of	a	single, dominant	shock/mechanism. This
is	the	perspective	adopted	in	this	section. Its	relaxation	in	subsequent	sections	reveals	the	broader
usefulness	of	our	findings.

3.1 The	Main	Business	Cycle	Shock: Targeting	Unemployment

A key	finding	in	this	paper	is	that	the	shocks	that	target	the	aggregate	quantities	over	the	business-cycle
frequencies	can	be	thought	of	as	interchangeable	facets	of	(what	we	call)	the	MBC shock. But	as	our
anatomy	consists	of	individual	cuts	of	the	data, we	need	to	start	with	one	of	these	shocks. We	choose
the	shock	that	targets	unemployment, rather	than	any	of	its	“sister”	shocks, because	unemployment
is	the	most	widely	recognized	indicator	of	the	state	of	the	economy.

Figure 1 reports	the	impulse	response	functions	(IRFs)	of	all	the	variables	to	this	shock. As	very
similar	IRFs	are	produced	by	the	shocks	that	target	the	other	key	macroeconomic	quantities, this	figure
plays	a	crucial	role	in	our	analysis: it	serves	as	the	empirical	template	for	the	propagation	mechanism
of	models	that	contain	a	single	or	dominant	business-cycle	driver.

Table 1 adds	more	 information	about	 the	 identified	 shock	by	 reporting	 its	 contribution	 to	 the
volatility	of	all	the	variables	over	two	frequency	bands: the	one	used	to	construct	it, which	corresponds
to	the	range	between 6 and 32 quarters	and	is	referred	to	as	“Short	Run”	in	the	table; and	a	different
band, which	is	referred	to	as	“Long	Run”	and	corresponds	to	the	range	between 80 quarters	and ∞.
This	helps	assess	whether	the	identified	shock	can	indeed	account	for	the	bulk	of	the	business-cycle
fluctuations	in	the	key	macroeconomic	quantities, as	well	as	how	large	its	footprint	is	on	inflation	or
the	long	run.10

What	are	the	main	properties	of	the	identified	shock?
First, over	the	business-cycle	frequencies, it	explains	about	75%	of	the	volatility	in	unemployment,

60%	of	that	in	investment	and	output, and	50%	of	that	in	hours. It	also	gives	rise	to	a	realistic	business
cycle, with	all	 the	aforementioned	variables, as	well	 as	 consumption, moving	 in	 tandem. These
properties	together	with	those	reported	in	the	next	subsection	justify	labeling	the	identified	shock	as
the	“main	business	cycle	shock.”

10Figure 12 in	Online	Appendix C contains	similar	information	as	Table 1, but	applied	to	the	time	domain: it	reports	the
contributions	of	the	identified	shock	to	the	forecast	error	variances	(FEV) of	the	variables	at	different	horizons.
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Figure 1: Impulse	Response	Functions	to	the	MBC Shock
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Note: Impulse	Response	Functions	of	all	the	variables	in	our	VAR to	the	identified	MBC shock. Horizontal	axis: time
horizon	in	quarters. Shaded	area	: 68%	Highest	Posterior	Density	Interval	(HPDI henceforth).

Table 1: Variance	Contributions

u Y h I C

Short	Run	(6-32	quarters) 73.71 58.51 47.72 62.09 20.38
[66.80,79.94] [50.65,65.07] [40.77,54.45] [54.09,68.46] [13.61,27.53]

Long	Run	(80-∞ quarters) 20.83 4.64 5.45 5.16 4.13
[8.37,38.94] [0.52,15.85] [1.25,15.40] [0.79,16.81] [0.38,14.93]

TFP Y /h wh/Y π R

Short	Run	(6-32	quarters) 5.86 23.91 27.02 6.96 22.27
[2.44,10.96] [17.27,31.22] [18.39,35.93] [3.24,12.28] [14.22,30.97]

Long	Run	(80-∞ quarters) 4.09 3.88 3.12 5.77 9.12
[0.41,14.48] [0.37,14.19] [0.78,10.16] [1.70,13.54] [2.68,20.00]

Note: Variance	contributions	of	the	MBC shock	at	two	frequency	bands. The	first	row	(Short	Run)	corresponds
to	the	range	between 6 and 32 quarters, the	second	row	(Long	Run)	to	the	range	between 80 quarters	and ∞.
The	shock	is	constructed	by	targeting	unemployment	over	the 6-32 range. The	notation	used	for	the	variables
is	the	same	as	that	introduced	Section 2. 68%	HPDI into	brackets.
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Second, the	identified	shock	contains	little	statistical	information	about	the	business-cycle	varia-
tion	in	either	TFP or	labor	productivity. This	is prima	facia inconsistent, not	only	with	the	baseline
RBC model, but	also	with	a	class	of	models	that	let	financial	or	other	shocks	trigger	business	cycles
only, or	primarily, by	causing	endogenous	movements	in	productivity. We	expand	on	this	point	in
Section 3.4.11

Third, the	contribution	of	the	shock	to	economic	activity	peaks	within	a	year	of	the	occurrence
of	the	shock, fades	out	before	long, and	leaves	a	negligible	footprint	on	the	long	run. This	finding
extends	and	reinforces	 the	key	message	of Blanchard	and	Quah (1989): what	drives	 the	business
cycle	appears	to	be	distinct	from	what	drives	productivity	and	output	in	the	longer	term. This	point
is	further	corroborated	later.

Fourth, the	 shock	 triggers	 a	 small	 and	delayed	procyclical	movement	 in	 inflation. While	 this
may	invite	the	interpretation	of	the	MBC shock	as	a	demand	shock	of	the	Keynesian	type, such	an
interpretation	faces	a	few	challenges, which	are	discussed	in	detail	in	Sections 3.5 and 6.

Fifth, the	shock	triggers	a	countercyclical	response	in	the	labor	share	for	the	first	few	quarters,
which	is	reversed	later	on. Relatedly, when	looking	at	the	response	of	the	real	wage	as	the	difference
between	the	response	of	 the	labor	share	and	that	of	 labor	productivity, we	see	that	 the	real	wage
remains	nearly	flat	in	response	to	the	identified	shock. This	is	consistent	with	the	well-known	fact
that	wages	display	very	weak	procyclicality, which	is	typically	interpreted	as	being	due	to	some	form
of	real-wage	rigidity.

Finally, the	shock	triggers	a	short-lived, procyclical	movement	in	the	nominal	interest	rate. This
could	reflect	monetary	policy	that	raises	the	nominal	interest	rate	in	response	to	the	boom	triggered
by	the	identified	shock. Furthermore, because	the	increase	in	the	nominal	interest	is	larger	than	that
in	inflation, the	shock	also	triggers	a	procylical	response	in	the	real	interest	rate.

3.2 The	Main	Business	Cycle	Shock: Targeting	Other	Quantities

Figure 2 compares	the	IRFs	of	the	shock	that	targets	the	business-cycle	volatility	of	the	unemployment
rate	(black	line)	to	the	IRFs	of	the	shocks	that	are	identified	by	targeting	the	business-cycle	volatility
of	a	some	other	key	macroeconomic	quantities: GDP (red	line), hours	(green	line), investment	(blue
line), and	consumption	(gray	line). As	is	evident	from	the	figure, the	IRFs	are	nearly	indistinguishable:
targeting	any	one	of	these	variables	seems	to	give	rise	to	the	same	dynamic	comovement	properties.
This	explains	the	rationale	of	interpreting	these	reduced-form	shocks	as	complementary	facets	of	the
empirical	footprint	of	the	same	propagation	mechanism, or	of	what	we	have	called	the	MBC shock.

Table 2 paints	a	complementary	picture	in	terms	of	 the	variance	contributions: the	shock	that
targets any one	of	unemployment, GDP,	hours	and	investment	explains	the	bulk	of	business-cycle
volatility	in	all	of	these	variables. The	following	caveat	applies	in	the	case	of	consumption: the	shock
that	targets	consumption	explains	less	than	one	quarter	of	the	fluctuations	in	unemployment, hours,
or	investment. And	symmetrically, the	other	shocks	that	make	up	our	MBC template	account	for	less

11Also, the	mild	and	short-lived, procyclical	response	of	labor	productivity	to	the	identified	shock	could	reflect	the	impact
of	the	latter	on	capacity	utilization. This	hypothesis	is	corroborated	by	the	evidence	in	Appendix F.2, where	the	MBC shock
is	shown	to	lead	to	a	similarly	short-lived	but	significant	increase	in	capacity	utilization	while	accounting	for	more	than
50%	of	its	volatility	at	the	business-cycle	frequencies.
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Figure 2: The	MBC Shock, IRFs
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u shock; Y shock; I shock; h shock; C shock; Shaded	area: 68%	HPDI.

than	one	quarter	of	the	fluctuations	in	consumption.12 Nonetheless, the	consumption	shock	conforms
quite	closely	to	the	other	shocks	when	it	comes	to	the	dynamic	patterns	it	induces	(IRFs), as	well	as	in
terms	of	the	disconnect	from	TFP and	inflation. That	is, it	shares	the	same	propagation	mechanism. As
suggested	in	the	Introduction, it	is	this	common	propagation	mechanism	that	our	method	documents
and	uses	as	the	litmus	test	for	the	propagation	mechanism	of	the	models	considered.

3.3 The	MBC Shock	and	Principal	Component	Analysis

The	finding	that	 there	is	a	single	force	that	drives	the	bulk	of	 the	fluctuations	in	various	measures
of	economic	activity	naturally	 invites	a	comparison	to	principal	component	analysis	 (PCA).	 Is	our
main	business	cycle	shock	similar	to	the	first	principal	component	of	the	data	over	business	cycle
frequencies? And	if	yes, are	there	any	reasons	to	favor	employing	our	method	over	PCA in	pursuing
an	anatomy	of	the	business	cycle?

To	address	the	first	question, we	perform	PCA in	the	frequency	domain. For	each	variable Xj ∈
{u, Y, h, I, ...},we	construct	the	bandpass-filtered	variableXbc

j that	isolates	its	business	cycle	frequen-
cies	(6-32	quarters). We	then	use	the	covariance	matrix	of	all	the	filtered	variables	to	construct	the
first	principal	component, denoted	by PC1bc. We	finally	project	each Xbc

j on PC1bc and	compute
the	R-square	of	the	projection. This	gives	the	percentage	of	the	business-cycle	volatility	in	variable j
accounted	for	by	the	principal	component.13

Four	different	 versions	of	 this	 exercise	are	carried	out. In	 the	first	 version, Xbc is	derived	by
applying	the	bandpass	filter	directly	on	the	raw	data, variable	by	variable. In	the	second	version, we
first	run	a	VAR on	all	the	variables	jointly, use	it	to	estimate	the	cross-spectrum	of	the	data, and	then
construct	the	band	passed	variablesXbc

j . Hence, the	bandpass	filter	is	the	ideal	one	in	the	latter	case,
whereas	it	is	only	an	approximate	one	in	the	former.

12Recall	that	our	measure	of	consumption	excludes	spending	on	durables; the	latter	is	instead	included	in	the	measure
of	investment. This	finding	is	thus	consistent	with	the	well-known	stylized	fact	that	consumer	spending	on	durables	is	more
cyclical	than	spending	on	non-durables	and	services.

13Recall	that	the	first	principal	component	is	constructed	by	taking	the	eigenvector	corresponding	to	the	largest	eigenvalue
of	the	covariance	matrix. It	is	thus	designed	to	account	for	as	much	as	possible	of	the	volatility	and	the	co-movement	of	all
the	(filtered)	variables	at	once.
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Table 2: The	MBC Shock, Variance	Contributions

Targeted	Variable u Y h I C

Unemployment 73.71 58.51 47.72 62.09 20.38
[66.80,79.94] [50.65,65.07] [40.77,54.45] [54.09,68.46] [13.61,27.53]

Output 56.24 80.13 44.73 67.13 33.03
[48.94,61.93] [72.80,86.44] [37.36,51.68] [60.72,72.82] [25.04,40.44]

Hours	Worked 49.84 47.54 70.45 47.99 21.78
[42.43,56.53] [38.20,55.67] [64.25,77.04] [38.49,55.96] [15.30,29.22]

Investment 59.03 66.60 45.20 80.29 19.01
[51.73,64.55] [60.40,72.21] [37.93,51.98] [72.82,86.97] [12.27,27.34]

Consumption 19.19 31.59 20.15 17.10 68.30
[12.12,27.73] [21.81,40.90] [13.60,27.68] [9.96,25.94] [60.61,75.53]

TFP Y /h wh/Y π R

Unemployment 5.86 23.91 27.02 6.96 22.27
[2.44,10.96] [17.27,31.22] [18.39,35.93] [3.24,12.28] [14.22,30.97]

Output 4.24 41.31 40.20 10.47 16.89
[1.76, 8.32] [35.29,47.43] [32.75,47.40] [5.97,16.75] [11.00,26.08]

Hours	Worked 11.62 22.61 19.47 7.23 22.38
[6.14,18.14] [15.58,29.66] [11.73,29.24] [3.32,13.31] [15.09,31.87]

Investment 3.81 33.74 36.44 7.69 21.51
[1.38, 7.83] [27.72,40.30] [29.21,44.21] [3.65,12.96] [13.91,30.28]

Consumption 1.57 12.93 10.31 9.93 4.50
[0.59, 3.57] [7.40,20.54] [5.08,17.88] [4.70,17.05] [1.38,10.63]

Note: The	rows	correspond	to	different	targets	in	the	construction	of	the	shock. The	columns
give	the	contributions	of	the	constructed	shock	to	the	business-cycle	volatility	of	the	variables.
In	this	and	in	all	following	tables, square	brackets	contain	the	68%	HPDI.
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In	the	third	and	fourth	version, the	filtered	variables	are	normalized	by	their	respective	standard
deviations	before	extracting	the	first	principal	component. Such	a	normalization	is	often	employed
in	the	PCA literature	in	order	to	cope	with	scaling	issues	and/or	to	focus	on	the	co-movements	in
the	data. But	it	also	reduces	the	role	played	by	the	more	volatile	variables	(e.g., investment), which
may	or	may	not	be	desirable	depending	on	the	context. As	we	do	not	have	a	strong	prior	on	how	to
properly	weight	the	variables, we	carry	the	exercise	on	both	normalized	and	non-normalized	data.

The	results	are	reported	in	Table 3. In	all	cases, the	first	principal	component	accounts	for	the
bulk	of	the	business-cycle	volatility	in	unemployment, hours, output, and	investment	but	only	a	small
fraction	of	the	business-cycle	volatility	in	either	TFP or	inflation.

Table 3: The	First	Principal	Component, Business	Cycle	Frequencies

u Y h I C TFP Y /h wh/Y π R

Raw	Data 75.33 92.26 81.24 99.80 60.19 6.10 17.73 3.02 2.33 12.27
VAR-Based 63.31 87.33 62.47 99.72 26.67 1.22 29.19 14.16 0.68 8.10
Normalized	Raw 91.50 86.76 91.26 80.59 76.75 17.32 2.59 0.33 19.22 38.21
Normalized	VAR 82.87 93.86 78.12 82.59 54.86 1.81 19.36 5.28 2.09 19.63

This	finding	mirrors	the	findings	presented	in	Table 2 about	the	various	facets	of	the	MBC shock.
As	shown	in	Online	Appendix E,	a	similar	close	connection	holds	between	the	main	long-run	shock
obtained	by	our	method	in	the	next	section	and	the	principal	component	obtained	by	applying	PCA
to	the	long-run	components	of	the	data.

This	is	reassuring. But	are	there	any	reasons	to	favor	our	method	over	PCA for	performing	the	type
of	business	cycle	analysis	carried	out	in	this	paper? We	think	there	are.

First, note	that	 the	two	principal	components	 that	account	 for, respectively, the	business-cycle
and	long-run	movements	in	the	data	are	orthogonal	to	each	other by	construction, because	the	two
frequency	bands	do	not	overlap. Consequently, PCA is	not	useful	 for	 addressing	 the	question	of
whether	the	forces	that	drive	the	business	cycle	and	long	run	are	related. That	is, PCA cannot	generate
the	type	of	information	contained	in	the	second	row	of	Table 1, or	its	mirror	image	regarding	the	short
term	effects	of	the	main	long	run	shock	shown	in	the	sequel.

Second, PCA does	not	contain	easily—at	 least	 for	us—extractable	 information	about	how	 the
variables	 respond	on	 impact	and	over	 time	 to	a	 shock. That	 is, PCA does	not	accommodate	 the
construction	of	IRFs, which	are	of	paramount	importance	for	our	purposes.

And	third, by	targeting	each	time	an	individual	variable	but	also	systematically	varying	the	possible
targets, our	method	avoids	the	difficulties	associated	with	having	to	choose	the	“best”	weights	in	PCA
and, more	importantly, helps	reveal	patterns	that	may	prove	useful	in	the	validation	of	existing	models
or	in	the	construction	of	new	ones. Consider, in	particular, the	interchangeability	pattern	documented
in	Figure 2. This	finding	offers, not	only	hope	for	parsimonious	models	that	aspire	to	account	for	the
majority	of	business	cycles	with	a	single	shock/mechanism, but	also	a	test	for	models	that	employ	a
multitude	of	shocks/mechanisms. This	will	become	clear	in	Section 6.
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3.4 The	Long	Run	and	the	Short	Run

In	the	preceding	analysis	we	recovered	a	MBC shock	by	targeting	the	business	cycle	frequencies. We
now	document	the	existence	of	an	analogous	object	for	the	long	run	frequencies. We	also	discuss
the	implications	of	our	results	for	theories	that	link	the	business	cycle	to	technology	and	news	shocks.

Consider	the	shocks	constructed	by	targeting	GDP,	investment, consumption, TFP,	or	labor	pro-
ductivity	at	the	frequencies	corresponding	to	80-∞ quarters.14 Figure 3 and	Table 4 show	that	these
shocks	are	nearly	indistinguishable	in	terms	of	either	IRFs	or	variance	contributions.15. Hence, one
may	advance	the	concept	of	the	“main	long-run	shock”	as	the	main	driver	of	long-run	movements	in
a	manner	analogous	to	that	of	the	MBC.16

Figure 3: Long-Run	Shocks
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Table 4: Long-Run	Shocks, Contributions	at	Long-Run	Frequencies	(80-∞ q)

Targeted	Variable Y I C TFP Y /h

Output 99.59 95.94 99.47 95.66 96.92
[98.53,99.92] [89.26,98.93] [98.33,99.86] [88.38,98.87] [90.68,99.13]

Investment 96.88 97.83 96.41 91.62 91.75
[88.35,99.39] [93.39,99.39] [87.05,99.31] [74.88,97.83] [72.74,97.94]

Consumption 99.34 95.63 99.53 95.39 96.69
[97.57,99.85] [87.91,98.81] [98.23,99.90] [87.38,98.81] [90.51,99.12]

TFP 97.39 92.55 97.40 98.43 98.43
[88.33,99.48] [76.41,98.11] [88.33,99.49] [94.49,99.70] [93.92,99.67]

Labor	Productivity 98.30 93.23 98.55 97.60 98.97
[91.73,99.60] [77.39,98.28] [92.92,99.66] [91.37,99.50] [95.10,99.84]

This	finding	also	motivates	us	to	repeat	our	exercises	using	a	VECM in	which	the	aforementioned
quantities	share	a	common	stochastic	trend, while	the	remaining	variables	are	stationary. The	use

14Here, we	omit	the	shocks	that	target	the	unemployment	rate	and	hours	worked	per	person	because	these	variables	do
not	have	a	long-run	trend, at	least	in	the	context	of	most	models.

15A similar	picture	emerges	from	inspection	of	the	properties	of	the	first	principal	component	over	these	long	term	data;
see	Table 15 in	Appendix E.

