## Adjustment on the Margin

Evaluating emissions reduction policies in the face of short-run adjustment costs

#### James Archsmith<sup>1</sup>

<sup>1</sup>University of Maryland, AREC

#### NBER Electricity Markets Workshop May 29, 2019

- Explicit goal of energy/renewables policy is to reduce carbon dioxide (CO<sub>2</sub>) and local criteria pollutant (LCP) emissions
- **2** Policy instruments take many forms (RPS, storage mandates, DR)
- Setting optimal policy requires understanding how emissions will change
- Often rely on ex ante or ex post estimates of marginal emissions factors (MEFs)

- Extend methods for computing MEFs ex post
- Account for the impact of foreseeable, short run adjustment in output by FF generation (ramping)
- Ignoring ramping effects
  - Overstates the emissions benefits of new solar PV
  - **2** Understates the emissions benefits of electricity storage

# GZKM (2014) MEF WECC Interconnection

Marginal CO<sub>2</sub> Emissions Factor - WECC



4

# GZKM (2014) MEF MRO Region

Marginal CO<sub>2</sub> Emissions Factor - MRO



# Adjustment impacts vehicle fuel efficiency



Source: fueleconomy.gov

Archsmith (UMD AREC)

Adjustment on the Margin

-

イロト 不得下 イヨト イヨト

## Adjustment impacts power plant efficiency



- Emissions depend on both the level and change in demand
- Past and expected future states matter
- Particularly important for policies that alter the *pattern* of demand falling on FF generators
  - e.g., Solar PV, electricity storage, CPP, demand response
  - **②** Consider the impacts of predictable, short run changes in demand on emissions

- Small component of overall emissions
- 2 Large factor on the margin
- Median ERCOT load: 38,770 MW
- Median ERCOT hourly change in load: 1,079 MW
- In MW represents 0.025% of median load but 1% of ramp

- Incremental changes to generation will impact the margin
- e New solar PV
  - Reduces the level of fossil fuel generation
  - Increases hour-to-hour change in fossil fuel generation
- O New electricity storage
  - Time-shifts levels of fossil fuel generation
  - ② Can reduce hour-to-hour change in fossil fuel generation
- Oemand and supply-side policies can target level and/or ramp

- Electricity hourly supply and demand (EIA-930)
- Por each lower-48 balancing authority
  - Demand, generation, and interchange
  - Ø Day-ahead demand forecasts
  - Generation by energy source (since June 2018)
- Available 2016-Present, near real-time



#### EIA-930 Balancing Authorities

- Compute *ex post* estimates of the marginal impact of electricity demand on emissions
- **2** Follow Graff Zivin, Kotchen, and Mansur (2014) and others
- O<sub>2</sub> emissions from plants in an interconnection are a linear function of demand for each region within the interconnection
  - Assumes electricity flows between regions, not interconnections
  - 2 Estimate separate parameters for each hour of day
  - **③** Use time fixed effects to control for unobservables
  - **0** Here regions are aggregations of EIA-930 balancing authorities

- **1** Impact of contemporaneous demand level similar to previous work
- **2**  $Q_{tr}^{D}$  Demand at time t in region r
- **③**  $Q_{tr}^N$  Non-fossil fuel supply at time t in region r

$$E_{t} = \sum_{h \in H} \sum_{r \in R} \left( \beta_{rh}^{0} Q_{tr}^{D} - \gamma_{rh} \mathbf{E}_{t-1} \left[ Q_{tr}^{N} \right] \right)$$

Include expected changes in demand/supply in the future

$$\sum_{h \in H} \sum_{r \in R} \sum_{s=1}^{S} \left( \beta_{rh}^{s} \mathbf{E}_{t} \left[ \Delta Q_{t+s,r}^{D} \right] - \gamma_{rh}^{s} \mathbf{E}_{t} \left[ \Delta Q_{t+s,r}^{N} \right] \right)$$

Archsmith (UMD AREC)

▶ < ⊒ ▶ 2019-05-29 (NBER EMW)

э

- Include past changes in demand/supply
- **2** Decompose changes between t s and s into components anticipated or unanticipated at t s

$$Q_t^D - Q_{t-s}^D = \underbrace{Q_t^D - \mathbf{E}_{t-s}[Q_t^D]}_{\text{Unanticipated Shock } (S_t^D)} + \underbrace{\mathbf{E}_{t-s}[Q_t^D] - Q_{t-s}^D}_{\text{Anticipated Change } (A_t^D)}$$

