Optimal Monetary Policy in HANK Economies

Sushant Acharya^a Edouard Challe^b Keshav Dogra^a

^aNew York Fed ^bCREST & Ecole Polytechnique

The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of New York or the Federal Reserve System

Question and framework

how does imperfect insurance affect optimal monetary policy?

- challenge: social welfare function aggregates heterogenous (marginal) utilities, each of which is endogenous to policy
- solution: CARA-Normal HANK with closed-form expressions for

- the aggregate dynamics
- the (time-varying) distribution of agents
- the social welfare function

Main results

- ▶ optimal policy governed by two forces (⇒ tradeoff)
- 1. price stability
- 2. consumption dispersion, as affected by
 - cyclicalilty of income risk (and cumulated effect of)
 - pass-trough to consumption risk (via time-varying MPC)
- the central bank may tolerate transitory departures from price stability in order to limit the rise in consumption dispersion
- breakdown of "divine coincidence"

Related literature

- quantitative analysis of HANK models
 - HANK: Kaplan et al. (2018); Auclert et al. (2018); Debortoli-Gali (2018), Hagedorn et al. (2019)...
 - HANK & SaM: Gornemann et al. (2016); Ravn-Sterk (2017, 2018); Challe et al. (2017); Den Haan et al. (2019)...
- optimal monetary policy under perfect insurance
 - RANK: Clarida et al. (1999); Woodford (2003); Gali (2008)...
 - TANK: Bilbiie (2008)...
 - RANK & SaM: Thomas (2008); Faia (2009); Blanchard-Gali (2010); Ravenna-Walsh (2011)
- optimal monetary policy under imperfect insurance
 - HANK & SaM with 0-liquidity: Challe (2019)
 - ► HANK with >0 liquidity: Nuño-Thomas (2017); Bhandari et al. (2018)

- CARA-Normal imperfect-insurance models
 - flex-price: Calvet (2001); Angeletos and Calvet (2005, 2006)
 - HANK: Acharya & Dogra (2018)

Objective and constraint

objective:

$$\max \mathbb{E}_0 \sum_{t=0}^{\infty} (\beta \theta)^t u(c_t^i, \xi_t^i - \ell_t^i)$$

where

$$u(c_t^i,\xi_t^i-\ell_t^i)=-\frac{1}{\gamma}e^{-\gamma c_t^i}-\rho e^{-\frac{1}{\rho}\left(\xi_t^i-\ell_t^i\right)}$$

and

$$\boldsymbol{\xi}_t^i \sim \mathcal{N}(\bar{\boldsymbol{\xi}}, \sigma_t^2) = \mathsf{time} \; \mathsf{endowment}$$

budget constraint:

$$\mathbf{a}_{t+1}^i = rac{R_{t+1}}{ heta} (\mathbf{a}_t^i + \mathbf{w}_t \ell_t^i + T_t - c_t^i)$$

・ロト・日本・モート モー うへで

• R_{t+1}/θ = real riskless return on actuarial bonds

Optimality conditions

assume no aggregate risk ("MIT shock")

bonds:

$$e^{-\gamma c_t^i} = \beta R_{t+1} \mathbb{E}_t e^{-\gamma c_{t+1}^i}$$

labor supply:

$$\ell_t^i = \rho \ln w_t - \gamma \rho c_t^i + \xi_t^i$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Policy functions

conjecture-verify linear consumption function:

$$c_t(x_t^i) = c_t + \mu_t \times x_t^i$$

agg. cons. MPC state

where

state :
$$x_t^i = a_t^i + w_t(\xi_t^i - \bar{\xi})$$

MPC : $\mu_t^{-1} = 1 + \gamma \rho w_t + \frac{\theta}{R_{t+1}} \mu_{t+1}^{-1}$

► x_t^i = quasi cash-on-hand: reflects impact of past asset accumulation (a_t^i) and current labor-endowment shock $(w_t(\xi_t^i - \overline{\xi}))$

► MPC higher when $\{R_{t+j}\}$ high and/or $\{w_{t+j}\}$ low

Policy functions

other policy functions:

