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Abstract 

 

As a new general-purpose technology, robots have the potential to radically transform 

industries and affect employment. Preliminary empirical studies using industry and geographic 

region-level data have shown that robots differ from prior general-purpose technologies and 

predict substantial negative effects on employment. Using novel firm-level data, we show that 

investments in robotics are associated with increased employee turnover, but also an increase in 

total employment within the firm. Examining changes in labor composition, we find that manager 

headcount has decreased but non-managerial employee headcount has increased, suggesting that 

robots displace managerial work that in prior waves of technology adoption was considered more 

difficult to replace. However, we also find that firms are more likely to hire managers from outside 

the firm and invest in additional training, suggesting that firms require different employee skills 

as the nature of work changes with robot investment. We also provide additional evidence that 

robot investments are not generally motivated by the desire to reduce labor costs but are instead 

related to an increased focus on improving product and service quality. With respect to changes in 

the way work is organized within the firm, we find that robot adoption predicts organizational 

changes in ways that differ from prior technologies. While information technology has generally 

been found to decentralize decision-making authority within organizational hierarchies, we find 

that robots can either centralize or decentralize decision-making, depending on the task. Overall, 

our results suggest that the impact of robots on employment is more nuanced than prior studies 

have shown. 
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1 Introduction 

 

We explore the employment consequences of robots within firms and how organizational and work 

practices are changing in response to robot adoption. As robotics and artificial intelligence (AI) are 

increasingly used by firms as the next engine of innovation and productivity growth (CEA 2016), their 

effect on labor, firm practices, and productivity has become a subject of growing importance. Anecdotal 

evidence in the popular press has documented extensively that AI and adaptable robotics can not only 

lead to gains in productivity, but also to consequences of increasing income inequality and reducing 

employment. Rapid advancements in vision, speech, natural language processing and prediction 

capabilities have shifted the comparative advantage from humans to machines for a growing list of tasks 

and occupations (Brynjolfsson and Mitchell 2017, Frey and Osborne 2017), potentially leaving human 

labor with substantially fewer activities that can add value (Brynjolfsson and McAfee 2014, Ford 2015). 

If this assessment is accurate, this shift would lead to severe negative consequences for employment as 

technology automates a large proportion of tasks currently done by labor (Acemoglu and Restrepo 2017, 

Dinlersoz and Wolf 2018, Graetz and Michaels 2015, Mann and Püttmann 2017).  

However, it has also been argued that robots and AI are similar to past generations of general-purpose 

technologies (GPT) that ultimately increased labor demand. In this competing view, even as labor is 

displaced, the new jobs created will more than compensate for the jobs lost (Autor and Salomons 2017). 

Similar to the effects of prior generations of GPTs, these new jobs are likely to complement robots, 

suggesting a compositional change in labor within firms. Accordingly, different skills and organizational 

practices will also emerge to utilize the new capabilities that robots provide. As robots offer new 

capabilities that differ from prior IT investments (Brynjolfsson and Mitchell 2017), the emerging skill 

change and firm practices would also differ from those caused by IT investments and reflect those that are 

complementary to robots. 

While recent theories have examined the conditions under which robot investments are expected to 

lead to productivity growth at the expense of labor (Acemoglu and Restrepo 2018), actual empirical 

evidence examining the effect of robots on employment has been limited, in part due to the lack of 

microdata measuring robot adoption at the firm level. Instead, empirical studies examining the effect of 

robots on labor have relied upon much coarser data at the industry or geographic region level (Graetz and 

Michaels 2015, Mann and Püttmann 2017). Although these studies have documented heterogeneous 

effects on labor, they largely predict a drastic decline in overall employment and labor share resulting 

from robot investments (Acemoglu and Restrepo 2017, Dinlersoz and Wolf 2018, Graetz and Michaels 

2015, Mann and Püttmann 2017). However, analysis at the industry and geographic region level is 

insufficient to show the mechanisms through which firms are using robotics to substitute labor, and to 
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demonstrate to what extent AI and robots can complement labor to generate new labor demand (Autor 

and Salomons 2018). Ultimately, firm-level analysis is necessary to examine the extent to which firms 

benefit from robotics, how they may substitute for or complement labor (Acemoglu and Restrepo 2017, 

Brynjolfsson et al. 2018), and what assets or capabilities firms need to derive greater value from robot 

investments. 

In this study, we advance this nascent research stream by providing the first firm-level evidence of the 

effect of robots on labor and productivity using comprehensive data containing measures of robot 

investments, employment, and firm practices for businesses in the Canadian economy, spanning the years 

2000-2015.1 We find that firms’ investments in robotics have increased over time, with the fastest growth 

being in more general-purpose robots adopted across an increasing range of industries.2 However, 

contrary to the popular press and earlier studies at the industry and geographic region level, robot 

adoption does not predict employment declines, but is instead associated with increases in total 

employment. Our findings are consistent with prior research showing that the effects of GPTs have been 

to increase both employment and productivity. As additional evidence that robots are not adopted 

primarily as an effort to cut labor costs, we also find that robot adoption is not associated with an increase 

in the strategic importance of reducing labor costs for firms, but is instead associated with an increase in 

the strategic importance of improving product and service quality.  

Labor composition has also changed. We find that robot adoption predicts the displacement of 

managers even though overall employment increases, with robot investments predicting both decreases in 

managerial hiring and increases in managerial turnover. By contrast, we observe an increase in both 

hiring and turnover of non-managerial employees. The displacement of managers over non-managerial 

employees differs from the effect of prior information technologies that generally displaced low- and 

middle-skilled workers (Autor et al. 2006, Autor et al. 2003, David and Dorn 2013, Dustmann et al. 2009, 

Murnane et al. 1999). Here, we find evidence that robots displace managerial positions that have higher 

cognitive requirements. These findings suggest a compositional change in labor in response to changes in 

the nature of work as a result of robot investment. Consistent with this view, we find that firms invest 

more in training employees to work with technologies. Similarly, we also find that robot investments are 

associated with a reduction of decision authority allocated to managers with respect to employee training 

and choice of production technology. Compared to previous findings showing that IT investments 

generally lead to decentralization of decision making, we find that the predicted outcome of robot 

adoption is both centralization and decentralization, depending on the task. For employee training, 

                                                           
1 We use two main datasets for our empirical analysis spanning overlapping timeframes, described in more detail in 

the data section. 
2 Here, general-purpose robots are defined as robots other than those customized for automotive assembly. 
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decision authority is decentralized downwards to non-managerial employees while the choice of 

production technology is centralized upwards to business owners and corporate headquarters. These 

results show that not only has employment changed due to robots, but the change is related to 

complementary work practices that are critical to the understanding of how robots affect labor. While our 

analysis provides only initial firm-level evidence, our comprehensive set of outcomes—employment, 

labor composition, strategic priorities, training, and the allocation of decision rights—suggests that robots 

have a substantive effect on both employment and work practices in ways that differ from the effects of 

prior technologies.  

Overall, our results show the importance of examining the effect of robot investment at the firm level 

and contribute to the important debate about the consequences of robot investments on labor. 

2 Theoretical considerations 

 

The adoption of GPTs is often associated with productivity gains in every sector of the economy 

(Bresnahan and Trajtenberg 1995). To maximize the value of GPTs, firms have substantially reorganized 

work activities and subsequently changed the nature of work and employee skill requirements (Autor et al. 

2003, Bresnahan et al. 2002, Brynjolfsson et al. 2018). Robots and AI, being the most recent GPT 

(Brynjolfsson et al. 2018, Cockburn et al. 2018), have the potential to transform the economy (Agrawal et 

al. 2018, McAfee and Brynjolfsson 2017). The speed of this transformation is likely to be faster than earlier 

periods of automation because robots and AI can accelerate the automation process itself and lead to 

dramatic changes in productivity, labor, and how work is organized (Brynjolfsson and Mitchell 2017). 

