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Abstract

Reflexivity is the idea that investors’biased beliefs affect market outcomes, and that

market outcomes in turn affect investors’beliefs. We develop a behavioral model of the

credit cycle featuring such a two-way feedback loop. In our model, investors form beliefs

about firms’creditworthiness, in part, by extrapolating past default rates. Investor beliefs

influence firms’actual creditworthiness because firms that can refinance maturing debt on

favorable terms are less likely to default in the short-run– even if fundamentals do not

justify investors’generosity. Our model is able to match many features of credit booms

and busts, including the imperfect synchronization of credit cycles with the real economy,

the negative relationship between past credit growth and the future return on risky bonds,

and “calm before the storm”periods in which firm fundamentals have deteriorated but the

credit market has not yet turned.

∗A previous version of this paper circulated under the title “A Model of Credit Market Sentiment.” We
are grateful to Nicholas Barberis, Jonathan Ingersoll, Gordon Liao, Yueran Ma, Andrei Shleifer, Jeremy Stein,
Lawrence Summers, Adi Sunderam, Yao Zeng, and seminar participants at Brandeis University, Columbia Uni-
versity, the Federal Reserve Bank of San Francisco, the London School of Economics, London Business School,
Oxford University, the University of Massachusetts Amherst, the University of Michigan, the University of North
Carolina at Chapel Hill, the University of Washington, the American Economic Association Annual Meetings, the
FIRN Annual Asset Pricing Workshop, and the LA Finance Day Conference for their helpful comments. Green-
wood and Hanson gratefully acknowledge funding from the Division of Research at Harvard Business School.
Outside activities and other relevant disclosures are provided on the authors’websites at their host institutions.



1 Introduction

Current views about financing reflect the opinions bankers ... hold about the uncertain-

ties they must face. These current views reflect ... the recent past ... A history of success

will tend to diminish the margin of safety ... bankers require ...; a history of failure will do

the opposite.– Hyman Minsky, Stabilizing an Unstable Economy, 1986.

Over the past decade, researchers in finance and economics have documented a number of

new facts about the credit cycle. High credit growth is associated with both a higher probability

of a future financial crisis and lower GDP growth at a horizon of two years (Schularick and

Taylor [2012], López-Salido, Stein, and Zakrajšek [2017], Mian, Sufi, and Verner [2017]). Other

research has documented predictability of returns in credit markets, suggesting a role for investor

sentiment in driving the credit cycle. Greenwood and Hanson (2013) show that periods of elevated

corporate credit growth and low average issuer quality forecast low returns to credit. In a large

panel of countries, Baron and Xiong (2017) find that high bank credit growth forecasts low

returns to bank stocks.

Another underappreciated feature of the credit cycle is how disconnected it can be from the

stock market or the broader macroeconomy in the short run. In post-war U.S.history, credit

expansions and contractions have often followed a similar pattern. Credit grows slowly as the

economy emerges from a recession, picks up steam, but continues to expand even as the overall

economy cools. For example, in the upswing preceding the 2008 financial crisis, GDP growth

peaked in March 2005, but credit growth peaked two years later in March 2007, a period when

credit spreads were at near historical lows. Put simply, the credit cycle seems to have some life

of its own at short horizons. However, these disconnects pose a challenge for most well-known

models of the credit cycle– e.g., Bernanke and Gertler (1989), Holmström and Tirole (1997),

Bernanke, Gertler, Gilchrist (1999)– and even for more recent behavioral models like Bordalo,

Gennaioli, and Shleifer (2018). Specifically, although credit market frictions amplify business

cycle fluctuations in these models, the business cycle and the credit cycle are essentially one and

the same.

In this paper, we present a new behavioral model of the credit cycle that is consistent with

much of the accumulating evidence on credit cycles, but also speaks to periods of disconnect

between credit markets and the fundamentals of the economy. A key feature of our model is

“reflexivity”, the idea that there is a feedback loop between investors’biased perceptions and

market outcomes. In finance, the idea of reflexivity is most prominently associated with the

investor George Soros, who argued that “distorted views can influence the situation to which they

relate because false views lead to inappropriate actions.”(Financial Times, October 26, 2009).

In credit markets, reflexivity arises because investors who overestimate the creditworthiness of
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a borrower are likely to refinance maturing debt on more favorable terms, thereby making the

borrower less likely to default, at least in the short run.

In our baseline model, a representative firm invests in a sequence of one-period projects. Each

project requires an upfront investment of capital, which the firm finances using short-term debt

that it must refinance each period. Projects generate a random cash flow that varies exogenously

according to the state of the economy. Debt financing is provided by investors whose beliefs are

partly rational and forward-looking, but also partly extrapolative and backward-looking. To the

extent that they are backward-looking, investors extrapolate the firm’s recent repayment history

to infer the probability that the firm will repay its debt in the next period. Following periods of

low defaults, investors believe that debt is safe, and refinance maturing debt on attractive terms.

Because investors hold extrapolative beliefs based on defaults– which are endogenously de-

termined in the model– and not on the exogenously given cash flow fundamentals, this leads

to a dynamic feedback loop between investor beliefs and defaults. The feedback loop arises be-

cause current investor beliefs affect future defaults via the terms on which investors are willing

to refinance debt today.

Figure 1 illustrates this feedback loop. During credit booms, default rates are low, so investors

believe that future default rates will continue to be low. In the near term, these beliefs can be

self-fulfilling: the perception of low future defaults leads to elevated bond prices, which in turn,

makes it easier for firms to refinance their maturing debt. Holding constant firms’cash flows,

cheaper debt financing leads to slower debt accumulation and a near-term decline in future

defaults, which further reinforces investor beliefs. If cash flow fundamentals deteriorate, the

backward-looking nature of investors’beliefs may allow firms to “skate by”for some amount of

time, a phenomenon that we refer to as the “calm before the storm.” Eventually, the reality

of poor cash flow fundamentals catches up with firms, and defaults escalate. As a result, the

disconnect between investors’beliefs and economic fundamentals is often the greatest just before

such an spike in borrower defaults.

Conversely, suppose that the economy has just been through a wave of defaults. Since in-

vestors over-extrapolate these recent outcomes, investors believe that the likelihood of future

defaults is high. Investor beliefs turn out to be partially self-fulfilling in the short run: bearish

credit market sentiment makes it harder for firms to refinance existing debts, leading to an in-

crease in defaults in the short run. In some circumstances, this can lead to “default spirals”in

which a default leads to further investor pessimism and an extended spell of further defaults,

much like what has been observed in instances of sovereign debt restructuring (Das, Papaioannou,

and Trebesch [2012]).

In our model, transitions between credit booms and credit busts are ultimately caused by

changes in cash flow fundamentals. However, because investors extrapolate past defaults and

not cash flows, changes in credit markets are not fully synchronized with changes in fundamental
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cash flows, and can be highly path-dependent. For example, as noted, our model generates

“calm before the storm”periods in which the fundamentals of the economy have turned, but

credit markets are still buoyant. Such episodes are consistent with Krishnamurthy and Muir

(2018), who show that credit spreads are typically “too low” in the years preceding financial

crises. But, because investors are also partially forward-looking in our model, credit spreads will

jump up on the eve of a crisis, just as documented by Krishnamurthy and Muir (2018).

The model is also useful for understanding how credit evolves following an exogenous shock

to investor beliefs. For example, suppose that investors become more optimistic about firms’

creditworthiness. In this case, firms are able to roll over debt at more attractive rates, which in

turn makes default less likely in the near term. For an investor looking back at past defaults,

lending to firms now appears to be even safer, leading investors to become even more optimistic,

further reducing credit spreads. Over time, a shock to beliefs can be self-perpetuating. There is

a limit to this self-perpetuation, however, because ultimately the firm can become over-leveraged

and default. Moreover, although this feedback loop between expectations and outcomes is always

present, there are times when it is stronger. We describe the conditions under which changes

in investors’ expectations have the most powerful impact on market outcomes: these “highly

reflexive”conditions often arise when the firm is near default.

While the credit market investors in our model are not fully rational, their beliefs are often

similar to those of fully rational agents. In part, this is due to reflexivity: when investors believe

that default probabilities are low, these optimistic beliefs cause default probabilities to be low.

Thus, while the investors in our model do make predictable mistakes, those mistakes need not

be large in order to generate rich and realistic credit market dynamics.

The model matches a number of facts that researchers have documented in recent years about

credit cycles. First, rapid credit growth appears to be quite useful for predicting future financial

crises and business cycle downturns (Schularick and Taylor [2012], Mian, Sufi, and Verner [2017],

López-Salido, Stein, and Zakrajšek [2017]), a result that is consistent with our model because

outstanding credit will grow rapidly when sentiment is high but cash flow fundamentals are poor.

Relatedly, economies that have experienced high credit growth are more fragile, in the sense that

they are vulnerable to shocks (Krishnamurthy and Muir [2017]). Second, high credit growth

predicts low future returns on risky bonds in a univariate forecasting regression (Greenwood

and Hanson [2013] and Baron and Xiong [2017]), a result that obtains in our model because

investors do not fully understand that when credit is growing rapidly that they are often quickly

heading towards a credit bust. Furthermore, in a multivariate forecasting specification, low

quality issuance negatively predicts future returns and credit spreads positively predict future

returns (Greenwood and Hanson [2013] and López-Salido, Stein, and Zakrajšek [2017]). In fact,

in our model, credit spreads are typically too low just before the economy experiences a wave of

defaults, consistent with the evidence of Krishnamurthy and Muir (2018) about the behavior of
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credit spreads before financial crises. Third, when credit markets become highly overheated, our

model generates negative conditional expected excess returns on risky bonds. This result, which

is consistent with empirical findings in Greenwood and Hanson (2013) and Baron and Xiong

(2017), is diffi cult to square with rational, risk-based models of credit cycles and is a powerful

motivator for models of the credit cycle, such as ours, which prominently feature biased investor

beliefs.

After developing our baseline model, we briefly consider two extensions. First, we allow firms

to opportunistically issue more debt when investors are underpricing credit risk. This oppor-

tunistic supply response means that credit booms have the potential to sow the seeds of their

own destruction. Specifically, overly optimistic investor beliefs about future defaults can some-

times lead firms to issue more debt– especially since extrapolative investors underreact to the

resulting increase in firm leverage– raising the likelihood of a future credit market bust. Our

second extension features multiple issuing firms who face idiosyncratic cash flow shocks. This

extension addresses a limitation of the baseline model which is that, with a single representa-

tive firm, defaults are necessarily binary events. Allowing for multiple firms naturally yields a

continuous default rate for the economy and leads to more realistic model-implied dynamics.

Our paper has much in common with Austrian theories of the credit cycle, including Mises

(1924) and Hayek (1925), as well as the accounts of booms, panics, and crashes by Minksy

(1986) and Kindleberger (1978). More recently, the idea that investors may neglect tail risk in

credit markets was developed theoretically by Greenwood and Hanson (2013), Gennaioli, Shleifer,

and Vishny (2012, 2015), and Bordalo, Gennaioli, and Shleifer (2018) and has been supported

by numerous accounts of the 2007-2009 financial crisis (Coval, Jurek, and Stafford [2009] and

Gennaioli and Shleifer [2018]). We also draw on growing evidence that investors extrapolate cash

flows, past returns, or past crash occurrences (Barberis, Shleifer, and Vishny [1998], Greenwood

and Shleifer [2014], Barberis, Greenwood, Jin, and Shleifer [2015, 2018], Jin [2015], Greenwood

and Hanson [2015]). Most related here is Jin (2015), who presents a model in which investors’

perceptions of crash risk depend on recent experience.

Bordalo, Gennaioli, and Shleifer (2018) also provide a model of credit cycles in which extrap-

olative investor expectations play an important role and in which bond returns are predictable.

Their model is similar to ours in several respects, but extrapolative expectations in their model

are perfectly tied to cash flow fundamentals, rather than to endogenous credit market outcomes.

Extrapolative expectations amplify exogenous fluctuations in fundamentals, but in their model

the credit cycle and the business cycle are fully synchronized. The fact that investors extrapolate

an endogenous outcome in our model leads to episodes in which the credit market can become

quite disconnected from the economy, acquiring a life of its own in the short run.1

1See also Coval, Pan, and Stafford (2014) who suggest that in derivatives markets, model misspecification only
reveals itself in extreme circumstances, by which time it is too late. Bebchuk and Goldstein (2011) present a
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In Section 2, we summarize a number of stylized facts about the credit cycle, drawing on

the papers cited above but also presenting some novel observations about the synchronicity of

the credit cycle and the business cycle. Section 3 develops the baseline model featuring a single

representative firm, and explain the two-way feedback mechanism that is at the heart of our

model. In Section 4, we then discuss how the model can match a number of features of credit

cycles that researchers have documented in recent years, such as the predictability of returns

and low credit spreads before crises. Section 5 briefly explores two extensions of the baseline

model: one featuring an opportunistic supply response by firms when investors are mispricing

risky bonds and a second featuring multiple heterogeneous firms. Section 6 concludes.

2 Motivating facts about the credit cycle

We begin by summarizing a set of stylized facts about credit cycles. The first four facts are

drawn from previous work; the fifth is based on some new empirical work of our own.

Observation 1. Rapid credit growth predicts financial crises and business cycle downturns.

In a panel of 14 countries dating back to 1870, Schularick and Taylor (2012) show that

periods of rapid credit growth predict financial crises. Schularick and Taylor (2012) interpret

their evidence as suggesting that financial crises are episodes of “credit booms gone bust.”More

recently, Mian, Sufi, and Verner (2017) show that rapid credit growth– and especially growth in

household credit– predicts future declines in GDP growth in an panel of 30 countries from 1960

to 2012. López-Salido, Stein, and Zakrajšek (2017) show that frothy credit market conditions–

proxied using declines in the credit quality of debt issuers and low credit spreads– predict low

GDP growth in U.S. data from 1929 to 2015. López-Salido, Stein, and Zakrajšek (2017) attribute

their findings to predictable reversals in credit market sentiment. Consistent with this view,

using an international panel of 38 countries, Kirti (2018) shows that rapid credit growth that is

accompanied by a deterioration in lending standards– i.e., by declining debt issuer quality– is

associated with low future GDP growth. By contrast, when rapid credit growth is accompanied

by stable lending standards, there is no such decline in future GDP growth.

A corollary of Observation 1– i.e., that credit growth predicts financial crises– is that economies

that have experienced high credit growth are more fragile. Krishnamurthy and Muir (2018) argue

that the natural way to interpret Schularick and Taylor’s (2012) findings about credit growth and

financial crises is that credit growth creates financial fragility. When a more leveraged economy

is exogenously hit by a negative fundamental shock, such as a large decline in house prices, this

results in a financial crisis. And, as one would expect, Krishnamurthy and Muir (2018) find

that credit spreads spike on the eve of a financial crisis. Alternately, crises may be triggered by

model in which self-fulfilling credit market freezes can arise because of interdependence between firms.
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predictable reversals in credit market sentiment as argued by López-Salido, Stein, and Zakrajšek

(2017). Consistent with this view, Krishnamurthy and Muir (2018) show that credit spreads are

typically “too low”in the years preceding financial crises. The model we develop reflects both

of these ideas: as leverage grows, the probability of a default becomes more and more sensitive

to both changes in underlying fundamentals and to changes in biased investor beliefs.