▶ in particular, $s_t(x_t^i)$ implies that individual state evolves **linearly**:

$$x_t^i = rac{\mu_{t-1}}{\mu_t} x_{t-1}^i + w_t (\xi_t^i - \bar{\xi})$$

Aggregation

▶ let $f_t(x)$ be the cross-sectional distribution of x (determined later)

► goods:
$$\int c_t \left(x \right) f_t \left(x \right) \mathsf{d} x = c_t = y_t$$

labor supply:

$$\int I_{t}(x) f_{t}(x) dx = n_{t} = \rho \ln w_{t} - \gamma \rho c_{t} + \bar{\xi}$$

bonds:

$$\int a_{t+1}\left(x\right)f_{t}\left(x\right)\mathsf{d}x=\mathsf{0}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Aggregate demand

individually:

$$c_t^i = \mathbb{E}_t c_{t+1}^i - rac{\ln\left(eta R_{t+1}
ight)}{\gamma} - rac{\gamma}{2} \mathbb{V}_t c_{t+1}^i$$

in the aggregate:

• μ_t, σ_t, w_t all matter for aggregate demand, and all depend on policy

・ロト・西ト・西ト・日・ うらの

Aggregate supply

- competitive final-goods firms + monopolistically competitive wholesale firms facing (Rotemberg) pricing frictions
- income/consumption:

$$c_t = z_t n_t - \frac{\Phi}{2} (\Pi_t - 1)^2 c_t = \frac{z_t n_t}{1 + \frac{\Phi}{2} (\Pi_t - 1)^2}$$

NKPC:

$$(\Pi_t - 1) \Pi_t = \frac{\varepsilon}{\Phi} \left(1 - \frac{z_t}{w_t} \right) + \frac{1}{R_{t+1}} \left(\frac{c_{t+1} z_t w_{t+1}}{c_t z_{t+1} w_t} \right) (\Pi_{t+1} - 1) \Pi_{t+1}$$

A Pseudo-RANK

$$c_{t} = c_{t+1} - \frac{1}{\gamma} \ln \left(\beta R_{t+1}\right) - \frac{\gamma \sigma_{t+1}^{2} \mu_{t+1}^{2} w_{t+1}^{2}}{2}$$

$$c_{t} = \frac{z_{t} n_{t}}{1 + (\Phi/2) (\Pi_{t} - 1)^{2}}$$

$$n_{t} = \rho \ln w_{t} - \gamma \rho c_{t} + \bar{\xi}$$

$$\mu_{t}^{-1} = 1 + \gamma \rho w_{t} + \left(\frac{\theta}{R_{t+1}}\right) \mu_{t+1}^{-1}$$

$$w_{t} = \varepsilon \left(z_{t} - z_{t}\right) - \frac{1}{2} \left(z_{t+1} z_{t} w_{t+1}\right) z_{t}$$

$$(\Pi_t - 1) \Pi_t = \frac{c}{\Phi} \left(1 - \frac{z_t}{w_t} \right) + \frac{1}{R_{t+1}} \left(\frac{c_{t+1} z_t w_{t+1}}{c_t z_{t+1} w_t} \right) (\Pi_{t+1} - 1) \Pi_{t+1}$$

(ロ)、

 $R_{t+1} = (1+i_t) / \Pi_{t+1}$

*i*_t set by central bank; **how?**

Social welfare function and optimal policy problem

- ▶ pseudo-RANK ⇒ **constraints** of the Ramsey planner
- we are missing the Social Welfare Function...
- ...which is endogenous to the time-varying cross-sectional distribution of households across states and ages

3 steps

- 1. within-cohort cross-sectional distribution at any time t
- 2. total utility of a particular cohort at any time t
- 3. aggregation over all currently-alive cohorts at any time t

Step 1: within-cohort distribution

state of a newcomer i at time t:

$$\mathbf{x}_{t}^{i} = \mathbf{w}_{t}(\boldsymbol{\xi}_{t}^{i} - \bar{\boldsymbol{\xi}}) \sim \mathcal{N}(\mathbf{0}, \sigma_{t})$$