16We	have	verified	that	the	shocks	considered	here	are	nearly	identical	to	those	identified	by	targeting	the	frequency
exactly	at ∞, which	amounts	to	imposing	a	set	of	long-run	restrictions	as	in Blanchard	and	Quah (1989)	and Galí (1999).
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of	such	a	VECM instead	of	our	baseline	VAR is	recommended	if	the	analyst	has	a	strong	prior	that
the	aforementioned	quantities	are	cointegrated—a	prior	that	is	not	only	imposed	in	standard	models
but	also	corroborated	by	the	evidence	presented	above	as	well	as	by	familiar	cointegration	tests. For
robustness, we	also	consider	a	variant	VECM in	which	we	add	a	second	stochastic	trend	that	drives
inflation	and	the	nominal	interest	rate. This	helps	capture	the	familiar	indeterminacy	of	the	long-run
values	of	these	variables	in	theoretical	models	and	their	high	persistence	in	the	actual	data.

These	VECMs	produce	essentially	the	same	empirical	regularities	as	those	presented	above, for
both	the	short	and	the	long	run	shocks. An	example	of	this	robustness	is	provided	in	Table 5. This
table	reports	the	contribution	of	the	main	long	run	shock, represented	by	the	shock	that	targets	TFP
over	the	80-∞ range, to	the	volatilities	of	all	the	variables	over	the	6-32	range. The	emerging	picture
is	essentially	the	mirror	image	of	that	contained	in	the	second	row	of	Table 1. There, we	reported	that
the	MBC shock	has	a	small	contribution	to	the	long	run. Here, we	see	that	the	shock	that	accounts
for	the	long	run	has	a	small	footprint	on	the	business	cycle.

Table 5: Long-Run	TFP Shock, Contributions	at	Business-Cycle	Frequencies

u Y h I C

9.63 24.78 11.01 17.56 15.58
[3.46,18.43] [11.41,40.32] [4.99,19.60] [7.31,29.53] [5.71,27.20]

TFP Y /h wh/Y π R

22.01 21.89 10.19 12.59 7.26
[5.95,42.17] [10.96,35.27] [2.75,21.70] [4.64,28.59] [2.52,16.84]

The	disconnect	between	the	short	and	the	long	run	can	be	seen	in	a	more	continuous	manner
when	moving	to	the	time	domain. Figure 4 shows	the	contribution	of	the	MBC shock	to	the	volatility
(FEV) of	unemployment, output	and	TFP at	different time horizons.17 The	MBC shock	explains	more
than	60%	of	unemployment	and	output	movements	during	the	first	two	years, but	less	than	7%	of
the	TFP movements	at any horizon; and	conversely, the	main	long	run	shock	explains	nearly	all	the
long-run	variation	in	investment	and	TFP,	but	less	than	10%	of	the	unemployment	and	investment
movements	over	the	first	two	year.18

How	do	these	findings	compare	to	related	ones	in	the	existing	literature?
First, consider Blanchard	and	Quah (1989). They	seek	to	represent	the	data	in	terms	of	two	shocks,

a	“supply	shock”	and	a	“demand	shock.” To	this	goal, they	run	a	VAR on	two	variables, GDP and
unemployment; identify	the	supply	shock	as	the	shock	that	accounts	for	GDP movements	in	the	very
long	run	(at ∞)	and	the	demand	shock	as	the	residual	shock; and	document	that	each	one	of	these
shocks	accounts	for	nearly	one	half	of	business-cycle	volatility	in	GDP.	The	additional	information
contained	in	our	larger	VAR reduces	the	contribution	of—our	various	proxies	of—the	supply	shock
to	between	one	tenth	and	one	fifth.

17The	MBC shock	is	still	identified	in	the	frequency	domain	and	used	in	the	VAR to	generate	forecast	errors	at	horizons
1-100	in	the	time	domain. The	same	picture	emerges	when	the	MBC is	identified	in	the	time	domain; see	Appendix D.

18It	is	worth	noting	that	the	disconnect	between	the	short	and	the	long	run	extends	from	neutral	technology, as	measured
by	TFP,	to	investment-specific	technology, as	measured	by	the	relative	price	of	investment; see	Appendix F.2.
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Figure 4: Variance	Contributions	of	MBC shock	to	GDP and	TFP at	different	horizons
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Second, consider Uhlig (2003). This	work, too, pursues	a	two-shock	representation	of	the	data.
The	main	difference	from Blanchard	and	Quah (1989)	is	that	it	uses	a	different	identification	scheme:
it	identifies	the	two	shocks	that jointly maximize	the	prediction	error	variances	in	real	GNP for	hori-
zons	between	0	and	5	years. Uhlig	offers	a	tentative	interpretation	of	one	shock	as	being	a	productivity
shock	of	the	RBC type	and	the	other	as	a	cost-push	shock	of	the	New	Keynesian	type. This	interpre-
tation	finds	little	support	in	our	anatomy, especially	due	to	our	finding	of	a	disconnect	between	our
main	business-cycle	shock	and	TFP at	all	horizons.19

Third, consider Beaudry	and	Portier (2006). The	first	part	of	that	paper	uses	a	two-variable	VAR
with	TFP and	the	SP500	index	to	identify	a	shock—interpreted	as	TFP news—that	accounts	for	the
bulk	of	both	the	short-run	movements	in	stock	prices	and	the	long-run	movements	in	TFP.	The	second
part	proceeds	to	argue, with	the	help	of	three-	to	five-variable	VARs	and	more	delicate	identifying
assumptions, that	TFP news	account	for	about 50% of	the	short-run	volatility	in	hours	and	total	private
spending, about 80% of	 that	 in	consumption, and	about 80% the	 long-run	movements	 in	private
spending. In	short, TFP news	emerges	as	the	main	driver	of both the	business	cycle	and	the	long	run.

This	picture	is	hard	to	reconcile	with	the	one	painted	here. As	reported	in	Table 5, the	main	long-
run	shock	accounts	for	only 10% of	the	short-run	volatility	in	unemployment	and	hours, 17% of	that
in	investment, and 15% of	that	in	consumption. And	symmetrically, the	main	business-cycle	shock
accounts	for	a	nearly	zero	of	the	movements	in	TFP at	any	other	frequency	or	horizon.20

We	 revisit	 this	 point	 in	 Section 5.2 and	Appendix B,	where	we	use	 a	 simple, semi-structural
exercise	to	illustrate	why	the	two	pictures	are	indeed	hard	to	square	together. We	believe	that, while
news	shocks	may	be	a	non-trivial	contributor	to	macroeconomic	fluctuations, the	numbers	reported
by Beaudry	and	Portier (2006)	are	biased	upwards	due	to: (i) the	use	of	relatively	small	VARs; and
(ii) the	reliance	on	delicate	identifying	assumptions. We	elaborate	on	these	points	by	proposing	an
alternative	identification	strategy, which	builds	on	our	anatomy, and	by	exploring	the	sensitivity	of

19We	emphasize	that	the	interpretation	offered	in Uhlig (2003)	was	tentative	as	that	paper	was	not	completed. Also	note
that	the	approach	adopted	in	that	paper	allows	for	the	identification	of	the	two	shocks together but	does	not	separate	one
shock	from	the	other, so	the	aforementioned	interpretation	relied	on	particular	orthogonalizations. Finally, because	the
VAR considered	in	that	paper	did	not	contain	TFP,	the	disconnect	documented	here	could	not	have	been	detected.

20Moreover, these	differences	are	not	due	to	the	absence	or	presence	of	Stock	Prices	in	the	VARs. As	can	be	seen	in	row
9	of	Tables 7 and 8, which	appear	in	the	sequel	and	report	results	from	various	robustness	exercises, the	inclusion	of	Stock
Prices	in	the	VARs	is	inconsequential	for	the	properties	of	the	MBC shock	as	well	as	for	those	of	the	short	and	long	run	TFP
shocks.
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the	results	to	the	number	of	variables	included	in	the	VAR.21

Finally, consider Lorenzoni (2009). That	paper	considers	a	New	Keynesian	model	in	which	news
about	future	TFP is	contaminated	with	noise. In	the	presence	of	nominal	rigidity	and	accommodative
monetary	policy, such	noise	ends	up	triggering	transitory	fluctuations	in	economic	activity	that	are
orthogonal	to	past, current	and	future	TFP.	Does	this	mean	that	the	noise	shock	in	that	model	offers
a	structural	interpretation	to	the	MBC shock	in	the	data? Not	necessarily. In	that	model, the	noise
shock	matters	only	because	employment	responds	to	an	informative	signal	about	future	TFP.	But	if
this	is	the	case, employment	itself	must	serve	as	an	informative	signal	of	future	TFP in	the	eyes	of	the
econometrician—a	prediction	contradicted	by	our	evidence.22

An	alternative	scenario	that	appears	promising	is	one	that	attributes	the	MBC shock	to	either irra-
tional shifts	in	the	expectations	about	the	long	run	(Akerlof	and	Shiller, 2009), or	waves	of	optimism
and	pessimism	about	the short	run economic	outlook	(Angeletos	and	La’O, 2013; Benhabib, Wang,
and	Wen, 2015; Angeletos, Collard, and	Dellas, 2018). These	alternatives	share	 the	emphasis	of
Beaudry	and	Portier (2006)	and Lorenzoni (2009)	on	expectations, but	change	the	nature	of	the	rele-
vant	expectations. Theories	that	emphasize	other	kinds	of	demand	shocks	may	also	work, subject	to
the	constraints	discussed	in	the	sequel.

3.5 Inflation	and	the	Business	Cycle

We	now	turn	attention	to	the	nexus	of	economic	activity	and	inflation. Seen	through	the	lens	of	our
method, the	link	is	weak. First, as	shown	in	the	first	row	of	Table 6 (which	repeats	a	portion	of	the
first	row	of	Table 1), the	identified	MBC shock	accounts	for	only	7%	of	the	business-cycle	variation	in
inflation, which	is	as	low	as	the	corresponding	number	for	TFP.	Second, the	shock	that	targets	inflation
explains	83%	of	the	business-cycle	volatility	in	inflation	and	only	4	to	8%	of	that	in	unemployment,
output, and	investment. Finally, the	shock	that	targets	inflation	explains	only	2%	of	the	business-cycle
volatility	in	the	labor	share, a	commonly	used	determinant	of	inflation; and	symmetrically, the	shock
that	targets	the	labor	share	explains	86%	of	the	labor	share	itself	but	only	4%	of	inflation.

Table 6: Inflation	and	the	Business	Cycle

Target u Y π Wh/Y

Unemployment 73.71 58.51 6.96 27.02
[66.80,79.94] [50.65,65.07] [3.24,12.28] [18.39,35.93]

Inflation 4.24 7.88 83.03 1.96
[1.62, 8.20] [3.77,12.87] [76.11,88.46] [0.66, 4.60]

Labor	Share 26.01 35.33 4.03 85.59
[18.13,33.99] [27.88,43.68] [1.45, 7.94] [80.04,90.02]

21Interestingly, our	explorations	reach	a	similar	conclusion	as Barsky	and	Sims (2011)	with	regard	to	the	modest	business-
cycle	contribution	of	news	shocks, but	let	these	shocks	be	expansionary, as	in	Beaudry	and	Portier

22Our	treatment	of	the	connection	between	the	business	cycle	and	forecasts	of	future	TFP is	broadly	in	line	with	the
approach	of Chahrour	and	Jurado (2018). They	show	that, although	SVARs	may	not	allow	a	separate	identification	of	the
news	and	noise	components	of	the	beliefs	about	future	TFP,	they	may	allow	econometricians	to	recover	the	innovations	in
the	expectations	of	future	TFP.
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The	last	finding	poses	a	challenge	for	the	New	Keynesian	model, at	least	the	textbook	version	of
it. In	this	model, the	relation	between	inflation	and	economic	activity	is	encapsulated	in	the	New
Keynesian	Philips	Curve	(NKPC):

πt = κxt + βEt[πt+1] (2)

where πt is	the	inflation	rate	and xt is	the	real	marginal	cost.23 Iterating	the	above	condition	forward
gives	inflation	as	the	best	forecast	of	the	future	real	marginal	costs—just	as	the	textbook	asset-pricing
model	gives	the	price	of	an	asset	as	the	best	forecast	of	future	earnings. Following	(Galí	and	Gertler,
1999), the	real	marginal	cost	is	often	proxied	by	the	labor	share. From	this	perspective, the	evidence
presented	in	Table 6 suggests	that	the	failure	of	the	New	Keynesian	model	is	comparable	to	that	of
the	baseline	asset-pricing	model: just	as	the	innovations	in	asset	prices	are	essentially	uninformative
about	earnings, the	innovations	in	inflation	are	essentially	uninformative	about	real	marginal	costs.24

Another	challenge	emerges	from	inspection	of	Figure 5. The	solid	black	line	shows	the	actual
response	of	inflation	to	the	MBC shock	in	the	data. The	dashed	red	line	shows	the	response	predicted
by	the	New	Keynesian	model	under	a	“textbook”	calibration25 and	with	the	real	marginal	cost	being
proxied	by	the	response	of	the	labor	share	to	the	MBC shock. The	large	gap	between	the	two	lines
seen	in	the	figure	illustrates	that, even	after	controlling	for	the	possible	sluggishness	in	the	response
of	the	real	marginal	cost	due	to	wage	rigidities	or	other	reasons, the	predicted	response	of	inflation	is
over	10	times	larger	than	the	actual	one.

Figure 5: The	MBC Shock	and	the	NKPC
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These	challenges	are	familiar, albeit	through	other	lenses,26 and	have	already	shaped	the	existing
DSGE literature. This	literature	has	sought	to	address	them	by	modifying	the	textbook	New	Keynesian

23β ∈ (0, 1) is	the	discount	factor	and κ is	the	slope	of	the	NKPC,	given	by κ = (1− θ)(1− βθ)/θ, where θ is	the	Calvo
parameter, namely	the	probability	of	not	been	able	to	reset	prices.

24Table 6 establishes	this	point	in	terms	of	the	variance	contribution	over	the	business-cycle	frequencies. The	point	can
be	reinforced	by	computing	the	FEV contribution	of	the	identified	inflation	shock	to	the	labor	share	in	the	time	domain,
across	different	horizons: this	contribution	does	not	exceed	8.4%	percent	at any horizon.

25Namely, θ = 2/3 (prices	are, on	average, reset	every	3	quarters)	and β = 0.99 (an	annual	discount	rate	of	4%).
26For	instance, the	weak	comovement	of	inflation	and	real	economic	activity	is	also	evident	in	the	unconditional	mo-

ments, although	it	is	less	pronounced	than	that	seen	in	Table 6. See	also	the	survey	by Mavroeidis, Plagborg-Møller, and
Stock (2014)	on	the	large	empirical	literature	on	the	various	incarnations	of	the	Phillips	curve.
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model	in	three	ways. First, by	making	the	Phillips	curve	very	flat—much	flatter	 than, not	only	its
textbook	version, but	also	that	implied	by	menu-cost	models	calibrated	to	micro-economic	evidence.
Second, by	attributing	the	bulk	of	inflation	fluctuations	to	shocks	in	the	ideal	monopoly	markup	or
other	mysterious	cost-push	 shocks. And	 this, by	assuming	 that	 the	magnitude	of	 these	cost-push
shocks	is	large	in	order	for	them	to	account	for	the	volatility	in	inflation	despite	the	flatness	of	the
Philips	curve—which, if	taken	literally, means	that	inflation	ought	to	be	unresponsive, not	only	to	the
output	gap, but	also	to	the	cost-push	shock.

The	empirical	foundations	of	these	and	various	other	add-ons	that	help	improve	the	fit	of	DSGE
models	remains	a	contested	issue. But	even	if	one	were	to	accept	the	prevailing	DSGE practice, there
would	still	be	no	guarantee	that	this	practice	meets	the	challenge	of	accounting	for	our	anatomy	of
the	data. We	expand	on	this	point	later	in	the	paper.

4 Robustness

In	this	section	we	report	results	from	an	extensive	battery	of	robustness	exercises	we	have	conducted.
The	main	exercises	are	described	below, the	rest	are	delegated	to	the	Appendix.

Tables 7 and 8 describe	 the	variance	contribution	of	 the	MBC shock	over	business	cycle	and
longer	term	frequencies, respectively, and	across	many	alternative	specifications	(different	samples,
statistical	models	 estimated, set	 of	 variables, numbers	of	 lags). As	 in	Table 1, we	use	 the	 shock
that	targets	unemployment	as	the	measure	of	the	MBC shock. Appendix F reports	similar	tables	for
the	shocks	that	target	GDP,	hours, etc…The	first	row	in	Tables 7 and 8 corresponds	to	our	baseline
specification, that	is, it	repeats	the	information	from	Table 1. The	remaining	rows	correspond	to	ten
alternative	specifications.

Row	2	corresponds	to	a	VAR with	four	lags	instead	of	two; the	results	with	six	or	eight	lags	are
almost	the	same	and	are	thus	omitted. Rows	3	and	4	correspond	to	two	VECMs: the	first	allows	for
a	single	unit	root	that	drives	the	real	quantities, while	the	second	allows	inflation	and	the	nominal
interest	 rate	 to	be	driven	by	 the	first, “real”	 root	as	well	as	by	a	second, “nominal”	 root. Row	5
extends	the	sample	backwards	to	1948, by	replacing	the	Federal	Reserve	Rate	with	the	1-month	T-
bill	rate. Row	6	constrains	the	sample	to	1960-2007, leaving	out	the	Great	Recession	and	the	ZLB;
this	is	also	the	period	used	in	the	estimation	and	validation	of	the	two	DSGE models	considered	in
the	next	section. Rows	7	and	8	split	the	sample	to	two	sub-samples, pre-	and	post-Volcker. Row	9
adds	the	following	three	variables	to	the	VAR:	the	SP500	index, the	relative	price	of	investment, and
capital	utilization. Row	10	adds	the	credit	spread, a	common	measure	of	the	severity	of	financial
frictions. Finally, row	11	considers	a	version	where	consumption	and	investment	are	deflated	by	their
respective, chained-type	price	indices	rather	than	the	GDP deflator, as	a	way	to	take	relative-price
effects	into	account.27

The	results	speak	for	themselves. As	we	move	across	specifications	(rows), the	contribution	of	the
identified	shock	to	the	variance	of	the	key	macroeconomic	quantities	remains	almost	unchanged.28

27Given	that	consumption	is	the	sum	of	non	durables	and	services, and	investment	is	the	sum	of	gross	private	domestic
investment	and	durables, some	care	must	be	take	to	build	the	corresponding	chained	type	price	indices. The	construction
of	the	indices	is	detailed	in	Appendix F.5.

28The	only	 sensitivities	worth	mentioning	are	 the	 following. First, the	VECMs	 raise	 slightly	 the	 long-run	 footprint	of
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Similar	results	obtain	in	additional	robustness	exercises	which	we	have	undertaken	but	omit	here	for
the	sake	of	saving	space.29

More	importantly, the	same	robustness	is	present	when	considering	the	IRFs, both	for	the	spec-
ifications	reported	in	Tables 7 and 8 and	for	those	that	are	not	reported	here. We	illustrate	this	in
Figure 6 for	the	shock	that	targets	unemployment	for	a	select	subset	of	the	eleven	specifications	under
consideration.30 This	is	re-assuring	as	the	properties	of	the	IRFs, and	in	particular	the	interchange-
ability	of	the	various	facets	of	the	MBC shock, represent	the	key	criterion	for	judging	the	empirical
plausibility	of	a	model’s	propagation	mechanism.

Figure 6: Robustness, IRFs
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the	MBC shock	and	more	noticeably	its	short-run	co-movement	with	consumption. And	second, the	pre-Volcker	sample
features	a	smaller	disconnect	between	real	economic	activity	and	inflation	than	the	post-Volcker	one. These	findings	are
hardly	surprising	and, in	any	case, do	not	change	the	main	picture.