Observation 2. Credit market overheating– signaled either by (i) a rapid growth in debt out-
standing or (ii) by a decline in the credit quality of debt issuers set against the backdrop of

(relatively) low credit spreads– predicts low future returns on risky bonds.

A growing literature has demonstrated that credit market overheating predicts low future

returns on risky bonds. Greenwood and Hanson (2013) find that rapid growth in outstanding

corporate credit is associated with low future returns on risky bonds in U.S. data. Adopting

a similar intuition, Baron and Xiong (2017) show that bank credit expansion also predicts low

bank equity returns– which are naturally tied to the realized returns on risky debt– in a panel

of 20 developed economies from 1920 to 2012.

Greenwood and Hanson (2013) develop an even more statistically powerful measure of credit

market overheating based on the credit quality of corporate debt issuers. Their “high yield share”

measure– the share of all corporate bond issuance in a given year that is from high-yield-rated

firms– captures the intuition that when credit markets are overheated, low quality firms increase

their borrowing to take advantage. Greenwood and Hanson (2013) show that declines in issuer

credit quality predict low future corporate bond returns in a univariate sense. Furthermore, as

emphasized by Greenwood and Hanson (2013) and López-Salido, Stein, and Zakrajšek (2017),

issuer quality contains information about future bond returns beyond that contained in credit

spreads. Specifically, in a multivariate regression specification, low-quality issuance negatively

predicts future returns and credit spreads positively predict future bond returns.

Table 1 updates the data from Greenwood and Hanson (2013) and also considers a set of

additional proxies for credit market overheating. The table shows annual return forecasting

regressions of the form:

rxHYt→t+k = a+ b ·Overheatingt + et→t+k, (1)

where rxHYt→t+k denotes the log return on high yield bonds in excess of the log returns on like-

maturity Treasuries over a k = 2- or 3-year horizon beginning in year t. Here Overheatingt is a

proxy for credit market overheating, measured using data through the end of year t. All of our

data begin in 1983 and run through 2014.2

Columns (1) and (5) show that the log high yield share (log(HY St)) significantly predicts

2For results over different time horizons and with additional controls, see Greenwood and Hanson (2013) who
compute alternate proxies for issuer quality that extend back as far as 1926.
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low future excess bond returns. A one standard deviation in log(HY St) is associated with an

8.3 percentage point reduction in log excess bond returns over the next two years, and a 9.7

percentage point reduction over the next three years.

Columns (2) and (6) of Table 1 show that the same forecasting results hold when credit market

overheating is measured using the growth in aggregate nonfinancial corporate credit outstanding,

Credit Growtht. Aggregate nonfinancial corporate credit is the sum of nonfinancial corporate

debt securities and loans from Table L103 of the Federal Reserve’s Financial Accounts of the U.S.

A one standard deviation increase in Credit Growtht forecasts a 7.4 percentage point reduction

in excess bond returns over the next two years, and a 9.3 percentage point reduction over the

next three years.

Table 1 shows results for two additional measures of credit market overheating. The first,

Easy Creditt, is based on the Federal Reserve’s Senior Loan Offi cer Opinion Survey (SLOOS),

and the second, −1 × EBPt, is negative one times the Excess Bond Premium (EBPt) from

Gilchrist and Zakrajšek (2012).3 ,4 Table 1 shows that both of these additional measures of credit

market overheating forecast low future returns on corporate bonds. To summarize, Table 1

confirms that periods of credit market overheating– periods featuring low credit quality debt

issuance, rapid growth in outstanding credit, loose credit standards, and tight credit spreads–

are followed by low subsequent returns on risky corporate bonds.

Observation 3. Significant credit market overheating is associated with negative expected future
returns on risky bonds.

Of course, the fact that corporate bond returns are predictable does not imply that corporate

bonds are occasionallymispriced. For instance, if the rationally-required return on risky corporate

bonds fluctuates over time– e.g., due to movements in investor risk aversion (Campbell and

Cochrane [1999]) or in the quantity of aggregate risk (Bansal and Yaron [2004], Gabaix [2012],

Wachter [2013]), then the level of credit spreads might forecast future returns on corporate

bonds. And, combining such fluctuations in rationally-required returns with the neoclassical q-

theory of investment, one might expect recent credit growth and declines in debt issuer quality to

forecast low future returns on risky corporate bonds (Greenwood and Hanson [2013] and Gomes,

3Every quarter, the Federal Reserve surveys senior loan offi cers of major domestic banks concerning their
lending standards. Offi cers report whether they have eased or tightened lending standards in the past quarter.
We construct a measure of credit market overheating, Easy Creditt, by taking the three-year average percentage
of banks that have reported easing credit standards to firms in any given quarter. The idea behind this averaging
procedure is that we want to capture the level of bankers’ beliefs about future creditworthiness, whereas the
quarterly survey tracks changes from the previous quarter. The SLOOS begins in the first quarter of 1990, so
this measure of overheating begins in December 1992. Easy Creditt is 55% correlated with the high yield share
(HY St) and 68% correlated with Credit Growtht.

4Gilchrist and Zakrajšek’s (2012) EBPt variable is a measure of average corporate credit spreads after deduct-
ing an estimate of each bond’s expected credit losses and, thus, can be interpreted as a proxy for expected future
credit returns.
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Grotteria, and Wachter [2019]).

However, Greenwood and Hanson (2013) and Baron and Xiong (2017) present evidence that

conditional expected excess returns on risky corporate bonds and bank stocks become reliably

negative when credit markets appear to be significantly overheated– i.e., when many low quality

borrowers are able to obtain credit and when credit growth is rapid. Furthermore, these same

authors find that future risk is high when credit markets appear to be most overheated. These

negative expected returns and the negative conditional relationship between expected future risk

and return are quite diffi cult to square with rational risk-based models– even rational models

with intermediation frictions5– and are powerful motivations for the behavioral approach we

adopt in this paper. Specifically, these facts are most consistent with the idea that credit market

investors make biased forecasts of future corporate bond defaults, arguably because they over-

extrapolate recent outcomes.

Observation 4. Variables that forecast returns on risky bonds often do not forecast returns on
equities, and vice versa. Moreover, episodes of credit market overheating tend to follow periods

of tranquility in credit markets, namely periods when defaults are low and when the returns on

risky bonds are high.

What outcomes are credit-market investors over-extrapolating? One view is that investors

over-extrapolate some underlying set of economic fundamentals– e.g., firm cash flows or the state

of broader macroeconomy. This view leads to behavioral version of the q-theory of investment

(Greenwood and Hanson [2015], Gennaioli, Ma, and Shleifer [2016], Bordalo, Gennaioli, and

Shleifer [2017]) and generally suggests that equity-market sentiment and credit-market sentiment

should be tightly linked over time. However, in the data, many measures that predict credit

returns are not strong predictors of equity returns and vice versa (Greenwood and Hanson [2013]

and Ma [2018]). This disconnect between equity and credit market sentiment recommends a

more nuanced behavioral view in which equity and credit markets are partially-segmented and

investors in each market extrapolate past market-specific outcomes.

Consistent with the idea that credit market investors tend to over-extrapolate recent credit

market outcomes, Greenwood and Hanson (2013) show that past defaults and credit returns play

a dominant role in shaping credit-market sentiment. Specifically, Greenwood and Hanson (2013)

find that debt issuer quality tends to deteriorate following periods with low realized corporate

defaults and high realized returns on risky corporate bonds. However, after controlling for

these recent credit market outcomes, recent equity returns and macro variables have relatively

little impact on debt issuer quality. These findings motivate our model where credit investors

5In models with intermediation frictions, changes in the health of intermediary balance sheets and the resulting
shifts in risk appetite play an important role in determining asset prices. See, for example, He and Krishnamurthy
(2013), Adrian, Etula, and Muir (2014), Brunnermeier and Sannikov (2014), and He, Kelly, and Manela (2017).
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extrapolate past bond defaults, which themselves are not perfectly tied to firm fundamentals.6

Table 2 presents additional evidence that periods of credit market overheating follow times

when corporate defaults are low. Specifically, Table 2 shows the results from estimating time-

series regressions of the form:

Overheatingt = a+ b ·Deft + c ·Deft−1 + et, (2)

where Deft denotes the default rate on high yield bonds in year t. We estimate this regression

using the same four measures of credit market overheating from Table 1. Table 2 shows that

there is a strong negative relationship between recent default rates and current credit market

overheating. Some measures of overheating (log(HY St) and −1×EBPt) are more highly corre-
lated with most recent default rates, while others are also strongly correlated with lagged default

rates (Credit Growtht and Easy Creditt).

Observation 5. The credit cycle and the business cycle can be quite disconnected in the short-
run.

Consistent with the market-specific extrapolation view discussed above, the credit cycle can

become quite disconnected from both the broader business cycle as well as equity market condi-

tions in the short-run.

Figure 2 plots the annual growth rate of U.S. GDP alongside the annual growth rate of

outstanding debt at nonfinancial corporations, both expressed in real terms. In the upswing

proceeding the 2008 financial crisis, GDP growth peaked in March 2005, but credit growth

peaked more than two years later. This pattern of credit expansion at the end of an economic

expansion is also apparent in the late 1990s, with credit growth rising only at the end of the

business cycle. During downturns, the economy often recovers well before credit growth returns

to normal rates. In the most recent economic recovery, real credit growth first reached 3% in

2013, several years after the economy began its recovery. Overall, the correlation between credit

growth and GDP growth is only 43%.

Figure 3 illustrates the disconnect between the credit cycle and the business cycle in U.S.

data. Here we provide additional perspective on the lack of synchronicity between the credit

cycle and the business cycle. In particular, we show that credit growth tends to increase towards

the end of a business cycle boom. In Panel A of Figure 3, we plot real GDP growth from trough

to peak of the business cycle, by business cycle expansion quarter. As can be seen, GDP growth

is high in the beginning of business cycle expansions, but after quarter five, it stabilizes and if

anything, declines slightly in later quarters. In contrast, Panel B shows credit growth over the

6Similarly, Greenwood and Shleifer (2014) show that past equity returns play an outsized role in shaping
equity-market sentiment, motivating the model in Barberis, Greenwood, Jin, and Shleifer (2015) where equity
investors extrapolate past equity returns (as opposed to firm fundamentals).
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same periods. As the figure makes clear, credit expansion is particularly high in the latter part

of the business cycle.

3 A model of credit market sentiment

In this section, we consider an infinite-horizon model with a representative firm and a set of

identical, risk-neutral bond investors. Our assumption of a representative firm is made purely

for simplicity. In Section 5, we introduce a continuum of firms which are subject to heterogeneous

cash flow shocks.

We first describe firm borrowing behavior and then explain investor beliefs, collecting several

preliminary results along the way. We then present a series of formal results and numerical

simulations that trace out the model’s key implications for credit market dynamics.

3.1 Firm borrowing

In order to focus on the dynamic interplay between investor beliefs and firm defaults, we model

firm borrowing behavior in a deliberately sparing fashion. Each period t, the representative firm

invests in a one-period project that requires a fixed up-front cost of c > 0. The next period, the

project generates a random cash flow, xt+1, that follows an exogenously given AR(1) process

xt+1 − x̄ = ρ(xt − x̄) + εt+1, (3)

where x̄ ≥ c and the fundamental cash flow shock εt+1 ∼ N (0, σ2
ε) is i.i.d. over time.

The firm issues one-period bonds in order to finance these one-period projects. Each bond is

a promise to pay back one dollar to investors in one period. At time t, the price of each bond is

denoted pt. The total face amount of debt outstanding at time t is Ft, meaning that the firm is

obligated to repay Ft dollars to investors at time t+ 1.

At time t, the firm must repay the face amount of debt issued the prior period Ft−1. The

firm also must pay the cost c to begin a new project and receives the cash flow xt from the prior

period’s project. Finally, the firm can issue new bonds at a price of pt. Assuming the firm does

not default and does not pay dividends to equity holders at time t, the total face amount of

bonds outstanding at time t is

Ft = (Ft−1 + c− xt)/pt, (4)

which is obtained by equating sources and uses.7 This law of motion is consistent with the fact

7We assume that the firm always decides to invest, even when expected cash flows tomorrow do not cover the
current cost– i.e., when c > x̄ + ρ(xt − x̄). There are two possible interpretations of this assumption. First, we
could assume that the firm is operating a long-run technology that generates the stream {xt}, that c is the cost
of continuation each period, and that continuation is (almost) always effi cient. Alternately, we could assume that
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that nonfinancial leverage is typically counter-cyclical, falling in good times when xt is high and

rising in bad times when xt is low (Korajczyk and Levy [2003] and Halling, Yu, and Zechner

[2016]).

We assume a simple mechanistic default rule. One should interpret a default by the repre-

sentative firm in our model as a “credit market bust”in which there is an economy-wide spike

in corporate defaults. Specifically, if at any time t, Ft−1 + c − xt rises above a threshold of F̄ ,
the representative firm defaults. The existence of this threshold F̄ can be seen as a reduced

form for informational or agency frictions that grow more severe as the amount of required ex-

ternal financing rises. Alternately, such a threshold may arise from the optimal exercise of the

firm’s default option by equity holders as in Leland (1994). Formally, letting Dt denote a binary

variable indicating whether or not a default occurs at time t, we have

Dt = 1{Ft−1+c−xt≥F̄}. (5)

The “default boundary”is the line in (Ft−1, xt) space where this default indicator switches on or

off– i.e., the line Ft−1 = F̄ − c+ xt.

In the event of default, the firm continues to operate. However, the firms’existing equity-

holders are wiped out and the firm writes off a fraction of its debt much like under Chapter 11

of the U.S. Bankruptcy Code. Specifically, if the firm defaults, a fraction 1− η of the firm’s debt
is written off, generating losses for existing bondholders, and the remaining fraction η ∈ (0, 1)

is refinanced at current market prices. Thus, if the firm defaults at time t, the amount of debt

outstanding becomes

Ft = η(Ft−1 + c− xt)/pt. (6)

Finally, we assume that if Ft−1 + c − xt ≤ F , the firm sets Ft = F/pt and pays all residual

cash flows to equity holders as a dividend. The idea underlying the lower barrier F > 0 for

debt outstanding can be motivated via the pecking order theory of capital structure (Myers and

Majluf [1984]). Firms only raise external finance in the form of debt. And when there is available

free cash flow, the firm first uses this cash flow to retire existing debts. However, once the face

value of debt reaches a suffi ciently low level, the firm chooses to pay out all available free cash

flow to its equity holders.8

managers receive private benefits from running the firm and will always choose continuation even if continuation
is value destroying.