 However, the effect of robots on employment remains an open question. Research examining the 

effect of AI and robots on labor is still nascent with only a few studies examining the substitutability of AI 

and robots on work (Acemoglu and Restrepo 2017, Arntz et al. 2016, Frey and Osborne 2017, Mann and 

Püttmann 2017, Manyika 2017). These preliminary studies have predicted dire consequences of labor 

displacement resulting from robot adoption. Surveying AI experts about the capabilities of AI and 

projecting their assessment on over 700 occupations, Frey and Osborne (2017) find that up to 47% of all 

jobs in the United States may be displaced. Using a task-based approach breaking each occupation into a 

set of concrete tasks, OECD researchers find that 70% of tasks performed by labor could be automated 

(Arntz et al. 2016). Other studies using the task-based approach have concluded that more than 50% of 

work tasks are vulnerable to automation (Manyika 2017). Using a measure of robot penetration at the 

industry level in the US, Acemoglu and Restrepo (2017) find that one robot can replace roughly six people. 

Graetz and Michaels (2015) also find that robot adoption is associated with a reduction in hours worked for 

low-skilled labor, using similar data on robot adoption for 17 countries.  
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The findings from these initial studies stand in stark contrast to earlier generations of technologies that 

have been found to increase employment in conjunction with productivity, ultimately leading to labor’s 

share of productivity remaining constant. While preliminary empirical studies have documented that 

automation from robot investment can directly substitute labor, robots may also positively affect 

employment through 1) productivity increases from labor substitution inducing demand for other goods and 

services that require non-automated tasks; 2) capital deepening that increases the effectiveness of robots, 

which can increase productivity without further reducing labor; or 3) the creation of new tasks or increased 

demand for existing tasks that are complementary to robots (Acemoglu and Restrepo 2018, Brynjolfsson et 

al. 2018). However, these countervailing effects are difficult to observe using data at the industry and 

geographic region levels. Consequently, studies using these relatively coarse data to examine the effect of 

robots on productivity and labor have been unable to clearly examine the mechanisms through which firms 

are using robotics to substitute labor, and whether new types of jobs or increased demand for existing jobs 

are created that complement robot investment. As prior literature examining the link between IT and 

productivity has shown, analysis at more aggregated levels can often lead to markedly different conclusions 

from empirical studies conducted at the firm level (Bresnahan et al. 2002, Brynjolfsson and Hitt 1996), as 

the substantial heterogeneity in productivity growth across firms cannot be captured at the sector and 

industry level (Syverson 2004). For example, robots may incur productivity gains in some firms but losses 

in others within the same industry, but in aggregate show no productivity effect. Furthermore,  more precise 

measurement of both IT and organizational capabilities at the firm level was critical to resolving the IT-

productivity paradox that earlier studies discovered and to uncovering the factors explaining the 

heterogeneous effects of IT on firm outcomes (Brynjolfsson et al. 2002). With a firm-level measure of robot 

investments, we contribute to the literature by documenting the mechanisms through which robots can 

affect labor, which cannot be documented through industry or geographic region analyses.  

 

2.1 Skills and organizational complements 

Irrespective of whether robots increase or decrease overall employment, it is likely that the organization 

of work changes in some form as firms adopt robots. Similar to prior generations of skill-biased technical 

change, the demand and earnings for certain skills would increase while those for other skills may decrease. 

For example, with the rise of information technology (IT) in the late 1990s, the demand for skilled labor 

has gradually increased over time as routine tasks and simple decisions become automated. This led to an 

accompanying reduction in the demand for low and middle-wage routine occupations and an increase in 

demand for nonroutine and cognitively challenging tasks, such as managing employees and professional 

services. (Autor et al. 2006, Autor et al. 2003, Card and DiNardo 2002, Murnane et al. 1999). Although it 

has been argued that nonroutine and cognitively challenging tasks are difficult to automate (Autor et al. 
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2003, Murnane et al. 1999), the increasing sophistication of robots and AI is likely to automate tasks that 

were previously unaffected by automation.  

With advances in vision, speech, and prediction, robotics has advanced beyond automating simple and 

routine tasks and become capable of performing more cognitively complex work as well as tasks involving 

manual dexterity. For example, machine vision has helped robots in the automotive industry to consistently 

install and weld parts onto car bodies with a high degree of precision, significantly reducing variance in the 

production process. 3  Robots have also become capable of automating large segments of complex 

warehousing logistics, effectively transporting objects without human intervention between locations, 

relieving humans of lifting and handling awkward, heavy objects and increasing efficiency by decreasing 

overall delivery time.4 Collaborative robots are able to work with humans to enhance their capabilities, such 

as robotic arms that improve human manual dexterity while reducing stress on muscles and tendons. In the 

medical and pharmaceutical industries, robots have been used to handle and prepare materials, follow 

complex protocols to analyze samples in potentially hazardous settings, and deliver medications to patients 

without human intervention. As these technologies become more pervasive and organizations learn how to 

utilize them, labor composition, managerial roles and employment, and the allocation of decision authority 

are all likely to be substantially affected (Bresnahan et al. 2002).  

Accordingly, we expect labor and skill composition will change with robot adoption, as has been the 

case with prior waves of skill-biased technical change. With robots performing an increasing range of tasks, 

the accompanying change in labor may also require different ways of organizing work. An extensive 

literature has documented the importance of having complementary work practices and human capital to 

fully exploit the capabilities that new technologies can offer (Aral et al. 2012, Bresnahan et al. 2002, Tambe 

et al. 2012). For example, with employees becoming more skilled in doing complex non-routine tasks, 

decision rights may become more decentralized (Acemoglu et al. 2007). They can also centralize to 

management since using robots through computer algorithms may be easier than ensuring humans follow 

work rules precisely (Brynjolfsson et al. 2008). Other work practices would also evolve such as more 

technical training so workers are updated with knowledge of how to use the latest technologies (Bresnahan 

et al. 2002). Here, we explore the work practices and decision authority allocations that have emerged with 

robot adoption and provide a first examination of the effect of robots on employment at the firm level.  

3 Data and Measures 

3.1 Data 
 

                                                           
3 https://blog.robotiq.com/bid/69722/Top-5-Robotic-Applications-in-the-Automotive-Industry 
4 https://www.nytimes.com/2017/09/10/technology/amazon-robots-workers.html 

https://blog.robotiq.com/bid/69722/Top-5-Robotic-Applications-in-the-Automotive-Industry
https://www.nytimes.com/2017/09/10/technology/amazon-robots-workers.html
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To measure robot investment at the firm level, we use data capturing the purchases of robots imported 

by Canadian firms provided by the Canadian Border Services Agency (CBSA) from 1996 to 2017. Global 

production of robotics hardware is highly concentrated in relatively few countries including Japan, 

Germany, the United States and increasingly China. By contrast, Canada does not produce a meaningful 

quantity of robotics hardware domestically and consequently must import robots from foreign producers, 

allowing us to exploit data on import transactions to measure robot adoption by firms. For all import 

transactions, the CBSA classifies goods according to Harmonized System (HS) codes, and classifies 

industrial robots separately from other types of technologies, machinery, and equipment.5 The classification 

details several different types of robots as distinct HS codes, which we group into two consistent categories 

across the time period of our data: 1) robots for automotive assembly lines and 2) all other types of robots.6 

In addition to the HS code, the name of the exporting firm, product country of origin, name and address of 

the importing firm, business number of the importing firm (a unique government-issued identifier for 

Canadian businesses) and value of the transaction are recorded. While in principle misclassification by 

importing firms or customs agents may occur if robot purchases are misidentified, over 90 percent of the 

total value of imported robots captured in our data is directly attributable to publicly known robot producers 

(listed as the exporting firm) or to purchasing firms that were clearly identified as using robots.7 To further 

validate our measure of robot investment, we also benchmark our measure to data reported by the Robotics 

Industry Association (RIA), and find both measures are comparable, showing similar trends over time (see 

detailed discussion in Appendix section S1). 