29For	instance, we	have	verified	that	the	properties	of	the	MBC shock	remain	largely	the	same	if	we	drop	any	one	of
the	variables	in	our	baseline	VAR,	or	if	we	add	labor	market	indicators	such	a	vacancies. The	results	become	sensitive
only	when	the	size	of	the	VAR becomes	very	small. See	Appendix B for	an	illustration. This	is	not	surprising	given	the
well-known	fragility	of	small	VARs. To	the	contrary, this	fact	along	with	the	already	reported	robustness	to	the	addition	of
stock	prices	and	other	variables	suggests	that	our	baseline	VAR has	the	“right”	size	in	order	to	reveal	robust	properties.

30The	remaining	specifications	are	also	similar. They	are	omitted	only	because	they	would	have	over-crowded	the	figure.
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Table 7: Robustness, Short-Run	Variance	Contributions

u Y h I C TFP Y /h Wh/Y π R

[1] Benchmark 73.71 58.51 47.72 62.09 20.38 5.86 23.91 27.02 6.96 22.27
[66.80,79.94] [50.65,65.07] [40.77,54.45] [54.09,68.46] [13.61,27.53] [2.44,10.96] [17.27,31.22] [18.39,35.93] [3.24,12.28] [14.22,30.97]

[2] 4	lags 74.49 58.23 49.16 62.42 21.20 6.28 23.10 27.87 6.91 24.75
[67.98,80.77] [50.51,65.05] [42.24,56.10] [55.15,69.04] [14.13,28.78] [2.82,11.74] [16.83,31.02] [18.93,37.34] [3.23,12.15] [16.20,33.77]

[3] VECM(1) 62.43 50.27 48.81 53.39 34.88 18.13 23.80 24.11 10.46 33.37
[56.47,68.44] [43.46,57.44] [42.14,55.91] [47.05,60.01] [26.27,44.47] [9.03,29.45] [17.14,32.73] [16.36,34.17] [4.39,20.13] [19.07,48.60]

[3] VECM(2) 64.85 54.99 48.82 53.78 44.93 12.17 19.51 29.71 11.29 19.51
[57.60,71.25] [46.53,62.59] [42.52,55.66] [46.37,60.86] [33.73,55.68] [6.00,19.88] [13.11,27.14] [20.04,39.49] [5.09,19.32] [10.94,32.92]

[5] 1948-2017 78.98 65.32 49.61 63.76 19.52 6.14 26.53 29.62 5.16 16.94
[72.86,84.10] [59.25,71.33] [43.55,55.83] [57.87,70.19] [13.70,26.91] [2.51,11.05] [19.68,33.57] [22.10,37.53] [2.28,10.00] [10.37,24.31]

[6] 1960-2007 68.15 59.93 55.99 65.02 20.67 6.02 25.04 29.96 10.70 27.03
[61.82,73.98] [48.14,68.85] [47.10,63.10] [55.39,72.59] [13.52,31.01] [2.24,13.76] [16.29,36.15] [19.57,43.29] [5.49,18.89] [16.86,37.53]

[7] pre-Volcker 74.23 56.75 43.21 61.50 23.43 6.82 30.69 28.43 17.45 27.60
[64.05,82.35] [45.87,66.62] [32.38,53.49] [51.63,70.37] [13.58,35.24] [2.45,15.11] [20.09,42.11] [16.92,42.01] [9.39,28.74] [16.81,40.08]

[8] post-Volcker 73.39 50.37 50.65 58.44 20.23 7.94 18.46 23.01 4.65 15.05
[65.47,80.53] [41.45,58.81] [42.60,59.01] [50.17,66.23] [12.46,28.65] [3.67,14.49] [11.61,26.94] [14.23,33.51] [1.74,10.06] [7.48,25.22]

[9] Extended 59.33 50.61 45.50 52.91 21.83 4.81 26.69 27.82 12.12 28.99
[53.73,65.69] [43.05,57.99] [39.71,51.26] [44.97,60.17] [14.87,31.14] [1.95,10.39] [19.36,34.75] [14.05,44.15] [6.57,19.70] [17.38,42.75]

[10] Financial 68.57 57.56 46.84 59.95 25.94 7.04 27.20 26.86 8.42 26.59
[62.38,74.87] [49.74,64.87] [39.39,54.03] [52.26,66.82] [17.80,34.98] [3.10,12.97] [19.45,35.96] [18.53,37.07] [3.77,14.98] [16.82,36.24]

[11] Chained-Type	C&I 81.41 59.04 45.96 61.52 17.36 4.03 20.35 20.19 5.82 23.17
[75.30,86.36] [52.45,64.82] [39.33,52.36] [54.39,67.49] [12.10,23.41] [1.56, 7.51] [14.80,26.64] [13.97,26.72] [2.62,10.41] [16.31,30.38]
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Table 8: Robustness, Long-Run	Variance	Contributions

u Y h I C TFP Y /h Wh/Y π R

[1] Benchmark 20.83 4.64 5.45 5.16 4.13 4.09 3.88 3.12 5.77 9.12
[8.37,38.94] [0.52,15.85] [1.25,15.40] [0.79,16.81] [0.38,14.93] [0.41,14.48] [0.37,14.19] [0.78,10.16] [1.70,13.54] [2.68,20.00]

[2] 4	lags 18.22 4.39 5.19 4.94 3.98 3.66 3.67 2.93 5.44 9.81
[7.27,34.06] [0.61,14.67] [1.32,15.39] [0.89,15.34] [0.47,13.45] [0.41,13.53] [0.40,13.01] [0.57, 9.08] [1.59,13.00] [3.07,20.60]

[3] VECM(1) 12.97 14.07 8.06 14.07 14.07 14.07 14.07 13.91 7.50 13.82
[4.50,29.34] [2.53,29.11] [2.67,18.73] [2.53,29.11] [2.53,29.11] [2.53,29.11] [2.53,29.11] [3.26,29.03] [2.76,17.41] [4.77,26.70]

[4] VECM(2) 23.29 16.70 9.22 16.70 16.70 16.70 16.70 10.55 8.66 8.66
[8.05,47.79] [3.31,37.32] [3.13,20.76] [3.31,37.32] [3.31,37.32] [3.31,37.32] [3.31,37.32] [2.62,26.43] [2.08,22.19] [2.08,22.19]

[5] 1948-2017 31.82 7.44 4.43 7.80 6.66 7.20 6.72 4.85 3.37 4.91
[15.20,50.79] [1.22,19.37] [1.34,14.13] [1.52,20.10] [0.96,18.27] [1.12,19.01] [0.98,17.50] [1.47,11.57] [0.80, 9.24] [1.30,12.70]

[6] 1960-2007 11.85 4.17 8.83 4.84 3.96 4.11 5.29 5.63 12.48 21.09
[5.40,22.31] [0.52,16.00] [3.25,18.36] [0.72,16.69] [0.43,15.18] [0.73,14.05] [1.45,16.02] [1.52,15.31] [4.85,23.35] [8.45,35.63]

[7] pre-Volcker 29.37 8.15 9.33 8.23 7.10 7.31 7.55 7.17 8.82 18.60
[9.83,55.35] [1.21,26.52] [2.55,23.58] [1.49,25.68] [1.06,24.84] [0.96,25.64] [0.93,25.89] [1.78,22.43] [2.07,24.81] [5.74,41.73]

[8] post-Volcker 19.30 3.58 9.96 6.07 3.04 3.41 3.03 5.05 9.54 14.30
[6.59,38.92] [0.80,12.17] [3.93,20.78] [2.06,15.37] [0.49,12.11] [0.55,11.59] [0.47,12.04] [1.40,13.61] [2.63,25.64] [4.49,32.05]

[9] Extended 9.49 4.52 3.96 4.58 4.43 4.39 4.59 4.36 7.03 11.23
[3.03,24.04] [0.45,17.60] [1.11,11.23] [0.78,18.25] [0.40,16.92] [0.59,17.66] [0.52,17.40] [0.79,14.99] [2.20,16.45] [2.88,24.32]

[10] Financial 16.97 4.85 4.85 5.20 4.40 4.26 3.98 3.40 5.06 8.35
[5.77,34.68] [0.54,15.56] [1.04,14.40] [0.74,16.24] [0.53,14.80] [0.59,14.78] [0.48,13.92] [0.75,10.82] [1.60,12.87] [2.38,18.61]

[11] Chained-Type	C&I 13.94 3.79 5.24 3.73 3.63 3.67 3.20 3.88 7.41 11.91
[5.61,27.35] [0.49,14.58] [1.00,15.39] [0.55,13.92] [0.46,14.16] [0.54,13.27] [0.42,12.74] [1.11,11.46] [2.22,17.54] [4.11,25.74]
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5 Interpretation

In	this	section, we	first	summarize	what	can	be	learned	from	the	properties	of	our	anatomy	if	one
views	them	from	a	parsimonious, single	shock	perspective. We	then	discuss	the	robustness	of	such
lessons	and	the	use	of	our	anatomy	outside	the	realm	of	single-shock	representations	of	the	business
cycle.

5.1 The	Lesson	for	Parsimonious, Single-Shock	Models

In	the	beginning	of	the	Introduction, we	asked: Is	it	possible	to	account	for	the	bulk	of	the	business
cycle	with	a	parsimonious, single-shock	model? And	if	so, how	should	this	shock	look	like? Our
empirical	findings	provide	the	following	answer.

Tentative	lesson. It	is	possible	to	account	for	the	bulk	of	the	business-cycle	fluctuations	in	unemploy-
ment, hours, GDP,	investment, and, to	a	somewhat	lesser	extent, consumption	using	a	parsimonious,
one-shock	model. This	shock	must	have	the	following	key	properties:

• it	causes	strong, positive, and	transient	comovements	in	the	aforementioned	quantities;

• it	 is	 an	 indicator	 of	 the	 short-run	 economic	 outlook	 and	 not	 of	 the	medium-	 and	 long-run
prospects;

• it	is	essentially	orthogonal	to	both	TFP and	inflation	at	all	horizons;

As	already	discussed, these	properties	are	hard	 to	 reconcile	with	 the	baseline	RBC model, as
well	 as	with	models	 that	 attribute	 the	bulk	of	 the	business	 cycle	 to	news	about	productivity	 and
income	in	the	medium	to	long	run. They	also	speak	against	models	in	which	financial, uncertainty,
or	other	shocks	matter	primarily	by	triggering	endogenous	procyclical	movements	in	aggregate	TFP.31

In	contrast, the	evidence	seems	consistent	with	a	shock	that	triggers	transitory	movements	in	the	labor
wedge—but	only	insofar	as	these	movements	occur	without	commensurate	movements	in	aggregate
TFP and	without	opposite	movements	in	the	real	wage. This	rules	out	shocks	to	labor	supply, as	well	as
productivity	shocks	intermediated	by	labor-market	frictions, but	leaves	room	for	other	possibilities.32

The	evidence	is	also	consistent	with	the	Keynesian	narrative	that	the	bulk	of	the	business	cycle	is	due
to	shifts	in	aggregate	demand—but	only	insofar	as	these	shifts	do	not	trigger	significant	movements
in	inflation. This, in	turn, requires	either	a	very	flat	Philips	curve, as	in	state-of-the-art	DSGE models,
or	demand	shocks	operating	outside	the	realm	of	sticky	prices	and	Philips	curves, as	in	the	literature
cited	in	footnote 3 in	the	Introduction.

31Benhabib	and	Farmer (1994)	and Bloom	et al. (2018)	are	notable	examples	of	 such	models: the	 former	generates
procyclical	TFP movements	out	of	animal	spirits, the	latter	out	of	uncertainty	shocks.

32For	example, in Angeletos, Collard, and	Dellas (2018)	the	requisite	movements	in	the	measured	labor	wedge	are	the
byproduct	of	higher-order	uncertainty	about	the	short-term	economic	outlook; in Arellano, Bai, and	Kehoe (2018)	these
movements	are	attributed	to	the	interaction	of	financial	frictions	and	firm-level	uncertainty	shocks; and	in Golosov	and
Menzio (2015)	they	obtain	from	animal	spirits	in	frictional	labor	markets.
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5.2 The	Anatomy	of	Multi-Shock	Models

So	far, we	have	attempted	to	give	structural	meaning	to	the	identified	MBC shock	through	the	lenses
of	single-shock	models. The	choice	of	model	size	is	partly	“philosophical.” But	this	choice	can	be
consequential	for	the	interpretation	of	the	MBC shock	and	more	generally, for	the	use	of	our	anatomy.
As	suggested	in	the	Introduction, the	reason	is	that	any	of	the	reduced-form	objects	contained	in	our
anatomy	may	map	into	a	un-interpretable	combination	of	theoretical	shocks, none	of	which	possesses
the	properties	of	the	empirical	object.

In	this	section, we	use	two	examples	to	illustrate	both	this	challenge	and	a	resolution	offered	by	our
method. By	design, our	anatomy	contains	not	only	the	reduced-form	shock	that	targets	unemployment
over	the	business-cycle	frequencies	but	also	the	other	reduced-form	shocks	we	have	discussed	in	the
previous	section. This	additional	information	comes	into	play	when	there	is	more	than	one	shock	in
the	model	and	holds	the	key	for	the	effectiveness	of	our	anatomy	in	multi-shock	contexts. It	turns
out, at	least	within	the	set	of	semi-structural	and	fully-structural	exercises	consider	in	this	and	the
next	section, that	this	extra	information	suffices	to	pin	down	the	nature	of	the	main	driving	force	of
the	business	cycle, corroborating	the	main	claim	from	the	previous	section, namely, that	this	force
corresponds	to	a	non-inflationary, demand	shock.33

Our	first	pedagogical	example	revisits	the	disconnect	between	the	MBC shock	and	inflation	within
the	textbook	AD-AS paradigm. Let	the	AD and	AS equations	be	given	by, respectively,

yt = −πt + vst and πt = yt + vst , (3)

where yt denotes	output, πt denotes	inflation, and vdt and vst are	the	structural	shocks	to	aggregate
demand	and	aggregate	supply, respectively. Imposing	equilibrium	gives

yt =
1
2(v

d
t + vst ) and πt =

1
2(v

d
t − vst ).

Assume	now	 that vdt and vst follow	 independent	AR(1)	 processes, with	 the	 same	persistence	 and
variance. This	implies	(i)	that	each	structural	shock	drives	50%	of	the	volatility	of	both	output	and
inflation	and	(ii)	that	output	and	inflation	are	orthogonal	to	each	other. As	a	result, our	“output	shock,”
which	is	here	given	by	output	itself, accounts	for	100%	of	the	fluctuations	in	output	and	0%	of	those
in	 inflation. This	matches	 the	MBC shock	seen	 in	 the	data, but	 rather	 than	representing	a	single,
dominant, non-inflationary, business-cycle	shock, it	is	the	sum	of	two	distinct	structural	shocks, an
inflationary	and	a	dis-inflationary	one.

Our	second	example	demonstrates	that	a	similar	problem	may	plague	the	interpretation	of	the
finding	 that	 the	short	and	 the	 long	 run	 factors	are	disconnected. Consider	a	model	 that	contains
two	types	of	TFP shocks, namely, unanticipated	and	anticipated	(news)	shocks. Suppose	further	that
each	shock	contributes	50%	of	the	long-run	volatility	in	TFP and	50%	of	the	short-run	volatility	in
unemployment. Finally, let	the	two	shocks	have	symmetrically	opposite	effects	on	unemployment,
one	increasing	it	and	the	other	decreasing	it. The	constructed	“unemployment	shock”	then	accounts
for	100%	of	the	short-run	fluctuations	in	unemployment	and	0%	of	the	long-run	fluctuations	in	TFP,

33Needless	to	say, this	particular	conclusion	need	not	extend	to arbitrary multi-shock	models, because	any	structural
interpretation	is	ultimately	model-specific. But	 the	use	of	our	anatomy	does	extend, because	the	panoply	of	empirical
restrictions	contained	can	help	model	evaluation	regardless	of	the	model	structure	and	the	associated	interpretation.
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which	matches	the	disconnect	of	the	short	run	and	the	long	run	seen	in	the	data. Yet, the	business
cycle	is	not	driven	by	a	single, dominant, transitory	shock. Instead, it	is	driven	by	two	unit-root	shocks,
which	have	the	same	long-run	effect	on	TFP but	opposite	short-run	effects	on	unemployment.

In	both	of	these	examples	the	basic	challenge	is	the	same: a	key	reduced-form	shock	identified
via	our	method	does	not	map	into	a	“true”	structural	shock. Clearly, this	problem	is	not	unique	to	our
method. For	instance, the	second	example	also	invalidates	the	interpretation	of	the	“demand	shock”
identified	in Blanchard	and	Quah (1989), or	the	“technology	shock”	identified	in Galí (1999).34 Nev-
ertheless, additional, pertinent	information	can	often	remove	this	kind	of	challenge. Our	approach
provides	ample	such	information	in	the	form	a	panoply	of	conditional, cross-variable, static	and	dy-
namic	restrictions, which	can	be	deployed	in	both	semi-structural	and	fully-structural	endeavors.

To	illustrate	the	use	of	our	method	in	a	semi-structural	context, consider	the	second	example. We
used	this	example	to	argue	that	the	disconnect	between	the	short	and	the	long	run	does	not	suffice
to	rule	out	technology, or	news	about	it, as	an	important	business-cycle	driver. But	this	disconnect
is	not	the	only	restriction	contained	in	the	anatomy. Another	key	restriction	is	that	the	MBC shock
accounts	for	essentially	zero	of	the	TFP fluctuations	at any horizon, including	the	short	run. This	helps
reject	the	story	proposed	above: if	that	story	were	correct, the	MBC shock	would	have	been	strongly
correlated	with	current	TFP,	which	is	not	the	case.

We	expand	on	this	point	in	Appendix B.	There, we	impose	no	structure	other	than	the	assumption
that	TFP is	driven	by	exactly	two	shocks, an	unanticipated, permanent	technology	shock	that	has	an
immediate	effect	on	TFP,	and	a	news	shock	that	has	a	delayed	effect. We	then	show	how	two	elements
of	our	anatomy, namely	the	reduced-form	shocks	that	target	TFP in	the	short	and	the	long	run, provide
an	estimate	of	the	contribution	of	the	news	shock	to	the	unemployment	fluctuations. This	estimate
turns	out	to	be	13%	in	our	baseline	VAR and	a	bit	lower	in	extended	VARs	that	add	stock	prices.35

In	Appendix H,	we	carry	out	a	similar	semi-structural	exercise	in	the	context	of	the	first	example:
we	show	that	the	simple	story	of	offsetting	demand	and	supply	shocks	does	not	work	insofar	as	the
supply	shock	can	be	proxied	by	the	reduced-form	shock	that	captures	the	bulk	of	the	TFP movements
in	the	data. To	put	it	differently, the	supply	shock	has	to	be	a	mysterious	markup	shock. We	then
proceed	 to	conduct	a	second, fully	structural	yet	 relatively	parsimonious, exercise: we	revisit	 the
example	 through	 the	 lenses	of	a	 two-variable, two-shock, New	Keynesian	model	and	ask	what	 it
takes	for	this	model	to	match	the	relevant	elements	of	our	anatomy, namely	the	dynamic	responses	of
output	and	inflation	to	our	identified	output	and	inflation	shocks. The	answer	turns	out	to	be	consistent
with	the	interpretation	of	the	output	shock	in	the	data	as	a	dominant, non-inflationary	demand	shock
in	the	model	(and	of	the	inflation	shock	as	the	markup	shock).

All	in	all, these	simple	exercises	illustrate	how	one	can	utilize	additional	elements	of	our	anatomy
and/or	additional	theoretical	structure	to	extend	the	use	of	our	method	to	multi-shock	environments.