8To endogenize the upper threshold F̄ , we could assume that at any time, equity holders can default on the
firm’s outstanding debt and abscond with some fraction of the firm’s total enterprise value. Equity holders decide
whether or not to exercise this default option by comparing the present value of expected future dividends to
the value of this outside default option. Since, all else equal, the present value of expected future dividends is
decreasing in the amount of outstanding debt, this means that equity holders will choose to default once the face
value of debt reaches a suffi ciently high level.
Similarly, the lower threshold F could be endogenized by assuming that the firm’s equity holders trade off the

value of receiving dividends today versus the value of further debt reduction. Further debt reduction lowers the
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In summary, our assumptions imply that the firm defaults and its debt is written down when

outstanding debt grows too large relative to the firm’s current free cash flows (xt − c)– i.e., when
Ft−1 ≥ F̄+(xt − c). Conversely, the firm stops paying down its debt and instead pays all residual
cash flows to equity holders when outstanding debt grows small relative to the firm’s current free

cash flows– i.e., when Ft−1 ≤ F +(xt − c). In between these upper and lower boundaries, all else
equal, the firm’s debt outstanding grows faster when refinancing conditions are less favorable–

i.e., when the price of new bonds pt is lower– and when the ratio of the firm’s free cash flow to

outstanding debt (xt − c) /Ft−1 is lower.9 While clearly simplistic, these dynamics can be seen

as a shorthand for the kinds of behavior that emerge from more complex, dynamic models of

firm investment and capital structure choice.

Before turning to investor beliefs, we note that, taking Ft as given, it is straightforward to

compute the fully-rational, forward-looking probability of a default at time t+1, which we denote

by λRt . Given the cash flow process in equation (3) and the default rule in equation (5), a default

will occur at time t+ 1 if and only if

F̄ ≤ Ft + c− xt+1 = Ft + c− ρxt − (1− ρ)x̄− εt+1.

Thus, at time t, the true probability of default on the promised bond payments at time t+ 1 is

λRt = Φ

(
Ft − F̄ + c− ρxt − (1− ρ)x̄

σε

)
, (7)

where Φ(·) denotes the cumulative normal distribution function.

3.2 Investor beliefs

There is a continuum of risk-neutral bond investors with zero rate of time preference. Investors’

beliefs at time t about the probability of a default at time t + 1 are denoted λCt . We assume

that investors’beliefs λCt are a mixture of (i) an extrapolative and backward-looking component

λBt based on past default rates and (ii) the fully rational and forward-looking belief λ
R
t . We

assume that fraction θ ∈ [0, 1] of investors’beliefs are extrapolative and backward-looking and

the remaining fraction 1− θ are fully-rational and forward-looking. Thus, we have:

λCt = θλBt + (1− θ)λRt = λRt − θ(λRt − λBt ). (8)

probability of default in future periods and hence raises the expected value of future dividends. Since the benefits
of debt reduction decline with the level of debt, the firm chooses to pay out free cash flow to equity holders once
the face value of debt reaches a suffi ciently low level.

9These statements follow from the fact that (Ft − Ft−1) /Ft−1 = ((1− pt)− (xt − c) /Ft−1) /pt if the firm does
not default or pay dividends at time t.
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This formulation of beliefs is in the spirit of Fuster, Laibson, and Mendel (2010) and Fuster,

Hebert, and Laibson (2011) who argue that many agents have “natural expectations” which

are a combination of fully-rational expectations and extrapolative expectations. Equation (8)

conveniently covers the polar cases of fully-rational expectations (θ = 0) and fully-extrapolative

expectations (θ = 1).

Our formulation of beliefs in equation (8) embeds two distinct notions of “credit market

sentiment.”First, one might say that credit market sentiment is elevated when λBt is low– i.e.,

when future defaults are perceived as being unlikely according to the extrapolative component

of investor beliefs. Alternately, one might say that credit market sentiment is elevated when(
λRt − λBt

)
is high– i.e., when investors are underestimating the true likelihood of a future default.

In a moment, we will detail precisely how λBt is specified and how λRt is pinned down in

a rational-expectations equilibrium when θ < 1. For now, we take λBt and λ
R
t as given. Since

investors are risk-neutral and have zero rate of time preference, the bond price at time t is simply

pt = p(λBt , λ
R
t ) = (1− λCt ) + λCt η =

[
1− (1− η)λRt

]
+ (1− η)θ(λRt − λBt ). (9)

Thus, relative to the price of 1− (1− η)λRt in a fully-rational economy where θ = 0, bond prices

are elevated when λRt − λBt is high and investors are underestimating the true likelihood of a

future default.

The default rule in equations (5) and (6) and the bond pricing equation (9) give rise to the

following law of motion for the amount of debt outstanding:

Ft = F (Ft−1, λ
B
t , λ

R
t , xt) =


F/p(λBt , λ

R
t ) if Ft−1 + c− xt ≤ F

(Ft−1 + c− xt)/p(λBt , λRt ) if F < Ft−1 + c− xt < F̄

η(Ft−1 + c− xt)/p(λBt , λRt ) if F̄ ≤ Ft−1 + c− xt
. (10)

Since p(λBt , λ
R
t ) ≤ 1, it follows that we always have Ft ≥ F . Thus, F is indeed a lower barrier

for the amount of debt outstanding.

The model is fully characterized by equations (3), (9), and (10), together with the specifica-

tions for λBt in equation (11) and λ
R
t in equation (13) which will be introduced below.

The extrapolative component of investor beliefs λBt . We now introduce our specification

for λBt , the extrapolative, backward-looking component of investors’ time-t beliefs about the

likelihood of a default at time t+1. We assume that λBt depends solely on past default realizations

and past “sentiment” shocks that are unrelated to cash flow fundamentals. Specifically, we

assume that the law of motion for this backward-looking component of beliefs is

λBt = max
{

0,min
{

1, βλBt−1 + αDt + ωt
}}

, (11)

13



where 0 < β < 1 is a memory decay parameter, α > 0 measures the incremental impact of a

default event on backward-looking beliefs, and ωt ∼ N (0, σ2
ω) is a random “sentiment”shock that

is independent of the fundamental cash flow shocks εt. The min and max functions in equation

(11) ensure that λBt ∈ [0, 1] for all t. Assuming that λBt is always between 0 and 1, we have

λBt =
∑∞

j=0β
j (αDt−j + ωt−j) . (12)

In this case, the extrapolative component of beliefs is just a geometric moving average of past

defaults and past sentiment shocks.

The specification for extrapolative beliefs in equation (11) is similar to specifications in Bar-

beris, Greenwood, Jin, and Shleifer (2015, 2018), and Nagel and Xu (2018). Empirically, equation

(11) is motivated by the findings in Greenwood and Hanson (2013) who present evidence that

credit market investors tend to extrapolate recent credit market outcomes. They show that

credit market sentiment rises following periods when default rates have fallen and the returns on

high-yield bonds have been high. These results hold controlling for contemporaneous conditions

in the macroeconomy and in the stock market, suggesting that it is credit market outcomes, not

fundamentals, that are being extrapolated.10

The following lemma explains how this extrapolative component of beliefs evolves over time.

Lemma 1 Assume there are no sentiment shocks (i.e., ωt = 0 for all t), so the law of motion

of for the extrapolative component of beliefs is simply λBt = max
{

0,min
{

1, βλBt−1 + αDt

}}
.

• If there is no default at time t, then we always have λBt ≤ λBt−1 and λ
B
t < λBt−1 if λ

B
t−1 > 0–

i.e., extrapolative beliefs always become more optimistic when there is no default.

• If there is a default at time t, there are two cases:

— If α ≥ 1 − β, then λBt ≥ λBt−1 and λ
B
t > λBt−1 if λ

B
t−1 < 1– i.e., extrapolative beliefs

always become more pessimistic following a default. As a result, λBt will converge to

1 following a long sequence of defaults.

— If α < 1 − β, then λBt ≷ λBt−1 as λ
B
t−1 ≶ α/ (1− β). As a result, λBt will converge to

α/ (1− β) < 1 following a long sequence of defaults.

Proof. See the Appendix for all proofs.
10We do not take a strong stance of the psychological underpinnings of over-extrapolation. Overextrapolation

could stem from the representativeness heuristic and a belief in the “law of small numbers” (Kahneman and
Tversky [1972], Barberis, Shleifer, and Vishny [1998], Rabin [2002], Gennaioli and Shleifer [2010])) or from
experience effects and reinforcement learning in the presence of fading memory (Malmendier and Nagel [2011,
2016], Nagel and Xu [2018], Malmedier, Pouzo, and Vanasco [2018]).
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Naturally, the dynamics of λBt are governed by the incremental impact of a default on beliefs

α and the rate of memory decay (1− β). As we will see below, the potential for backward-looking

beliefs to drive persistent default cycles is greatest when the incremental belief impact α is high

and when β is close to 1 so memory fades slowly. In this case, a default episode makes investors

much more pessimistic, which in turn makes it more diffi cult for firms to refinance maturing

debt.

Solving for rational expectations equilibrium. We now close the model by explaining how

λRt is pinned down in a rational expectations equilibrium when θ < 1. According to equation (7),

λRt depends on Ft. However, equations (9) and (10) imply that Ft depends on λ
R
t when θ < 1.

Thus, when θ < 1, λRt and Ft must be simultaneously determined in equilibrium.

The simultaneous determination of Ft and λ
R
t introduces the potential for multiple equilib-

ria. The potential for equilibrium multiplicity reflects a straightforward self-fulfilling-prophecy

intuition. If the rational component of investor beliefs about future default probabilities is low

(high), then current bond prices are high (low). As a result, the face value of debt firms that

must promise to repay tomorrow is low (high), leading to a true probability of default tomorrow

that is indeed low (high). Unlike in classic bank run models (e.g., Diamond and Dybvig [1983]

and Goldstein and Pauzner [2005]), multiple equilibria in our model do not arise from strategic

complementarities between the financing decisions of individual short-run creditors: the investors

in our model are nonstrategic price-takers. Instead, multiple equilibria arise for reasons similar

to those in classic models of sovereign default (e.g., Calvo [1988] and Cole and Kehoe [2000]).

Formally, combining equations (7) and (10), we see that the equilibrium value of λRt must

solve the following fixed-point problem when θ < 1:

λRt = g(λRt |Ft−1, λ
B
t , xt) ≡ Φ

(
F (Ft−1, λ

B
t , λ

R
t , xt) + c− F̄ − ρxt − (1− ρ)x̄

σε

)
. (13)

Note from (10) that the bond price p(λBt , λ
R
t ) does not determine whether the firm defaults

or pays dividends at time t; only Ft−1 and xt determine these outcomes. This means that

g(λRt |Ft−1, λ
B
t , xt) is a continuous and increasing function of λ

R
t for given values of

(
Ft−1, λ

B
t , xt

)
.

Also note that g(0|Ft−1, λ
B
t , xt) > 0 and g(1|Ft−1, λ

B
t , xt) < 1. Therefore, g(λRt |Ft−1, λ

B
t , xt) is

a continuous function that maps the unit interval into itself, so a fixed point always exists by

Brouwer’s fixed-point theorem.

Multiple equilibria are more likely to arise (i) when investor beliefs are more rational and

forward-looking (i.e., when θ is low); (ii) when the configuration of (Ft−1, λ
B
t , xt) means that the

firm will be near the default boundary at time t+ 1; and (iii) when cash flow volatility σε is low.

First, rational beliefs have a larger impact on current bond prices and hence on the likelihood of

future defaults when θ is low. Indeed, there is always a single unique equilibrium when θ = 1 and
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beliefs are completely extrapolative. Second, multiple equilibria will only arise when the firm

will be near the default boundary at time t+ 1. If the firm is very far from the default boundary,

then ∂g(λRt |·)/∂λRt is always small– there is no scope for self-fulfilling rational beliefs– and there
is a unique equilibrium. Finally, when future cash flows are volatile (i.e., when σε is high), the

downside risk for the future cash flows is generally high which reduces the effect of self-fulfilling

rational beliefs on future defaults. In this case, the model has a unique equilibrium. Conversely,

when future cash flows are not very volatile, self-fulling rational beliefs have a bigger impact on

future defaults and sometimes lead to multiple equilibria.11

How do we select amongst these equilibria when more than one exists? We focus on the small-

est λR that solves λR = g(λR|·)– i.e., the model’s “best”stable equilibrium.12 An equilibrium is

“stable”if it is robust to a small perturbation in investors’beliefs regarding the likelihood of a

default tomorrow. In our setting, if ∂g(λR∗|·)/∂λR < 1, then λR∗ is stable; if ∂g(λR∗|·)/∂λR > 1,

then λR∗t is unstable. Since g(0|·) > 0 and g(1|·) < 1, our model always has at least one stable

equilibrium. Following the correspondence principle of Samuelson (1947), stable equilibria have

local comparative statics that accord with common sense. For example, at a stable equilibrium,

λRt is locally increasing in Ft−1 and decreasing in xt.13

The following lemma explains how the true probability of default λRt is influenced by move-

ments in Ft−1, λ
B
t , and xt.

Lemma 2 First, assume that the economy is not near the default boundary Ft−1 = F̄ − c + xt

at time t, so small changes in Ft−1 and xt do not affect whether or not there is a default at time

t. Then a small increase in Ft−1 raises λ
R
t when F < Ft−1 + c − xt, a small increase in λBt

always raises λRt , and a small increase in xt always reduces λ
R
t . When θ = 1, λRt is everywhere

a continuous function of Ft−1, λ
B
t , and xt. By contrast, when θ < 1, λRt can be discontinuous

in Ft−1, λ
B
t , and xt, jumping discretely in response to small changes in these variables when the

smallest solution to equation (13) jumps– we call these jumps “equilibrium discontinuity points.”

However, λRt is continuous and differentiable in these variables almost everywhere when θ < 1.

Next, assume that the economy is near the default boundary at time t, so small changes in

Ft−1 and xt can affect whether or not there is a default at time t. Near the default boundary, a

small increase in Ft−1 can trigger a default at time t, resulting in a discrete downward jump in

the probability of a default at t+ 1, λRt . Similarly, near the default boundary, a small increase in

11Formally, g(λRt |Ft−1, λBt , xt) is an S-shaped function of λRt , a property that it inherits from the normal
cumulative density function Φ(·). As we increase σε, g(λRt |Ft−1, λBt , xt) becomes closer to a linear function of λRt –
i.e., ∂2g(λRt |·)/∂(λRt )2 approaches zero– so it is harder to have multiple equilibria. As σε → 0, g(λRt |Ft−1, λBt , xt)
converges to a step-function and therefore it is easier to have multiple equilibria.
12We obtain very similar simulation results if we instead focus on the the largest λR that solves λR = g(λR|·)–

i.e., the model’s “worst”stable equilibrium.
13By contrast, unstable equilibria have local comparative statics with the opposite signs, which run contrary

to common sense. For example, at an unstable equilibrium, λRt is locally decreasing in Ft−1 and increasing in xt.
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xt can avert a default at time t, resulting in a discrete upward jump in λ
R
t . However, it is still

the case that a small increase in λBt always raises λ
R
t .