We merge our robot investment data with two datasets maintained by Statistics Canada containing 

measures of firm characteristics: 1) the National Accounts Longitudinal Microdata File (NALMF), a panel 

dataset that contains measures of aggregate firm-level employment and economic inputs derived from tax 

filing data from 2000-2015; and 2) the Workplace and Employee Survey (WES), which contains 

comprehensive information on employment and firm management practices, for the years 2001-2006. The 

survey is a random stratified sample in a panel structure, representative of the population of businesses in 

the Canadian economy in each year.8  

                                                           
5 Industrial robots are a separate classification at the ten digit HS code level recorded by the CBSA.  
6 Our measure of total robot investment is the sum of these two categories of robots. The HS code structure for 

robots changes over the time period of our data, but can be clearly grouped consistently in this manner over the 

entire period. 
7 Verification was done manually by searching the name of the importing firm in the public domain for evidence of 

robot usage. 
8 An important strength of the WES is that responding to the survey was mandatory under Canadian law, which 

resulted in regular response rates of approximately 90 percent, mitigating concerns of non-response bias in our 

analysis. 
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We make several adjustments to both our NALMF and WES samples to more precisely capture those 

firms of sufficient size that purchased robots with the intention of implementing them as an end user for 

production. Here, we only include firms with at least ten employees, and removed those firms in the finance 

and insurance (NAICS code 52) and real estate rental and leasing sectors (NAICS code 53), as firms in 

these sectors were found to be primarily involved in leasing robots to other firms.9 We also removed firms 

in service industries that were engaged in programming imported robots for the purpose of reselling them 

to other firms (NAICS codes 5413, 5414, 5415, 5416), and firms in the wholesale trade sector (NAICS 

code 41). In our final data used for analysis, our NALMF sample contains 168,729 firms in total for the 

years 2000-2015, and our WES sample contains 3,981 businesses in total for the years 2001-2006. 

Descriptive statistics and correlation tables for both our NALMF and WES samples are shown in Appendix 

section S12. 

3.2 Measures 

Robot investment. Using our data capturing imports of robotics hardware, we create a measure of robot 

capital stock by adding all robot purchases by each firm recorded in each year. To adjust our robot capital 

stock measure for economic depreciation, we assume a useful life of 12 years based upon stated guidance 

given by the International Federation of Robotics (IFR).  

Employee count. To measure the total number of employees within the firm, we use the total count of 

employees provided in the NALMF data for each firm-year, recorded from payroll deduction remittance 

forms submitted by all Canadian firms to the Canada Revenue Agency (CRA). Total numbers of managerial 

and non-managerial employees are recorded as responses in each year of the WES survey.10  

Hiring and turnover. Using data capturing employee hiring and departures in the WES survey, we 

construct measures of both managerial and non-managerial hiring activity and turnover. To measure the 

rate of managerial hiring, we divide the number of new managerial hires within a given year by the average 

number of managers during the period, and we similarly calculate the hiring rate of non-managerial 

employees. Managerial turnover is calculated as the total count of managers who leave the organization in 

each year divided by the average number of managers during the period. Non-managerial turnover is 

calculated in a similar manner. 

                                                           
9 These sectors comprised only a negligible percentage of total robot imports into Canada. 
10 The survey provides a variety of examples of what is included in the definition of managers: “Examples: president 

of a single location company; retail store manager; plant manager; senior partners in business services firms; 

production superintendent; as well as vice-presidents, assistant directors, junior partners and assistant administrators 

whose responsibilities cover more than one specific domain, department heads or managers (engineering, 

accounting, R&D, personnel, computing, marketing, sales, etc.); heads or managers of specific product lines; junior 

partners or assistant administrators with responsibilities for a specific domain; and assistant directors in small 

locations (without an internal department structure).” 
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Strategic importance of cost reductions and quality improvements. To measure the strategic importance 

of cost reductions and quality improvements to the firm, we exploit a section of the WES survey which 

asks respondents to “please rate the following factors with respect to their relative importance in your 

workplace general business strategy” for the years 2001, 2003, and 2005. Respondents are asked to choose 

the importance of each factor on a Likert scale with possible responses being (1) Not applicable, (2) Not 

important, (3) Slightly important, (4) Important, (5) Very important, and (6) Crucial. Here, we consider the 

factors of “reducing labour costs,” “reducing other operating costs” aside from labor, and “improving 

product/service quality” separately for analysis. For our measure of strategic priority of each factor, we 

redefine on the Likert scale values of (1) to be equal to (2), as changes between (1) and (2) do not clearly 

capture the changes in strategic priority that we aim to measure.11 

Decision authority for training and choice of production technology. The WES data contain detailed 

information regarding decision-making authority for tasks across different layers of the organizational 

hierarchy, drawn from survey questions similar to those used by Bresnahan et al. (2002) and Bloom et al. 

(2013) measuring worker autonomy. The survey asks, “who normally makes decisions with respect to the 

following activities?” Here, we consider the activities of “training” and “choice of production technology” 

as they are directly relevant to the firm’s investments in human capital and use of robotics for productivity. 

For the 2003 and 2005 waves of the survey, survey respondents were given the following five possible 

responses to the question of who makes decisions: 1) non-managerial employees, 2) work supervisors, 3) 

senior managers, 4) individuals or groups outside the workplace (typically corporate headquarters for multi-

establishment firms), and 5) business owners. To create distinct categories that correspond to hierarchical 

levels within organizations, we create three dummy variables, each equal to one if: 1) non-managerial 

employees were assigned decision authority over the task, 2) work supervisors or senior managers were 

assigned authority over the task, to capture managerial employees, or 3) business owners or corporate 

headquarters were assigned authority over the task. 

Training. In a separate section of the WES survey, respondents are asked to report whether the firm 

provides training for employees across a variety of types. Specifically, the survey defines training as 

“includ[ing] all types of training intended to develop your employees’ skills and/or knowledge,” either 

through “classroom job-related training” or “on-the-job training.” With respect to specific types of training, 

the survey asks, “did this workplace pay for or provide any of the following types of training?” Here, we 

consider a range of possible types of training: 1) computer hardware, 2) professional, 3) on other office and 

non-office equipment, 4) team-building, leadership, communication, 5) group decision-making or problem-

solving, 6) orientation for new employees, and 7) apprenticeship.  

                                                           
11 This modification does not change the sign or significance of our results from using each original variable. Simply 

dropping all values of (1) also produces results of identical sign and significance level. 
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Managers recruited from outside the firm. To measure whether firms implement a systematic 

workplace practice of external hiring for managerial positions, the WES asks how vacant managerial 

positions are usually filled. Here, we create a dummy variable equal to one if managerial positions are 

reported as usually being filled “from outside the company” as opposed to within the firm, with the added 

condition that at least one manager is hired in the same year if the practice changed from the prior year.12  

Controls. A number of control variables are also included in our analysis. In all our specifications, we 

include organization fixed effects to address concerns of unobserved heterogeneity across firms and year 

fixed effects to control for aggregate shocks and trends. We control for organization size, measured by 

logged total assets in our NALMF sample and logged total revenues in our WES sample. We also include 

a dummy variable control for businesses that are part of a multi-establishment firm in both samples. In our 

WES sample analysis, a dummy variable is used to control for businesses that have an organized union.13 

4 Patterns and trends in robot adoption 

Figure 2 shows aggregate robot capital stock in Canada for each year from 1996-2017, with robots for 

automotive assembly and all other types of robots displayed as two distinct categories.14 Overall, investment 

has been steadily increasing since the late 1990s, with a substantial decline in investment growth 

corresponding roughly to the timeframe of the Great Recession for automotive assembly robots.15 Since 

2008, investment in automotive assembly robots has continued to decline, while investment in non-

automotive robots has increased at an accelerating rate. The divergence in investment between the two 

types of robots is consistent with anecdotal evidence that the types of robots being adopted by firms has 

evolved over time, away from highly customized robots for automotive production to more general-purpose 

robots that can be used by businesses across a wider range of economic sectors.  

