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Question and framework

I how does imperfect insurance affect optimal monetary policy?

I challenge: social welfare function aggregates heterogenous
(marginal) utilities, each of which is endogenous to policy

I solution: CARA-Normal HANK with closed-form expressions for

I the aggregate dynamics

I the (time-varying) distribution of agents

I the social welfare function



Main results

I optimal policy governed by two forces (⇒ tradeoff)

1. price stability

2. consumption dispersion, as affected by

I cyclicalilty of income risk (and cumulated effect of)

I pass-trough to consumption risk (via time-varying MPC)

I the central bank may tolerate transitory departures from price
stability in order to limit the rise in consumption dispersion

I breakdown of “divine coincidence”
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Households
Objective and constraint

I objective:

maxE0

∞

∑
t=0
(βθ)tu(c it , ξ

i
t − `it )

where
u(c it , ξ

i
t − `it ) = −

1
γ
e−γc it − ρe−

1
ρ (ξ

i
t−`it)

and
ξ it ∼ N (ξ̄, σ2t ) = time endowment

I budget constraint:

ait+1 =
Rt+1

θ
(ait + wt `

i
t + Tt − c it )

I Rt+1/θ = real riskless return on actuarial bonds



Households
Optimality conditions

I assume no aggregate risk (“MIT shock”)

I bonds:

e−γc it = βRt+1Ete−γc it+1

I labor supply:
`it = ρ lnwt − γρc it + ξ it



Households
Policy functions

I conjecture-verify linear consumption function:

ct (x it ) = ct
↑

agg. cons.

+ µt

↑
MPC

× x it
↑

state

where

state : x it = a
i
t + wt (ξ

i
t − ξ̄)

MPC : µ−1t = 1+ γρwt +
θ

Rt+1
µ−1t+1

I x it = quasi cash-on-hand: reflects impact of past asset accumulation
(ait ) and current labor-endowment shock (wt (ξ

i
t − ξ̄))

I MPC higher when
{
Rt+j

}
high and/or

{
wt+j

}
low



Households
Policy functions

I other policy funtions:

labor supply : `t (x it , ξ
i
t ) = ρ lnwt − γρct (x it ) + ξ it

savings : st (x it ) = (1− (1+ γρwt ) µt ) x
i
t

wealth : at+1(x
i
t ) =

Rt+1
θ

(1− (1+ γρwt ) µt ) x
i
t

I in particular, st (x it ) implies that individual state evolves linearly:

x it =
µt−1

µt
x it−1 + wt (ξ

i
t − ξ̄)



Aggregation

I let ft (x) be the cross-sectional distribution of x (determined later)

I goods: ∫
ct (x) ft (x) dx = ct = yt

I labor supply:∫
lt (x) ft (x) dx = nt = ρ lnwt − γρct + ξ̄

I bonds: ∫
at+1 (x) ft (x) dx = 0



Aggregate demand

I individually:

c it = Etc it+1 −
ln (βRt+1)

γ
− γ

2
Vtc it+1

I in the aggregate:

ct = ct+1 −
ln(βRt+1)

γ︸ ︷︷ ︸
intertemp. subst.

−γ

2
(µ2t+1σ2t+1w

2
t+1

︸ ︷︷ ︸
)

income risk︸ ︷︷ ︸
consumption risk︸ ︷︷ ︸

precautionary motive

I µt , σt ,wt all matter for aggregate demand, and all depend on policy



Aggregate supply

I competitive final-goods firms + monopolistically competitive
wholesale firms facing (Rotemberg) pricing frictions

I income/consumption:

ct = ztnt −
Φ
2
(Πt − 1)2 ct =

ztnt
1+ Φ

2 (Πt − 1)2

I NKPC:

(Πt − 1)Πt =
ε

Φ

(
1− zt

wt

)
+

1
Rt+1

(
ct+1ztwt+1
ctzt+1wt

)
(Πt+1 − 1)Πt+1



A Pseudo-RANK

ct = ct+1 −
1
γ
ln (βRt+1)−

γσ2t+1µ2t+1w
2
t+1

2

ct =
ztnt

1+ (Φ/2) (Πt − 1)2

nt = ρ lnwt − γρct + ξ̄

µ−1t = 1+ γρwt +
(

θ

Rt+1

)
µ−1t+1

(Πt − 1)Πt =
ε

Φ

(
1− zt

wt

)
+

1
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(
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)
(Πt+1 − 1)Πt+1

Rt+1 = (1+ it ) /Πt+1

it set by central bank; how?



Social welfare function and optimal policy problem

I pseudo-RANK ⇒ constraints of the Ramsey planner

I we are missing the Social Welfare Function...