4 Understanding Reflexivity

Our model captures the idea that, in credit markets, investors’biased beliefs can impact financial

reality. Past defaults and sentiment shocks affect investors’ beliefs about future defaults via

equation (11). These biased beliefs then impact bond prices via equation (9). And, since bond

prices influence the ease with which the firm can refinance its existing debt, they in turn affect the

evolution of debt outstanding via equation (10) and hence the true probability of future defaults

in equation (7). As a result, biased investor beliefs have the potential to become partially self-

fulfilling.

In this section, we provide a set of formal results and simulations to illustrate the key im-

plications of the model. We first introduce a baseline set of model parameters and demonstrate

that the impact of biased investor beliefs on market outcomes is not constant: there are states

where biased beliefs have a large impact on market outcomes and states where the impact is

much smaller. We then lay out three main implications of the model: the “calm before the

storm”phenomenon, the “default spiral”phenomenon, and the predictability of corporate bond

returns. As we emphasize, these three novel implications reflect the interaction between default

extrapolation and the reflexive nature of credit markets. In other words, these three results arise

because (i) investors hold beliefs that are (partially) backward-looking– i.e., they extrapolate

past defaults when forming beliefs about future defaults– and (ii) beliefs about future defaults

are (partially) self-fulfilling. We also use the model to draw impulse-response functions which

show how shocks to cash flow fundamentals and investor beliefs impact credit markets.

4.1 Model parameters and simulated data

When using the model to generate simulated data, we use the following set of baseline parameters:

• Cash flow dynamics: x̄ = 2.4, ρ = 0.8, σε = 0.5.

• Investment cost: c = 2.

• Default and dividend barriers: F̄ = 5, F = 1.5.

• Write-off parameter: η = 0.5.

• Belief dynamics: β = 0.8, α = 0.2, σω = 0.05.

• Belief mix: θ = 0.5.
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While these parameters are only illustrative, they have a number of desirable properties based

on simulating the model for 100, 000 periods (each period is one year):

1. The unconditional default probability is realistic. Here the unconditional probability
of default is 12%. As noted above, one should interpret a default by our representative firm

as a “credit market bust” in which there is an economy-wide spike in corporate defaults.

Thus, these parameters imply that roughly one in ten years corresponds to such a bust.

2. The unconditional means of λBt and λRt are similar. Here the average of λ
R
t is 12%

and λBt is 15%. Thus, the behavioral component of beliefs is reasonable on average. As

a result, the means of
(
λRt − λBt

)
and rt+1, the realized rate of return on bonds from t to

t+ 1, are small. Here the mean of
(
λRt − λBt

)
is −3% and the average annual bond return

is 0.3%.

3. The time-series correlation between λBt and λRt is strong. While clearly imperfect,
investors’ beliefs are reasonable over time. Specifically, we have Corr

(
λBt , λ

R
t

)
= 0.58.

That is, the backward-looking component of investors’beliefs is strongly correlated with

fully-rational beliefs over time. As a result, investors’combined beliefs λCt = θλBt +(1−θ)λRt
are close to the fully-rational ideal: Corr

(
λCt , λ

R
t

)
= 0.93.

4. Relation of α and β. The strength of the default spiral mechanism is increasing in

both α and β. Specifically, if α > (1− β) then λBt always rises when Dt = 1 and ωt = 0.

However, if α ≤ 1− β then λBt can actually fall when Dt = 1 and ωt = 0. Since α = 1− β
in this calibration, default spirals are possible.

Figure 4 shows a typical sample path of simulated data using these parameters. Notice that

the time-series distribution of λRt is bimodal: λ
R
t is typically either close to zero or 1. This bimodal

distribution is largely a function of the short-term nature of debt in our model: short-term debt

is extremely safe until it suddenly becomes risky.14

4.2 The degree of reflexivity varies over time

As noted above, our model captures the idea that investors’biased beliefs can impact reality

because refinancing terms are a first-order determinant of firm creditworthiness. While the

feedback loop between biased beliefs and credit market outcomes is always present, there are

times when this reflexive feedback loop is particularly strong. Specifically, we say that the

14However, the partially forward-looking nature of investor beliefs also contributes to the bimodal distribution
of λRt . Specifically, when θ < 1, the model admits multiple equilibria and the smallest stable equilibrium will often
discretely jump from λRt ≈ 0 to λRt ≈ 1 as the economy approaches the default boundary. This effect is diminished
when we increase θ, so the distribution of λRt becomes less bimodal as beliefs become more backward-looking.
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economy is in a “highly reflexive”state when the true probability of default is highly dependent

on the extrapolative component of investor beliefs λBt – i.e., when ∂λ
R
t /∂λ

B
t is large. While λ

R
t

always depends positively on λBt , there are “non-reflexive” regions in which ∂λ
R
t /∂λ

B
t is quite

small. For example, states where debt is low and the economy has not experienced defaults for

a long time are typically non-reflexive. However, there are also “highly reflexive”regions where

∂λRt /∂λ
B
t is large: here a change in the extrapolative component of beliefs λ

B
t – whether due to

a current default or a sentiment shock ωt– will have a large impact on the true probability of

default λRt .

When will ∂λRt /∂λ
B
t be large? Using equations (9), (10), and (13), we have

∂λRt
∂λBt

=

∂g(λRt |Ft−1,λBt ,xt)
∂λBt

1− ∂g(λRt |Ft−1,λBt ,xt)
∂λRt

=

φ(distt)
σε

F (Ft−1,λBt ,λ
R
t ,xt)

p(λRt ,λ
B
t )

(1− η) θ

1− φ(distt)
σε

F (Ft−1,λBt ,λ
R
t ,xt)

p(λRt ,λ
B
t )

(1− η) (1− θ)
, (14)

where φ (·) is the standard normal density and

distt =
F (Ft−1, λ

B
t , λ

R
t , xt) + c− F̄ − ρxt − (1− ρ)x̄

σε
(15)

is the expected distance-to-default at time t + 1. Thus, ∂λRt /∂λ
B
t is likely to be large at time

t when |distt| is small so the economy is expected to be close to the default boundary at time
t+ 1, when Ft = F (Ft−1, λ

B
t , λ

R
t , xt) is large, and when p(λ

R
t , λ

B
t ) is small. Furthermore, there is

a greater potential to have a larger value of ∂λRt /∂λ
B
t when θ is high and when σε is low. These

highly reflexive regions play an important role in driving credit market dynamics in our model.

Figure 5 illustrates the existence of these highly reflexive regions. Using our baseline set

of parameters, the heatmap in Panel A shows how λRt varies as a function of (xt, Ft−1) when

λBt = 0.2. The dashed white line shows the default boundary at time t, namely Ft−1 = F̄ −c+xt,

so the default region is to the northwest of this boundary. When the economy crosses the default

boundary, there is a default today (Dt = 1) and a fraction (1− η) of debt is written down,

leading the probability of another default tomorrow to jump downward. As shown, there are

two regions where λRt is sensitive to movements in (xt, Ft−1). The first of these regions– the one

towards the southeast– is where there is no default today (Dt = 0), but where changes in current

cashflows (xt) and past debt (Ft−1) have a large impact on the default probability tomorrow.

The second of these regions– the one towards the northwest– is where there is a default today

(Dt = 1) and where changes in (xt, Ft−1) have a large impact on λRt .

The heatmap in Panel B shows how ∂λRt /∂λ
B
t varies as a function of (xt, Ft−1) when λBt = 0.2.

There are two highly reflexive regions where ∂λRt /∂λ
B
t is large. The highly reflexive region in

the southeast is where there is no default today (Dt = 0) and where a small increase in λBt has

a large impact on the likelihood of a default tomorrow λRt . Intuitively, in this region, a small
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increase in the backward-looking component of investors’beliefs (λBt ) triggers a large increase

in the firm’s equilibrium debt burden, pushing the firm toward the brink of default. The second

reflexive region in the northwest is where there is a default today (Dt = 1) and where and where

a small increase in λBt has a large impact on the likelihood of another default tomorrow. Panel

C shows these two results together, plotting both λRt and ∂λ
R
t /∂λ

B
t versus Ft−1 when xt = 1 and

λBt = 0.2. Here the firm defaults today whenever Ft−1 ≥ 4. The economy is a highly reflexive

state when Ft−1 is near 2.5 (corresponding to the first reflexive region mentioned above) or near

6 (corresponding to the second region).

In summary, highly reflexive states are likely to arise near the end of a long credit boom

where investors are still bullish, but default is not yet imminent. In this case, a credit crisis can

suddently become far more likely if investors become slightly more bearish on credit (i.e., if λBt
rises slightly). Highly reflexive states can also arise in the wake of a credit bust where investors

are still bearish. Here the likelihood that the credit crisis persists can drop dramatically if

investors become slightly more bullish on credit (i.e., if λBt falls slightly).

4.3 The “calm before the storm”phenomenon

An elevated level of credit market sentiment– here in the sense of a lower level of λBt – slows down

the accumulation of debt in the face of deteriorating cash flows fundamentals, thereby delaying

or even preventing future defaults altogether. We term this phenomenon the “calm before the

storm.”Below we provide a formal result regarding this phenomenon.

Proposition 1 Calm before the storm. Assume that θ > 0. For any initial level of debt

outstanding Ft−1 and cash flow xt, lowering the initial extrapolative component of investor beliefs

λBt weakly delays the next default path by path– i.e., for any given time series of future cash flow

and sentiment shocks– and strictly delays the next default in expectation.

To illustrate the “calm before the storm”phenomenon, Panel A of Figure 6 depicts a sample

path of the model using our baseline set of parameters where θ = 0.5. The cash flow fundamental

xt is initially set to x0 = 1.5 < 2 = c and debt is set to F0 = 3.5. We assume that all of the

subsequent shocks are zero (εt = ωt = 0). Figure 6 plots cash flow xt, debt outstanding Ft,

the default indicator Dt, bond prices pt, rational beliefs λ
R
t , and backward-looking behavioral

beliefs λBt . We compare the model dynamics starting from a low initial value λB0 (Low) = 0.15

and a high initial value λB0 (High) = 0.30 of the backward-looking component of beliefs. As can

be seen, the firm defaults at time 3 when λB0 = λB0 (High) and at time 4 and λB0 = λB0 (Low).

Consistent with Proposition 1, more optimistic initial beliefs have the potential to delay default

in the face of poor fundamental cash flows.

Naturally, this effect becomes stronger for higher values of θ– i.e., as beliefs become more

backward-looking. For example, Panel B of Figure 6 shows that, if we instead set θ = 1, then
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the firm defaults at t = 3 when λB0 = λB0 (High), but is able to skate by when λB0 = λB0 (Low),

narrowly averting default altogether. This happens because, in this case, bond prices stay high

for long enough that the firm is able to refinance its debt until fundamentals rise back above c.

This “calm before the storm”behavior is consistent with the evidence in Krishnamurthy and

Muir (2018) who examine the behavior of credit spreads around a large sample of financial crises

in developed countries. Specifically, in our model, credit spreads are typically low in the run-up

to a default and but jump up on the eve of a default, just as Krishnamurthy and Muir (2018) find

in the data. We can draw the link to Krishnamurthy and Muir’s (2018) results more formally by

tracing out the model-implied expected path of credit spreads conditional on a financial crisis

at time τ = 0. Specifically, we take simulated data from the model and estimate regression

specifications of the form:

(1− η)λCt = a+
∑T

τ=−T bτ1{Dt+τ=1} + et. (16)

Here (1− η)λCt = 1 − pt is the analog to the credit spread in our model. We then plot the

bτ regression coeffi cients versus event time τ for this regression in Figure 7, effectively tracing

out the model-implied expected path of credit spreads in event time conditional on a financial

crisis at time τ = 0. For purposes of comparison, we repeat the exercise separately for the

rational, forward-looking component of spreads, (1− η)λRt , and the extrapolative, backward-

looking component, (1− η)λBt .

As shown in Figure 7, credit spreads (1− η)λCt = (1− η)
[
θλBt + (1− θ)λRt

]
jump up on the

eve of a crisis at τ = −1 due to their rational forward-looking component (1− η)λRt . However,

comparing the coeffi cients for λRt and λ
C
t , we see that credit spreads are typically “too narrow”

prior to financial crises as argued in Krishnamurthy and Muir (2018). On the other hand, Figure

7 also shows that credit spreads are usually “too wide”in the aftermath of crises.

The calm before the storm phenomenon also helps make sense of what Gennaioli and Shleifer

(2018) have dubbed the “quiet period”of the 2008 global financial crisis– the period between the

initial disruptions in housing and credit markets in the summer of 2007 and onset of a full-blown

financial crisis in the fall of 2008. Indeed, as Gennaioli and Shleifer (2018) argue, if investors were

fully forward-looking (θ = 0), one might have expected a more rapid deterioration of financial

conditions in late 2007 rather than the slow slide into crisis that was witnessed.

4.4 The “default spiral”phenomenon

Once the storm hits the credit market, default extrapolation can generate a “default spiral”:

extrapolative, backward-looking beliefs lead to a form of default persistence that is absent when

beliefs are fully rational and forward-looking. Specifically, investor beliefs typically become more

pessimistic following a default according to equation (11). This pushes down bond prices, raising
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debt outstanding, and increasing the likelihood of future defaults.

Persistent default spirals can arise even when fundamental cash flows are strong (xt > c) if

(i) θ is suffi ciently large, (ii) the increment α is large relative to the decay rate of extrapolative

beliefs (1− β), (iii) the initial debt level is suffi ciently high, and (iv) the initial backward-looking

component of beliefs is suffi ciently pessimistic. We formalize this observation in the following

proposition.

Proposition 2 Default spirals. Assume that (i) Ft−1+c−xt ≥ F̄ , so there is a default at time t

(Dt = 1); (ii) α > (1− β) and ωt = 0, so extrapolative beliefs necessarily become more pessimistic

following this default; (iii) extrapolative beliefs are initially relatively pessimistic (λBt−1 ≥ λRt−1);

and (iv) xt = xt−1 = x > c. Let pt (θ), Ft (θ), and λRt (θ) denote the time t price, amount of

outstanding debt, and true probability of default when a fraction θ of beliefs is backward-looking.

Although default leads to a reduction in debt– i.e., Ft (θ) < Ft−1 for any θ– pt (θ) is decreasing

in θ. And Ft (θ) and λRt (θ) are increasing in θ. Thus, a larger extrapolative component of

beliefs lowers prices and slows the process of debt discharge in the event of default, increasing the

likelihood of a future default.