• state of a **survivor** i at time t + 1:

$$\begin{aligned} \mathbf{x}_{t+1}^{i} &= \frac{\mu_{t}}{\mu_{t+1}} \mathbf{x}_{t}^{i} + w_{t+1} (\tilde{\boldsymbol{\xi}}_{t+1}^{i} - \bar{\boldsymbol{\xi}}) \\ &= \frac{\mu_{t}}{\mu_{t+1}} w_{t} (\tilde{\boldsymbol{\xi}}_{t}^{i} - \bar{\boldsymbol{\xi}}) + w_{t+1} (\tilde{\boldsymbol{\xi}}_{t+1}^{i} - \bar{\boldsymbol{\xi}}) \\ &\sim \mathcal{N} \left(\mathbf{0}, \frac{\mu_{t}^{2}}{\mu_{t+1}^{2}} \sigma_{t}^{2} w_{t}^{2} + \sigma_{t+1}^{2} w_{t+1}^{2} \right) \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

bottom line: affine savings rule maps normal into normal

Step 1: within-cohort distribution

• more generally, the state of a HH living from time t_0 to t_1 is:

$$x_{t_0,t_1}^i \sim \mathcal{N}\left(0, \mu_{t_1}^{-2} \sum_{j=0}^{t_1-t_0} \mu_{t_0+j}^2 \sigma_{t_0+j}^2 w_{t_0+j}^2\right)$$

the corresponding density f_{t0,t1} (x) becomes more and more spread out as t₁ increases... but that cohort is replaced at rate 1 - θ...

• ...and hence $f_t(x)$ (used before) does exist:

$$f_{t}(x) = \sum_{k=0}^{\infty} (1-\theta) \theta^{k} f_{t-k,t}(x) \to \bar{f}(x)$$

Step 2: total utility of a cohort

indirect flow utility of an individual conditional on state:

$$v_t(x) = u(c_t(x), \xi - \ell(x, \xi))$$
$$= u(c_t, \overline{\xi} - n_t) e^{-\gamma \mu_t x}$$

• concavity of $-e^{-\gamma\mu_t x} + dispersion$ in $x \Rightarrow$ welfare loss

$$v(t_{0}, t_{1}) = (1 - \theta) \theta^{t_{1} - t_{0}} \int v_{t_{1}}(x) f_{t_{0}, t_{1}}(x) dx$$

$$= \underbrace{(1 - \theta) \theta^{t_{1} - t_{0}}}_{\text{mass of cohort}} \times \underbrace{u(c_{t_{1}}, \overline{\xi} - n_{t_{1}})}_{\text{RANK utility (<0)}} \times \underbrace{e^{\frac{\gamma^{2}}{2} \sum_{j=0}^{t_{1} - t_{0}} \mu^{2}_{t_{0} + j} \sigma^{2}_{t_{0} + j} w^{2}_{t_{0} + j}}}_{\geq 1}$$

Step 3: Aggregation over cohors

aggregate flow utilities over all cohorts alive at time t:

$$\mathbb{U}_{t} = \sum_{k=0}^{\infty} v(t-k,t)$$

$$= u(c_{t}, \overline{\xi} - n_{t}) \sum_{k=0}^{\infty} (1-\theta) \theta^{k} e^{\frac{\gamma^{2}}{2} \sum_{j=0}^{k} \mu_{t-k+j}^{2} \sigma_{t-k+j}^{2} w_{t-k+j}^{2}}$$
RANK utility (<0) consumption dispersion index Σ_{t} (>1)

Σ_t encodes heterogeneity and evolves recursively:

$$\Sigma_t = e^{\frac{\gamma^2}{2}\mu_t^2 \sigma_t^2 w_t^2} \left(1 - \theta + \theta \Sigma_{t-1}\right)$$

► **RANK**: $\Sigma_t = 1 \ \forall t$; **HANK**: Σ_t fluctuates around $\Sigma = \frac{1-\theta}{\beta R - \theta} > 1$

Optimal policy problem

Statement

$$\max_{\{i_t\}_{t=0}^{\infty}}\sum_{t=0}^{\infty}\delta^t u\left(c_t,\bar{\xi}-n_t\right)\Sigma_t$$

s.t.