э

Include past anticipated and unanticipated changes in demand/supply

$$\sum_{h \in H} \sum_{r \in R} \left( \phi_{rh}^* S_t^D + \psi_{rh}^* S_t^N \right)$$
$$+ \sum_{h \in H} \sum_{r \in R} \sum_{s=1}^S \left( \beta_{rh}^s \mathbf{E}_t \left[ \Delta Q_{t+s,r}^D \right] - \gamma_{rh}^s \mathbf{E}_t \left[ \Delta Q_{t+s,r}^N \right] + \phi_{rh}^{-s} A_t^D + \psi_{rh}^{-s} A_t^N \right)$$

э

- Effects of forward ramp require forecasts of future demand
- Actual forward demand is uncertain
- EIA-930 provides day-ahead forecasts
- Information is revealed as forecast horizons decrease

- Estimate forward demand using day-ahead forecast and information revealed since the forecast
  - Day-ahead forecast demand
  - Ourrent level of demand
  - O Deviations from previous forecasts
- Possibly complicated relationships
- Ompute forecasts using random forests
  - All forecasts predicted out-of-sample
- Similar methods to predict non-fossil fuel generation Details

Graphs

- O Combine current, future, and past components into linear model
- Include month-of-year, hour-of-day, and year fixed effects
- I Large space of potential covariates
- Choose between models using out-of-sample fit
- Iso consider models quarterly parameters

- Begin with the current demand model
- Irain and evaluate model out-of-sample using 10-fold cross validation
- Add a lead or lag component and repeat
- Prefer models with the lowest out-of-sample MSPE

### FE Out-of-Sample Forecast Error by Model (ERCOT)

| Model Name            | RMSE     | Free Params |
|-----------------------|----------|-------------|
| FE Only               | 3,116.69 | 290         |
| $Slope{+}FE$          | 1,118.80 | 292         |
| Hourly Slope          | 1,116.65 | 338         |
| Future Ramp           | 1,112.18 | 386         |
| Past Ramp             | 1,091.36 | 434         |
| Past/Future           | 1,091.05 | 482         |
| Past/Future Quarterly | 1,125.80 | 1,058       |

э

イロト 不得下 イヨト イヨト

### FE Out-of-Sample Forecast Error by Model (CAISO)

| Model Name            | RMSE     | Free Params |
|-----------------------|----------|-------------|
| FE Only               | 2,998.93 | 290         |
| $Slope{+}FE$          | 1,328.62 | 298         |
| Hourly Slope          | 1,306.60 | 434         |
| Future Ramp           | 1,275.65 | 578         |
| Past Ramp             | 1,257.80 | 722         |
| Past/Future           | 1,246.58 | 866         |
| Past/Future Quarterly | 1,204.42 | 2,594       |

э

イロト 不得下 イヨト イヨト

- Models including ramp have superior out-of-sample fit
- Ø Additional leads and lags do not improve fit
- Improvements in fit from adding past ramp larger than adding hourly coefficients
- Samp may be as important as hour-to-hour heterogeneity

# MEF By Hour - ERCOT



Archsmith (UMD AREC)

#### Adjustment on the Margin

# MEF By Hour - CAISO



Archsmith (UMD AREC)

#### Adjustment on the Margin



Marginal Emissions Factors - Sustained Load 1 Hours







Archsmith (UMD AREC)



Archsmith (UMD AREC)



Archsmith (UMD AREC)



Archsmith (UMD AREC)





- Models provide a MEF for both the level and rate of change in demand in every hour
- Ø Marginal changes to electricity generation impact both, e.g.,
  - New solar PV offsets some FF generation, but also induces ramp as it increases and decreases output each day
  - **@** Electricity storage can offset high-cost generation, or high-cost ramping
- I simulate the total change in emissions for a hypothetical change in generation stock Octails

| Simulated Emissions Benefits - ERCOT |                                              |           |            |  |
|--------------------------------------|----------------------------------------------|-----------|------------|--|
| Generation                           | Marginal Change tons CO <sub>2</sub> per MWh |           | Percent    |  |
| Technology                           | No Ramp                                      | With Ramp | Difference |  |
| Onshore Wind                         | -0.634                                       | -0.632    | 0.2%       |  |
| Solar PV                             | -0.625                                       | -0.626    | -0.2%      |  |
| Storage                              | 0.000                                        | -0.252    | -          |  |