Proposition 2 says that, even when current fundamentals are strong (xt > c), a large accu-

mulated debt balance can lead to a string of multiple defaults due to the negative feedback loop

induced by default extrapolation. Specifically, if investor beliefs are highly backward-looking

(i.e., if θ is high), then default extrapolation keeps bond prices low and the debt level high for

many periods. As a result, there is a lengthy sequence of defaults, especially when investors are

initially highly pessimistic (i.e., when λBt is initially elevated). By contrast, if investor beliefs are

largely rational and forward-looking (i.e., when θ is low), the debt writedown that occurs upon

default leads to an immediate decrease in the rationally-expected default rate λRt . As a result,

bond prices quickly recover following the default and the firm rapidly repays its debts.

This default spiral dynamic highlights the potential disconnect between the endogenous credit

cycle and the underlying business cycle that is at the heart of our model. In particular, the

extrapolative nature of investor beliefs can make the financial recovery from a crises slower and

more protracted than in a world with fully forward-looking investors. This dynamic means

that a moderate improvement in cash flows can be insuffi cient to “rescue”credit markets from

a depressed state. Moreover, the likely timing of the recovery is influenced by the extent of

backward-looking extrapolation (θ) and the initial pessimism of investor beliefs (λB0 ): one needs

a large improvement in cash flows to ensure a recovery when both θ and λB0 are high. The crucial

role that investor beliefs play in driving default spirals suggests that a favorable sentiment shock

(i.e., a large negative draw of ωt) coming from a policy intervention may also be an effective way

to help credit markets recover.
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4.5 Bond return predictability

Bond returns are predictable in our model whenever θ > 0– i.e., whenever beliefs are partially

extrapolative and backward-looking. To see this, note that an investor who buy bonds for a price

of pt = p(λBt , λ
R
t ) at time t will receive a payment of 1 − (1 − η)Dt+1 at time t + 1. Thus, the

realized return on risky bonds from time t to t+ 1 is

rt+1 =
1− (1− η)Dt+1

p(λBt , λ
R
t )

− 1. (17)

At any time t, investors in our model believe that ECt [Dt+1] = λCt and bond prices are p(λ
B
t , λ

R
t ) =

1 − (1 − η)ECt [Dt+1] = 1 − (1 − η)λCt . Thus, by construction, investors always perceive a zero

expected return on bonds from time t to t+ 1– i.e., ECt [rt+1] = 0. However, since ERt [Dt+1] = λRt

from the vantage point of a rational econometrician, the rationally-expected return on bonds is

ERt [rt+1] =
1− (1− η)λRt
p(λBt , λ

R
t )

− 1 =
−(1− η)θ(λRt − λBt )

1− (1− η)λRt + (1− η)θ(λRt − λBt )
. (18)

Thus, expected bond returns are negative (positive) when investors are overly bullish (bearish)

about default probabilities– i.e., ERt [rt+1] R 0 as λRt Q λBt . For instance, in a “calm before the

storm”scenario where firm fundamentals have deteriorated but extrapolative investors remain

bullish on credit, we have λRt > λBt and ERt [rt+1] < 0. Conversely, in a “default spiral” sce-

nario where investors are over-estimating the likelihood of future defaults because they have just

witnessed a default, λRt < λBt and ERt [rt+1] > 0.

The fact bond returns are predictable is not surprising given our assumption that investor

beliefs are not fully rational. However, the comparative statics of expected bond returns ERt [rt+1]

are informative and are consistent with much recent research on credit cycles. First, using

equation (18) we can ask how a small change in λRt impacts expected bond returns. When θ > 0,

holding fixed λBt , an increase in λ
R
t is associated with a decline in expected returns:

∂ERt [rt+1]

∂λRt
= −

θ (1− η)
(
1− λBt (1− η)

)[
p(λBt , λ

R
t )
]2 < 0. (19)

If we interpret λRt as an inverse measure of issuing firms’creditworthiness, then equation (19)

is consistent with the findings in Greenwood and Hanson (2013) who find that a deterioration

the credit quality of issuing firms negatively predicts future debt returns in a univariate sense.

Going further, and assuming we are not at the default boundary, Lemma 1 implies that, all else

equal, a small increase in Ft−1 leads to decline in ERt [rt+1] and a small increase in xt leads to an

increase in ERt [rt+1]. Intuitively, when investors are extrapolative, holding fixed the extrapolative

component of beliefs λBt , worse cash flow fundamentals and higher levels of leverage predict lower
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future bond returns.

What is more interesting is that changes in investor sentiment– i.e., movements in λBt – have

an ambiguous impact on expected bond returns due to the reflexive nature of credit markets.

Holding fixed expected future debt repayments, more bearish investor beliefs (higher values

of λBt ) lowers bond prices, thereby raising expected bond returns. This is the intuition we

have from standard settings where beliefs do not impact security payoffs. However, there is

a competing effect that arises in our model because investor beliefs about future defaults are

partially self-fulfilling. Specifically, more bearish investor sentiment makes it more diffi cult for

firms to refinance maturing debt, raising the true probability of default and lowering expected

future debt repayments. And, in highly reflexive states where investor beliefs have a large

impact on the true likelihood of default– i.e., where ∂λRt /∂λ
B
t > 0 is large– the latter effect

can outweigh the former. As a result, the total impact of a shift in λBt on expected returns is

ambiguous: depending on which effect dominates, a small increase in λBt can either lead ERt [rt+1]

to rise or fall. Formally, assuming we are at an equilibrium continuity point where ∂λRt /∂λ
B
t

exists,15 we have

∂ERt [rt+1]

∂λBt
=

>0︷ ︸︸ ︷
∂ERt [rt+1]

∂λBt
|λRt =Constant +

<0︷ ︸︸ ︷
∂ERt [rt+1]

∂λRt
×

>0︷︸︸︷
∂λRt
∂λBt

(20)

=
θ (1− η)[
p(λBt , λ

R
t )
]2 [(1− λRt (1− η)

)
−
(
1− λBt (1− η)

) ∂λRt
∂λBt

]
,

which is ambiguous. And, we are more likely to have ∂ERt [rt+1] /∂λBt < 0 in highly reflexive

states where ∂λRt /∂λ
B
t > 0 is large– e.g., near the end of a long credit boom where investors are

still bullish, but default is not yet imminent.

Figure 8 shows the potentially ambiguous relationship between ERt [rt+1] and λBt . The figure

plots ERt [rt+1] and λRt versus λ
B
t using our baseline parameter values for (xt, Ft−1) = (1.6, 3.4),

which is a highly reflexive state. For λBt less than 0.26, λRt rises gradually with λ
B
t and ERt [rt+1]

is increasing in λBt . In this range, the negative effect of λ
B
t on bond price outweighs the positive

effect on λRt . For λ
B
t between 0.26 and 0.32, λRt rises more rapidly with λ

B
t and ERt [rt+1] is

decreasing in λBt : here the positive effect on λRt outweighs the negative effect on price. At

λBt = 0.33, λRt jumps discretely up– the low default probability equilibrium disappears– and

expected returns fall significantly. Returns continue falling until λBt reaches 0.35 after which

they are again increasing.

Our model is also consistent with the multivariate return forecasting regressions emphasized

in Greenwood and Hanson (2013) and López-Salido, Stein, and Zakrajšek (2017). These authors

15As explained in Lemma 1, the derivative ∂λRt /∂λ
B
t > 0 only exists at equilibrium continuity points. At

equilibrium discontinuity points, λRt jumps up discretely in response to a small increase in λ
B
t .
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estimate forecasting regressions of the form:

rt+1 = α + β1 · credit-spreadt + β2 · low-quality-issuancet + ξt+1, (21)

where credit-spreadt is a measure of credit spreads and low-quality-issuancet is an inverse

measure of the creditworthiness of issuing firms. These authors find that β1 > 0 and β2 < 0: all

else equal, future bond returns are high when current credit spreads are wide and are low when

current debt issuers are less creditworthy. While credit spreads, borrower credit quality, and

expected debt returns are endogenous equilibrium outcomes in our model, our model implies

a strong multivariate forecasting relationship of the form found in the data. Specifically, the

model analog of credit-spreadt is 1 − pt = (1− η)
[
θλBt + (1− θ)λRt

]
, and the model analog of

low-quality-issuancet is λ
R
t . Since

ERt [rt+1] ≈ −k · (1− η)θ(λRt − λBt ) = k · [credit-spreadt − (1− η) · low-quality-issuancet] ,

by equation (18) for some constant k > 1, we have β1 ≈ k > 0 and β2 ≈ − (1− η) k < 0.

Intuitively, holding fixed low-quality-issuancet = λRt , higher credit spreads signal higher values of

λBt – i.e., more bearish investor sentiment– and, thus, higher expected bond returns. Conversely,

holding fixed credit spreads, more low-quality-issuancet signals a larger gap between true credit

risk and the risk perceived by investors– i.e., λRt − λCt = θ(λRt − λBt )– and, therefore, lower

expected returns.

We collect these observations in Proposition 3.

Proposition 3 Return predictability. If investor beliefs are fully rational, then bond returns
cannot be predicted. Formally, if θ = 0, then ERt [rt+1] = 0.

If investor beliefs are partially extrapolative, then bond returns are predictable. Specifically,

when θ > 0, ERt [rt+1] is decreasing in λRt − λBt and is equal to zero when λRt − λBt = 0.

• Holding fixed λBt , a small increase in λRt is associated with an increase in ERt [rt+1]. As a

result, if the economy is not at the default boundary at time t, then, all else equal, ERt [rt+1]

is increasing in xt and is decreasing in Ft−1. However, these relationships flip signs when

the economy is at the default boundary.

• Holding fixed xt and Ft−1, a small increase in λ
B
t has an ambiguous effect on ERt [rt+1]:

— In non-reflexive states– where a small increase in λBt has a small effect on λRt – a

small increase in λBt leads to an increase in ERt [rt+1].

— In highly reflexive states– where a small increase in λBt has a large effect on λ
R
t – a

small increase in λBt leads to a decline in ERt [rt+1].
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• We have β1 > 0 and β2 < 0 for the following multivariate regression:

rt+1 = α + β1 · credit-spreadt + β2 · low-quality-issuancet + ξt+1,

where credit-spreadt ≡ 1− pt and low-quality-issuancet ≡ λRt .

Another question we can address is whether rapid credit growth negatively forecasts the

returns on risky bonds and other credit-sensitive instruments documented in Greenwood and

Hanson (2013) and Baron and Xiong (2017) and suggested in Schularick and Taylor (2012).

Assuming that F < Ft−1 + c− xt < F̄ , the change is debt outstanding at time t is

∆Ft =
Ft−1 + c− xt

pt
− Ft−1.

Using Lemma 2, it is straightforward to show that ∂∆Ft/∂xt < 0, ∂∆Ft/∂Ft−1 > 0, and

∂∆Ft/∂λ
B
t > 0 when the economy is not near the default boundary. Combining these results

with those in Proposition 3, one would expect large values of ∆Ft to predict low future values

of rt+1. This occurs because changes in xt and Ft−1 have opposing effects on ERt [rt+1] and ∆Ft.

And, changes in λBt will have opposing effects on ∆Ft and ERt [rt+1] in reflexive states where

∂λRt /∂λ
B
t is large. Thus, one expects the model to yield a negative relationship between ∆Ft

and ERt [rt+1] and, indeed, we confirm this in simulations below.

Forecasting returns and defaults in model simulations. To further explore the model’s

implications for return and default predictability, we first simulate the model for 100,000 periods

using the baseline parameters introduced above; each period represents one year. We then

examine the return and default forecasting regressions using current variables such as credit

growth and sentiment.

Table 3 shows that the model is able to match a number of facts that researchers have

documented about the credit cycle. First, consistent with Proposition 3, a higher level of firm

cash flow (xt) and a lower level of firm debt each positively forecast future bond returns. And,

a lower level of cash flow (xt) and a higher debt both positively forecast future defaults.

Second, consistent with the findings in Greenwood and Hanson (2013) and Barron and Xiong

(2017), recent credit growth negatively forecasts future bond returns: regressing returns over the

next year (rt+1) on the debt growth over the prior four years (Ft − Ft−4) yields a coeffi cient of

−0.04 with an R-squared of 33%. Furthermore, high recent credit growth also positively forecasts

defaults.

Third, credit spreads forecast future bond returns and defaults. Somewhat surprisingly, in

simulations using our baseline parameters, high credit spreads (credit-spreadt = 1−pt) negatively
forecast future bond returns in a univariate regression– i.e., high bond prices predict high future
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returns. However, this is not a robust implication of our model. Indeed, if we increase θ or

σ2
ω, thereby raising the extrapolative component of beliefs or the volatility of sentiment shocks,

this raises the coeffi cient on credit-spreadt, enabling the model to match the positive univariate

forecasting relationship between credit credits and bond returns that we see in the data.16

Fourth, elevated credit market sentiment– here in the sense that λRt − λBt is large– strongly
predicts future returns and future defaults. Since ERt [rt+1] ≈ −k · (1− η)θ(λRt − λBt ), regressing

bond returns over the next year on the current level of sentiment (λRt −λBt ), the model generates

a coeffi cient of −0.34 with an R-squared of 82%. Regressing one-period ahead defaults on the

current level of sentiment, the coeffi cient is 0.90, with an R-squared of 52%. Intuitively, towards

the end of the “calm before the storm”period, sentiment rises because the true default likelihood

increases while the backward-looking extrapolative expectations does not keep pace.

Fifth, the rationally-expected default rate λRt , which can be interpreted as a measure of

low-quality debt issuance (i.e., low-quality-issuancet ≡ λRt ), is a strong negative predictor of

future returns. This is because the backward-looking component of beliefs, λBt , does not move

one-for-one with λRt : the coeffi cient from a regression of λBt on λ
R
t is just 0.39. As a result,

the univariate relationship between expected returns and λRt is strong. By contrast, λ
B
t is a not

a strong univariate predictor of future returns. This is because λRt moves nearly one-for-one

with λBt : the coeffi cient from a regression of λRt on λ
B
t is 0.86, reflecting the reflexivity effect

(∂λRt /∂λ
B
t > 0) that is at the heart of our model. As a result, the univariate relationship between

λBt and future returns rt+1 is weak.17 Furthermore, the large coeffi cient that one obtains from

a regression of λRt on λ
B
t means that backward-looking beliefs are often reasonable, in the sense

that they often correlate with forward-looking beliefs.

Finally, we report the results from multivariate regressions of returns and defaults on both

credit-spreadt ≡ 1 − pt and low-quality-issuancet ≡ λRt . As explained in Proposition 3 and

consistent with Greenwood and Hanson (2013) and López-Salido, Stein, and Zakrajšek (2017),

16The univariate regression coeffi cient of rt+1 on credit-spreadt is:

Cov [rt+1, credit-spreadt]
V ar [credit-spreadt]

≈ k · θ2V ar[λBt − λRt ] + θCov[λBt − λRt , λRt ]

θ2V ar[λBt − λRt ] + 2θCov[λBt − λRt , λRt ] + V ar[λRt ]
.