34More	generally, for	any	“structural”	shock	identified	in	the	existing	SVAR literature, one	can	always	concoct	examples
that	deconstruct	it	into	a	combination	of	two	or	more	distinct	shocks, none	of	which	resembles	the	object	identified	in
the	data. Whether	 the	problem	 is	more	 severe	 in	our	case	depends	on	whether	one	finds	 the	premise	of	a	dominant
business-cycle	shock	less	defensible	than	those	other	identifying	assumptions	in	the	literature.

35Another	function	of	Appendix B is	to	show	how	the	estimated	contribution	of	the	news	shock	depends	on	the	number
of	variables	included	in	the	VAR.	This	corroborates	a	point	made	in	Section 3.4, that	our	conclusions	about	the	importance
of	news	shocks	differ	from	those	of Beaudry	and	Portier (2006)	in	large	part	due	to	the	amount	of	data	used.
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They	also	serve	as	a	prelude	for	the	more	compelling	analysis	in	the	next	section, which	demonstrates
the	effectiveness	of	our	method	in	the	context	of	three	state-of-the-art	DSGE models. Relative	to	the
exercises	discussed	above, those	 in	 the	next	section	make	use	of	both	more	elaborate	 theoretical
structures	and	a	broader	set	of	elements	from	our	anatomy, which	helps	keep	the	balance	between
degrees	of	freedom	and	empirical	restrictions.

6 An	Application	to	Medium-Scale	DSGE Models

In	the	previous	section	we	argued	that	our	method	can	be	of	use	in	multi-shock	environments	thanks
to	the	rich	set	of	cross-variable, dynamic	restrictions	it	contains. In	this	section, we	put	this	argument
on	trial	by	applying	our	method	to	three	off-the-shelf, state-of-the-art	DSGE models. This	application
corroborates	the	structural	interpretation	of	the	MBC shock	suggested	on	the	basis	of	single-shock
models. Most	importantly, it	demonstrates	the	probing	power	of	our	method, in	the	sense	that	the
conditional	moments	comprising	the	anatomy	help	identify	flaws	in	the	propagation	mechanism	of
models	that	may	have	gone	unnoticed	before.

We	first	 study	 the	properties	of	 the	sticky-price	model	 in Justiniano, Primiceri, and	Tambalotti
(2010)	and	the	flexible-price	model	in Angeletos, Collard, and	Dellas (2018), henceforth	referred	to
as	JPT and	ACD,	respectively. The	first	is	a	representative	of	the	New	Keynesian, DSGE paradigm:
it	 is	 essentially	 the	 same	model	as	 that	 in Smets	 and	Wouters (2007), but	with	more	appropriate
measures	of	investment	and	consumption.36 The	second	model	is	an	example	of	a	recent	literature
that	aims	at	disentangling	demand-driven	fluctuations	from	nominal	rigidities	and	Philips	curves	(see
the	references	in	footnote 3).

Both	models	 have	been	 estimated	 and	 evaluated	 in	 the	 respective	 papers	 using	 familiar, pre-
existing	methods.37 The	value	added	here	is	to	revisit	their	performance	through	lenses	of	our	new
method. We	thus	take	each	model	as	is	and	use	it	to	construct	the	linear	combinations	of	the	theo-
retical	shocks	that	maximize	the	business-cycle	volatility	of	GDP,	investment, consumption	or	hours
in	the	model. These	objects	are	the	theoretical	counterparts	to	the	reduced-form	shocks	identified
in	the	data	via	our	method. To	avoid	confusion	between	these	objects	and	the	primitive	theoretical
shocks, we	henceforth	refer	to	the	former	as	“factors”	and	reserve	the	term	“shocks”	for	the	latter.38

Figure 7 reports	the	IRFs	of	the	various	factors	in	the	data	(top	panel)	and	in	the	two	models	(middle
panel	for	JPT,	bottom	for	ACD).	As	seen	in	this	figure, the	various	factors	are	highly	interchangeable	in

36The	measure	of	consumption	used	in Smets	and	Wouters (2007)	includes	expenditure	on	durables, which	is	at	odds	with
the	specification	in	the	model. Justiniano, Primiceri, and	Tambalotti (2010)	fix	this	problem	by	including	such	expenditure
to	the	measure	of	investment, just	as	we	have	done	both	here	and	in Angeletos, Collard, and	Dellas (2018).

37In	particular, both	JPT and	ACD have	been	estimated	with	Bayesian	maximum	likelihood. But	whereas	ACD has	been
estimated	on	the	frequency	domain	using	the	levels	of	all	variables, JPT has	been	estimated	on	the	time	domain	using	the
growth	rates	of	output, investment, and	consumption. Another	difference	concerns	the	sample	used: 1954Q3	to	2004Q4	in
JPT vs	1960Q1-2007Q4	in	ACD.	As	discussed	later	on	and	shown	in	Appendix G.2, re-estimating	the	JPT in	the	exact	same
way	as	ACD does	not	change	the	take-home	lesson	of	this	section. With	this	in	mind, and	to	make	sure	that	the	two	models
are	evaluated	on	the	basis	of	the	same	sample	period	as	that	used	in	their	estimation, the	data	underlying	the	top	panels
of	Figure 7 refer	to	the	VAR that	appeared	earlier	as	row	[6]	in	Table 7, namely	the	one	that	spans	the	1960Q1-2007Q4
period; as	already	emphasized, this	makes	little	difference	from	our	baseline	specification.

38Our	“factors”	should	not	be	confused	with	those	in	dynamic	factor	analysis.
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Figure 7: The	MBC Shock	in	the	Data	and	the	Models

(a)	Data	(1960-2007)
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ACD,	as	they	are	in	the	data, whereas	they	are	quite	distinct	in	JPT.	This	is	most	evident	in	the	responses
of	output	and	consumption	to	the	various	factors, as	well	as	in	the	comparison	of	the	consumption
factor	to	the	other	factors.39

We	can	offer	a	quantitative	measure	of	 these	differences	by	constructing	a	metric	of	 the	inter-
changeability	of	factors	in	the	data	and	in	each	of	the	models. Let Zf

v,k denote	the	impulse	response
function	of	variable v ∈ V to	factor f ∈ F , where k ≥ 0 indexes	the	horizon, V is	the	set	of	the	four
key	macroeconomic	quantities	(output, hours, consumption, and	investment), and F is	the	set	of	the
corresponding	four	factors. Next, let Zv,k ≡ 1

4

∑
f∈F Z

f
v,k and	consider	the	following	object:

Dv =
1

4

∑
f∈F

√√√√ 20∑
k=0

(Zf
v,k − Zv,k)2

This	is	a	measure	of	the	dispersion	of	the	IRFs	of	variable v across	the	factors. The	closer Dv is	to
zero, the	greater	 the	degree	of	 interchangeability. Conversely, a	 large	value	 for Dv indicates	 low
interchangeability	vis-a-vis	that	particular	variable. Finally, let D ≡ 1

4

∑
v∈V Dv This	gives	a	metric	of

39Another	noticeable	 feature	 is	 the	magnitude	of	 the	 responses, which	are	 roughly	 twice	as	 large	as	 in	 JPT than	 the
corresponding	ones	in	either	the	data	or	ACD.	This	is	because	the	original	estimation	of	JPT,	which	is	based	on	growth
rates, produces	excess	volatility	in	the	levels. As	can	be	seen	in	Figure 17 in	Appendix G.2, re-estimating	JPT on	levels, and
in	the	same	way	as	in	ACD,	fixes	this	excess-volatility	problem	but	does	not	overcome	the	interchangeability	challenge.
Finally, the	response	of	inflation	appears	to	be	much	more	sluggish	in	the	data	than	in	JPT,	despite	the	inclusion	of	the
hybrid	versions	of	the	price	and	wage	Philips	curves. This	seems	interesting, although	it	may	not	be	directly	related	to	the
main	point	we	wish	to	make	here	regarding	the	interchangeability	of	factors.
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how	interchangeable	the	factors	are	over	all	the	variables	of	interest.
Table 9 reports	 the	 results	of	 these	calculations	 for	 the	data	and	 the	 two	models	 (first	 row	 for

the	data, second	row	for	JPT,	third	row	for	ACD).	In	each	case, we	report	both	the	variable-specific
metrics Dv (columns	named	“Y ”	through	“h”)	and	the	average	metric D (column	named	“Average”).
It	is	evident	that	ACD produces	nearly	the	same	interchangeability	as	that	observed	in	the	data, while
JPT produces	much	less.

Table 9: Interchangeability	of	Factors

Y C I h Average

Data 0.47 0.52 1.28 0.28 0.64
JPT 2.90 2.21 6.29 1.35 3.19
ACD 0.64 0.56 1.56 0.22 0.75

Note: This	table	reports	the	distance	of	factors, mea-
sured	in	the	way	described	in	the	main	text. A num-
ber	closer	to	zero	indicates	a	larger	degree	of	inter-
changeability.

We	now	shed	light	on	this	result	and	the	mechanics	of	the	models	by	doing	a	decomposition	of
their	factors	in	terms	of	the	underlying	theoretical	shocks. In	Table 10 we	calculate, for	each	model,
the	contribution	of	a	select	set	of	theoretical	shocks	to	the	part	of	the	business-cycle	volatility	of	the
targeted	variable	that	is	accounted	by	the	corresponding	factor. This	reveals	the	effective	weights	of
the	theoretical	shock	in	each	factor.

Table 10: Decomposition	of	Factors	into	Model	Shocks

JPT ACD

Factor A shock I shock C shock other confidence other

Y 33% 64% 1% 2% 89% 11%
I 0% 99% 0% 2% 79% 21%
h 0% 95% 3% 4% 99% 1%
C 34% 1% 64% 1% 94% 6%

Note: In	JPT,	“A shock”	is	a	permanent	technology	shock, “I shock”	is	a	transitory	investment-
specific	demand	shock, “C shock”	 is	a	 transitory	discount-factor	or	consumer-specific	demand
shock, and	“other”	includes	a	monetary	policy	shock	and	shocks	to	the	price	and	wage	markups. In
ACD,	“confidence”	is	a	transitory	shock	to	higher-order	beliefs	(or	the	expectations	of	the	behavior
of	others), which	triggers	waves	of	optimism	and	pessimism	about	aggregate	demand	in	the	short
run, and	“other”	includes	transitory	and	permanent	technology	shocks, news	shocks, and	the	same
kind	of	investment-	and	consumption	specific	shocks	as	those	in	JPT.

Let	us	first	consider	JPT.	In	this	model, the	investment	and	hours	factors	are	both	accounted	almost
fully	(> 95%)	by	the	investment-specific	shock. By	contrast, the	consumption	factor	is	driven	by	the
discount-factor	shock	(64%)	and	the	technology	shock	(34%). And	the	GDP factor	is	driven	by	the
investment-specific	shock	(64%)	and	the	technology	shock	(33%). The	factors	are	therefore	different
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mixtures	of	three	theoretical	shocks, whose	IRFs	are	reported	in	the	top	panel	of	Figure 8. Clearly,
these	shocks	are	distinct	 from	one	another. Furthermore, none	of	 them	alone	looks	like	the	MBC
shock	in	the	data. And	because	they	each	contribute	differentially	to	the	model’s	factors, the	latter
are	less	interchangeable	than	the	empirical	counterparts.

Figure 8: MBC Shock	in	Data	vs	Key	Theoretical	Shocks	in	JPT and	ACD

JPT: A, I, and C shocks
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ACD:	Confidence	Shock
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Consider	next	ACD.	In	this	model, all	the	factors	are	largely	driven	by	the	same	shock, the	con-
fidence	 shock. As	explained	 in	more	detail	 in Angeletos, Collard, and	Dellas (2018), this	 shock
represents	a	shift	in	higher-order	beliefs, or	the	expectations	of	the	behavior	of	other	firms	and	con-
sumers, and	helps	capture	waves	of	optimism	and	pessimism	about	the	short-term	economic	outlook
without	commensurate	shifts	in	the	expectations	of	the	long	run. What	is	key	for	the	present	purposes
is	the	observation, evident	in	the	bottom	panel	of	Figure 8, that	this	shock	is	quite	similar	to	the	MBC
shock	in	the	data, in	terms	of	co-movements	and	relative	volatilities. This	helps	explains	why	the
estimation	of	ACD favors	this	shock	over	the	alternatives	and	also	why	the	factors	in	that	model	are
almost	as	interchangeable	as	those	in	the	data.

We	now	discuss	some	robustness	issues. The	model	evaluations	conducted	above	rely	on	con-
structing	 the	 linear	 combinations	of	 the	model’s	 shocks	 that	 contribute	 the	most	 to	 the	predicted
volatility	of	certain	variables. This	procedure	seems	ideal	for	revealing	the	theoretical	comovement
properties	of	each	model. Another	advantage	 is	 that	 its	 implementation	does	not	depend	on	 the
stochastic	dimension	of	the	model	under	consideration: it	can	be	conducted	even	if	the	model	has
fewer	shocks	than	the	variables	in	our	VAR (as	it	is	indeed	the	case	here). One	may	nevertheless	be
concerned	that	this	procedure	fails	to	take	into	account	sampling	uncertainty. We	address	this	issue
in	Appendix G.1 by	conducting	the	relevant	Monte	Carlo	exercise.40 The	picture	that	emerges	from

40That	is, we	use	each	model	to	generate	a	large	number	of	artificial	time	series, we	run	exactly	the	same	VAR on	the
data	and	on	the	artificial	time	series, and	we	compare	the	median	IRFs	obtained	from	the	models	to	those	in	the	data.
This	exercise	is	similar	to	those	conducted	in, inter	alia, Chari, Kehoe, and	McGrattan (2008)	and Christiano, Eichenbaum,
and	Vigfusson (2007). As	explained	in	Appendix G.1, it	requires	two	modifications: first, we	drop	unemployment	and
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it	is	consistent	with	the	one	painted	here.
We	have	also	run	two	additional	robustness	exercises, which	are	reported	in	Appendix G.2. In	the

first, we	re-estimate	JPT in	the	frequency	domain, so	as	to	make	it	completely	comparable	to	ACD.41

In	the	second	exercise, we	re-estimate	both	JPT and	ACD on	the	basis	of	our	anatomy, namely	by
minimizing	the	distance	of	each	model	from	the	data	in	terms	of	the	impulse	responses	of	the	output,
consumption, investment, and	hours	to	the	four	factors	that	target	the	same	quantities. Both	exercises
help	JPT generate	more	interchangeability, but	the	model	still	falls	far	short	of	that	found	in	the	data
as	well	as	of	that	generated	by	the	ACD model.

More	importantly, we	have	applied	our	method	to	another	important	DSGE model, that	of Chris-
tiano, Motto, and	Rostagno (2014), henceforth	CMR.	This	model	is	on	the	forefront	of	a	new	strand	of
the	DSGE literature	that	pays	close	attention	to	the	real-financial	nexus. Its	main	differences	from	the
model	used	in Christiano, Eichenbaum, and	Evans (2005)	and Justiniano, Primiceri, and	Tambalotti
(2010)	are	the	following	three. First, it	includes	a	financial	friction	that	constrains	investment, the
latter	been	broadly	defined	to	include	consumer	durables. Second, it	contains	a	new	structural	shock
(“risk	shock”)	that	determines	the	severity	of	the	financial	friction.42 And	third, it	uses	financial	vari-
ables, most	notably	the	credit	spread	between	the	gross	nominal	interest	rate	on	debt	and	the	risk	free
rate	and	the	level	of	credit	to	such	firms	in	the	estimation	and	validation	of	the	model.

The	anatomy	of	this	model	involves	not	only	the	behavior	of	the	macroeconomic	quantities	we
have	 focused	on	so	 far, but	also	 that	of	 the	new, financial	variables. We	have	 thus	extended	our
anatomy	of	the	data	in	Appendix F.3 to	include	information	about	these	variables.43

Figure 9 conducts	a	similar	exercise	as	Figure 7. The	 top	panel	 reports	 the	 IRFs	of	a	 few	key
variables	to	the	output, hours, investment	and	consumption	factors. The	bottom	panel	reports	the
corresponding	objects	in	the	model. The	only	changes	are	the	use	of	CMR instead	of	JPT or	ACD;
the	focus	on	the	sub-sample	used	in	the	estimation	of	that	model;44 and	the	addition	of	the	impulse
responses	of	the	credit	spread	and	the	level	of	credit.

The	following	four	patterns	emerge. First, CMR improves	upon	JPT in	terms	of	featuring	more	in-
terchangeability	between	the	output, hours, and	investment	factors—actually	too	much	of	it. Second,
CMR does	worse	than	JPT in	terms	of	missing	the	business-cycle	properties	of	consumption. This	is
evident	both	in	the	response	of	consumption	to	the	aforementioned	factors	and	in	the	response	of

labor	productivity	from	the	VAR;	first, we	augment	ACD with	a	mechanical	model	for	inflation. These	modifications	are
necessary	in	order	to	be	able	to	run	exactly	the	same	VAR on	the	data	and	two	models.

41Recall	footnote 37.
42To	be	precise, this	shock	comes	in	nine	flavors, depending	on	whether	it	hits	the	idiosyncratic	volatility	of	firm	returns

with	a	lag	of	0, 1, 2,…8	quarters.
43This	is	done	in	Appendix F.3 using	 three	complementary	VARs. The	first	one	is	obtained	by	adding	only	the	credit

spread	to	our	baseline	VAR.	This	allows	us	to	keep	the	original	sample	size. It	corresponds	to	what	is	reported	as	row	10	in
Tables 7 and 16–19. The	second	is	obtained	by	adding	all	the	four	financial	variables	used	in	CMR.	Data	limitations	force
a	shorter	sample, 1971Q1-2014Q4. The	third	is	obtained	by	restricting	the	second	VAR to	1985Q1-2010Q4, which	is	the
sample	period	used	in	the	original	estimation	of	CMR.	The	three	VARs	produce	similar	results, underscoring	the	robustness
not	only	of	our	main	findings	but	also	of	the	additional	findings	reported	in	Figure 9 regarding	the	real-financial	nexus.

44That	is, the	empirical	IRFs	are	obtained	by	using	the	last	of	the	three	VARs	mentioned	in	footnote 43 above. Similarly
to	what	we	did	in	the	case	of	JPT and	ACD,	this	ensures	that	the	model	is	evaluate	on	the	basis	of	the	period	used	in	its
estimation. But	as	already	mentioned, the	empirical	patterns	themselves	are	robust	to	the	longer	period	spanned	by	our
baseline	specification.

29



Figure 9: Comparing	Business-Cycle	Factors

(a)	Data	(1985-2011)

1 5 10 15 20

0.0

0.5

Output

1 5 10 15 20

0.0

0.5

Hours Worked

1 5 10 15 20

0

2
Investment

1 5 10 15 20
0.0

0.5

Consumption

1 5 10 15 20

0.025

0.000

0.025

Inflation

1 5 10 15 20

0.05

0.00

Credit Spread

1 5 10 15 20
0

1

Credit

(b)	CMR

1 5 10 15 20
0

2

Output

1 5 10 15 20

1

2

Hours Worked

1 5 10 15 20

2.5

5.0

7.5

Investment

1 5 10 15 20

0

2
Consumption

1 5 10 15 20
0.0

0.2
Inflation

1 5 10 15 20
0.075

0.050

0.025

0.000
Credit Spread

1 5 10 15 20
0

5

Credit

Output; Investment; Hours	Worked; Consumption.

all	variables	to	the	consumption	factor. Third, CRM produces	too	much	volatility	and	persistence
compared	to	the	data. Fourth, and	perhaps	most	revealingly, the	model	fails	to	capture	the	dynamics
of	the	response	of	the	credit	spread	to	all	of	these	factors: while	in	the	data	the	credit	spread	appears
to	lead	the	MBC shock, in	the	sense	that	it	peaks	before	the	macroeconomic	quantities, it	does	the
opposite	in	the	model.