5 Results and robustness checks 

5.1 Results 

Results for our baseline tests of the relationship between investments in robotics and employment are 

presented in Table 1. Columns 1 through 7 provide OLS estimates with organization fixed effects using 

                                                           
12 The condition of requiring at least one manager to be hired was added to capture not only a change in work 

practices, but evidence of actual hiring. Removing this additional condition and using only the measure of external 

managerial hiring as a work practice does not change the sign or significance level of our results. 
13 This variable was not available in the NALMF data. 
14 We note the graphs in this section use all available robot import data to show aggregate distribution and trends, 

not our NALMF or WES regression samples. 
15 We note that the Great Recession did not begin at the same time in Canada and the United States. The United 

States entered the Great Recession in December 2007, while Canada did not enter a recession until October 2008, 

which ended in July 2009.  
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each of our employee count, hiring, and turnover measures as dependent variables. As Column 1 shows, 

the coefficient for our measure of robot investment is positive and statistically significant, suggesting that 

robot investments by firms predict a net increase in employment, as opposed to a decline. Columns 2 and 

3 investigate this in greater detail by separately considering the effects on manager headcount and non-

managerial employee headcount. Here, the coefficient for robot investment is negative and significant for 

managers, but positive and significant for non-managerial employees. As the contrast between both 

columns show, robot investments predict a decrease in the number of managers within the firm, but an 

increase in the number of non-managerial employees, suggesting that effects on employment are not 

uniform across all types of employees within the firm. Managers in particular may be more likely to 

experience negative employment effects from robots within the firm. Columns 4 through 7 examine whether 

these results are explained by changes in hiring or turnover for both managerial and non-managerial 

employees. As shown in Columns 4 and 6, investments in robotics predict both a decrease in hiring of 

managers (negative and significant coefficient), as well as an increase in managerial turnover (positive and 

significant coefficient), suggesting that both contribute to the change in managerial headcount. By contrast, 

in Columns 5 and 7, the coefficient for robot investment is positive and significant, suggesting that 

investments in robotics increase both non-managerial hiring as well as non-managerial turnover. While 

both hiring and turnover increase, the net effect of the two (Column 3) ultimately predicts a net gain in total 

employment for non-managerial employees. However, we also note that while overall managerial 

employment may be negatively affected, robot adoption also predicts a change in work practices to hiring 

managers from outside the firm (Column 8). 

We next examine how robot investments may be related to changes in the strategic priorities of firms, 

with results displayed in Table 2. As Column 1 shows, the coefficient for robot investment is not statistically 

significant, providing no evidence that purchases of robots by firms are motivated by a desire to reduce 

labor costs. In Column 2, the coefficient for robot investment is negative and significant, again providing 

no evidence that the use of robots is driven by an increase in the strategic importance of reducing other 

operating (non-labor) costs, and suggesting instead that implementing such cost reductions becomes less 

important to the firm when investments in robotics are made. In Column 3, we find a positive and significant 

coefficient for robot investment with respect to the strategic importance of improving product/service 

quality. Overall, the results suggest that robot investments are more likely to be motivated by improving 

the quality of firm output, as opposed to efficiency gains from labor or other operating cost reductions. This 

also corroborates evidence in the field, especially in manufacturing, that suggests robots are often used to 

reduce production variance.16 

                                                           
16 https://www.robots.com/faq/why-should-my-company-use-industrial-robots 
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To complement our findings with respect to employment and firm strategic priorities, we also explore 

how the roles of managerial and non-managerial employees may also be changing as a consequence of 

robot adoption. Specifically, we examine how robot investments predict the allocation of decision authority 

over training activities and the choice of production technology, with results shown in Table 3. Columns 1 

through 3 show results for the allocation of authority for training decisions, with the coefficient for robot 

investment being positive for non-managerial employees and negative for managerial employees, with no 

significant relationship found for business owners/corporate headquarters. The results provide evidence of 

decentralization of responsibilities for training from managerial to non-managerial employees within the 

firm as a response to robot adoption. Columns 4 through 6 show results for the allocation of decision 

authority over the choice of production technology, with no significant relationship found for non-

managerial employees, a negative and significant relationship for managerial employees, and a positive and 

significant relationship for business owners/corporate headquarters. In contrast with training activities, the 

results suggest the choice of production technology becomes centralized upwards from managerial 

employees to business owners/corporate headquarters.  

As an additional step, we exploit data on different types of training from the WES survey to examine 

the nature of training that firms may be investing in due to robot adoption, with results shown in Table 4. 

As shown in Columns 1 and 2, the coefficients for robot investment are positive and significant for both 

training in computer hardware as well as professional training, providing evidence that robot investments 

predict greater investment for both types of training. While the WES does not explicitly define computer 

hardware or professional training, we include results for a variety of other types of training (Columns 3 

through 7), which are distinct responses in the survey. For these other types of training, we find evidence 

of a negative and significant relationship between robot investment and training for other office and non-

office equipment, and no evidence of a relationship for other types of training. Taken together, the results 

provide evidence that firms invest in some type of training for computer technology as well as for 

professional roles, which is distinct from the use of other equipment, leadership skills, group decision-

making, orientation for new employees, or apprenticeship.   

5.2 Robustness checks 

Here, we consider several alternative explanations for our results. A primary concern is that because 

firms choose whether to invest in robots, robot-adopting firms in our sample may be systematically different 

from firms that do not invest, potentially biasing our estimates. We test the robustness of our results to this 

issue in two ways. First, we estimate our main regressions using a matched sample created using Coarsened 

Exact Matching (CEM) (Iacus et al. 2012).17 Second, we implement an applied Heckman correction method 

                                                           
17 A more detailed description of our matching procedure is provided in Appendix section S4. 
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to account for unobservable differences between firms that adopted robots and those that did not in our 

WES sample (Heckman 1976, Shaver 1998). 18  Using this method, we begin by estimating a probit 

regression predicting robot adoption with the same independent variables as in our original employment 

regressions (excluding robot investment), and include as an additional exogenous predictor whether firms 

report that a lack of information about technologies hinders their ability to adopt them. Residuals from this 

first stage regression can be interpreted as a firm’s likelihood of adopting robots that is unexplained by the 

covariates, which we include in our employment regressions as a control variable in the form of an inverse 

Mills ratio. We find similar results for both robustness tests that address selection concerns (see Appendix 

sections S4 and S8).19  

Another possible explanation for our results is that employment may simply be expanding due to 

improved firm performance, which may be correlated with robot investment. To address this concern, we 

include an additional control for total revenues in our NALMF sample. For our WES sample, since we 

already control for total revenues, we add a dummy variable equal to one if firms report productivity levels 

above their main competitors. For both samples, we find similar results with the inclusion of these 

additional controls (see Appendix section S7). We also note that general changes in performance are 

unlikely to explain our contrast in results between managers and non-managerial employees, since such 

effects typically predict similar consequences for all types of employees (Kletzer 1998).  

Finally, we examine whether our employment results may be driven by overall investments in IT as 

opposed to robots. Here we control for IT capital stock in both our NALMF and WES samples. In our 

NALMF sample, we use a measure of IT capital stock constructed by Statistics Canada that exploits all IT 

capital investment captured from tax filing records. In the WES sample, we construct an IT capital stock 

measure based upon reported investments in “computer hardware/software” asked by the survey. We find 

similar results after including these additional controls (see Appendix section S6).20  

6 Discussion and conclusion 

Utilizing novel data capturing investments in robotics for a population of businesses in a developed 

economy, we provide the first firm-level evidence of the effect of robot adoption on employment. The 

results suggest that robots do not affect employment within the firm uniformly, leading to net increases in 

the headcount of non-managerial employees, but also decreases in the headcount of managerial employees, 

                                                           
18 Further explanation is provided in Appendix section S8. 
19 We also instrument for robot adoption as an additional robustness check (see Appendix section S8), and find 

directionally consistent results. 
20 However, we note that because our measures of overall IT capital stock are relatively coarse (using very general 

category definitions) and may not precisely capture investments in non-robotics AI technologies, measurement error 

of non-robotics AI investment could potentially affect our results to some degree if correlated with robot investment.  
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consistent with the notion that by taking on a subset of responsibilities and activities in the production 

process of the firm, robots affect the demand for workers engaged in other activities within the firm. 