In our baseline calibration, the coeffi cient is negative because θCov[λBt − λRt , λ
R
t ] < −θ2V ar[λBt − λRt ] < 0.

Furthermore, since

1

k

Cov[rt+1, credit-spreadt]
V ar[credit-spreadt]

+ (1− η) · Cov[Dt+1, credit-spreadt]
V ar[credit-spreadt]

≈ 1,

– i.e., high credit spreads must either predict high returns on bond or high future defaults– the neg-
ative forecasting relationship between credit-spreadt and rt+1 is the mirror image of very strong pos-
itive relatiohsip between credit-spreadt and Dt+1. However, if we increase θ or σ2ω, this tends to
raise Cov [rt+1, credit-spreadt] /V ar [credit-spreadt] and lower Cov [Dt+1, credit-spreadt] /V ar [credit-spreadt],
matching the univariate forecasting relationships like the ones we see in the data.
17Formally, we have Cov[ERt [rt+1], λ

R
t ]/V ar[λRt ] = −k · (1 − η)θ(1 − Cov[λBt , λ

R
t ]/V ar[λRt ]) and

Cov[ERt [rt+1], λ
B
t ]/V ar[λBt ] = −k · (1− η)θ(Cov[λBt , λ

R
t ]/V ar[λBt ]− 1).
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credit spreads positively forecast returns and low-quality issuance negatively predicts returns in

this multivariate specification. Indeed, these two observable variables contain all the information

that is contained in sentiment, λRt − λBt . Furthermore, both spreads and low-quality-issuancet
positively predict future default rates.

4.6 Model-implied impulse-response functions

To further explore the dynamic behavior implied by the model, we report impulse-response

functions which trace out the dynamic impact of shocks to underlying cash flow fundamentals

and investor sentiment. Let zt = (xt, Ft−1, λ
B
t ) denote the model’s state vector and consider

some model-implied quantity yt. The response of yt+j following an impulse εt = sε to cash flow

fundamentals xt at time t is:

Φy (j, zt−1, εt = sε) = ER[yt+j|zt−1, εt = sε]− ER[yt+j|zt−1, εt = 0].

Similarly, the response of yt+j following an impulse ωt = sω to investor sentiment λ
B
t at time t

is:

Φy (j, zt−1, ωt = sω) = ER[yt+j|zt−1, ωt = sω]− ER[yt+j|zt−1, ωt = 0].

Due to the nonlinear nature of the model, these impulse response functions (IRFs) can be asym-

metric in the sense that, for example, Φy (j, zt−1, ωt = −sω) 6= −Φy (j, zt−1, ωt = sω). The IRFs

are also state-contingent in the sense that both Φy (j, zt−1, εt = sε) and Φy (j, zt−1, ωt = sω) de-

pend on the initial condition zt−1.

Figure 9 shows the IRFs for an impulses to cash flows xt and beliefs λ
B
t at time 1.18 The

initial condition in Figure 9 is x0 = 2.25, F−1 = 2.25, and λB0 = 0.30. This is a non-reflexive

region of the parameter space: firm leverage is low and cash flows are strong, so changes in

investor beliefs are unlikely to have a big impact on the true likelihood of default. Nonetheless,

the impulse-responses in Figure 9 are highly asymmetric. Starting from this initial condition,

bad shocks to either fundamentals (a downward shock to firm cash flows xt) or investor beliefs

(an upward shock to the perceived default likelihood λBt ) have a much larger and more persistent

effects on credit market outcomes than good shocks.19

Figure 10 shows the same impulse-response functions starting from an initial condition of

x0 = 1.6, F−1 = 3.4, and λB0 = 0.33. This is a highly reflexive region of the parameter space: the

firm is entering financial distress, so changes in investor beliefs can have a large impact on the

18To compute these IRFs, we shock xt or λ
B
t up or down at t = 1 and then generate 10, 000 random paths

following this shock. We also generate 10, 000 random paths in the absence of a shock at t = 1. The IRF is just
the difference in outcomes between the average path following this shock and the average path in the absence of
a shock.
19Following shocks to sentiment, the saw-tooth patterns arise, even in expectation, because of the jaggedness

of debt outstanding in individual sample paths due to our mechanistic default rule.
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true probability of default. First, consider an impulse to cash flows xt at time 1. Compared to

the responses in Figure 9, the same impulse to fundamentals now has a far larger impact on other

model-implied quantities in Figure 10. In this way, our model naturally captures the fact that the

build up of debt creates fragility as emphasized by Krishnamurthy and Muir (2018). In Figure

10, a positive shock to fundamentals at time 1 often helps avert what would otherwise be a likely

default at time 2. Next, consider a shock to investor beliefs at time 1. In this highly reflexive

region, a shock to investor beliefs has far larger impact on debt accumulation and defaults than

in the less reflexive region shown in Figure 9. (Note the difference in the y-axis scales in Figures

9 and 10.)

5 Model Extensions

In this section, we briefly consider two extensions of the baseline model. The first model extension

allows for opportunistic debt issuance by firms to exploit the mispricing of debt. Under this

extension, credit booms can naturally sow the seeds of their own destruction. The second model

extension features multiple firms who face idiosyncratic cash flow shocks. This extension delivers

more empirically realistic dynamics of the aggregate default rate.

5.1 Opportunistic debt issuance

The first model extension allows for opportunistic debt issuance by firms to exploit the mispricing

of debt. This extension addresses a first limitation of our baseline model: there is no sense in

which a credit boom that is triggered by elevated levels of credit market sentiment naturally sows

the seeds of its own destruction. Instead, all else equal, high levels of credit sentiment– i.e., lower

levels of λBt – always lead to a slower accumulation of debt, reducing the likelihood of a future

crisis.20 However, the boom-bust narratives in Kindleberger (1978) and Minsky (1986) suggest

that one might instead think a large over-valuation of risky debt (i.e., a large gap between λRt
and λBt ) could lead to an opportunistic increase in bond supply from firms– with extrapolative

investors underreacting to the resulting increase in firm leverage, thereby raising the risk of a

future credit crisis.21

As explained in the Appendix, this Minskian dynamic does not occur in our baseline model be-

cause both the demand and supply of bonds are downward-sloping: the non-standard downward-

sloping supply curve arises because the supply of bonds is determined by firms’binding sources-

and-used constraint. Of course, it is precisely the fact that both demand and supply slope

20To see this recall that, assuming that F < Ft−1 + c − xt < F̄ , the change is debt at time t is ∆Ft =
(Ft−1 + c− xt) /pt − Ft−1 which is decreasing in the bond price pt and, thus, increasing in λBt .
21Greenwood and Hanson (2013) introduce an earlier model along these lines, although their model does not

feature reflexivity.

29



downwards that makes investor beliefs potentially self-fulfilling. However, the fact that supply

cannot be upward-sloping precludes the kind of opportunistic supply response that might allow

a credit boom to sow the seeds of its own destruction.

To allow for an opportunistic bond supply by firms, we instead assume that:

Ft =
Ft−1 + c− xt

pt
+M ×

[
pt −

(
1− (1− η)λRt

)]
(22)

=
Ft−1 + c− xt

1− credit-spreadt
+M ×

[
credit-spreadRt − credit-spreadt

]
≈ Ft−1 + c− xt

1− credit-spreadt
− (M/k)ERt [rt+1].

HereM ≥ 0 controls the aggressiveness of firms’opportunistic supply response in response to debt

mispricing, credit-spreadt = 1− pt = (1− η)λCt , credit-spread
R
t = (1− η)λRt , and the final line

follows from the fact that ERt [rt+1] ≈ −k (1− η) θ
(
λRt − λBt

)
= −k×

[
credit-spreadRt − credit-spreadt

]
.

In words, equation (22) says that, all else equal, firms issue more debt when credit spreads

are too low– i.e., when rationally expected returns are low. As discussed in the Appendix,

we can solve for the equilibrium level of λRt as before using equation (13), but now setting

F
(
Ft−1, λ

R
t , λ

B
t , xt

)
to (Ft−1 + c− xt) /p

(
λRt , λ

B
t

)
+M×

[
p
(
λRt , λ

B
t

)
−
(
1− (1− η)λRt

)]
in equa-

tion (10) when F < Ft−1 + c− xt < F̄ .

With this modification, the impact on Ft of a change in λ
B
t has an ambiguous sign. Specifically,

when the firm is nearing default and (Ft−1 + c− xt) /p
(
λRt , λ

B
t

)
is large, a decline in λBt will lower

Ft just as in our baseline model. However, if the opportunistic supply response is suffi ciently

large, then when the firm is far from default and (Ft−1 + c− xt) /p
(
λRt , λ

B
t

)
is small, a decline in

λBt can raise Ft. In other words, favorable credit market sentiment can lead to a boom– rising

debt issuance and a decline in credit quality– that sows the seeds of its own destruction by

increasing future default probabilities.

Using this modified model with M = 5, Figure 11 shows the IRFs for an impulses to cash

flows xt and beliefs λ
B
t . The initial condition is the same as in Figure 9: x0 = 2.25, F−1 = 2.25,

and λB0 = 0.30, which is a non-reflexive region. The responses following an impulse to cash flows

are similar in Figures 9 and 11. However, in Figure 11, firms’opportunistic supply response

means that– in contrast to the baseline IRFs shown in Figure 9– a downward shock to λBt now

triggers an increase in outstanding debt Ft and a rise in the likelihood of a future default crisis.

In summary, firms’opportunistic response to credit market sentiment means that credit booms

have the potential to sow the seeds of their own destruction.
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5.2 Multiple firms

The second model extension features multiple firms who face idiosyncratic cash flow shocks. This

extension addresses a limitation of baseline model which is that, with a single representative firm,

defaults are necessarily binary events. Allowing for multiple firms naturally yields a continuous

default rate for the economy and leads to more realistic model-implied dynamics.

We assume that there are N firms, i = 1, 2, . . . , N . The exogenous cash flow of firm i, xit,

consists of two components:

xit = xt + zit, (23)

where the systematic component xt evolves according to equation (3) and the mean-zero, firm-

specific component zit follows

zit = ψzit−1 + ξit, (24)

where ξit ∼ N (0, σ2
ξ) is i.i.d. over time, independent across firms, and independent of the sys-

tematic cash flow shock (εt) and the aggregate sentiment shock (ωt).

We need to make an assumption about how investors price firms’bonds. For simplicity, we

assume that all firms’bonds are priced identically even though firms have heterogeneous cash

flows and debt levels. This assumption can be seen as a short-hand for the idea that investors

cannot perfectly observe each firm’s cash flow xit and leverage Fit−1 and treat some class of firms

as a homogeneous category. The rule for firm default is similar to that in the baseline model: if

at any time t, Fit−1 +c−xit rises above F̄ , then firm i defaults at time t. Thus, the law of motion

for each firm’s outstanding bonds Fit is similar to the baseline model. Specifically, we have

Fit = F
(
Fit−1, λ

B
t , λ

R
t , xit

)
=


F/p(λBt , λ

R
t ) if Fit−1 + c− xit ≤ F

(Fit−1 + c− xit)/p(λBt , λRt ) if F < Fit−1 + c− xit < F̄

η(Fit−1 + c− xit)/p(λBt , λRt ) if F̄ ≤ Fit−1 + c− xit
,

(25)

where

p(λBt , λ
R
t ) =

[
1− (1− η)λRt

]
+ (1− η)θ(λRt − λBt ) (26)

is the price of corporate bonds.

With multiple firms, the two components of investor beliefs λBt and λ
R
t are specified as follows.

Let Dit = 1{Fit−1+c−xit≥F̄} be an binary variable indicating whether firm i defaults at time t and

let Dt = N−1
∑N

i=1 Dit denote the economy-wide default rate at time t. We then assume that

λBt = max
{

0,min
{

1, βλBt−1 + αDt + ωt
}}
, (27)
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and

λRt = g(λRt |{Fit−1}Ni=1, {zit}Ni=1, xt, λ
B
t ) (28)

≡ 1

N

N∑
i=1

Φ

F (Fit−1, λ
B
t , λ

R
t , xit)− F̄ + c− ρxt − (1− ρ)x̄− ψzit√

σ2
ε + σ2

ξ

 .
Thus, the law of motion for λBt with multiple firms in equation (27) is analogous to that with a

representative firm in (11) with the continuous economy-wide default rate Dt ∈ [0, 1] replacing

the binary default indicatorDt ∈ {0, 1} for the representative firm. For instance, assuming ωt = 0

and λt ∈ (0, 1), we have λBt −λBt−1 = αDt− (1− β)λBt−1, so λ
B
t R λBt−1 as Dt R [(1− β) /α] ·λBt−1.

And, by equation (28), λRt is the rationally-expected economy-wide default rate at at time t+1–

i.e., λRt = ERt
[
Dt+1

]
.

We make three observations regarding the setup with multiple firms. First, just as in the

baseline model, equations (25) and (28) imply that the right hand side of (28) can be viewed as a

continuous function of λRt that maps the unit interval into itself. Therefore, by Brouwer’s fixed-

point theorem, a solution exists. But, in addition to xt and λ
B
t , the distributions of {Fit−1}Ni=1

and {zit}Ni=1 now impact λ
R
t . Nonetheless, the behavior of λ

R
t with multiple firms is qualitatively

similar to that described in Lemma 2 for a single representative firm. Second, equations (27)

and (28) imply that there is belief contagion: the past defaults and likely future defaults of each

firm affect the bond price that applies to all firms. Third, one consequence of having firms with

different cash flow and debt levels is that, at each point in time, only a fraction of firms is close

to default. This makes it more diffi cult for the multiple equilibria described in Section 3 to arise.

The model with multiple firms yields similar qualitative implications to the baseline model

featuring a single representative firm, albeit with more realistic time-series dynamics. For in-

stance, the model with multiple firms still features the “calm before the storm” and “default

spiral”phenomena. Similarly, since the realized return on an equal-weighted portfolio of risky

bonds from time t to t+ 1 is

rt+1 =
1− (1− η)Dt+1

p(λBt , λ
R
t )

− 1, (29)

and, since ERt
[
Dt+1

]
= λRt , we have

ERt [rt+1] =
1− (1− η)λRt
p(λBt , λ

R
t )

− 1 =
−(1− η)θ(λRt − λBt )

1− (1− η)λRt + (1− η)θ(λRt − λBt )
, (30)

just as in the baseline model. Thus, the model with multiple heterogeneous firms has similar

qualitative implications for bond return predictability as the baseline model with a representative

firm.

Quantitatively, however, the model with multiple heterogeneous firms leads to more realistic
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time-series dynamics. To illustrate, Panel A of Figure 12 reports a sample path of the model

with N = 100 firms. As a comparison, Panel B of Figure 12 plots the sample path using the

same aggregate cash flow shocks and sentiment shocks but with a single representative firm.

As can be seen, the dynamics of the economy-wide aggregates from the model with multiple

heterogeneous firms are more empirically realistic than their counterparts from the model with

a single representative firms.