Whether	these	patterns	represent	critical	failures	for	the	model’s	ability	to	capture	the	propagation
of	business	cycles	or	easily	fixable	weaknesses	is	an	open	question	beyond	the	scope	of	our	paper.45

The	main	goal	of	the	exercise	above, as	well	as	of	those	involving	JPT and	ACD,	was	to	illustrate	how
our	approach	can	 shed	new	 light	on	 the	empirical	performance	of	 state-of-the-art, medium-scale
models, highlighting	limitations	which	may	have	otherwise	gone	unnoticed.

7 Conclusion

We	have	proposed	a	new	strategy	for	dissecting	macroeconomic	time	series	and	have	used	the	find-
ings	to	guide	macroeconomic	theory. The	strategy	involves	employing	a	VAR to	construct	a	variety
of	reduced-form	shocks, each	of	which	maximizes	the	volatility	of	a	particular	individual	variable	at
particular	frequencies. The	constructed	shocks, which	may	or	may	not	have	direct	theoretical	coun-
terparts, represent	a	rich	set	of	one-dimensional	cuts	of	the	data, or	conditional	comovements, which
we	call	the	anatomy	of	the	data.

Prominent	among	the	shocks	constructed	are	those	that	target	the	main	macroeconomic	quantities
(unemployment, output, hours	worked, investment	and	consumption)	at	the	business-cycle	frequen-
cies. The	near	interchangeability	of	these	objects	in	terms	of	IRFs	motivate	the	concept	of	the	MBC
shock: we	use	this	term	to	refer	to	the	dynamic	comovement	patterns	that	are	common	to	all	these

45The	excessive	persistence	appears	to	be	the	product	of	the	model’s	reliance	on	an	unusually	high	adjustment	cost	for
investment	as	well	as	on	very	persistent	shocks. The	property	that	the	business	cycle	leads, rather	than	lags, the	credit	spread
appears	to	be	driven	by	the	model’s	reliance	on	a	number	of	news	shocks, which	have	a	relatively	more	pronounced	and
front-loaded	effect	on	investment, hours	and	output	than	on	the	credit	spread. We	do	not	know	how	changing	these	features
would	impact	on	the	empirical	performance	of	the	model	along	other	dimensions	and	also	on	the	structural	interpretation
offered	to	the	data.
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cuts	of	the	data. These	include	a	strong, positive, and	transient	comovement	between	the	aforemen-
tioned	quantities; little	relation	with	both	inflation	and	TFP at	any	horizon; and	a	disconnect	between
the	short	run	and	the	long	run.

We	have	argued	that	these	patterns	speak	against	theories	that	seek	to	attribute	the	bulk	of	the
business	cycle	to	any	of	 the	following	forces: technology	shocks; financial, uncertainty	and	other
shocks	that	matter	primarily	by	affecting	the	concurrent	level	of	aggregate	TFP;	shifts	in	expectations
about	medium-	to	long-run	productivity	prospects	of	the	economy; and	demand	shocks	that	give	rise
to	procyclical	movements	in	inflation. In	contrast, models	that	contain	a	non-inflationary, demand
shock	as	the	main	driver	of	the	business	cycle	seem	a	priori	consistent	with	this	evidence.

This	conclusion	is	based	on	the	premise	that	the	bulk	of	the	business	cycle	can	be	attributed	to	a
single	shock/propagation	mechanism. But	even	if	this	is	not	the	case, the	rich	set	of	the	dynamic	co-
movement	patterns	that	come	under	the	umbrella	of	the	MBC shock, or	more	generally	our	anatomy,
serve	as	useful	yardstick	for	model	evaluation: models	of	any	size	and	complexity	have	to	match
these	patterns. State-of-the-art	DSGE models	have	difficulty	passing	this	test, despite	the	inclusion
of	a	dominant	demand	shock	and	a	flat	Philips	curve. In	particular, they	fail	the	interchangeability
property	because	their	structural	shocks	and	propagation	mechanisms	are	too	specialized	relative	to
what	appears	to	be	the	case	in	the	data.

In	our	view, this	problem	derives	to	a	large	extent	from	the	fact	that	the	flexible-price	core	of	these
models	is	problematic	to	start	with, in	the	sense	that	this	core	is	itself	unable	to	accommodate	the	kind
of	non-inflationary	demand	shock	we	have	characterized. Encouragingly, there	is	now	a	growing	lit-
erature	that	attempts	to	accommodate	demand-driven	business	cycles evenwithout	nominal	rigidities
and	Phillips	curves, an	example	of	which	was	the	model	developed	in Angeletos, Collard, and	Dellas
(2018)	and	used	here. We	hope	that	the	characterization	of	the	data	performed	in	the	present	paper
will	not	only	stimulate	further	research	on	this	front	but	also	serve	as	a	useful	diagnostic	test	of	the
empirical	potential	of	any	such	attempts.
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APPENDICES

A The	Data

The	data	is	from	the	Federal	Reserve	Economic	Database	(FRED).	TFP corresponds	to	the	TFP time
series	corrected	for	utilization	produced	by Fernald (2012)	(downloaded	2016). Tables 11 and 12
describe	the	original	data	and	the	transformations	used	in	our	VARs. Table 13 reports	the	raw	(un-
conditional)	correlations	over	the	business-cycle	frequencies.

Table 11: Description	of	Data

Data Mnemonic Freq. Transform

Real	gross	domestic	product	per	capita A939RX0Q048SBEA Q –
Gross	Domestic	Product GDP Q –
Gross	Domestic	Product: Implicit	Price	Deflator GDPDEF Q –
Personal	Consumption	Expenditures: Nondurable	Goods PCND Q –
Personal	Consumption	Expenditures: Services PCESV Q –
Personal	Consumption	Expenditures: Goods PCDG Q –
Gross	Private	Domestic	Investment GPDI Q –
Nonfarm	Business	Sector: Real	Output	Per	Hour	of	All	Persons OPHNFB Q –
Nonfarm	Business	Sector: Labor	Share PRS85006173 Q –
Nonfarm	Business	Sector: Average	Weekly	Hours PRS85006023 Q –
Civilian	Noninstitutional	Population CNP16OV M EoP
Civilian	Unemployment	Rate UNRATE M Ave
Effective	Federal	Funds	Rate FEDFUNDS M Ave
Total	Factor	Productivity	(Growth	rate) DTFPu Q –

Note: Q:	Quarterly, M:	Monthly, EoP:	end	of	period, Ave: quarterly	average.

Table 12: Variables	in	the	VARs
Real	GDP per	capital Y=log(A939RX0Q048SBEA)
Real	consumption	per	capita C=log((PCND+PCESV)*A939RX0Q048SBEA/GDP)
Real	investment	per	capita I=log((PCDG+GPDI)*A939RX0Q048SBEA/GDP)
Hours	worked H=log(PRS85006023*CE16OV/CNP16OV)
Inflation	Rate π=log(GDPDEF/GDPDEF(-1)
Interest	Rate R=FEDFUNDS/400
Productivity	(NFB) YSHnfb=OPHNFB
Labor	Share wh/y=log(PRS85006173)
TFP TFP=log(cumulative sum (DTFPu/400))
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Table 13: Correlations	(Bandpass	filtered, 6-32	Quarters)

Yt Ct It ht ut TFPt (Y /h)t (Wh/Y )t πt Rt

Yt 1.00 0.84 0.95 0.89 -0.88 -0.19 0.47 -0.15 0.21 0.40
Ct 0.84 1.00 0.76 0.82 -0.78 -0.28 0.24 0.05 0.31 0.42
It 0.95 0.76 1.00 0.89 -0.85 -0.24 0.44 -0.18 0.13 0.33
ht 0.89 0.82 0.89 1.00 -0.93 -0.46 0.11 0.06 0.29 0.47
ut -0.88 -0.78 -0.85 -0.93 1.00 0.41 -0.06 -0.16 -0.37 -0.59
TFPt -0.19 -0.28 -0.24 -0.46 0.41 1.00 0.45 -0.23 -0.27 -0.34
(Y /h)t 0.47 0.24 0.44 0.11 -0.06 0.45 1.00 -0.56 -0.30 -0.31
(Wh/Y )t -0.15 0.05 -0.18 0.06 -0.16 -0.23 -0.56 1.00 0.31 0.23
πt 0.21 0.31 0.13 0.29 -0.37 -0.27 -0.30 0.31 1.00 0.72
Rt 0.40 0.42 0.33 0.47 -0.59 -0.34 -0.31 0.23 0.72 1.00
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B Application	to	New	Shocks

In	 this	Appendix, we	use	our	method	 to	 identify	news	shocks	and	examine	how	 their	properties,
in	particular	their	contribution	to	business	cycles, vary	with	the	size	of	the	VAR used	to	identify	the
shocks. This	serves	two	purposes. It	sheds	light	on	the	source	of	the	difference	reported	in	the	main	text
between	our	findings	and	those	of Beaudry	and	Portier (2006). And	it	provides	yet	another	example
of	the	usefulness	of	our	method	outside	the	realm	of	one-shock	representations	of	the	business	cycle,
in	particular, in	the	context	of	semi-structural	explorations.

The	 exercise	 conducted	here	 is	 based	on	 the	premise	 that	 the	 vast	majority, if	 not	 all, of	 the
TFP fluctuations	at	all	 frequencies	can	be	accounted	by	 two	 structural	 shocks: an	unanticipated,
permanent	shock	and	a	news	shock. The	former	affects	TFP both	in	the	short	and	the	long	run, while
the	latter	does	not	have	an	effect	on	impact.46

As	explained	in	Section 5.2, the	accommodation	of	these	two	structural	shocks	complicates	the
interpretation	of	the	empirical	MBC shock	and	in	particular	of	its	disconnect	from	the	long	run: this
disconnect	is	consistent	with	models	in	which	the	two	structural	shocks	under	consideration	have
significant	but	offsetting	effects	on	unemployment	in	the	short	run. Still, insofar	as	only	these	two
shocks	drive	TFP,	and	regardless	of	how	many	other	shocks	may	drive	unemployment, we	can	identify
the	news	shock	and	its	business-cycle	contribution	as	follows.

We	first	construct, via	our	method, the	two	empirical	shocks	that	have	the	maximal	contribution
to	the	volatility	of	TFP in	the	long-run	and	the	business-cycle	frequencies	(80−∞ and 6−32 quarters,
respectively). Denote	these	by s1t and s

2
t , respectively. These	shocks	do	not	have	a	structural	interpre-

tation	but	are	linear	combinations	of	the	two	“true”	structural	shocks, the	unanticipated	technology
shock, stecht , and	the	news	shock, snews

t . The	two	sets	of	shocks	are	related	as	follows:[
s1t
s2t

]
= A

[
stecht

snews
t

]
for	some	matrix A. As	long	as	both s1t and s

2
t have	a	non-zero	impact	effect	on	TFP (which	is	true

for	all	the	specifications	considered	below), one	can	construct	their	unique	(up	to	rescaling)	linear
combination	that	has	a	zero	impact	effect	on	TFP.	This	combination	recovers	the	news	shock.

We	have	implemented	this	identification	strategy	in	our	baseline	VAR,	as	well	as	in	several	other
smaller	and	larger	VARs. We	report	results	below	for	seven	nested	specifications, denoted	as	VAR1

through	VAR7. The	smallest	one, VAR1, contains	only	the	main	two	variables	of	interest, TFP and
unemployment. VAR2 adds	investment. VAR3, adds	GDP,	consumption	and	hours, giving	the	“real
core”	of	our	baseline	VAR.	The	latter	 is	herein	denoted	by	VAR4; this	contains	all	the	10	variables
described	in	Section	2. VAR5 adds	the	SP500	index. VAR6 adds	capacity	utilization. VAR7 adds	the
credit	spread.

In	all	of	the	VARs, the	two	empirical	shocks, s1t and s
2
t , together	account	for	for	over	95%	of	the

volatility	of	TFP at	the	long-run	frequencies	and	for	over	85%	of	that	at	the	business-cycle	frequencies.
46One	may	object	to	the	assumption	of	only	two	TFP shocks, on	the	basis, for	instance, that	the	“right”	model	features

multiple	news	shocks, each	one	corresponding	 to	different	horizons	at	which	TFP is	expected	to	change. But	 this	 is	a
slippery	road	that	ultimately	leads	one	to	give	up	hope	on	“a-theoretic”	endeavors	and, instead, commit	to	a	particular,
fully-specified	model. Clearly, each	approach	has	its	strengths	and	limitations. We	follow	the	one	approach	here	and	the
other	in	Section 5.2.

37



In	our	baseline	specification, in	particular, these	numbers	are	99%	and	92%, respectively. In	this	re-
gard, our	two-shock	representation	of	TFP works	well. Moreover, the	effect	of	the	identified	news
shock	on	the	dynamics	of	TFP is	quite	similar	across	the	VARs: see	the	left	panel	of	Figure 10. Such
robustness, however, is	absent	in	the	relationship	between	news	shocks	and	unemployment	fluctu-
ations; see	the	right	panel	of	Figure 10. In	particular, the	news	shock	switches	from	being	strongly
expansionary	in	the	smallest	VAR to	being	sligtly	contractionary	in	the	largest	VAR.

Figure 10: IRF of	TFP and	Unemployment	to	News	Shock
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Figure 11 presents	this	sensitivity	in	terms	of	the	contribution	of	the	identified	news	shock	to	the
volatility	of	unemployment	at	the	business-cycle	frequencies. On	the	horizontal	axis, we	vary	the
size	of	the	VAR used	in	the	construction	of s1t and s

2
t and, thereby, of	the	news	shock: as	we	move

from	left	to	right, we	progressively	add	more	data	and, accordingly, increase	the	size	of	the	VAR from
2	variables	to	a	total	of	13.

Figure 11: Variance	Contribution	of	News	Shock	to	Unemployment
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Note: Contribution	at	business-cycle	 frequencies. Red	 line	gives	median, upper	and
lower	black	 lines	 give	68%	HPDI.	VAR1 = {u,TFP}, VAR2 = VAR1 ∪ {I}, VAR3 =

VAR2 ∪ {Y,C, h}, VAR4 = Baseline	VAR,	VAR5 = VAR4 ∪ {SP500}, VAR6 = VAR5 ∪
{utilization}, VAR7 = VAR6 ∪ {credit	spread}.

The	pattern	is	striking: as	more	data	(variables)	are	added, the	estimated	contribution	of	the	news
shock	declines	dramatically, stabilizing	at	around	11%	in	the	last	four	specifications. In	our	baseline
specification, the	number	is	13%.
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Due	to	the	well-known	potential	fragility	of	results	from	small	VARs	(Forni, Gambetti, and	Sala,
2019), we	trust	more	the	results	from	the	medium	and	larger	ones, specially	because	size	seizes	to
matter	after	a	certain	size. Larger	VARs	contain	more	information, while	smaller	ones	may	mechani-
cally	attribute	a	larger	share	of	the	business	cycle	to	the	news	shock.

To	illustrate	the	latter	point, consider	VAR1. In	this	specification, the	news	shock	accounts	for
97%	of	the	short-run	fluctuations	in	unemployment. Why? In	a	two	variables-two	shocks	specifica-
tion, stecht and snews

t must	together	account	for	all	of	the	fluctuations	in	unemployment. Due	to	the
assumption	that stecht is	the	only	shock	that	has	an	immediate, impact	effect	on	TFP, stecht is	closely
associated	with	actual	TFP in	the	short	run. But	as	we	have	established, TFP is	nearly	orthogonal	to
unemployment	at	the	business-cycle	frequencies	(and	beyond). It	then	follows	that stecht can	account
for	only	a	trivial	fraction	of	the	unemployment	fluctuations—which	leaves snews

t as	the	only	shock	to
explain	unemployment	fluctuations. In	short, this	VAR mechanically	attributes	a	large	fraction	of	the
business	cycle	to	the	news	shock, simply	because	the	only	other	allowed	shock	is	a	“dead	horse”	to
start	with.

As	we	move	to	larger	VARs, we	add	more	data	but	also	more	shocks	that	can	contribute	to	the
fluctuations	 in	unemployment. So	 the	role	of	news	is	bound	to	wither. Figure 11 shows	that	 the
decline	is	precipitous	at	first, but	stabilizes	once	we	reach	the	baseline	specification.

This	helps	 shed	 light	on	one	of	 the	 reasons	why	our	 results	differ	 from	 those	 in	Beaudry	and
Portier: we	use	larger	VARs	than	they	do. Another	part	of	the	difference	comes	from	using	different
identifying	assumptions. In	 this	context, note	 that	our	 identification	strategy	remains	 the	same	as
we	move	 from	smaller	 to	 larger	VARs. The	same	 is	 true	 for	 the	strategy	employed	 in	Barsky	and
Sims, which, reassuringly, leads	to	a	similar	conclusion	as	ours.47 By	contrast, the	one	employed	in
Beaudry	and	Portier	requires	the	introduction	of	progressively	more	delicate	exclusion	restrictions	as
more	variables	are	added.

The	exercise	conducted	here	also	serves	another	important	purpose. Namely, it	helps	showcase
the	usefulness	of	our	approach	in	the	realm	of	multi-shock	models	without	a	need	for	the	explicit
intermediation	of	a	particular, fully-specified	model. The	key	is	to	drop	the	exclusive	focus	on	the
MBC shock	and	include	other	features	of	the	anatomy—here	for	instance	the	shocks	that	target	TFP
in	the	short	and	the	long	run—and	to	utilize	the	cross-equation	restrictions	associated	with	them. As
shown	in	Section 6, the	same	procedure	also	proves	very	effective	in	the	context	of	fully-structural
endeavors.

47Barsky	and	Sims	emphasize	 that	 their	 identified	news	shocks	 is	contractionary, but	what	we	take	as	a	more	robust
conclusion	from	the	combination	of	their	explorations	and	ours	is	the	small	contribution	of	TFP news	to	the	business	cycle.
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ONLINE APPENDICES

C Variance	Contributions	on	the	Time	Domain

Figure 12 complements	Table 1 in	the	main	text	by	reporting	the	contribution	of	the	identified	MBC
shock	to	the	FEV of	 the	variables	at	different	horizons. To	avoid	any	confusion, let	us	emphasize
that	the	shock	is	still	identified	in	the	frequency	domain, by	targeting	the	volatility	of	unemployment
over	the	band	of	the	business-cycle	frequencies. The	time	domain	is	used	only	in	the	calculation	of
variance	contributions.

The	picture	that	emerges	is	fully	consistent	with	that	painted	in	the	main	text: the	identified	shock
explain	the	bulk	of	the	short-run	variation	in	the	key	macroeconomic	quantities, and	has	a	negligible
footprint	to	TFP and	inflation	at	all	horizons. The	only	subtlety	worth	noting	here	is	that	“short	run”
in	the	time	domain	maps	to	a	horizon	of	about	4	to	8	quarters. This	is	evident	not	only	in	the	FEV
contributions	reported	here	but	also	in	the	IRFs	shown	in	the	main	text. It	also	anticipates	the	choice
of	the	horizon	targeted	in	a	variant, time-domain	identification	considered	next.

Figure 12: Variance	Contributions	at	Different	Horizons
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Note: Variance	contributions	of	 the	MBC shock	 in	 the	 time	domain. Horizontal	axis: time	horizon	 in	quarters.
Shaded	area	: 68%	HPDI.