Employees whose skills have greater complementarity to robot investments are more likely to experience 

net gains in employment, depending on the degree to which their skills are complementary. Surprisingly, 

we find evidence of displacement of specific higher cognitive-skilled jobs such as managers that were 

previously less vulnerable to skill-biased technical change from earlier waves of technology. However, we 

find no evidence that these job losses are caused by firms desiring to cut labor costs of workers with higher 

wage premiums, as we find that firms primarily adopt robots to improve product and service quality.  

Two possible explanations may account for the negative effect on managerial employment. First, as the 

capabilities of robotics have advanced substantially over time, automation may extend to managerial work 

itself such as monitoring and quality assurance, which can directly reduce the demand for managers (Leavitt 

and Whisler 1958). Second, the nature of managerial work may be the changing, which may indirectly 

affect managerial employment as the management of workers doing non-routine, cognitively challenging 

tasks is likely to differ substantively from managing workers doing routine manual tasks (MacDuffie 1997, 

Parker and Slaughter 1988). Supervisors of routine work may be primarily occupied with ensuring that 

employees arrive on time, monitoring their work procedures and output, and training them (Helper and 

Henderson 2014, Taylor 1977). However, when routine work is done by robots, employees are left with 

less routine and more cognitively complex work. These employees often possess expertise in dealing with 

problems outside of routine operations, including designing new products and production processes, and 

can often resolve production problems better than their managers (Helper et al. 2000, Kenny and Florida 

1993). As a consequence, managing these employees may entail less monitoring and issuing of direct 

commands and more advising and empowerment of employees to solve problems (Malone 2003, Mintzberg 

1973, Mintzberg 2013). Accordingly, managers may supervise more employees than before, ultimately 

reducing their headcount (Malone 2003, Malone 2004). While both the direct and indirect effects could 

contribute to the decline in managerial employment that we have observed, the indirect effect is likely to 

dominate the direct effect during the time period of our data, given that advances in AI in automating 

managerial work are still relatively new (Moulds 2018). Over time, as robotics and AI continue to advance 

rapidly, the direct effect from automating managerial work could further reduce managerial employment, 

and the nature of managerial work would continue to evolve.  

In addition to changes in employment, we also observe that organizational practices change with robot 

adoption as the allocation of decision authority for certain tasks shifts to different layers of the hierarchy, 

away from managers. Human resource-related decisions with respect to training are decentralized from 

managers to non-managerial employees, while the choice of production technology is centralized from 

managers to business owners and corporate headquarters. This differs from effects of earlier generations of 
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IT that tended to decentralize decision authority (Acemoglu et al. 2007). However, with robot adoption 

rapidly increasing in prevalence and capability due to AI advances, we expect that the allocation of decision 

authority and other complementary work practices are likely to continue to evolve. Those firms that can 

best match their capabilities and work practices to productive opportunities can benefit substantially from 

robot investments and develop potential competitive advantages, highlighting the need to understand the 

different types of complements to robots as a new technology.  

Overall, our findings using firm-level data suggest the effect of robots on labor is more nuanced than 

earlier work predicted and requires a deeper examination beyond the level of industry or region to 

understand how they are used to complement and substitute labor. While our analysis suggests that robot 

adoption is associated with using different types of labor, it is also important to examine the associated 

implication on wages. Our initial evidence suggests that although labor cost reduction is not the primary 

reason for why firms adopt robots, the reduction in managerial labor that is typically highly compensated 

compared to non-managerial employees suggests that the average wage is likely to change and possibly 

decrease as a result of robot adoption. The extent to which wages may change depends on the type of jobs 

that are created. Similarly, the change in employee types and skills as a result of robot adoption would also 

lead firms to implement complementary work practices to accommodate the skill change, similar to earlier 

generations of skill-biased technical change (Bresnahan et al. 2002, Murnane et al. 1999). To understand 

these effects, the collection of microdata, especially at the firm level, is crucial to examine the implications 

of robots on employment and wages. Additionally, better data about robot investment and AI more 

generally across different contexts are critical to understanding whether the effects we observe on 

employment and work practices can be generalized (Buffington et al. 2018, Frank et al. 2019). While we 

provide the first firm-level evidence on robotics that we are aware of and show that work practices have 

already evolved in response to robot technologies, future research should continue to examine how robotics 

and AI technologies in general affect different firms, occupations, industries, and geographical regions 

(Felten et al. 2018). Understanding their implications is critical as investments in robots and AI are likely 

to have profound effects on both employment and organizations.  
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Figure 1. Average percentage of employees at the firm that are managers 

 

 

Note: For each series, values are normalized by dividing by the value in 2001.  

 

Figure 2. Aggregate robot stock in Canada by robot type, 1996-2017  

 

 
 
Note: Robot stock is depreciated using a 12-year useful life assumption, following guidance from the International Federation of Robotics 

(IFR). 
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Table 1. Employment regressions 

 

 
 

Table 2. Strategic priority regressions 

  

(1) (2) (3) (4) (5) (6) (7) (8)

FE FE FE FE FE FE FE FE

Dataset: NALMF WES WES WES WES WES WES WES

Dependent variable: 

ln(Total 

employees)

ln(Total 

managers)

ln(Total non-

mgr. 

employees)

Mgr. Hiring 

Rate

Nonmgr. 

Hiring Rate

Mgr. 

Turnover

Nonmgr. 

Turnover

Outside 

mgr. 

recruitment

ln(Total assets) 0.191***
(0.013)

ln(Total revenues) 0.084*** 0.243*** 0.005 -0.046 -0.005 -0.049 -0.036
(0.032) (0.053) (0.012) (0.060) (0.038) (0.061) (0.034)

Multi-unit enterprise 0.139*** 0.032 0.046 0.034 0.012 -0.036 -0.034 -0.024
(0.014) (0.096) (0.049) (0.025) (0.047) (0.086) (0.067) (0.073)

Unionized 0.168 0.026 0.048 -0.059 -0.081 -0.063* 0.065
(0.108) (0.033) (0.032) (0.049) (0.091) (0.037) (0.074)

ln(Robot capital stock) 0.007*** -0.080*** 0.005** -0.007*** 0.013*** 0.044*** 0.012*** 0.024***
(0.002) (0.011) (0.002) (0.002) (0.003) (0.007) (0.003) (0.006)

Year fixed effects Y Y Y Y Y Y Y Y

Organization fixed effects Y Y Y Y Y Y Y Y

Observations 929,162 17,449 17,449 17,449 17,449 17,449 17,449 16,522

Adj R-squared 0.92 0.69 0.88 0.19 0.58 0.04 0.30 0.39

Standard errors in parentheses, clustered by industry.  All regressions using WES data use sampling weights.  *** p<0.01, ** p<0.05, * p<0.1

(1) (2) (3)

FE FE FE

Dependent variable

(strategic importance): 

Reducing labor 

costs

Reducing other 

operating costs

Improving 

product/service 

quality

ln(Total revenues) -0.011 0.049 0.105
(0.132) (0.130) (0.136)

Multi-unit enterprise -0.199 0.178 -0.201
(0.121) (0.176) (0.173)

Unionized -0.144 -0.527** -0.335*
(0.230) (0.260) (0.199)

ln(Robot capital stock) 0.027 -0.117*** 0.107***
(0.036) (0.013) (0.013)

Year fixed effects Y Y Y

Organization fixed effects Y Y Y

Observations 8,906 8,906 8,906

Adj R-squared 0.32 0.34 0.38

Standard errors in parentheses, clustered by industry.  All regressions use sampling 

weights.  *** p<0.01, ** p<0.05, * p<0.1
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Table 3. Task allocation regressions 

  

 

Table 4. Training regressions 

 

(1) (2) (3) (4) (5) (6)

FE FE FE FE FE FE

Dependent variable: 

Non-

managerial 

employees Managers

Business 

owners or 

Corp HQ

Non-

managerial 

employees Managers

Business 

owners or 

Corp HQ

ln(Total revenues) -0.001 0.000 0.019 0.002 0.061 -0.049
(0.018) (0.084) (0.084) (0.007) (0.067) (0.070)

Multi-unit enterprise 0.010 -0.022 0.107 -0.008 0.039 0.069
(0.013) (0.077) (0.102) (0.012) (0.065) (0.095)

Unionized -0.041 -0.071 -0.141 -0.001 0.232 -0.527***
(0.139) (0.212) (0.174) (0.004) (0.190) (0.182)

ln(Robot capital stock) 0.074*** -0.077*** 0.004 -0.000 -0.069*** 0.075***
(0.011) (0.011) (0.003) (0.000) (0.015) (0.013)

Year fixed effects Y Y Y Y Y Y

Organization fixed effects Y Y Y Y Y Y

Observations 6,173 6,173 6,173 6,173 6,173 6,173

Adj R-squared 0.29 0.33 0.39 0.30 0.31 0.33

Training decisions Choice of Production Technology

Standard errors in parentheses, clustered by industry.  All regressions use sampling weights. *** p<0.01, ** 

p<0.05, * p<0.1

(1) (2) (3) (4) (5) (6) (7)

FE FE FE FE FE FE FE

Dependent variable 

(type of training): 

Computer 

hardware Professional

Other office 

and non-

office 

equipment

Team-

building, 

leadership, 

comm.