In the example shown in Panel A of Figure 12, after staying above the long-run mean x̄ for

many periods, cash flow fundamentals xt begin to deteriorate in period 32. The actual default

rate stays lows for one more period– a “calm before the storm” period– and then starts to

rise in period 34. Furthermore, there is a clear lead-lag structure between the rational and the

behavioral components of investor beliefs: λRt responds to deteriorating market fundamentals

in period 34 while λBt only responds several periods later. Similarly, λ
R
t responds to improving

market fundamentals in period 41 while λBt stays high for several more periods. Overall, the

presence of multiple firms makes the rational and the behavioral components of investor beliefs

more synchronized: in this example, the time-series correlation between λRt and λ
B
t increases

from 30% in the single firm case (Panel B) to 69% in the multiple firm case (Panel A).

6 Conclusion

We present a model of credit market cycles in which investors extrapolate past defaults. Our key

contribution is to model reflexivity in credit markets, an endogenous two-way feedback between

biased investor beliefs and credit market outcomes. This feedback mechanism is particularly

germane in credit markets, because firms must return to the market to refinance maturing debts,

and the terms on which debt is refinanced will impact the likelihood of future default.

As we have shown, the combination of extrapolative beliefs and reflexive dynamics can lead to

large short-run disconnects between cash flow fundamentals and credit market outcomes, includ-

ing “calm before the storm”and “default spiral”episodes. Extrapolative beliefs also naturally

lead to bond return predictability. But what is most striking here is that changes in investor

sentiment can have an ambiguous impact on expected bond returns due to the reflexive nature of

credit markets. When investors become more bullish, in the short run this can predict positive

returns, even if at longer horizons expected returns become more negative.

Our analysis leaves open at least two areas for further analysis. First, we have not allowed

conditions in credit markets to explicitly affect the underlying cash flow fundamentals of the

economy. Specifically, as demonstrated by a growing macro-finance literature, the inability to

access credit on reasonable terms following a credit market bust may exacerbate an incipient

economic downturn. Relatedly, according to Austrian accounts of the credit cycles, as the credit

boom grows, increasing amounts of capital are devoted to poor quality projects to the detriment
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of future macroeconomic fundamentals. Indeed, López-Salido, Stein, and Zakrajšek (2017) and

Mian, Sufi, and Verner (2017) show that periods of credit market overheating forecast low eco-

nomic growth. Incorporating these features into our model would likely further strengthen the

feedback loop between investor sentiment and credit market outcomes.

Second, we have been silent on issues of welfare and optimal policy, even though our model

suggests a potential role for policy. During credit booms, high sentiment can prevent defaults

from occurring in the near future, which can be welfare-improving if fundamentals recover soon

enough. Nonetheless, self-fulfilling beliefs during default spirals can be welfare-reducing, both

because these deteriorating beliefs accelerate future default realizations and because they lead to

a slow recovery in the presence of improving fundamentals. Accepting this at face value suggests

a role for policy in moderating investor beliefs.
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A Proofs

Proof of Lemma 1: Since β < 1, λBt weakly declines if there is no default at time t and the
decline is strict if λBt−1 > 0.
How do extrapolative beliefs typically react to a default at time t– i.e., if Dt = 1 and ωt = 0?

In this case, λBt = min
{

1, βλBt−1 + α
}
> 0. If α ≥ (1− β), λBt weakly increases following a default

and the increase is strict if λBt−1 < 1. Specifically, if λBt < 1, then λBt −λBt−1 = α−(1− β)λBt−1 > 0
for all λBt−1 ∈ [0, 1) since α ≥ (1− β). By contrast, if λBt = 1, then we trivially have λBt −λBt−1 > 0
for all λBt−1 ∈ [0, 1). Thus, if α ≥ (1− β), extrapolative beliefs will converge to λBt = 1 following
a long sequence of defaults.
By contrast, if α < (1− β), extrapolative beliefs will not always become more pessimistic

following a default. Specifically, if Dt = 1 and ωt = 0, then we have λBt ≷ λBt−1 as λ
B
t−1 ≶

α/ (1− β) and extrapolative beliefs will converge to λBt = α/ (1− β) < 1 following a a long
sequence of defaults.

Proof of Lemma 2: First, assume that the economy is not near the default boundary
Ft−1 + c − xt = F̄ , so small changes in Ft−1 and xt do not affect whether there is a default
or the firm pays dividends at time t. Suppose that we are at an equilibrium continuity point
where the smallest solution to λRt = g(λRt |Ft−1, λ

B
t , xt) is a continuous and differentiable function

of Ft−1, λ
B
t , xt. (g(λRt |Ft−1, λ

B
t , xt) is continuous, but not differentiable in Ft−1 at the dividend

payout boundary F = Ft−1 + c− xt.) At such a continuity point, for any zt ∈
{
Ft−1, λ

B
t , xt

}
, we

have λRt /∂zt = [∂g(·)/∂zt]/[1 − ∂g(·)/∂λRt ]. At a stable equilibrium we have ∂g(·)/∂λRt < 1, so
this has the same sign as ∂g(·)/∂zt. This argument shows that ∂λRt /∂Ft−1 > 0, ∂λRt /∂λ

B
t > 0,

and ∂λRt /∂xt < 0. There are also equilibrium discontinuity points where the number of solutions
to the fixed-point problem changes and the smallest solution discretely jumps. Although λRt is
not a continuous function of Ft−1, λ

B
t , xt at these equilibrium discontinuity points, the signs

of discrete jumps in λRt at these points will have the same signs as the partial derivatives at
equilibrium continuity points. For instance, an small increase in xt shifts the g(λRt |·) function
down for all λRt . At an equilibrium continuity point where the relevant partial derivative is well-
defined, this results in a small decline in λRt . At an equilibrium discontinuity point where the
relevant partial derivative is not well-defined, this results in a discrete downward jump in λRt .
Second, assume that we are near the default boundary. At the default boundary the deriva-

tives with respect to Ft−1 and xt are undefined. Near the default boundary, a small increase in
Ft−1 can trigger a default at time t, resulting in a discrete downward jump in λ

R
t . Similarly, a

small increase in xt can avert a default at time t, resulting in a discrete upward jump in λ
R
t .

Proof of Proposition 1 (Calm Before the Storm): We compare two sample paths,
denoted L and H, that differ only in their initial levels of λBt . Specifically, suppose that λ

B
t (L) <

λBt (H). Because shocks to cash flows and sentiment are exogenous, we have xt+j (L) = xt+j (H)
and ωt+j (L) = ωt+j (H) for all j ≥ 0. Because λRt and Ft are always increasing in λ

B
t , we have

λRt (L) < λRt (H) and Ft (L) < Ft (H). Since Ft (L) < Ft (H), if there is a default at time t + 1
in the L path, then there is also a default at time t + 1 in the H path. However, we can have
default in the H path, but not in the L path at time t+ 1.
Assume that there is no default at time t + 1 along either the L or H paths. Then we have

λBt+1 (L) ≤ λBt+1 (H) by equation (11) and the equality is strict so long as 0 < λBt+1 (H). Since λRt+1

and Ft+1 are increasing in λ
B
t+1 and Ft, it also follows that λ

R
t+1 (L) ≤ λRt+1 (H) and Ft+1 (L) ≤
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Ft+1 (H) and these inequalities are strict when 0 < λBt+1 (H). Since Ft+1 (L) ≤ Ft+1 (H), if the
first default occurs at time t+ 2 in the L path, then first default also occurs at time t+ 2 in the
H path. However, we can have default in the H path, but not in the L path at t+ 2.
Proceeding inductively in this fashion, we see that, so long as there is no default along either

path by time t + j, we have λBt+j (L) ≤ λBt+j (H) and Ft+j (L) ≤ Ft+j (H) and these inequalities
are strict when λBt+j (H) > 0. Thus, lowering the default rate λBt weakly delays the next future
default stochastic path by stochastic path. And, averaging across these paths, lowering the
default rate λBt strictly delays the next default in expectation.

Proof of Proposition 2 (Default Spiral): Since pt ≥ η, if there is a default at time t (i.e.,
Dt = 1) we have Ft = η (Ft−1 + c− xt) /pt ≤ Ft−1 +c−xt. Thus, if Dt = 1 and xt > c, we always
have Ft < Ft−1. By contrast, ifDt = 1 and xt < c, we have Ft > Ft−1 if (c−xt)/ (pt/η − 1) > Ft−1

and Ft < Ft−1 if (c− xt)/ (pt/η − 1) < Ft−1.
Next, note that

λRt = Φ

 OtF+(1−Ot)(1−Dt(1−η))(Ft−1+c−xt)
1−(1−η)θλBt −(1−η)(1−θ)λRt

+ c− F̄ − ρxt − (1− ρ)x̄

σε


where Dt = 1{Ft−1+c−xt≥F̄} and Ot = 1{Ft−1+c−xt≤F}. Thus, we have

∂λRt
∂θ

=
∂g
(
λRt |·

)
/∂θ

1− ∂g
(
λRt |·

)
/∂λRt

= φ (·)

OtF+(1−Ot)(1−Dt(1−η))(Ft−1+c−xt)
[1−(1−η)θλBt −(1−η)(1−θ)λRt ]

2

1− ∂g
(
λRt |·

)
/∂λRt

(1− η)
(
λBt − λRt

)
σε

∝
(
λBt − λRt

)
where φ (·) is the standard normal density evaluated at the argument given in the previous
equation. Thus, λRt is increasing in θ when λ

B
t − λRt > 0.

We have assumed that (i) Ft−1 + c − xt ≥ F̄ , so Dt = 1; (ii) α > (1− β) and ωt = 0; (iii)
λBt−1 ≥ λRt−1; and (iv) xt = xt−1 = x > c. Since α > (1− β), Dt = 1, and ωt = 0, we have λBt ≥
λBt−1. Since pt (θ) ≥ η and xt > c we have Ft (θ) = η(Ft−1 + c− xt)/pt (θ) ≤ Ft−1 + c− xt < Ft−1.
Thus, since xt = xt−1, we have

λRt (θ) = Φ

(
Ft (θ)− F̄ + c− ρxt − (1− ρ)x̄

σε

)
< Φ

(
Ft−1 − F̄ + c− ρxt−1 − (1− ρ)x̄

σε

)
= λRt−1

irrespective of the value of θ ∈ [0, 1]. Thus, we have λBt ≥ λBt−1 ≥ λRt−1 > λRt (θ) irrespective of θ,
so we have ∂λRt (θ) /∂θ > 0 and

∂λCt (θ)

∂θ
=
(
λBt − λRt (θ)

)
+ (1− θ) ∂λ

R
t (θ)

∂θ
> 0.

In other words, both the rational component and the combined belief become more pessimistic
as the fraction of backward-looking beliefs rises.
Since ∂λCt (θ) /∂θ > 0, it then follows that ∂pt (θ) /∂θ < 0 and ∂Ft (θ) /∂θ > 0. Thus, a larger

extrapolative component of beliefs lowers prices and slows the process of debt discharge in the
event of default, increasing the chances of subsequent defaults. Indeed, for any θ > 0, we have
λRt (θ) > λRt (0) .
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Model with opportunistic supply response: Assuming the firm does not default or pay
dividends at time t, one can think of the baseline model as reflecting the interplay between the
demand and supply for risk bonds:

Demand for bonds : pDt = 1− (1− η)θλBt − (1− η) (1− θ) Φ

(
Ft + c− F̄ − ρxt − (1− ρ)x̄

σε

)
Supply of bonds: pSt =

Ft−1 + c− xt
Ft

,

where Ft is the quantity of risky bonds issued at time t. We have ∂pDt /∂Ft < 0, so the demand for
bonds is downward sloping as is standard. (Here this works through a change in fundamentals:
the default probability increases as debt outstanding rises.) However, we also have ∂pSt /∂Ft < 0:
supply is also downward sloping, which is non-standard. This is because the supply of bonds
is determined by firms’binding sources-and-used constraint. Of course, it is the fact that both
demand and supply slope downwards that makes investor beliefs potentially self-fulfilling. How-
ever, the fact that supply cannot be upward-sloping precludes the kind of opportunistic supply
response that might might allow a credit boom to sow the seeds of its own destruction.
Once we introduce a opportunistic debt supply response, the equilibrium value of λRt must

solve the following fixed-point problem:

λRt = gopp(λ
R
t |Ft−1, λ

B
t , xt) ≡ Φ

(
Fopp(Ft−1, λ

B
t , λ

R
t , xt) + c− F̄ − ρxt − (1− ρ)x̄

σε

)
.

Here

Fopp(Ft−1, λ
B
t , λ

R
t , xt) =


F/p(λBt , λ

R
t ) if Ft−1 + c− xt ≤ F

(Ft−1 + c− xt)/p(λBt , λRt )
+M ×

[
p(λBt , λ

R
t )−

(
1− (1− η)λRt

)] if F < Ft−1 + c− xt < F̄

η(Ft−1 + c− xt)/p(λBt , λRt ) if F̄ ≤ Ft−1 + c− xt

,

where M ≥ 0 controls the aggressiveness of the corporate supply response to debt mispricing.
Unlike in the baseline model where M = 0, gopp(λ

R
t |Ft−1, λ

B
t , xt) need not be monotonically

increasing in λRt when M > 0. However, for a given value of
(
Ft−1, λ

B
t , xt

)
, g(λRt |Ft−1, λ

B
t , xt) is

still a continuous function that maps the unit interval into itself– i.e., g(λRt |Ft−1, λ
B
t , xt) ∈ [0, 1]

for any λRt ∈ [0, 1]– so a fixed point always exists by Brouwer’s fixed-point theorem. As in the
baseline model, we select the smallest λRt that solves λ

R
t = gopp(λ

R
t |Ft−1, λ

B
t , xt).

Let Ft denote the equilibrium level of debt at time t. Holding λRt fixed, we now have

∂Ft

∂λBt
= (1− η) θ

(
Ft−1 + c− xt[

1− (1− η)λRt + (1− η) θ
(
λRt − λBt

)]2 −M
)
.

The size of ∂Ft/∂λ
B
t is ambiguous when M > 0. And, holding fixed λBt , we have

∂Ft

∂λRt
= (1− η)

(
(1− θ) Ft−1 + c− xt[

1− (1− η)λRt + (1− η) θ
(
λRt − λBt

)]2 + θM

)
> 0.
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Thus, we have

δFt

δλBt
=

+︷︸︸︷
∂Ft

∂λRt
×

+︷︸︸︷
∂λRt
∂λBt

+

??︷︸︸︷
∂Ft

∂λBt

= (1− η)
Ft−1 + c− xt[

1− (1− η)λRt + (1− η) θ
(
λRt − λBt

)]2
>0︷ ︸︸ ︷[

(1− θ) ∂λ
R
t

∂λBt
+ θ

]

+ (1− η) θM

??︷ ︸︸ ︷[
∂λRt
∂λBt

− 1

]
.