D Identification	in	the	Frequency	vs	Time	Domain

In	 this	Appendix	we	illustrate	 the	robustness	of	our	findings	 to	employing	time-domain	instead	of
frequency-domain	methods. In	particular, we	identify	the	relevant	shocks	by	maximizing	their	con-
tribution	to	the	FEV of	the	corresponding	variable	at	horizons	of	1, 4, and	8	quarters	(which	are	the
time	horizons	typically	associated	with	the	business	cycle). As	is	evident	in	Figure 13 and	Table 14,
this	change	does	not	affect	our	findings. To	save	space	we	only	report	the	results	for	the	shocks	that
target	unemployment	and	GDP.	But	the	same	picture	obtains	for	the	other	elements	of	our	anatomy.
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Figure 13: Frequency-Domain	vs	Time-Domain	Identification	(IRFs)
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41



Table 14: Frequency-Domain	vs	Time-Domain	Identification	(Variance	Contributions)

u Y h I C TFP Y /h Wh/Y π R

Unemployment	Shock

Benchmark 73.71 58.51 47.72 62.09 20.38 5.86 23.91 27.02 6.96 22.27
[66.80,79.94] [50.65,65.07] [40.77,54.45] [54.09,68.46] [13.61,27.53] [2.44,10.96] [17.27,31.22] [18.39,35.93] [3.24,12.28] [14.22,30.97]

1	Qrt 66.07 40.79 34.15 46.32 15.79 6.07 13.03 14.21 3.83 18.18
[57.97,73.47] [34.52,46.67] [27.88,39.68] [40.16,52.47] [11.04,21.59] [2.91,10.55] [8.91,17.47] [10.03,19.22] [1.70, 7.22] [12.68,23.37]

4	Qrts 71.18 53.14 41.02 57.29 19.43 5.14 19.40 24.43 5.62 12.80
[62.71,77.79] [46.19,59.10] [33.52,47.92] [50.43,63.96] [13.25,26.17] [2.15, 9.59] [14.14,25.08] [18.27,30.77] [2.59, 9.95] [7.50,19.49]

8	Qrts 67.39 56.44 41.53 59.41 21.81 4.03 22.41 31.49 7.41 8.73
[58.03,75.33] [48.28,63.11] [32.86,50.02] [51.33,67.17] [14.52,29.32] [1.62, 8.32] [16.49,29.26] [23.32,38.90] [3.49,12.75] [4.34,14.91]

Output	Shock

Benchmark 56.24 80.13 44.73 67.13 33.03 4.24 41.31 40.20 10.47 16.89
[48.94,61.93] [72.80,86.44] [37.36,51.68] [60.72,72.82] [25.04,40.44] [1.76, 8.32] [35.29,47.43] [32.75,47.40] [5.97,16.75] [11.00,26.08]

1	Qrt 51.17 77.54 38.13 63.88 32.83 4.60 38.34 36.75 8.90 15.88
[44.04,57.04] [69.45,84.83] [31.31,45.26] [56.57,70.14] [25.25,40.11] [2.13, 8.73] [32.88,44.22] [30.29,42.53] [5.07,14.03] [10.55,22.61]

4	Qrts 47.35 77.31 36.58 61.44 34.87 6.73 40.73 38.00 11.84 10.59
[39.89,53.93] [68.65,84.43] [29.28,44.34] [54.05,68.39] [27.06,42.04] [3.28,11.52] [34.40,46.94] [31.73,44.45] [7.51,17.55] [6.13,16.46]

8	Qrts 40.15 71.69 32.35 54.78 35.75 9.66 40.72 36.28 15.20 8.14
[32.02,47.83] [61.49,80.46] [24.00,40.56] [45.85,63.46] [27.81,43.20] [5.38,16.43] [33.65,47.58] [28.79,43.36] [9.70,21.96] [4.33,13.26]

Note: The	two	parts	of	the	table	correspond	to	different	targeted	variables, unemployment	or	GDP.	In	each	part, the	first	row	correspond	to	our	benchmark, frequency-
domain	identification	of	the	shock, while	the	other	rows	correspond	to	time-domain	identification. In	particular, three	cases	are	reported, depending	on	whether	the	shock	is
constructed	by	maximizing	its	contribution	to	the	FEV of	the	respective	variable	at	horizons	of	1, 4, or	8	quarters. The	columns	report	the	contributions	of	the	thus-identified
shocks	to	the	business-cycle	volatilities	of	all	the	variables.
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E Long	Run	PCA

Table 3 in	Section 3.3 reported	the	first	principal	component	over	the	business-cycle	frequencies	(the
band	corresponding	to 6 − 32 quarters). For	completeness, Table 15 here	reports	the	corresponding
object	over	the	long-run	frequencies	(the	band	corresponding	to 80 −∞ quarters). The	picture	that
emerges	corroborates	the	existence	of	a	single	unit-root	force	driving	almost	the	entirety	of	the	long-
run	fluctuations	in	TFP and	the	key	macroeconomic	quantities.48

Table 15: First	Principal	Component, Long	Term, 1955-2017

u Y h I C π R r TFP Y /h w wh/Y

Raw	Data 10.43 99.93 64.93 98.11 99.66 6.20 6.97 2.44 98.33 99.32 99.74 73.89
VAR-Based 12.20 97.88 5.82 95.08 96.32 3.94 6.66 9.99 88.97 98.18 96.59 32.74
Normalized	Data 10.38 99.18 62.59 95.57 99.83 9.85 10.33 3.52 96.69 98.96 98.72 78.28
VAR Normalized 29.44 90.64 17.49 86.44 89.46 11.89 20.37 19.00 88.36 89.67 94.16 49.18

F Robustness	of	Empirical	Findings

In	Section 4, we	established	the	robustness	of	the	empirical	properties	of	the	shock	that	targets	un-
employment	across	elevent	specifications. In	the	first	subsection	of	this	appendix, we	first	show	that
the	same	robustness	property	characterizes	the	other	shocks	that	form	our	anatomy. In	the	next	two
subsections, we	expand	on	some	additional	findings	from	the	two	extended	VARs	that	show	up	as
rows	9	and	10	in	these	tables. In	the	last	two	subsections, we	finally	fill	in	a	few	details	regarding	the
VECM specifications	and	measurement	of	the	relative	prices	of	investment.

F.1 Beyond	the	unemployment	shock: other	elements	of	the	anatomy

Table 7 in	the	main	text	reported	the	variance	contributions	of	the	shock	that	targets	unemployment
across	eleven	specifications. Table 16 through	Table 19 here	repeat	the	exercise	of	a	select	subset
of	the	other	elements	comprising	our	anatomy: the	shocks	that	target	GDP,	hours, investment, and
inflation. Although	omitted	here	for	the	shake	of	saving	space, the	same	robustness	property	is	also
present	in	terms	of	IRFs.

48The	cells	in	this	table	that	appear	in	gray	color	correspond	to	the	variables	that, at	least	according	to	most	theories,
ought	to	be	stationary, in	which	case	the	reported	numbers	are	meaningless.

43



Table 16: The	MBC Shock, Targeting	Output, Variance	Contributions	(6-32	Quarters)

u Y h I C TFP Y /h Wh/Y π R

[1] Benchmark 56.24 80.13 44.73 67.13 33.03 4.24 41.31 40.20 10.47 16.89
[48.94,61.93] [72.80,86.44] [37.36,51.68] [60.72,72.82] [25.04,40.44] [1.76, 8.32] [35.29,47.43] [32.75,47.40] [5.97,16.75] [11.00,26.08]

[2] 4	lags 56.48 79.38 44.56 67.35 33.20 5.49 40.56 41.06 11.35 17.71
[50.18,63.14] [71.95,85.64] [37.14,52.69] [61.08,73.31] [26.42,40.63] [2.44,10.40] [34.22,46.76] [33.38,48.23] [6.31,17.09] [9.90,26.49]

[3] VECM(1) 51.21 62.37 43.05 54.74 44.17 9.71 30.54 35.49 9.37 21.55
[43.96,57.68] [56.11,69.41] [35.30,50.83] [48.66,61.51] [36.00,54.01] [5.27,17.85] [24.50,37.65] [26.32,44.21] [4.40,17.63] [9.85,39.01]

[4] VECM(2) 52.31 68.59 43.52 55.54 56.07 7.65 33.22 37.57 9.14 15.80
[45.04,59.90] [60.91,76.13] [36.30,50.88] [48.61,62.06] [46.24,64.66] [4.38,12.83] [26.99,40.03] [29.75,45.14] [3.75,16.24] [8.90,25.36]

[5] 1948-2017 62.00 86.39 52.46 70.81 34.79 3.17 43.83 41.02 5.32 14.96
[56.59,67.36] [80.69,91.04] [46.51,58.63] [65.86,75.73] [27.48,42.14] [1.37, 6.49] [38.37,49.88] [34.62,47.68] [2.49, 9.78] [9.05,22.02]

[6] 1960-2007 55.40 78.24 48.87 70.64 36.65 15.65 44.61 42.96 12.49 16.21
[48.07,62.00] [71.45,84.76] [41.66,56.51] [64.26,75.98] [27.53,44.92] [8.55,24.41] [37.30,52.12] [35.77,50.99] [6.78,20.65] [8.36,25.16]

[7] pre-Volcker 60.57 71.01 45.61 61.91 39.59 5.58 45.38 43.92 19.53 23.52
[50.61,68.94] [61.45,80.34] [34.80,56.13] [51.71,70.91] [28.04,50.75] [2.11,14.16] [36.13,55.02] [32.53,54.58] [11.25,30.88] [13.15,37.61]

[8] post-Volcker 46.34 77.66 40.88 66.18 35.62 7.63 26.34 27.27 3.59 17.45
[37.67,54.73] [68.56,84.52] [32.34,50.00] [57.96,73.11] [25.20,45.83] [3.30,14.45] [19.91,33.98] [19.66,35.55] [1.36, 8.36] [8.49,27.94]

[9] Extended 47.56 65.28 40.18 56.71 31.43 4.73 40.33 42.69 10.89 17.55
[41.35,54.06] [58.72,72.44] [33.19,46.69] [50.57,63.11] [24.19,38.98] [2.11, 9.17] [33.83,46.75] [33.03,51.32] [6.26,17.07] [9.74,28.63]

[10] Financial 53.90 75.33 43.57 62.44 35.42 5.19 41.43 38.42 11.54 19.98
[47.10,60.67] [68.02,82.18] [36.40,50.77] [55.85,68.60] [27.88,43.94] [2.82, 9.31] [34.82,47.79] [31.20,45.65] [6.56,17.79] [12.54,29.42]

[11] Chained-type	C&I 57.80 85.61 43.46 69.68 32.40 2.76 39.00 31.36 8.85 18.31
[51.26,63.00] [79.50,90.50] [36.44,50.46] [64.03,74.42] [25.23,40.53] [1.43, 5.07] [33.69,45.44] [24.98,37.66] [4.82,14.15] [11.45,26.07]
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Table 17: The	MBC Shock, Targeting	Hours	Worked, Variance	Contributions	(6-32	Quarters)

u Y h I C TFP Y /h Wh/Y π R

[1] Benchmark 49.84 47.54 70.45 47.99 21.78 11.62 22.61 19.47 7.23 22.38
[42.43,56.53] [38.20,55.67] [64.25,77.04] [38.49,55.96] [15.30,29.22] [6.14,18.14] [15.58,29.66] [11.73,29.24] [3.32,13.31] [15.09,31.87]

[2] VECM(1) 52.16 46.09 58.32 48.52 32.81 28.64 23.63 18.58 13.87 39.95
[45.43,58.79] [38.60,54.00] [53.32,63.44] [41.43,55.97] [23.69,43.81] [15.87,40.14] [16.48,32.70] [11.07,29.94] [5.96,25.56] [25.71,53.96]

[3] VECM(2) 53.91 50.41 57.82 49.65 41.91 16.99 18.34 25.72 10.93 23.69
[45.99,61.44] [39.92,59.50] [52.81,62.97] [41.34,57.77] [26.35,55.14] [7.95,28.24] [11.83,26.80] [13.88,40.00] [4.98,18.61] [12.51,44.29]

[4] 4	lags 51.82 46.53 70.17 45.99 23.11 10.22 19.54 19.25 6.80 24.55
[44.30,58.55] [37.75,56.07] [63.67,76.61] [36.73,54.81] [16.46,30.73] [5.22,18.05] [13.51,26.97] [10.70,28.70] [3.25,11.93] [15.81,33.91]

[5] 1948-2017 51.98 57.31 76.44 56.45 23.48 8.49 23.93 25.26 7.85 16.43
[45.78,57.75] [50.34,63.96] [70.91,81.81] [48.96,63.94] [16.93,30.48] [4.35,14.47] [17.81,30.80] [17.60,34.06] [4.09,13.28] [10.29,23.33]

[6] 1960-2007 53.21 50.95 70.91 52.51 21.39 5.83 18.52 26.91 7.75 18.67
[46.03,60.23] [42.71,59.85] [63.83,77.35] [44.58,60.62] [13.62,30.77] [2.43,10.92] [11.48,27.04] [17.88,37.23] [3.22,15.89] [10.74,29.52]

[7] pre-Volcker 45.56 47.14 67.93 50.35 23.45 19.40 27.09 21.50 17.76 24.53
[33.61,56.43] [36.05,58.16] [58.71,76.98] [37.67,61.28] [14.49,35.17] [9.36,30.19] [17.01,39.19] [11.24,35.79] [10.48,29.26] [13.88,40.91]

[8] post-Volcker 50.25 44.09 72.21 44.75 19.96 6.93 16.02 14.80 3.61 13.01
[42.13,58.72] [35.21,53.20] [63.07,80.11] [35.54,54.40] [12.81,28.05] [2.91,13.12] [9.41,23.70] [8.02,24.30] [1.32, 8.35] [5.95,22.97]

[9] Extended 43.09 41.15 61.33 43.02 23.81 10.31 22.64 14.07 12.55 26.84
[36.17,49.37] [33.92,48.68] [55.15,67.24] [35.24,50.56] [17.36,31.14] [4.86,17.26] [16.06,29.80] [7.21,24.92] [7.13,19.79] [17.00,38.82]

[10] Financial 50.45 49.94 63.65 50.13 27.20 11.29 25.81 22.27 8.77 26.53
[42.91,57.94] [39.97,58.12] [57.66,69.85] [39.73,59.48] [18.83,36.31] [5.35,18.69] [17.25,35.19] [12.36,34.58] [4.29,16.04] [17.47,35.91]

[11] Chained-type	C&I 48.43 46.76 78.87 46.11 20.37 10.92 19.51 13.41 5.76 20.27
[41.28,54.30] [39.48,53.30] [72.70,85.02] [38.74,52.65] [14.80,26.59] [6.25,16.74] [14.11,26.13] [7.98,20.55] [2.67,10.49] [13.40,27.48]
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Table 18: The	MBC Shock, Targeting	Investment, Variance	Contributions	(6-32	Quarters)

u Y h I C TFP Y /h Wh/Y π R

[1] Benchmark 59.03 66.60 45.20 80.29 19.01 3.81 33.74 36.44 7.69 21.51
[51.73,64.55] [60.40,72.21] [37.93,51.98] [72.82,86.97] [12.27,27.34] [1.38, 7.83] [27.72,40.30] [29.21,44.21] [3.65,12.96] [13.91,30.28]

[2] VECM(1) 54.47 55.01 45.49 61.58 34.54 12.29 26.98 32.02 9.54 29.65
[47.86,60.60] [48.96,61.65] [38.05,53.16] [55.78,68.31] [25.35,45.08] [5.84,22.09] [20.34,34.17] [22.71,41.00] [4.00,18.54] [16.48,45.86]

[3] VECM(2) 55.79 60.32 46.08 63.02 44.57 8.59 27.15 37.96 9.59 20.51
[49.03,62.87] [53.38,67.58] [39.48,53.54] [56.30,69.67] [32.28,55.14] [4.23,15.06] [20.32,34.38] [28.53,46.61] [3.90,17.23] [11.51,33.76]

[4] 4	lags 59.99 66.75 43.60 79.98 20.51 5.22 32.41 37.29 7.29 21.25
[53.25,66.00] [60.22,72.56] [36.01,51.36] [72.18,86.39] [13.93,28.34] [1.99,10.09] [26.04,39.20] [29.53,44.75] [3.68,12.94] [13.48,30.63]

[5] 1948-2017 61.66 72.01 53.31 85.20 21.44 2.98 36.88 36.80 7.46 18.81
[56.29,67.03] [67.21,76.62] [46.78,59.21] [79.20,90.07] [14.54,29.61] [1.19, 6.60] [30.74,43.40] [30.54,43.51] [3.92,13.31] [12.01,26.03]

[6] 1960-2007 56.94 67.79 48.22 81.22 23.69 11.53 36.28 37.39 11.20 22.37
[50.22,63.46] [60.98,73.81] [40.67,55.65] [74.33,87.11] [15.10,32.48] [5.03,20.50] [28.74,43.88] [29.88,45.86] [5.71,19.37] [13.64,31.05]

[7] pre-Volcker 62.79 60.25 48.49 72.75 24.92 7.25 36.32 32.97 17.94 29.75
[53.55,70.93] [49.47,69.59] [37.33,58.33] [62.21,81.58] [13.48,37.86] [2.49,15.90] [25.65,47.21] [21.26,45.81] [9.66,29.65] [17.67,44.22]

[8] post-Volcker 51.27 62.59 40.40 82.79 21.88 5.89 19.01 25.19 3.72 17.72
[42.22,59.14] [54.28,69.59] [31.31,49.31] [73.94,89.33] [14.03,31.04] [2.18,11.48] [13.31,26.96] [17.22,33.15] [1.42, 7.89] [9.66,27.00]

[9] Extended 49.51 56.64 42.79 65.72 20.17 3.91 34.47 41.46 10.87 21.42
[43.52,55.92] [50.63,62.73] [35.92,48.65] [58.67,72.73] [13.41,27.74] [1.54, 8.04] [28.44,41.41] [31.04,50.82] [6.03,16.56] [12.92,32.65]

[10] Financial 57.04 63.64 44.94 74.05 23.94 4.92 35.15 35.00 8.54 24.44
[50.63,63.29] [57.22,69.74] [37.75,52.18] [66.67,80.32] [15.73,32.62] [2.40, 9.55] [28.22,41.96] [27.81,42.40] [4.11,14.77] [16.05,33.52]

[11] Chained-type	C&I 59.34 69.12 42.24 86.02 18.43 2.42 31.03 27.74 6.49 22.05
[53.12,64.87] [63.69,74.05] [34.89,49.01] [79.25,90.69] [12.48,25.84] [0.93, 4.86] [25.76,37.27] [21.75,34.11] [3.22,11.60] [15.23,29.99]
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Table 19: The	Inflation	Shock, Variance	Contributions	(6-32	Quarters)

u Y h I C TFP Y /h Wh/Y π R

[1] Benchmark 4.24 7.88 3.32 3.01 15.14 3.55 7.37 1.96 83.03 7.61
[1.62, 8.20] [3.77,12.87] [1.21, 6.92] [1.12, 6.60] [10.00,21.93] [1.75, 7.08] [4.11,12.31] [0.66, 4.60] [76.11,88.46] [3.36,14.61]

[2] VECM(1) 11.81 14.22 11.98 9.92 21.13 12.05 17.10 6.59 86.63 18.65
[5.47,19.24] [7.93,22.41] [5.34,19.78] [4.24,16.89] [12.53,30.13] [6.91,18.10] [9.85,24.32] [2.74,12.27] [80.27,91.16] [10.45,27.75]

[3] VECM(2) 4.03 2.00 4.46 3.11 1.84 11.15 3.37 4.22 85.90 5.17
[1.31, 8.55] [0.64, 5.43] [1.77, 8.71] [1.05, 7.13] [0.47, 5.11] [6.55,16.98] [1.34, 7.04] [2.01, 7.65] [78.72,91.04] [2.38, 9.46]