Group 

decision-

making or 

problem-

solving Orientation

Apprentice-

ship

ln(Total revenues) 0.042 0.065 0.027 0.052 0.032 0.059 0.018
(0.032) (0.044) (0.031) (0.036) (0.029) (0.050) (0.037)

Multi-unit enterprise -0.003 -0.076 0.031 0.164* 0.065 -0.069 0.036
(0.034) (0.054) (0.033) (0.094) (0.044) (0.075) (0.065)

Unionized 0.014 -0.014 -0.002 -0.150* 0.028 -0.060 -0.014
(0.055) (0.063) (0.066) (0.077) (0.034) (0.058) (0.039)

ln(Robot capital stock) 0.020*** 0.034*** -0.034*** 0.003 -0.000 -0.002 0.000
(0.003) (0.005) (0.005) (0.004) (0.002) (0.003) (0.003)

Year fixed effects Y Y Y Y Y Y Y

Organization fixed effects Y Y Y Y Y Y Y

Observations 17,449 17,449 17,449 17,449 17,449 17,449 17,449

Adj R-squared 0.38 0.47 0.34 0.45 0.38 0.47 0.55

Standard errors in parentheses, clustered by industry.  All regressions use sampling weights.  *** p<0.01, ** p<0.05, * p<0.1
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Appendix:  The Employment Consequences of Robots:  

Firm-level Evidence  

 
 

S1 Comparison to Robotic Industries Associaton (RIA) data 
 
Below is a graphical comparison of the value of robot stock calculated from imports into Canada compared to the 

total value of robot stock calculated from data provided by the Robotic Industries Association (RIA) for the years 

2005-2016.1 We note that imports of robots into Canada should generally be a more comprehensive measure of 

total robot purchases, since all purchases of robots from abroad are in principle captured by the Canadian Border 

Services Agency (CBSA). By contrast, the RIA relies upon self-reported information provided by its members, 

who are a subset of all purchasers within Canada and all sellers of robots to Canada, which is likely to include 

transactions of the largest buyers and sellers of robots. However, both follow a similar pattern regarding overall 

robot investment. 

 

Figure A1. Comparison of Canadian robot imports to Robotic Industries Associaton (RIA) data 

 

 
Note: Robot stock is depreciated using a 12 year useful life assumption, following guidance from the International Federation 

of Robotics (IFR). 

 

 

 

 

 

 

  

                                                           
1 The RIA reports values in US dollars, so for comparability we present the import data in US dollars here. 
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However, for the years 2009 and 2010, there are significant inconsistencies between shipment data 

reported for North America by the RIA and International Federation of Robotics (IFR), the two main 

industry associations that report robot purchases for North America.234  Although the IFR regularly uses 

data provided by the RIA and possesses its data for earlier years, we note that the IFR only reports 

country-level data for North America beginning in 2011, after the 2009-2010 period.  If we remove 

these years and separately graph the comparison from 2005-2008 and 2011-2016, the value of robot 

stock is much more similar from the two data sources, as shown in Figures A2 and A3 below.   

 

Figure A2. Comparison of Canadian robot imports to Robotic Industries Associaton (RIA) data, 2005-2008 

 
 

Figure A3. Comparison of Canadian robot imports to Robotic Industries Associaton (RIA) data, 2011-2016 

  

                                                           
2 For the years 2005-2008 and 2011-2015, the IFR reports consistently greater shipments in each year, being an average of 

26% higher with a standard deviation of 7%.  The consistently higher numbers are to be expected, since the IFR draws upon 

more data sources to augment data it regularly receives from the RIA.  However, shipments reported by the IFR were 19% 

lower in 2009 and 459% higher in 2010.   
3 The RIA is the industry association for North America; the IFR is the global industry association. 
4 The IFR does not report total values of robot purchases for Canada, so cannot be used for comparison with our main 

measure of robot investment. 
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S2 Robot investment by industry 

 
Figure A4. Total robot stock attributable by manufacturing sector, 2000-2017 

 

 
Note:  Automotive sector includes NAICS codes 3361, 3362, 3363.  Petroleum and plastics includes 324, 325, and 326.  

Minerals and metals includes 327, 331, and 332.  Machinery includes 333.  Computers and electronics includes 334 and 335.  

Other manufacturing includes all other NAICS codes in the manufacturing sector. 

 
Figure A5. Total robot stock attributable by services sector, 2000-2017 

 

 
Note:  Healthcare includes NAICS code 62.  Other services includes all other NAICS codes outside the manufacturing sector, 

healthcare, and wholesale trade. 
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S3 Robot investment by geographic region 

 
Figure A6. Total robot stock attributable by economic region5: Canada 

 

 

                                                           
5 Economic regions are groupings of census divisons created by Statistics Canada as a standard geographic unit for analysis of regional 

economic activity. 
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Figure A7.  Total robot stock attributable by economic region: Toronto, Montreal, and surrounding areas  
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Figure A8.  Total robot stock attributable by economic region: British Columbia, Alberta, and Saskatchewan 
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 S4 Matched sample analysis 

 

To address concerns of selection bias in robot adoption that may affect our coefficient estimates, we estimate our 

main regressions using a matched sample created using Coarsened Exact Matching (CEM) (Iacus et al. 2012).  

For our NALMF sample, we match firms in our sample that adopt robots to non-robot adopting firms by industry 

(measured by 4 digit NAICS code), year, province, whether the firm is part of a multi-unit enterprise, total assets, 

firm age, average annual earnings of the firm’s employees, and capital stock.  Matching is done exactly by 

industry, year, province, and multi-unit status, with coarsening allowed for the other variables.  For our WES 

sample, matching is done exactly by industry, year, and province, with coarsening allowed for total revenues, age 

of the organization, average annual employee earnings, and capital stock.67  As shown below in Table A9, overall 

we find similar results, with the effect of robot investment on total employment in the NALMF sample (Column 

1) increasing substantially compared to our original estimates (0.007 to 0.015), and the considerably smaller 

sample size reducing statistical power in some cases but showing similar point estimates. Tables A10-A12 also 

show similar results. 

Table A9. Employment regressions, matched sample 

 

  

                                                           
6 In the WES data, the three Atlantic provinces of Newfoundland, New Brunswick, and Nova Scotia were combined by 

Statistics Canada into a single geographic region.   
7 Capital stock data for the WES sample was provided by the Capital and Investment Program (CIP), a dataset maintained by 

Statistics Canada. 

(1) (2) (3) (4) (5) (6) (7) (8)

FE FE FE FE FE FE FE FE

Dataset: NALMF WES WES WES WES WES WES WES

Dependent variable: 

ln(Total 

employees)

ln(Total 

managers)

ln(Total non-

mgr. 

employees)

Mgr. Hiring 

Rate

Nonmgr. 

Hiring Rate

Mgr. 

Turnover

Nonmgr. 