э

イロト イボト イヨト イヨト
| Simulated Emissions Benefits - CAISO |            |           |            |  |  |  |  |  |
|--------------------------------------|------------|-----------|------------|--|--|--|--|--|
| Generation                           | Marginal C | Percent   |            |  |  |  |  |  |
| Technology                           | No Ramp    | With Ramp | Difference |  |  |  |  |  |
| Onshore Wind                         | -0.588     | -0.564    | 4.2%       |  |  |  |  |  |
| Solar PV                             | -0.537     | -0.461    | 16.3%      |  |  |  |  |  |
| Storage                              | -0.144     | -1.735    | -91.7%     |  |  |  |  |  |

э

イロト イボト イヨト イヨト

Failing to account for ramp

- Overstates the emissions benefits of solar PV by 16% in CAISO
- **2** Vastly understates the *potential* emissions benefits of electricity storage
- Semissions minimizing electricity storage would not operate in ERCOT

Accounting for ramp 1 MWh of electricity storage in CAISO can reduce emissions more than eliminating 1 MWh of coal generation

- Iinear FE models include terms for level of demand and hour-to-hour changes
- Assumes the marginal impact of ramp does not vary with quantity of ramp
- True marginal effect of ramp may be non-linear
  - Larger output changes generally less efficient
  - ② Large demand changes may require additional unit commitment or curtailment
- O Difficult to a priori pin down the precise functional form

### Goal: Compute estimates of MEFs

- O Accounting for non-linearities in both demand and ramp
- Agnostic to the precise functional form
- **②** Estimate MEFs using local linear forests (LLFs) from Friedberg et al. (2018)
  - LLFs are an extension of random forests
  - @ Replace "mean-only" predictions with a linear model in each leaf

### Details

### LLF Out-of-Sample Forecast Error by Model (ERCOT)

| Model Name       | RMSE     |  |
|------------------|----------|--|
| No Ramp          | 1,029.59 |  |
| 1-hr Past/Future | 1,011.98 |  |
| 2-hr Past/Future | 990.44   |  |
| 3-hr Past/Future | 1,003.52 |  |
| 4-hr Past/Future | 1,015.87 |  |

э

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- **1** LLF models have superior out-of-sample forecast performance
- Ø Best case reduction of 10% in root mean forecast error
- Prefer models with more leads/lags of demand
- Likely non-linearities in MEF across levels of demand and ramp

# Calculation of Marginal Emissions Factors from a LLF

- LLFs compute a prediction for each observation
- Ompute MEF as the centered finite difference at each out-of-sample observation
  - Ocomputing MEFs is computationally demanding
- Aggregate marginal effects as the simple average across observations

# MEF by Demand Level (ERCOT)



# MEF of 1-hour Ramp (ERCOT)



# MEF of 2-hour Ramp (ERCOT)



Archsmith (UMD AREC)

- **1** LLFs prefer models with more leads and lags of ramp than linear FE models
- Ø Variable importance measures suggest
  - **0** Most: Demand level, non-FF generation, and their changes
  - Ø Medium: Time of year
  - **O Less:** Time of day, day of week

- LLFs compute a marginal effect for each observation
- Ombine with hourly price data to estimate how profit-maximizing storage would change emissions
  - Storage technology identical to previous simulations
  - **②** Storage operators have perfect foresight over future prices
- Several analyses caution storage could *increase* emissions
  - e.g., Carson and Novan (2013), Babacan et al. (2018)

| Emissions Benefits of Simulated Electricity Storage Per MWh Consumed |                                             |           |            |               |           |            |  |  |  |
|----------------------------------------------------------------------|---------------------------------------------|-----------|------------|---------------|-----------|------------|--|--|--|
|                                                                      | Marginal Change in $CO_2$ Emissions per MWh |           |            |               |           |            |  |  |  |
|                                                                      | Profit Max                                  |           |            | Emissions Min |           |            |  |  |  |
| ERCOT Region                                                         | No Ramp                                     | With Ramp | Difference | No Ramp       | With Ramp | Difference |  |  |  |
| HOUSTON                                                              | 0.1730                                      | -0.1605   | 207.8%     | -0.2911       | -0.6277   | 53.6%      |  |  |  |
| SOUTH                                                                | 0.1793                                      | -0.1674   | 207.1%     | -0.2911       | -0.6277   | 53.6%      |  |  |  |
| WEST                                                                 | 0.1721                                      | -0.1634   | 205.3%     | -0.2911       | -0.6277   | 53.6%      |  |  |  |