$$\begin{split} \Sigma_t &= e^{\frac{1}{2}\gamma^2 \mu_t^2 \sigma_t^2 w_t^2} \left(1 - \theta + \theta \Sigma_{t-1}\right) \\ c_t &= \frac{z_t n_t}{1 + (\Phi/2) \left(\Pi_t - 1\right)^2} \\ n_t &= \rho \ln w_t - \gamma \rho c_t + \bar{\xi} \\ c_t &= c_{t+1} - \frac{1}{\gamma} \ln \left(\beta \frac{1 + i_t}{\Pi_{t+1}}\right) - \frac{\gamma}{2} \mu_{t+1}^2 \sigma_{t+1}^2 w_{t+1}^2 \\ \mu_t^{-1} &= 1 + \gamma \rho w_t + \left(\frac{\theta \Pi_{t+1}}{1 + i_t}\right) \mu_{t+1}^{-1} \\ (\Pi_t - 1) \Pi_t &= \frac{\varepsilon}{\Phi} \left(1 - \frac{z_t}{w_t}\right) + \left[\frac{\Pi_{t+1} c_{t+1} z_t w_{t+1}}{(1 + i_t) z_{t+1} c_t w_t}\right] (\Pi_{t+1} - 1) \Pi_{t+1} \end{split}$$

Optimal policy problem

Solution

- ▶ 3 forward-looking constraints \Rightarrow solve sequence problem
- derive FOCs of the Lagrangian associated with planner's problem
- forward/backward-looking system of 13 unknowns (7 endo variables + 6 Lagrange multipliers) for 13 equations (7 FOC + 6 constraints)
- ► focus on **timeless** solution -i.e., nothing special about date 0
- linearise dynamic system around steady state, solve for VARMA representation, parameterise, run IRFs

Parameterisation

- ▶ set z = 1, target R = 1.005, and normalise $n = c = \frac{\xi}{1 + \gamma \rho} = 1$
- **baseline**: HANK with $\Pi = 1$ (i) and coutercylical income risk (ii)
- **benchmark**: RANK ($\sigma_t = 0 \forall t$) with
 - ▶ same (*R*, Π) as baseline (iii)
 - offsetting of income & substitutions effects on labor supply (iv)
- (i)-(iii) require $\delta = 1/R$; (iv) requires $\gamma = 1$
- Frisch (macro) elasticity $\frac{\rho}{n} = \rho = 3 \Rightarrow \overline{\xi} = 1 + \gamma \rho = 4$
- turn-over rate: $1 \theta = 0.15$ (see Nisticò 2016)

► NKPC:
$$\varepsilon = 6$$
, $\Phi = 40$ (\Rightarrow slope of NKPC = 0.15)

Parameterisation

- what about the cyclicality of individual risk? (point (ii) above)
- key determinant of aggregate demand under incomple markets (Werning, 2015; McKay et al. 2017; Bilbiie, 2018; Acharya-Dogra 2018)
- depends on $\mu_t \sigma_t w_t$, where μ_t and w_t are endogenously determined

► assume $\sigma_t = \sigma(y_t)$ and control cyclicality of consumption risk through $\mathcal{E} = \frac{y}{\sigma} \frac{\partial \sigma_t}{\partial y_t}$ (think of HANK & SaM models):

$$\sigma_{t} \simeq \sigma\left(\bar{y}\right) + \sigma\left(\bar{y}\right) \mathcal{E}\hat{y}_{t}$$

▶ baseline values: $\sigma(\bar{y}) = 1.5$, $\mathcal{E} = -5 \Rightarrow \sigma(\bar{y}) \mathcal{E} = -7.5$

Optimal response to productivity shock

(日) э ł

Optimal response to time-preference shock

(日)、 э ł

Productivity shock: Optimal policy vs. price stability

▲ロト ▲課 ト ▲ 語 ト ▲ 語 ト → 語 → の()

Productivity shock: Alternative income risk cyclicality

(日) ъ

Conclusion

- tractable HANK for optimal monetary policy analysis
- tradeoff between price stability and consumption (in)equality
- 2nd motive implies HANK displays more accommodative response to contractionary productivity shock than RANK
- extensions (in progress):
 - ▶ hand-to-mouth households (⇒ MPC heterogeneity)
 - entrepreneurial investment (\Rightarrow other source of idiosyncratic risk)

joint optimal fiscal-monetary policy

Productivity shock: Timeless vs. time-0 Ramsey

~) Q (*

Productivity shock: Timeless vs. time-0 Ramsey

~) Q (*