[4] 4	lags 5.08 9.21 3.87 3.49 15.77 3.70 9.85 2.30 82.22 6.89
[2.14, 9.53] [4.82,15.07] [1.49, 8.12] [1.18, 7.46] [10.29,22.23] [1.89, 6.83] [5.48,15.73] [0.81, 5.66] [76.14,87.42] [2.84,13.13]

[5] 1948-2017 2.71 2.53 4.60 5.90 12.50 7.25 6.62 2.03 86.62 6.52
[0.95, 5.85] [0.88, 5.31] [2.00, 7.99] [3.24, 9.79] [7.19,19.13] [3.47,12.15] [3.57,10.92] [0.65, 4.87] [81.29,90.86] [2.54,12.23]

[6] 1960-2007 8.86 8.93 10.01 5.84 19.06 3.47 10.74 4.70 80.78 11.71
[4.33,15.49] [4.25,16.27] [4.63,17.43] [2.52,11.75] [12.21,27.47] [1.68, 7.16] [5.63,17.61] [1.95, 9.68] [73.48,86.89] [5.21,20.70]

[7] pre-Volcker 10.46 14.57 6.81 11.29 21.23 12.30 17.25 8.99 66.39 9.26
[3.59,22.60] [6.74,27.14] [2.18,17.67] [4.00,22.56] [12.76,32.51] [5.03,24.28] [9.03,28.81] [3.32,20.32] [55.30,77.59] [3.22,23.14]

[8] post-Volcker 6.76 9.02 7.02 5.40 14.74 2.34 7.96 2.51 87.67 22.97
[2.78,13.21] [4.46,16.22] [2.70,13.10] [2.18,10.68] [8.25,23.75] [0.85, 6.05] [3.50,14.84] [0.95, 5.88] [81.23,92.33] [12.99,33.79]

[9] Extended 8.24 9.45 7.13 5.22 14.13 5.30 11.37 3.68 75.28 13.59
[3.68,14.72] [4.90,15.69] [3.06,13.46] [1.95,10.61] [8.24,21.01] [2.67, 9.34] [6.50,17.81] [1.43, 8.28] [67.59,81.92] [7.09,22.06]

[10] Financial 4.85 7.93 3.88 3.69 14.06 3.92 7.89 2.07 80.61 8.49
[2.03, 9.37] [3.94,13.34] [1.46, 8.31] [1.32, 7.50] [8.20,20.25] [1.88, 7.15] [4.36,12.52] [0.83, 4.70] [73.22,86.65] [3.55,15.36]

[11] Chained	type	C&I 1.88 4.64 1.54 2.11 6.80 3.23 6.25 1.75 80.18 6.92
[0.57, 5.11] [1.86, 9.17] [0.56, 3.91] [0.68, 4.69] [3.03,11.99] [1.41, 6.36] [2.97,10.39] [0.64, 3.88] [73.40,85.71] [2.40,13.24]
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F.2 Stock	Prices, Relative	Price	of	Investment, and	Utilization

Here, we	describe	additional	properties	of	the	specification	in	row	9	(“Extended”)	of	Tables 7-8 and
16-19. Recall	that	this	specification	contains	three	additional	variables: stock	prices	(SP ); the	relative
price	of	investment	(Pi/Pc); and	capital	utilization	(z). Our	measure	of	stock	prices	is	in	real	terms,
is	the	same	as	that	used	by	Beaudry	and	Portier, and	is	taken	from	Robert	Shiller’s	website	(http:
//www.econ.yale.edu/~shiller/data/ie_data.xls). The	relative	price	of	investment	is	the	ratio
of	the	price	of	Gross	Private	Domestic	Investment	and	Durables	to	the	price	of	Non	Durables	and
Services; its	computation	 is	detailed	 in	Online	Appendix F.5. Finally	 the	capacity	utilization	rate
variable	corresponds	to	the	Capacity	Utilization	in	Manufacturing	(SIC), CUMFNS in	the	Federal	Reserve
Economic	Database.

The	inclusion	of	stock	prices	and	the	relative	price	of	investment	is	motivated	by	works	that	uses
these	variable	in	the	identification	of, respectively	news	shocks	and	investment-specific	technology
shocks. The	inclusion	of	capacity	utilization, on	the	other	hand, helps	shed	light	on	why	labor	pro-
ductivity	moves	with	 the	MBC shock	while	TFP does	not. Last	but	not	 least, the	 inclusion	of	all
three	variables	at	once	helps	illustrate	the	robustness	of	our	main	findings	to	the	addition	of	more
information—a	point	already	made	in	Tables 7-8 and 16-19.

Here, Tables 20-21 and	Figure 14 complete	the	picture	by	reporting	the	contribution	of	the	MBC
shock	to	the	short-run	and	long-run	volatility	of	the	aforementioned	three	variables, as	well	as	the
properties	of	the	shock	that	targets	the	business-cycle	volatility	of	stock	prices.49 The	most	noteworthy
new	findings	are	the	following.

First, the	disconnect	between	the	business	cycle	and	technology	applies	to	both	TFP and	investment-
specific	technology, as	measured	by	the	relative	price	of	investment. For	instance, the	MBC shock
explains	less	than	5%	of	the	volatility	of	either	of	these	variables	at	either	the	business-cycle	or	the
long-run	frequencies.

Second, the	shock	that	targets	Stock	Prices	accounts	for	21	to	24%	of	the	business-cycle	volatility
in	unemployment, output	and	investment, and	15	to	22%	of	the	long-run	volatility	in	TFP,	output	and
investment. In	this	regard, the	fluctuations	in	stock	prices	appear	to	be	disconnected	from	current
technology	and	to	contain	non-trivial	statistical	information	about	both	the	business	cycle	and	the
long-term	prospects	of	 the	economy. The	extent	 to	which	these	patterns	reflect	 the	presence	of	a
news	shock	is	explored	further	in	Appendix B.

Finally, the	shock	that	targets	utilization	at	the	business-cycle	frequencies	is	similar	to	the	MBC
shock	in	terms	of	both	variance	contributions	and	IRFs	(Figure 14). This	helps	understand	why	labor
productivity	increases	in	response	to	the	MBC shock, while	TFP does	not	move.

49The	shocks	that	target	business	cycle	volatility	in	TFP and	the	relative	price	of	investment	lack	novelty	as	they	contribute
negligibly	to	the	volatility	of	the	macroeconomic	quantities.
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Table 20: Extended	VAR,	Business	Cycle	Variance	Contributions

u Y h I C z TFP Y /h

MBC shock 59.33 50.61 45.50 52.91 21.83 51.71 4.81 26.69
[53.73,65.69] [43.05,57.99] [39.71,51.26] [44.97,60.17] [14.87,31.14] [45.55,57.66] [1.95,10.39] [19.36,34.75]

SP shock 24.14 23.05 15.75 21.65 24.63 18.10 4.37 10.81
[18.31,31.23] [16.99,29.55] [10.45,22.24] [15.75,28.29] [18.47,31.05] [12.64,24.36] [2.46, 7.30] [6.55,16.04]

Pi/Pc SP wh/Y π R GDP/h w r

MBC shock 4.42 11.54 27.82 12.12 28.99 10.70 4.48 12.52
[1.69, 9.62] [5.16,22.75] [14.05,44.15] [6.57,19.70] [17.38,42.75] [5.36,19.24] [1.93,10.10] [5.56,21.67]

SP shock 3.39 82.82 11.29 9.27 5.48 12.39 13.19 2.40
[1.32, 7.33] [76.59,87.93] [6.25,17.22] [4.28,14.73] [2.40,10.26] [7.59,18.64] [7.93,19.43] [0.87, 5.04]

Note: The	rows	correspond	to	the	shocks	targeting	business-cycle	variation	in	unemployment	(MBC shock)	and	Stock
Prices	(SP shock), respectively. The	columns	correspond	to	the	13	variables	in	the	VAR.	These	are	the	10	variables	from
our	baseline	specification, and	also	capacity	utilization z, the	Relative	Price	of	Investment Pi/Pc and	stock	prices SP .

Table 21: Extended	VAR,	Long-Run	Variance	Contributions	(80-∞ Quarters)

u Y h I C z TFP Y /h

MBC shock 9.49 4.52 3.96 4.58 4.43 6.36 4.39 4.59
[3.03,24.04] [0.45,17.60] [1.11,11.23] [0.78,18.25] [0.40,16.92] [2.19,15.41] [0.59,17.66] [0.52,17.40]

SP shock 30.39 14.55 8.95 14.85 14.76 17.35 21.67 21.88
[14.89,47.64] [2.96,38.30] [2.29,25.66] [3.49,38.37] [2.87,38.64] [7.85,32.71] [5.53,43.52] [5.59,44.09]

Pi/Pc SP wh/Y π R GDP/h w r

u 4.60 5.23 4.36 7.03 11.23 4.55 4.58 8.19
[0.59,17.02] [1.13,16.97] [0.79,14.99] [2.20,16.45] [2.88,24.32] [0.50,17.35] [0.50,17.62] [2.05,19.88]

SP 26.99 34.63 24.51 9.16 12.68 20.31 20.96 18.88
[8.96,46.73] [16.95,52.70] [9.89,42.83] [3.08,21.50] [3.21,32.22] [4.72,42.71] [5.00,43.46] [6.11,37.94]

Note: The	rows	correspond	to	the	shocks	targeting	business-cycle	frequencies	variation	in	unemployment	(MBC shock)
and	Stock	Prices	(SP shock)	respectively. The	columns	correspond	to	the	13	variables	in	the	VAR.	These	are	the	10	variables
from	our	baseline	specification, plus	capacity	utilization	(z), the	Relative	Price	of	Investment	(Pi/Pc)	and	stock	prices	(SP ).
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Figure 14: Extended	VAR,	IRFs
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F.3 Financial	Variables

Here	we	provide	additional	information	on	the	VAR that	adds	the	credit	spread	(CS)	and	appears	as
row	10	(“Financial”)	of	Tables 7-8 and 16-19. We	also	consider	a	more	comprehensive	specification,
called	“Financial-Full,” that	contains	three	additional	financial	variables	at	the	expense	of	a	shorter
sample	period. The	additional	variables	are	the	slope	of	the	term	structure	(TS), the	level	of	credit	to
non-financial	firms	(Cr), and	the	net	worth	of	such	firms (WS).

Our	measurement	of	all	 these	variables	 follows Christiano, Motto, and	Rostagno (2014). The
credit	spread	(CS)	is	the	difference	between	the	interest	rate	on	BAA-rated	corporate	bonds	and	the
10	year	US government	bond	rate. The	slope	of	the	term	structure	(TS)	is	the	difference	between
the	10-year	constant	maturity	US government	bond	yield	and	the	Federal	Funds	rate. The	level	of
credit	(Cr)	is	taken	from	the	Flow	of	Funds	of	the	US Federal	Reserve	Board. Finally, net	worth	(WS)
is	measured	by	the	Dow	Jones	Wilshire	5000	index.50 Because	this	index	only	starts	in	1971	and
the	measure	of	credit	is	only	available	until	2014, the	VAR that	contains	all	four	financial	variables
(“Financial-Full”)	is	estimated	for	the	period	running	from	1971Q1	to	2014Q4. By	contrast, the	VAR
that	contains	only	the	credit	spread	(“Financial”, or	row	10	of	the	aforementioned	tables)	spans	the
entire	1955Q1-2017Q4	period.

For	 the	purposes	of	 the	model	evaluation	done	 in	Section 6, we	have	also	considered	a	 third
specification, which	is	obtained	by	restricting	the	second	specification	to	1985Q1-2010Q4. This	is
the	period	used	in	the	original	estimation	of	the	model	in Christiano, Motto, and	Rostagno (2014).
We	refer	to	this	specification	as	“Financial-CMR.”

Figure 15 reports	the	IRFs	of	the	various	facets	of	the	MBC shock	obtained	from	these	three	specifi-
cations. Although	there	are	some	differences,51 the	main	picture	remains	the	same: the	reduced-form
shocks	obtained	by	targeting	unemployment, hours, output, investment	and	consumption	are	highly
interchangeable.

Perhaps	more	interestingly, we	can	now	detect	the	empirical	footprint	of	the	MBC shock	on	the
new, financial	variables. In	particular, we	see	that	the	credit	spread	spikes	on	impact, while	output
and	the	other	key	macroeconomic	quantities	respond	with	a	delay, in	a	hump-shaped	manner. From
this	perspective, the	credit	spread	leads	the	business	cycle. As	discussed	in	Section 6, this	property,
which	is	presumably	informative	about	the	real-financial	nexus, is	unfortunately	not	captured	by	the
model	of Christiano, Motto, and	Rostagno (2014).52

50Note	that	the	measure	of	net	worth	is	a	stock-market	valuation, which	differs	from	that	used	in	the	previous	subsection
(SP500)	because	the	present	specification	aims	at	replicating	the	data	used	in	CMR,	while	the	previous	one	followed	Beaudry
and	Portier. In	any	case, it	makes	little	difference	which	one	of	these	two	measures	is	used	as	their	business-cycle	behavior
is	nearly	identical.

51Most	notably, consumption	appears	to	more	closely	connected	to	the	MBC shock	in	the	third	specification.
52Although	we	have	omitted	it	here, we	have	also	looked	at	the	shock	that	targets	the	credit	spread	itself. This	shock	is	sim-

ilar	to	the	MBC shock	in	terms	of	IRFs	(comovements), although	less	so	with	regard	to	variance	contributions. Importantly,
this	shock, too, gives	rise	to	pattern	mentioned	above, with	the	credit	spread	itself	moving	before	the	key	macroeconomic
quantities.
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Figure 15: Comparing	Business-Cycle	Factors
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Table 22: Financial	VARs, Short-Run	Contributions	of	MBC Shock

u Y h I C π CS Cr

Financial 68.57 57.56 46.84 59.95 25.94 8.42 41.56
[62.38,74.87] [49.74,64.87] [39.39,54.03] [52.26,66.82] [17.80,34.98] [	3.77,14.98] [30.02,54.08]

Financial-Full 60.47 51.65 53.32 54.63 33.84 13.29 49.68 39.69
[54.39,67.41] [43.81,59.37] [45.45,61.18] [47.11,62.53] [22.66,46.48] [	6.12,24.44] [29.51,62.90] [28.46,51.23]

Financial-CMR 64.76 53.26 59.60 55.90 35.93 15.83 56.05 46.16
[56.31,73.66] [40.61,64.00] [48.45,69.36] [45.01,66.30] [21.80,51.92] [	6.79,30.26] [36.50,70.72] [29.83,61.78]

Note: The	rows	correspond	to	the	shocks	targeting	business-cycle	frequencies	variation	in	unemployment	(MBC shock)	for	the	various	financial
VARs	described	in	the	text. CS denotes	the	Credit	Spread, Cr the	measure	of	credit.
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F.4 Description	of	VECMs

We	now	fill	in	the	details	of	the	VECMs	reported	in	rows	3	and	4	of	Tables 7-8 and 16-19. Both	of
these	VECMs	are	nested	in	the	following	form:

∆Xt = Γ0ΘXt−1 +

p∑
i=1

Γi∆Xt−i + νt

where Θ is	 the	matrix	of	co-integration	coefficients	and Γ0 is	 the	matrix	of	 loadings	of	 these	co-
integration	relationships. The	difference	between	the	two	VECMs	is	the	specification	of	the	number
of	unit	roots	and	the	co-integration	relations.

In	VECM1, we	assume	that	the	real	quantities (Y,C, I, APL) and TFP share	a	single	stochastic
trend, while	the	remaining	variables	are	assumed	to	be	stationary. The	co-integrating	relationship	is
of	the	type xt = αx + βxTFPt for	each	variable x ∈ {Y,C, I, APL}.

In	VECM2, the	real	quantities (Y,C, I, APL) and TFP share	one	stochastic	trend; the	nominal
variables, π and R, share	another	stochastic	trend; and	the	remaining	variables	(the	unemployment,
hours, and	 the	 labor	 share)	 are	 stationary. The	 co-integration	 relationships	 are	 of	 the	 type xt =

αx + βxTFPt for x ∈ {Y,C, I, APL} and Rt = δ + γπt.
We	have	also	considered	a	third	specification	that	allows	the	number	of	stochastic	trends	and

the	co-integration	relationships	to	be	determined	completely	a-theoretically, by	means	of	the	stan-
dard	maximum	eigenvalue	and	trace	tests	proposed	by Johansen	and	Juselius (1990). Relative	to	the
aforementioned	 two	specifciations, this	 “unrestricted”	VECM marginally	 reinforces	 the	disconnect
between	the	short	run	and	the	long	run;53 but	it	also	produces	six	(!) unit	roots, which	makes	little
sense	from	the	perspective	of	theory.

F.5 Measuring	the	Relative	Price	of	Investment

We	now	describe	the	measure	of	the	relative	price	of	investment	that	is	used	in	one	of	our	robustness
exercises, the	one	appearing	as	row	9	(“Extended”)	of	Tables 7-8 and 16-19.

Let P x
t denote	the	chained	price	index	of	aggregate x at	time	t, and	similarlyQx

t the	quantity	of	ag-
gregate x at	time	t, where x can	denote	either	gross	domestic	private	investment	(GPDI),	durable	con-
sumption	(D),	non	durable	consumption	(ND) or	services	(S).	The	change	in	investment	(I=GPDI+D)
price, is	then	given	by

∆P i
t =

√
∆P i

t(Q
i
t−1)∆P

i
t(Q

i
t)− 1

where

∆P i
t(Q

i
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P
gpdi
t Q

gpdi
t−1 + P d

t Q
d
t−1

P
gpdi
t−1 Q

gpdi
t−1 + P d

t−1Q
d
t−1
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t(Q

i
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t Q
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t Q
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t

P
gpdi
t−1 Q

gpdi
t + P d

t−1Q
d
t

Similarly, we	define	the	change	in	the	consumption	(C=ND+S) price	as

∆P c
t =

√
∆P c

t (Q
c
t−1)∆P

c
t (Q

c
t )− 1

53In	particular, the	unemployment	shock	accounts	10%	of	the	long-run	volatility	in	output	and	TFP,	compared	to	14%	in
VECM1 or V ECM2.
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where
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Let	us	denote	by Qt the	relative	price	of	investment	as Qt = P i
t/P

c
t , then Qt satisfied

Qt = (1 +∆P i
t −∆P c

t )Qt−1
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G Robustness	of	Model	Evaluations

This	Appendix	assesses	the	robustness	of	the	lessons	drawn	in	Section 6 regarding	the	evaluation	of
the	JPT and	ACD models	under	the	lenses	of	our	method.

G.1 Running	the	Same	VAR on	Data	and	Models

In	the	main	text, we	evaluated	the	ability	of	JPT and	ACD to	account	for	the	MBC shock	in	the	data
using	the	theoretical, asymptotic	properties	of	the	two	models. We	now	explore	the	robustness	of
our	findings	to	a	Monte	Carlo	exercise	that	runs	the	same, small-size	VAR on	artificial	data	from	each
model	and	on	the	actual	US data.

Because	both	models	have	a	stochastic	dimension	smaller	than	that	of	our	benchmark	VAR,	first
rerun	our	empirical	 specification	on	a	 restricted	VAR featuring	Output, Consumption, Investment,
Hours	worked, Fernald’s	measure	of	Total	Factor	Productivity	(corrected	for	utilization), the	nominal
interest	rate	and	the	inflation	rate. As	can	be	seen	in	the	first	row	of	Figure 16, this	smaller	VAR gives
rise	to	the	same	picture	as	our	baseline	VAR:	the	shocks	that	target	output, hours, investment	and
consumption	are	essentially	indistinguishable	from	one	another.