Turnover

Outside 

mgr. 

recruitment

ln(Total assets) 0.215***
(0.037)

ln(Total revenues) 0.013 0.367*** 0.022 0.047** 0.027 0.199*** 0.028
(0.166) (0.087) (0.013) (0.020) (0.064) (0.059) (0.058)

Multi-unit enterprise 0.144*** 0.313 0.002 -0.083 0.190 0.142 -0.172 -0.114*
(0.022) (0.430) (0.044) (0.054) (0.137) (0.148) (0.169) (0.068)

Unionized 0.594 -0.151*** -0.017 -0.067* -0.320 1.013** 0.004
(0.475) (0.050) (0.020) (0.039) (0.196) (0.432) (0.270)

ln(Robot capital stock) 0.015** -0.072*** 0.004* -0.008*** 0.012* 0.066** 0.017* 0.040***
(0.006) (0.015) (0.002) (0.002) (0.007) (0.027) (0.009) (0.013)

Year fixed effects Y Y Y Y Y Y Y Y

Organization fixed effects Y Y Y Y Y Y Y Y

Observations 41,399 1,742 1,742 1,742 1,742 1,742 1,742 1,652

Adj R-squared 0.94 0.76 0.94 0.13 0.18 0.09 0.19 0.29

Standard errors in parentheses, clustered by industry.  All regressions using WES data use sampling weights.  *** p<0.01, ** p<0.05, * p<0.1
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Table A10. Strategic priority regressions, matched sample 

  

 

Table A11. Task allocation regressions, matched sample 

  

(1) (2) (3)

FE FE FE

Dependent variable

(strategic importance): 

Reducing labor 

costs

Reducing other 

operating costs

Improving 

product/service 

quality

ln(Total revenues) 0.136 -0.561 0.203
(0.189) (0.358) (0.389)

Multi-unit enterprise 0.230 0.202 0.713
(0.265) (0.568) (0.465)

Unionized -0.753 -0.731*** 0.065
(0.637) (0.204) (0.324)

ln(Robot capital stock) 0.003 -0.163*** 0.108***
(0.043) (0.017) (0.031)

Year fixed effects Y Y Y

Organization fixed effects Y Y Y

Observations 887 887 887

Adj R-squared 0.45 0.48 0.20

Standard errors in parentheses, clustered by industry.  All regressions use sampling 

weights.  *** p<0.01, ** p<0.05, * p<0.1

(1) (2) (3) (4) (5) (6)

FE FE FE FE FE FE

Dependent variable: 

Non-

managerial 

employees Managers

Business 

owners or 

Corp HQ

Non-

managerial 

employees Managers

Business 

owners or 

Corp HQ

ln(Total revenues) -0.018 -0.007 0.284 0.007 -0.139 0.364
(0.042) (0.057) (0.229) (0.032) (0.104) (0.254)

Multi-unit enterprise -0.031 -0.199 0.610* 0.002 -0.392 0.765***
(0.090) (0.600) (0.359) (0.015) (0.368) (0.284)

Unionized 0.014 -0.025 0.015 0.009 0.859*** -0.870***
(0.014) (0.024) (0.101) (0.009) (0.090) (0.070)

ln(Robot capital stock) 0.076*** -0.080*** 0.012 0.002 -0.079*** 0.085***
(0.013) (0.012) (0.009) (0.001) (0.012) (0.017)

Year fixed effects Y Y Y Y Y Y

Organization fixed effects Y Y Y Y Y Y

Observations 630 630 630 630 630 630

Adj R-squared 0.84 0.73 0.75 0.07 0.51 0.51

Training decisions Choice of Production Technology

Standard errors in parentheses, clustered by industry.  All regressions use sampling weights. *** p<0.01, ** p<0.05, 

* p<0.1
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Table A12. Training regressions, matched sample 

 

  

  

(1) (2) (3) (4) (5) (6) (7)

FE FE FE FE FE FE FE

Dependent variable 

(type of training): 

Computer 

hardware Professional

Other office 

and non-

office 

equipment

Team-

building, 

leadership, 

comm.

Group 

decision-

making or 

problem-

solving Orientation

Apprentice-

ship

ln(Total revenues) 0.118** 0.147* 0.046 0.121 0.124 -0.101 0.078
(0.054) (0.081) (0.076) (0.089) (0.079) (0.141) (0.074)

Multi-unit enterprise -0.033 0.099 0.105 0.066 0.156 -0.140*** -0.078
(0.035) (0.163) (0.127) (0.146) (0.145) (0.046) (0.164)

Unionized 0.073* 0.079* -0.311** -0.217** 0.011 -0.194 0.024
(0.044) (0.046) (0.152) (0.086) (0.021) (0.223) (0.037)

ln(Robot capital stock) 0.019*** 0.023*** -0.054*** 0.003 0.007 -0.018 0.005
(0.006) (0.005) (0.010) (0.007) (0.008) (0.011) (0.005)

Year fixed effects Y Y Y Y Y Y Y

Organization fixed effects Y Y Y Y Y Y Y

Observations 1,742 1,742 1,742 1,742 1,742 1,742 1,742

Adj R-squared 0.43 0.45 0.37 0.41 0.39 0.47 0.59

Standard errors in parentheses, clustered by industry.  All regressions use sampling weights.  *** p<0.01, ** p<0.05, * p<0.1
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S5 Addressing robots purchased from wholesalers and other resellers 
 

In addition to end-using firms that purchase robots from abroad, wholesalers and value-added resellers within 

Canada also import robots with the intention to resell them to other firms. For these transactions, wholesalers and 

resellers are listed as the importing firm (identified by their NAICS code), but the import data do not capture the 

identity of the firm purchasing robots from these resellers.8 In the context of our data, the robot investments of 

these firms would be understated, potentially biasing our coefficient estimates.  

To address this concern, we exploit data on trade shipments between firms within Canada captured in the Surface 

Transportation File (STF), a dataset maintained by Statistics Canada. The data captures all shipments by truck and 

rail carriers between businesses within Canada during the years 2004-2012, recorded at the zip code level. Zip 

codes are also recorded in the NALMF data, allowing us to merge the two datasets.9 To explore whether robot 

purchases from wholesalers and other resellers within Canada may be affecting our results, we identify the zip 

code of all reselling firms in our sample that imported robots, and remove all firms located in zip codes that 

receive shipments from the zip code of the resellers. This effectively removes potential purchasing firms from 

resellers in our data, although they cannot be precisely identified. The results below are for our baseline 

employment regression for our NALMF sample using only the years 2004-2012 (Columns 1 and 2), and 

comparing to the sample with these potential purchasers from robot wholesalers removed (Columns 3 and 4). As 

the results show, we obtain similar findings.10  

 

Table A13. Potential purchasers from robot wholesalers removed 

 

  

                                                           
8 The following NAICS codes identify wholesalers and value-added resellers:  41, 5413, 5414, 5415, and 5416. 
9 The WES data does not contain zip codes. 
10 Robot capital stock coefficient in Columns 2 and 4 has a p-value of 6% 

(1) (2) (3) (4)

OLS FE OLS FE

Dataset: NALMF NALMF NALMF NALMF

Full sample

2004-2012

Full sample

2004-2012

Wholesaler 

recipient zipcodes  

Wholesaler 

recipient zipcodes  

Dependent variable: 

ln(Total 

employees)

ln(Total 

employees) ln(Total employees) ln(Total employees)

ln(Total assets) 0.376*** 0.189*** 0.375*** 0.189***
(0.014) (0.013) (0.014) (0.013)

Multi-unit enterprise 0.487*** 0.113*** 0.489*** 0.114***
(0.030) (0.019) (0.030) (0.019)

ln(Robot capital stock) 0.031*** 0.004* 0.031*** 0.004*
(0.004) (0.002) (0.004) (0.002)

Industry fixed effects Y N Y N

Region fixed effects Y N Y N

Year fixed effects Y Y Y Y

Organization fixed effects N Y N Y

Observations 564,365 564,365 554,496 554,496

Adj R-squared 0.55 0.94 0.55 0.94

Standard errors in parentheses, clustered by industry.  *** p<0.01, ** p<0.05, * p<0.1
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S6 Controlling for IT investment 

 

To address the concern that our employment results may be driven by overall investments in IT as opposed to 

robot investment, here we include an additional control variable for IT capital stock in both our NALMF and 

WES samples. In our NALMF sample, we use a measure of IT capital stock constructed by Statistics Canada that 

exploits all IT capital investment captured from tax filing records.  In the WES sample, we construct an IT capital 

stock measure based upon reported investments in “computer hardware/software” asked by the survey.11  As 

shown below in Columns 1 through 8, we obtain similar results. 