э

40

イロト 不得下 イヨト イヨト

# Emissions Benefits of Electricity Storage (ERCOT)

For profit-maximizing storage operators

- Failing to account for ramp suggests storage would increase CO<sub>2</sub> emissions
- Accounting for ramp, emissions modestly decrease
- Semissions reductions still fall far short of theoretical maximum

# Simulated Storage Behavior in ERCOT by Hour



Archsmith (UMD AREC)

Adjustment on the Margin

- **9** Short-run adjustment is an important component of emissions on the margin
- Marginal changes to the generating mix induce systematic demand for ramp by FF generation
- Ignoring ramping effects
  - $\bigcirc$  Overstates emissions benefits of solar PV by 16%
  - **2** Understates the emissions benefits of electricity storage
  - Other demand/supply-side policies (e.g., DR) could target both level and ramp

- Expand framework here to Eastern Interconnection
- Ø Marginal emissions of local criteria pollutants
  - As in Holland, Mansur, Muller, and Yates (2016) requires plant-level analysis
  - O LLFs can identify plant attributes contributing to emissions
- Sole of ramping on marginal cost and entry incentives

# Thank You

James Archsmith archsmit@umd.edu

Working paper available soon at econjim.com/WP1802

Archsmith (UMD AREC)

# Appendix

Э

590

イロト 不同下 イヨト イヨト













Archsmith (UMD AREC)

#### Adjustment on the Margin

2019-05-29 (NBER EMW) 4

DQC



Archsmith (UMD AREC)

#### Adjustment on the Margin



Archsmith (UMD AREC)

#### Adjustment on the Margin



Archsmith (UMD AREC)

#### Adjustment on the Margin



Archsmith (UMD AREC)

#### Adjustment on the Margin

• Forecasts of non-fossil fuel generation computed using random forests

- Lagged level of demand
- ② Lagged non-fossil fuel generation
- O Day of week, hour-of-day, solar year date
- Occupate Process Compute Forecasts using random forests
  - All forecasts predicted out-of-sample
- **③** Identical method used to predict contemporaneous value

Back

# MEF By Hour - ERCOT



Archsmith (UMD AREC)

#### Adjustment on the Margin

# MEF By Hour - CAL



Archsmith (UMD AREC)

#### Adjustment on the Margin

- Compute both level and ramping effects
- Requires knowing how generation varies over time
  - **0** Solar PV Mean hourly solar output per MW of capacity from CAISO
  - Wind Mean hourly on-shore wind ouput per MW of capacity from CAISO
  - Electricity Storage Assume emissions-minimizing objective and 80% roundtrip efficiency

Back

### LLFs are an extension of random forests

- Preplace "mean-only" predictions with a linear model in each leaf
- Follow Athey, Tibshirani, and Wagner (2019) method for generalized random forests
  - Subsample data and variables
  - **②** Find the split that minimizes out-of-bag forecast error in a linear model (leaves)
  - Continue splitting leaves until a stopping criterion is reached (trees)
  - Grow many trees (forest)
  - Model for a given set of covariates is the average across all trees

- Athey, Tibshirani, and Wagner (2019) demonstrate GRFs are consistent and asymptotically normal
- LLFs are a case of GRFs
  - Leaf's moment condition is a linear model as opposed to mean-only
  - Q Leaves divided to maximize the difference in a regression parameter
  - Similar" observations are grouped into the same leaf
  - Equivalent to a weighted regression where a tree-based estimator chooses the weights
  - **6** Separate model for each observation

Back

# Simulated Storage Behavior in ERCOT by Hour



Archsmith (UMD AREC)

Adjustment on the Margin