Because	the	smaller	VAR run	here	has	exactly	the	same	stochastic	dimension	as	the	JPT model,
it	can	be	readily	run	on	artificial	data	generated	by	that	model. By	contrast, the	ACD model	has	one
dimension	less: being	a	flexible-price, no-monetary	model, it	is	makes	no	prediction	about	inflation
(and	nominal	variables). To	be	able	run	the	same	VAR on	artificial	date	from	that	model, we	augment
it	with	the	simplest	model	of	inflation	we	could	think	of: an	exogenous	AR(1)	process.54 Clearly, this
add-on	has	no	effect	on	the	model’s	predictions	regarding	any	of	the	real	variables. It	only	permits	us
to	run	the	same	VAR on	the	two	models	under	consideration.

Each	model	is	then	simulated	1000	times	to	generate	artificial	time	series	for	the	aforementioned
set	of	variables. Each	artificial	 time	 series	has	 the	 same	 length	as	 in	 the	data	 (192	quarters	 from
1960Q1	to	2007Q4). Note	that, in	order	to	avoid	any	dependence	on	initial	conditions, we	actually
simulated	292	observations	and	discarded	the	first	100. Then, for	each	set	of	simulated	data, we
estimated	the	same	VAR as	in	actual	data	and	applied	our	methodology	to	extract	the	various	VAR-
based	shocks, or	“factors,” and	build	their	IRFs. The	second	and	the	third	row	of	Figure 16 show
the	median	of	 the	so-obtained	distribution	of	 IRFs	for	the	JPT and	ACD models, respectively. The
comparison	of	these	rows	to	one	another	and	with	the	first	row	(the	data)	corroborates	the	lesson
obtained	in	the	main	text	on	the	basis	of	the	theoretical	state-space	representation	of	the	two	models:
the	factors	in	JPT are	less	interchangeable	than	their	counterparts	either	in	ACD or	the	data.

54We	estimated	this	process	using	inflation	data	alone. This	gave	an	estimate	of	0.89	for	the	persistence	parameter	and
0.27%	for	the	standard	deviation	of	the	innovation. All	the	other	(real)	parameters	of	the	model	were	fixed	at	their	values
in	the	original	article. Finally, the	nominal	interest	rate	was	obtained	directly	from	the	Fisher	equation, using	the	AR(1)
process	for	inflation	and	the	model’s	prediction	about	the	real	rate.
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Figure 16: The	MBC Shock

(a)	Data	(1960-2007)
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Y shock; I shock; h shock; C shock; Shaded	area: 68%	HPDI.

Table 23: Interchangeability	of	Factors	(Simulated	VARs)

Y C I h Average

Data 0.47 0.52 1.28 0.28 0.64
JPT 0.80 0.90 2.58 0.42 1.17
ACD 0.45 0.50 1.41 0.25 0.65

Note: This	table	reports	the	distance	of	factors, mea-
sured	in	the	way	described	in	the	main	text. A num-
ber	closer	to	zero	indicates	a	larger	degree	of	inter-
changeability.
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G.2 Re-estimating	JPT/ACD

We	now	turn	to	the	remaining	two	robustness	exercises	mentioned	in	Section 6.
First, in	order	to	offer	a	proper	comparison	between	JPT and	ACD,	we	re-estimated	the	JPT model

the	same	frequency-domain	Bayesian	technique	used	to	estimate	ACD.	More	precisely, the	model	is
estimated	over	the	business-cycle	band	of	frequencies	(6-32	quarters), using	the	levels	of	all	variables,
and	using	the	1960-2007	data. This	set	of	results	is	labeled JPT -	Freq. Domain in	the	tables	and	figures
that	follow.

Second, we	re-estimated	both	models	using	a	minimum-distance	estimation	technique, with	the
parameters	selected	in	order	to	minimize	the	distance	between	IRFs	of	output, consumption, invest-
ment	and	hours	worked	to	the	output, consumption, investment	and	hours	worked	factors	over	the

horizon	of	20	quarters	(a	set	of	320	moments). Denoting	by IRF i
j,h (resp. ĨRF

i

j,h(Θ))	the	response
of	variable j to	factor i at	horizon h found	in	the	data	(resp. in	the	model)	and σij,h the	variance	of
IRF i

j,h, the	vector	of	structural	parameters Θ is	found	by	solving	the	problem

min
Θ

4∑
i=1

4∑
j=1

20∑
h=1

(ĨRF
i

j,h(Θ)− IRF i
j,h)

2

σij,h

Given	our	focus	on	the	real	IRFs, the	parameters	pertaining	to	the	nominal	part	of	JPT (Calvo	prob-
abilities, indexation	parameters, parameters	of	nominal	shocks)	are	not	identified. We	therefore	set
the	values	of	these	parameters	to	those	estimated	by	JPT and	re-estimated	the	parameters	pertaining
to	the	real	side	of	 the	model	 (preferences, technology, adjustment	costs, parameters	of	real	shock
processes). The	relevant	set	of	results	is	labeled JPT -	Matching	Factors and ACD -	Matching	Factors.

Figure 17 and	Table 24, which	extend	Figure 7 and	Table 9 from	the	main	text, provide	a	compre-
hensive	comparison	of	the	dynamic	properties	of	the	two	models	under	alternative	specifications. The
main	findings	are	as	follows. Re-estimating	the	JPT model	in	the	frequency	domain	has	a	significant
but	still	quite	insufficient	impact	on	the	model’s	ability	to	reproduce	the	interchangeability	of	factors
in	the	data. Re-estimating	it	by	targeting	the	factors	helps	the	model	even	more, but	it	still	falls	short
of	that	in	the	data. Re-estimating	the	ACD by	targeting	the	factors	does	not	upset	its	already	good
performance, but	it	overshoots	in	the	direction	of	producing	too	much	interchangeability. All	in	all,
the	metric	of	how	different	the	factors	are	is	systematically	greater	for	JPT than	ACD,	irrespective	of
the	estimation	method.
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Figure 17: Comparing	Business-Cycle	Factors

(a)	Data	(1960-2007)
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(b)	JPT -	Original
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(c)	JPT -	Frequency	Domain
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(e)	JPT -	Matching	Factors
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(f)	ACD -	Matching	Factors
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Table 24: Interchangeability	of	Factors

Y C I h Average

Data	(1960-2007) 0.47 0.52 1.28 0.28 0.64
JPT -	Original 2.90 2.21 6.29 1.35 3.19
JPT -	Freq. Domain 1.41 1.42 3.24 0.42 1.62
ACD 0.64 0.56 1.56 0.22 0.75
JPT -	Matching	Factors 0.56 0.51 2.26 0.27 0.90
ACD -	Matching	Factors 0.26 0.36 0.49 0.26 0.34

Note: The	metric	is	the	same	as	that	in	Table 9. A smaller	number	indicates
greater	interchangeability.
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H Pushing	the	AD-AS Example

In	this	appendix	we	conduct	two	“pedagogical”	exercises	motivated	by	the	AD-AS example	men-
tioned	in	Section 5.2. In	the	first, which	is	semi-structural	in	nature, we	show	that	the	narrative	of
offsetting	demand	and	supply	shocks	does	not	work	insofar	as	the	supply	shock	is	proxied	by	the	pro-
ductivity	shock	identified	via	our	method. In	the	second	exercise, which	is	fully	structural, we	show
that	 this	story	 is	also	 inconsistent	with	a	 textbook	New	Keynesian	model	calibrate	 to	 the	relevant
elements	of	our	anatomy.

H.1 Proxying	the	AS shock	with	the	TFP shock

Our	first, semi-structural	exercise	is	based	on	the	following	simple	idea. If	the	MBC shock	is	a	mixture
of	an	inflationary	demand	shock	and	a	disinflationary	supply	shock, and	if	the	supply	shock	reflects
movements	in	productivity, then	the	documented	disconnect	between	the	MBC shock	and	inflation
should	be	weakened, and	the	role	of	the	demand	shock	be	revealed, if	we	control	for	the	effect	of
productivity. This	in	turn	can	be	done	by	purging	from	the	data	the	reduced-form	shock	that	targets
TFP over	the	business-cycle	frequencies.55 We	thus	repeat	our	identification	of	the	shocks	that	target
unemployment, GDP,	and	inflation	after	this	purging	and	ask	whether	this	reduces	the	disconnect
between	the	MBC shock	and	inflation.

As	evident	in	Table 25 and	Figure 18, the	answer	is	clearly	negative. Whether	we	look	at	original
reduced-form	shocks	or	the	ones	obtained	after	purging	the	effects	of	productivity, the	aforementioned
disconnect	and	indeed	the	shocks	themselves	remain	almost	unchanged.

Table 25: Variance	Contributions

u Y π

Unemployment	Shock
Baseline 73.71 58.51 6.96
Purged 70.98 61.10 8.05
Output	Shock
Baseline 56.24 80.13 10.47
Purged 57.48 78.29 9.55
Inflation	Shock
Baseline 4.24 7.88 83.03
Purged 3.78 6.04 79.97

68%	HPDI into	brackets

55We	have	obtained	almost	identical	results	with	a	variant	specification	that	proxies	the	supply	shock	with	the	technology
shock	identified	as	in Galí (1999), as	well	as	with	one	that	purges	both	the	short-run	and	the	long-run	TFP shocks	identified
via	our	method. These	alternatives, however, seem	less	appropriate	 for	 the	present	purposes, because	 they	amount	 to
purging	also	 the	effects	of	news	about	 future	productivity, which	 in	standard	models	maps	do	a	demand	rather	 than	a
supply	shock.
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Figure 18: Impulse	Response	Functions

(a)	Unemployment	Shock
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(b)	Output	Shock
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(c)	Inflation	Shock
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Baseline	Model, Purged	for	TFP,	Shaded	area: 68%	HPDI.
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H.2 A 2x2	New	Keynesian	model

We	now	turn	to	second, fully-structural	exercise: we	employ	a	two-shock, two-variable	version	of	the
New	Keynesian	model	and	ask	what	it	takes	for	this	model	to	account	for	the	relevant	elements	our
anatomy.

In	particular, we	estimate	both	 the	 shock	processes	 and	 the	main	parameters	of	 the	model—
those	that	govern	the	slopes	of	the	AS and	AD curves	and	the	sluggishness	of	the	inflation	and	output
dynamics—by	minimizing	the	distance	between	four	empirical	IRFs	and	their	theoretical	counterparts.
These	are	the	IRFs	of	output	and	inflation	to	the	output	shock	and	to	the	inflation	shock, as	identified
by	our	method. We	focus	on	these	objects	because	the	simple, textbook-style	model	considered	here
is	meant	to	speak	to	the	only	dynamics	of	output	and	inflation.56

We	 then	use	 the	estimated	model	 to	answer	 two	questions. First, what	parameter	values	 (for
instance, the	slope	of	the	Phillips	curve)	does	the	model	need	in	order	to	achieve	maximum	fit	vis-
a-vis	our	facts? And	second, does	the	MBC shock	identified	via	our	method	correspond	to	a	single
structural	shock	in	the	model	or	to	a	mixture	of	structural	shocks, as	suggested	by	the	AD-AS example
used	in	Section 5.2?

Like	the	textbook	version	of	the	New	Keynesian	model, the	version	considered	here	reduces	to
two	equations	in	the (y, π) space, one	representing	aggregate	demand	(AD) and	the	other	representing
aggregate	supply	(AS).	At	the	same	time, our	version	mimics	richer	DSGE versions	by	allowing	for	a
flat	Philips	curve, habit	persistence	and	price	indexation. These	enhancements	may	lack	empirical
micro-foundations	but	are	customarily	used	in	the	literature	in	order	to	improve	the	model’s	empirical
performance.

Let	us	start	with	the	textbook	version	of	the	New	Keynesian	model, which	can	be	expressed	by
the	following	equations:

yt = −σ (Rt − Et[πt+1]) + Et[yt+1] + σ ξt (4)

πt = λmct + β Et[πt+1] + λµt (5)

mct = κ yt − 1+ν
α at + ςt (6)

Rt = φπt + ψyt +mt (7)

The	 interpretation	 is	 familiar: (4)	 is	 the	Dynamic	 IS curve, (5)	 is	 the	NKPC,	 (6)	describes	 the	 real
marginal	cost	as	a	function	of	output	and	productivity, and	(7)	specifies	monetary	policy. The	notation
is	also	standard: yt is	output, πt is	inflation,mct is	the	real	marginal	cost,Rt is	the	nominal	interest	rate,
Et is	the	rational	expectations	operator, at is	the	productivity	shock, ξt is	the	discount-rate	shock, µt
is	the	markup	shock, ςt is	the	cost-push	shock,mt is	the	monetary-policy	shock, σ > 0 is	the	elasticity
of	intertemporal	substitution, β ∈ (0, 1) is	the	steady-state	discount	factor, λ ≡ (1−θ)(1−βθ)

θ is	the	slope
of	the	NKPC with	respect	to	the	real	marginal	cost	(and	to	the	markup	shock, too), θ is	the	Calvo
parameter	(the	probability	of	a	firm’s	not	being	able	to	reset	its	price), κ ≡ 1+ν

α + 1−σ
σ > 0 is	the

slope	of	the	real	marginal	cost	with	respect	to	output, ν ≥ 0 is	the	Frisch	elasticity	of	labor	supply,
α ∈ (0, 1] is	the	short-run	elasticity	of	output	with	respect	to	labor, and φ > 1 and ψ ≥ 0 parameterize
the	responsiveness	of	monetary	policy	to, respectively, inflation	and	output.

56The	empirical	IRFs	are	obtained	from	our	VAR by	targeting	the	inflation	rate	or	output	(see	Figure 2 for	example). The
theoretical	IRFs	are	constructed	in	an	analogous	manner, treating	the	model	as	the	DGP.
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To	simplify	 the	exposition	of	 the	AD and	AS curves	below, we	set ψ = 0.57 For	 the	reported
experiments, we	also	interpret	a	period	as	a	quarter	and	set β = .99, φ = 2, α = 1, and ν = 0.58

More	crucially, the	parameters λ and σ, which	govern	the	slopes	of	the	two	curves, and	two	additional
parameters, which	are	introduced	momentarily	and	which	govern	the	endogenous	persistence	in	the
model, are	left	free	to	be	estimated	in	one	of	the	experiments.

Substituting	(7)	in	(4)	and	(6)	in	(5), we	can	reduce	the	model	to	the	following	two	equations	in
output	and	inflation	alone:

yt = −σφπt + σEt[πt+1] + Et[yt+1] + udt (8)

πt = λκyt + βEt[πt+1]− ust (9)

where udt ≡ σξt − σmt and ust ≡ λκat − λκςt − λµt. Condition	(8)	represents	aggregate	demand, AD,
(9)	represents	aggregate	supply, AS.	Accordingly, udt and u

s
t are	the	(composite)	demand	and	supply

shocks. We	assume	that	these	shocks	follow	independent AR(1) process	and	let (σd, σs) denote	their
standard	deviations	and (ρd, ρs) their	autocorrelations.

This	completes	the	description	of	the	baseline	version	of	the	New	Keynesian	model, which	is	the
building	block	for	the	enhanced, DSGE-like	variant	used	here. This	variant	is	obtained	by	including
habit	persistence	in	the	Dynamic	IS curve	and	by	replacing	the	standard	NKPC with	the	hybrid	one.
The	modified	equations	are	given	by

yt = −σ 1−h
1+h(φπt − Etπt+1) +

1
1+hEtyt+1 +

h
1+hyt−1 + udt

πt = λ
(
κyt +

h
σ(1−h) (yt − yt−1)

)
+ βθ

θ+ω(1−θ(1−β))Etπt+1 +
ω

θ+ω(1−θ(1−β))πt−1 − ust

for	some h ∈ [0, 1) and ω ∈ [0, 1). These	capture	the	inertia	added	to	the	aggregate	demand	and
aggregate	supply	equations, respectively.59 Finally, λ is	allowed	to	take	low	enough	values	so	as	to
accommodate	a	relatively	weak	positive	co-movement	between	inflation	and	output	in	response	to
demand	shocks.

Let Θ ≡ (σd, σs, ρd, ρs;λ, σ, h, ω) collect	the	parameters	that	regulate	the	shock	processes	and	the
internal	propagation, namely	the	slopes	of	the	AS and	AD curves	and	the	corresponding	sources	of
sluggishness. We	estimate Θ by	minimizing	the	distance	between	the	IRFs	of	output	and	inflation	to
the	output	and	inflation	shocks	identified	in	the	data	via	our	method	and	the	corresponding	objects
in	the	model.

Table 26 reports	the	estimated	parameter	values. Table 27 reports	the	variance	contributions	of
the	model’s	two	structural	shocks. The	most	notable	features	are	that λ is	nearly	zero, that	the	output

57Since	the	experiments	conducted	here	do	not	utilize	data	on	the	interest	rate, the	effect	of	a	positive ψ on	the	dynamics
of	output	and	inflation	can	be	proxied	by	appropriately	adjusted	values	for	other	model	parameters. Accordingly, we	have
verified	that	our	findings	about	the	model’s	performance	remain	essentially	unchanged	if	we	let, for	example, ψ = 0.5.

58The	values	of β and φ are	standard, while	those	for α and ν help	reduce	the	sensitivity	of	the	real	marginal	cost	to
output	(intuitively, a	high	value	for α mimics	variable	utilization	and	a	low	value	for ν mimics	real	wage	rigidity), which	in
turn	helps	improve	the	empirical	performance	of	the	model	(and	makes	our	own	job	harder)

59The	standard	interpretation	of h is	as	the	degree	of	habit	persistence	in	consumption. But	as	there	is	no	capital	in	the
model, h represents	all	the	adjustment	frictions	in	aggregate	demand. One	the	other	hand, ω corresponds	to	the	fraction	of
irrational, backward-looking	firms	in Galí	and	Gertler (1999), or	the	degree	of	automatic	past-price	indexation	in Christiano,
Eichenbaum, and	Evans (2005). These	model	enhancements	lack	solid	empirical	micro-foundations	but	are	customarily
used	in	the	DSGE literature.
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fluctuations	are	dominated	by	a	non-inflationary	demand	shock, and	that	the	inflation	fluctuations
are	dominated	by	a	disinflationary	supply	shock. That	is, confronted	with	the	relevant	elements	of
our	anatomy, the	model	demands	a	very	flat	AS (or	Philips)	curve	and	specialized	structural	shocks,
a	picture	consistent	with	that	painted	in	Section 3.60

Table 26: Parameters

σs σd ρs ρd h ω λ σ

0.0789 0.0316 0.7016 0.9540 0.1979 0.0000 0.0004 0.2764

Table 27: Variance	Contributions

Output Inflation

Supply	Shock 7.62 98.90
Demand	Shock 92.38 1.10

The	purpose	of	this—pedagogical—exercise	was	to	illustrate	how	the	combination	of	our	anatomy
with	a	model	can	help	discipline	the	AD-AS narrative	offered	in	Section. The	same	strategy	is	applied
to, and	works	well	for, the	three	state-of-the-art	DSGE models	considered	in	Section 6. Naturally,
while	all	of	these	exercises	support	the	interpretation	of	the	empirical	MBC shock	as	a	non-inflationary
demand	shock, they	cannot	establish	its	universality.

60Another	interesting	finding, which	is	though	not	particular	relevant	for	the	present	purposes, is	that	the	estimation	of
the	model	based	on	our	anatomy	yields ω = 0, that	is, no	past-price	indexation	or	backward-looking	element	in	the	Philips
curve. This	appears	 to	be	driven	by	the	absence	of	sluggishness	 in	 the	response	of	 inflation	to	 the	inflation	shock	and
suggests	that	the	“right”	model	is	one	that	somehow	allows	for	such	sluggishness	in	the	response	of	inflation	to	the	main
driver	of	the	real	quantities	without	however	introducing	such	sluggishness	in	the	overall	inflation	dynamics.
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