I ...which is endogenous to the time-varying cross-sectional
distribution of households across states and ages

I 3 steps

1. within-cohort cross-sectional distribution at any time t

2. total utility of a particular cohort at any time t

3. aggregation over all currently-alive cohorts at any time t



Social welfare function
Step 1: within-cohort distribution

I state of a newcomer i at time t:

x it = wt (ξ it − ξ̄) ∼ N (0, σt )

I state of a survivor i at time t + 1:

x it+1 =
µt

µt+1
x it + wt+1(ξ

i
t+1 − ξ̄)

=
µt

µt+1
wt (ξ it − ξ̄) + wt+1(ξ

i
t+1 − ξ̄)

∼ N
(
0,

µ2t
µ2t+1

σ2tw
2
t + σ2t+1w

2
t+1

)

I bottom line: affi ne savings rule maps normal into normal



Social welfare function
Step 1: within-cohort distribution

I more generally, the state of a HH living from time t0 to t1 is:

x it0,t1 ∼ N
(
0, µ−2t1

t1−t0
∑
j=0

µ2t0+jσ
2
t0+jw

2
t0+j

)

I the corresponding density ft0,t1 (x) becomes more and more spread
out as t1 increases... but that cohort is replaced at rate 1− θ...

I ...and hence ft (x) (used before) does exist:

ft (x) =
∞

∑
k=0

(1− θ) θk ft−k ,t (x)→ f̄ (x)



Social welfare function
Step 2: total utility of a cohort

I indirect flow utility of an individual conditional on state:

vt (x) = u(ct (x) , ξ − ` (x , ξ))

= u
(
ct , ξ̄ − nt

)
e−γµtx

I concavity of −e−γµtx + dispersion in x ⇒ welfare loss

v (t0, t1) = (1− θ) θt1−t0
∫
vt1 (x) ft0,t1 (x) dx

= (1− θ) θt1−t0︸ ︷︷ ︸
mass of cohort

× u
(
ct1 , ξ̄ − nt1

)
︸ ︷︷ ︸
RANK utility (<0)

× e
γ2
2

t1−t0
∑
j=0

µ2t0+j
σ2t0+j

w 2t0+j

︸ ︷︷ ︸
≥1



Social welfare function
Step 3: Aggregation over cohors

I aggregate flow utilities over all cohorts alive at time t:

Ut =
∞

∑
k=0

v (t − k, t)

= u
(
ct , ξ̄ − nt

)
︸ ︷︷ ︸
RANK utility (<0)

∞

∑
k=0

(1− θ) θk e
γ2
2

k
∑
j=0

µ2t−k+jσ
2
t−k+jw

2
t−k+j

︸ ︷︷ ︸
consumption dispersion index Σt (≥1)

I Σt encodes heterogeneity and evolves recursively:

Σt = e
γ2
2 µ2t σ2tw

2
t (1− θ + θΣt−1)

I RANK: Σt = 1 ∀t; HANK: Σt fluctuates around Σ = 1−θ
βR−θ > 1



Optimal policy problem
Statement

max
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Optimal policy problem
Solution

I 3 forward-looking constraints ⇒ solve sequence problem

I derive FOCs of the Lagrangian associated with planner’s problem

I forward/backward-looking system of 13 unknowns (7 endo variables
+ 6 Lagrange multipliers) for 13 equations (7 FOC + 6 constraints)

I focus on timeless solution —i.e., nothing special about date 0

I linearise dynamic system around steady state, solve for VARMA
representation, parameterise, run IRFs



Parameterisation
I set z = 1, target R = 1.005, and normalise n = c = ξ̄

1+γρ = 1

I baseline: HANK with Π = 1 (i) and coutercylical income risk (ii)

I benchmark: RANK (σt = 0 ∀t) with
I same (R ,Π) as baseline (iii)

I offsetting of income & substitutions effects on labor supply (iv)

I (i)-(iii) require δ = 1/R; (iv) requires γ = 1

I Frisch (macro) elasticity ρ
n = ρ = 3 ⇒ ξ̄ = 1+ γρ = 4

I turn-over rate: 1− θ = 0.15 (see Nisticò 2016)

I NKPC: ε = 6, Φ = 40 (⇒ slope of NKPC = 0.15)



Parameterisation

I what about the cyclicality of individual risk? (point (ii) above)

I key determinant of aggregate demand under incomple markets
(Werning, 2015; McKay et al. 2017; Bilbiie, 2018; Acharya-Dogra 2018)

I depends on µtσtwt , where µt and wt are endogenously determined

I assume σt = σ (yt ) and control cyclicality of consumption risk
through E = y

σ
∂σt
∂yt

(think of HANK & SaM models):

σt ' σ (ȳ) + σ (ȳ) E ŷt

I baseline values: σ (ȳ) = 1.5, E = −5⇒ σ (ȳ) E =− 7.5



Optimal response to productivity shock



Optimal response to time-preference shock



Productivity shock: Optimal policy vs. price stability



Productivity shock: Alternative income risk cyclicality



Conclusion

I tractable HANK for optimal monetary policy analysis

I tradeoff between price stability and consumption (in)equality

I 2nd motive implies HANK displays more accommodative response to
contractionary productivity shock than RANK

I extensions (in progress):

I hand-to-mouth households (⇒ MPC heterogeneity)

I entrepreneurial investment (⇒ other source of idiosyncratic risk)

I joint optimal fiscal-monetary policy



Productivity shock: Timeless vs. time-0 Ramsey



Productivity shock: Timeless vs. time-0 Ramsey