Thus, the sign of δFt/δλ
B
t can vary across the parameter space when M > 0. Specifically, for

suffi ciently large M , we will have δFt/δλ
B
t < 0 in good times when Ft−1 + c − xt is small and

∂λRt /∂λ
B
t is small. Here the opportunistic respond dominates and supply is upward sloping. By

contrast, we will have δFt/δλ
B
t > 0 in bad times when Ft−1 + c − xt is large and ∂λRt /∂λBt is

large. Here supply is downward sloping.
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Figure 1. The credit cycle.  
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Figure 2. The credit market cycle. Panel A plots the year-over-year growth in real GDP and the 
year-over-year growth in real credit outstanding (defined as the sum of loans and bonds) to 
nonfinancial corporate businesses from the Federal Reserve’s Financial Accounts of the United 
States. Panel B plots real year-over-year credit growth versus the corporate credit spread, 
measured as the yields on Moody’s seasoned Baa corporate bond yield minus the 10-year constant 
maturity Treasury yield.  

Panel A: Credit growth and GDP growth 
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Figure 3. Real GDP growth and credit growth as a function of business cycle expansion quarter. 
This figure plots real GDP growth and real credit growththe growth in real nonfinancial 
corporate loans and bonds from the Financial Accounts of the United Statesas a function of 
NBER business cycle expansion quarter. Data are 1952-2016. 
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Figure 4. Simulated data using baseline parameter values. This figure shows a typical path of 
simulated data using our baseline set of parameter values in which beliefs are partially backward-
looking and partially forward-looking (θ = 0.5). Specifically, the baseline parameters are x = 2.4, 
ρ = 0.8, σε = 0.5, c = 2, F = 1.5, F = 5, η = 0.5, β = 0.8, α = 0.2, σω = 0.05, and θ = 0.5. We plot 
the evolution of cash flow (xt), debt outstanding (Ft), the default indicator (Dt), bond prices (pt), 
rational forward-looking beliefs about future defaults ( ),R

tλ and extrapolative backward-looking 
beliefs about future defaults ( ).B

tλ  Each period represents one year. 
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Figure 5. Reflexive regions. This figure illustrates the existence of reflexive regions our model. The heatmap in Panel A plots R
tλ vs.

1,( )t tx F −  for B
tλ = 0.2. The heatmap in Panel B plots /R B

t t∂λ ∂λ vs. 1,( )t tx F −  for B
tλ = 0.2. (The dashed white line in Panels A and B is the 

default boundary at time t.) Finally, Panel C plots R
tλ and /R B

t t∂λ ∂λ vs. 1tF − for B
tλ = 0.2 and xt = 1. (The vertical black line is the default 

boundary at time t.) The model parameters are the same as those in Figure 4. 

Panel A: 
R
tλ vs. 1,( )t tx F −  for B

tλ = 0.2 
Panel B: 

/R B
t t∂λ ∂λ  vs. 1,( )t tx F −  for B

tλ = 0.2 

  
Panel C: 

R
tλ and /R B

t t∂λ ∂λ vs. 1tF −  for B
tλ = 0.2 and xt = 1 
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Figure 6. Calm before the storm. This figure illustrates the “calm before the storm” phenomenon. 
The figure depicts sample paths of the model with cash flows initially set to x0 = 1.5 < 2 = c and 
debt initially set to F0 = 3.5. We compare the model dynamics starting from a low initial value of 

0 ( )B Lλ = 0.15 and a high initial value 0 ( )B Hλ = 0.3. We assume all subsequent shocks are zero (εt = 
ωt = 0). We separately plot the dynamics for various values of θ = 0.5 and θ = 1. Otherwise, the 
model parameters are the same as those in Figure 4. Specifically, we set x = 2.4, ρ = 0.8, c = 2, F 
= 1.5, F = 5, η = 0.5, β = 0.8, and α = 0.2. 

Panel A: θ = 0.5 
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Figure 7. Model-implied path of credit spreads around a financial crisis. This figure shows the 
model-implied expected path of credit spreads in “event time” conditional on the onset of a crisis 
at time τ = 0. Specifically, using 100,000 periods of simulated data assuming our baseline set of 
parameters, we estimate regressions of the form: 

{ }1(1 )
t

T
tD

Y
t T

a b e
+ττ =τ=−

=−η λ + +∑ 1 , 

for { }, , .Y B R C∈ We plot the bτ coefficients versus event time τ below. Since θ = 0.5 in our baseline 
parameters, the coefficients for 1( ) C

t−η λ are a 50:50 mixture of the coefficients for 1( ) R
t− η λ and

1 .)( t
Bη− λ  
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Figure 8. Impact of backward-looking beliefs on the true default probability and expected returns. 
This figure plots the true default probability R

tλ (blue) and rationally-expected returns 1][R
t tr + (red) 

against backward-looking beliefs B
tλ in a highly reflexive region of the state spacei.e., a region 

where /R B
t t∂λ ∂λ is large so changes in beliefs have a large impact on future defaults. Specifically, we 

set xt = 1.6 < 2 = c and Ft−1= 3.4. The other model parameters are the same as those in Figure 4: 
x = 2.4, ρ = 0.8, σε = 0.5, c = 2, F = 1.5, F = 5, η = 0.5, β = 0.8, α = 0.2, σω = 0.05, and θ = 0.5.   
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Figure 9. Model-implied impulse response functions in a non-reflexive region. The top panel shows 
the responses following a 0.5 up or down impulses to cash flows (xt) at t = 1. The bottom panel 
shows the responses following a 0.25 up or down impulses to backward-looking beliefs ( )B

tλ at t = 
1. The initial condition in both cases is x0 = 2.25, F−1 = 2.25, and 0

Bλ = 0.30. The model parameters 
are the same as those in Figure 4. Specifically, the model parameters are x = 2.4, ρ = 0.8, σε = 
0.5, c = 2, F = 1.5, F = 5, η = 0.5, β = 0.8, α = 0.2, σω = 0.05, and θ = 0.5.   
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Figure 10. Model-implied impulse response functions in a reflexive region. The top panel shows 
the responses following a 0.5 up or down impulses to cash flows (xt) at t = 1. The bottom panel 
shows the responses following a 0.25 up or down impulses to backward-looking beliefs ( )B

tλ at t = 
1. The initial condition in both cases is x0 = 1.6, F−1 = 3.4, and 0

Bλ = 0.33. The model parameters 
are the same as those in Figure 4. Specifically, the model parameters are x = 2.4, ρ = 0.8, σε = 
0.5, c = 2, F = 1.5, F = 5, η = 0.5, β = 0.8, α = 0.2, σω = 0.05, and θ = 0.5.   
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Figure 11. Allowing for an opportunistic supply response: Model-implied impulse response 
functions in a non-reflexive region. The top panel shows the responses following a 0.5 up or down 
impulses to cash flows (xt) at t = 1. The bottom panel shows the responses following a 0.25 up or 
down impulses to backward-looking beliefs ( )B

tλ at t = 1. The initial condition in both cases is x0 
= 2.25, F−1 = 2.25, and 0

Bλ = 0.30. The market timing parameter is set to M = 5. Otherwise, the 
model parameters are the same as those in Figure 4. Specifically, the model parameters are x = 
2.4, ρ = 0.8, σε = 0.5, c = 2, F = 1.5, F = 5, η = 0.5, β = 0.8, α = 0.2, σω = 0.05, and θ = 0.5.   
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Figure 12. Simulated data with multiple firms. Panel A shows a typical path of simulated data 
for multiple firms (N = 100). Panel B shows the analogous simulation for a representative firm 
using the exact same time series of aggregate cash flow shocks and sentiment shocks as those in 
Panel A. For Panel A, the initial state of the economy is 0

Bλ = 0.2, x0 = 2, z0 = 0, and Fi0 = 4 for all 
i. For Panel B, the initial state of the economy is 0

Bλ = 0.2, x0 = 2, and F0 = 4. In both panels, the 
model parameters are x = 2.4, ρ = 0.8, σε = 0.5, c = 2, F = 1.5, F = 5, η = 0.5, β = 0.8, α = 0.2, σω 

= 0.05, and θ = 0.5. In the Panel A, we also assume that ψ = 0.8 and σξ = 0.25. 

Panel A: Multiple firms (N = 100) 

 

Panel B: Representative firm 
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Table 1. Credit market overheating and future corporate bond returns. This table presents time-
series regressions of the form: 

,HY
t t k t t t krx Overheatina egb→ + → += + +⋅  

where Overheatingt is a proxy for credit market overheating in year t. The data begins in 1983 
and ends in 2014. The dependent variable is the cumulative k = 2- or 3-year excess return on 
high-yield bonds over like-maturity Treasuries. HYSt is the fraction of nonfinancial corporate bond 
issuance with a high-yield rating from Moody’s, as defined in Greenwood and Hanson (2013). 
Credit Growtht is the percentage change in outstanding corporate credit and is computed using 
Table L103 from the Flow of Funds. Easy Creditt is the three-year average of the percentage of 
bank loan officers reporting a loosening of commercial lending standards from the Federal 
Reserve’s Senior Loan Office Opinion Survey. −1 × EBPt is negative one times the excess bond 
premium from Gilchrist and Zakrajšek (2012). t-statistics for k-period forecasting regressions (in 
brackets) are based on Newey-West (1987) standard errors, allowing for serial correlation up to 
k-lags.  

 (1) (2) (3) (4) (5) (6) (7) (8) 

 2-year future excess returns: 𝑟𝑟𝑟𝑟𝑡𝑡→𝑡𝑡+2𝐻𝐻𝐻𝐻  3-year future excess returns: 𝑟𝑟𝑟𝑟𝑡𝑡→𝑡𝑡+3𝐻𝐻𝐻𝐻  

log(HYSt) −15.95    −18.63     
[−3.06] 

   
[−3.78] 

   

Credit Growtht  −126.50    −158.02   
 

 
[−2.28] 

   
[−2.86] 

  

Easy Creditt   −0.57    −0.80  
 

  
[−2.12] 

   
[−4.03] 

 

−1 × EBPt    −19.29    −24.72 

 
   

[−2.43] 
   

[−4.79] 

Constant −15.67 11.46 −0.27 3.25 −17.54 14.93 −1.26 4.51 

 [−2.18] [3.85] [−0.06] [0.94] [−2.29] [4.42] [−0.21] [1.15] 

N 29 29 20 29 28 28 19 28 

R-squared 0.20 0.11 0.20 0.20 0.25 0.16 0.38 0.32 
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Table 2. Credit market overheating and current and past default rates. This table presents the 
results from estimating time-series regressions of the form: 

1 ,t t t tDOverh n ef Def eeati g a b c −⋅ ⋅= + + +  

where Def denotes the default rate on speculative grade bonds and Overheating is a measure of 
credit market overheating. The data begins in 1983 and ends in 2014. HYSt is the fraction of 
nonfinancial corporate bond issuance with a high-yield rating from Moody’s, as defined in 
Greenwood and Hanson (2013). Credit Growtht is the percentage change in outstanding corporate 
credit and is computed using Table L103 from the Flow of Funds. Easy Creditt is the three-year 
average of the percentage of bank loan officers reporting a loosening of commercial lending 
standards from the Federal Reserve’s Senior Loan Office Opinion Survey. −1 × EBPt is negative 
one times the excess bond premium from Gilchrist and Zakrajšek (2012). t-statistics (in brackets) 
are based on Newey-West (1987) standard errors, allowing for serial correlation up to 3-lags.  

 

 Dependent variable: 

 (1) (2) (3) (4) 

 log(HYSt) Credit Growtht Easy Creditt −1 × EBPt 

     
Deft −0.113 −0.005 −3.425 −0.104  

[−2.21] [−1.22] [−11.19] [−4.98] 

Deft−1 0.009 −0.008 −2.152 0.021  
[0.44] [−3.47] [−4.24] [0.96] 

Constant −0.734 0.118 18.076 −0.36  
[−3.47] [7.92] [4.58] [−2.21] 

N 31 31 22 30 

R-squared 0.400 0.436 0.813 0.426 
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Table 3. Return and default forecasting results via model simulations. This table reports univariate and multivariate forecasting 
regressions for cumulative returns (1 through 5 years) and cumulative number of defaults (1 through 5 years). These regressions are 
estimated using 100,000 periods of simulated model data; each period represents one year. Numbers in percentage are the adjusted R-
squared. The model parameters are the same as those in Figure 4. Specifically, the model parameters are x = 2.4, ρ = 0.8, σε = 0.5, c = 
2, F = 1.5, F = 5, η = 0.5, β = 0.8, α = 0.2, σω = 0.05, and θ = 0.5.   

  Panel A: Return forecasting  Panel B: Default forecasting 

 Univariate forecasting 1-yr 2-yr 3-yr 4-yr 5-yr  1-yr 2-yr 3-yr 4-yr 5-yr 
(1) Cashflow (xt) 0.04 0.07 0.09 0.11 0.12  −0.19 −0.37 −0.53 −0.69 −0.84 
  12% 18% 19% 18% 16%  24% 30% 32% 32% 32% 

(2) Debt face value (Ft) −0.02 −0.02 −0.03 −0.03 −0.03  0.13 0.23 0.32 0.41 0.49 
  15% 13% 10% 7% 5%  65% 69% 68% 65% 63% 

(3) Debt growth (Ft − Ft−4) −0.04 −0.06 −0.07 −0.08 −0.09  0.11 0.17 0.22 0.28 0.33 
  33% 32% 30% 27% 24%  22% 17% 16% 14% 13% 

(4) Credit spreads (1 − pt) −0.37 −0.38 −0.39 −0.35 −0.29  2.49 4.06 5.61 7.01 8.29 
  21% 11% 7% 4% 2%  83% 76% 72% 68% 64% 

(5) Sentiment )( R B
t tλ λ−  −0.34 −0.37 −0.42 −0.46 −0.48  0.90 1.10 1.37 1.61 1.84 

  82% 49% 40% 33% 27%  52% 26% 20% 17% 15% 

(6) Rational beliefs ( )R
tλ  −0.22 −0.23 −0.25 −0.25 −0.25  1.00 1.51 2.03 2.51 2.94 

  51% 29% 21% 15% 10%  96% 74% 67% 62% 57% 

(7) Extrapolative beliefs ( )B
tλ  0.02 0.04 0.07 0.12 0.18  0.86 1.68 2.43 3.11 3.73 

  0% 0% 1% 2% 2%  32% 42% 44% 43% 42% 
       

      
 Multivariate forecasting 1-yr 2-yr 3-yr 4-yr 5-yr  1-yr 2-yr 3-yr 4-yr 5-yr 

(1) Credit spreads (1 − pt) 1.24 1.41 1.72 2.02 2.32  0.00 2.36 4.15 5.79 7.25  
Low-quality-issuance ( )R

tλ  −0.65 −0.72 −0.85 −0.95 −1.05  1.00 0.69 0.59 0.49 0.42 
  82% 49% 40% 33% 27%  96% 78% 73% 68% 64% 

 