 

Table A14. Employment regressions IT capital stock control variable added for NALMF and WES samples 

 

  

                                                           
11 We use a useful life assumption of 5 years for IT investment, following Baldwin et al. (2015).   

(1) (2) (3) (4) (5) (6) (7) (8)

FE FE FE FE FE FE FE FE

Dataset: NALMF WES WES WES WES WES WES WES

Dependent variable: 

ln(Total 

employees)

ln(Total 

managers)

ln(Total non-

mgr. 

employees)

Mgr. Hiring 

Rate

Nonmgr. 

Hiring Rate

Mgr. 

Turnover

Nonmgr. 

Turnover

Outside 

mgr. 

recruitment

ln(Total assets) 0.196***
(0.011)

ln(Total revenues) 0.083*** 0.243*** 0.005 -0.045 -0.004 -0.050 -0.038
(0.032) (0.052) (0.012) (0.060) (0.038) (0.061) (0.034)

Multi-unit enterprise 0.128*** 0.033 0.046 0.034 0.012 -0.037 -0.033 -0.024
(0.012) (0.095) (0.049) (0.025) (0.047) (0.086) (0.066) (0.072)

Unionized 0.166 0.026 0.048 -0.058 -0.080 -0.065* 0.063
(0.107) (0.033) (0.032) (0.048) (0.090) (0.037) (0.074)

ln(Robot capital stock) 0.007*** -0.080*** 0.004** -0.007*** 0.013*** 0.044*** 0.012*** 0.025***
(0.002) (0.011) (0.002) (0.002) (0.003) (0.007) (0.003) (0.006)

ln(IT capital stock) 0.009*** 0.002 0.002* 0.001 0.003* -0.001 0.002* 0.004
(0.000) (0.003) (0.001) (0.001) (0.002) (0.003) (0.001) (0.003)

Year fixed effects Y Y Y Y Y Y Y Y

Organization fixed effects Y Y Y Y Y Y Y Y

Observations 901,123 17,442 17,442 17,442 17,442 17,442 17,442 16,519

Adj R-squared 0.92 0.69 0.88 0.19 0.58 0.04 0.30 0.39

Standard errors in parentheses, clustered by industry.  All regressions using WES data use sampling weights.  *** p<0.01, ** p<0.05, * p<0.1
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S7 Controlling for general improvements in firm performance 

 

An alternative explanation for our results is that firms that are generally expanding employment due to improved 

performance may be more likely to adopt robots, potentially introducting omitted variable bias in our estimates.  

To address this concern, we include an additional control for total revenues in our NALMF sample.  For our WES 

sample, since we already control for total revenues, we add a dummy variable equal to one if firms report 

productivity levels above their main competitors to capture relative as well as absolute performance.12  As shown 

below in Columns 1 through 8, we find similar results after including these additional controls. 

 

Table A15. Employment regressions selection control variable added for WES sample 

 

  

                                                           
12 The survey specifically asks “compared to your main competitors, how would you rate your workplace performance?” with 

“productivity” listed as a performance measure. 

(1) (2) (3) (4) (5) (6) (7) (8)

FE FE FE FE FE FE FE FE

Dataset: NALMF WES WES WES WES WES WES WES

Dependent variable: 

ln(Total 

employees)

ln(Total 

managers)

ln(Total non-

mgr. 

employees)

Mgr. Hiring 

Rate

Nonmgr. 

Hiring Rate

Mgr. 

Turnover

Nonmgr. 

Turnover

Outside 

mgr. 

recruitment

ln(Total assets) 0.052***
(0.007)

ln(Total revenues) 0.393*** 0.084*** 0.242*** 0.005 -0.046 -0.005 -0.048 -0.036
(0.019) (0.032) (0.053) (0.012) (0.060) (0.038) (0.061) (0.034)

Multi-unit enterprise 0.092*** 0.032 0.045 0.034 0.012 -0.036 -0.032 -0.024
(0.010) (0.096) (0.049) (0.025) (0.047) (0.084) (0.066) (0.073)

Unionized 0.167 0.028 0.049 -0.058 -0.083 -0.065* 0.066
(0.108) (0.031) (0.032) (0.049) (0.090) (0.035) (0.072)

ln(Robot capital stock) 0.004*** -0.080*** 0.006** -0.007*** 0.014*** 0.043*** 0.011*** 0.025***
(0.001) (0.011) (0.002) (0.002) (0.003) (0.006) (0.003) (0.006)

Productivity above main competitors -0.007 0.044 0.003 0.010 -0.027 -0.054** 0.031
(0.028) (0.029) (0.007) (0.019) (0.026) (0.027) (0.032)

Year fixed effects Y Y Y Y Y Y Y Y

Organization fixed effects Y Y Y Y Y Y Y Y

Observations 929,162 17,449 17,449 17,449 17,449 17,449 17,449 16,522

Adj R-squared 0.93 0.69 0.88 0.19 0.58 0.04 0.30 0.39

Standard errors in parentheses, clustered by industry.  All regressions using WES data use sampling weights.  *** p<0.01, ** p<0.05, * p<0.1



13 

 

S8 Additional selection robustness checks 

 

In addition to the matching exercise presented earlier, we implement an applied Heckman correction method to 

account for unobservable differences between firms that adopted robots and those that did not (Heckman 1976, 

Shaver 1998). Using this method, we begin by estimating a probit regression predicting robot adoption with the 

same independent variables as in our original employment regressions (excluding robot investment), and include 

as an additional exogenous predictor whether firms report that a lack of information about technologies hinders 

their ability to adopt them. Specifically, the survey asks whether factors “impede the implementation of new 

technology in your workplace” with “lack of information on technologies” as a possible response. Residuals from 

this first stage regression (shown below in Column 1) can be interpreted as a firm’s likelihood of adopting robots 

that is unexplained by the covariates, which we include in our employment regressions as a control variable in the 

form of an inverse Mills ratio. As shown in Columns 2 through 8, we obtain similar results.  For our NALMF 

sample, we also instrument for robot adoption by multiplying the percentage of workers in each 4-digit NAICS 

code in occupations with high “manual dexterity” and relatively low “verbal ability” in 2000 by the inverse of the 

median price per robot in Canada for each year.13  As robot prices decrease over time, those industries with more 

workers similar to the capabilities of robots (who possess these attributes) are presumably more likely to adopt 

them. In this additional test, we find directionally consistent results. 

Table A16. Employment regressions with selection control variable added for WES sample 

 

                                                           
13 We use data and measures from the Labour Force Survey (LFS) and Career Handbook 2003, maintained by Statistics 

Canada and Employment and Social Development Canada respectively. 

(1) (2) (3) (4) (5) (6) (7) (8)

FE FE FE FE FE FE FE FE

Dataset: WES WES WES WES WES WES WES WES

Dependent variable: 

Robot 

adoption

ln(Total 

managers)

ln(Total non-

mgr. 

employees)

Mgr. Hiring 

Rate

Nonmgr. 

Hiring Rate

Mgr. 

Turnover

Nonmgr. 

Turnover

Outside 

mgr. 

recruitment

ln(Total revenues) -0.028 0.083*** 0.242*** 0.005 -0.048 -0.005 -0.050 -0.037
(0.051) (0.032) (0.052) (0.012) (0.060) (0.038) (0.061) (0.034)

Multi-unit enterprise -0.076 0.030 0.046 0.034 0.007 -0.037 -0.036 -0.028
(0.267) (0.096) (0.049) (0.025) (0.047) (0.086) (0.067) (0.072)

Unionized 0.342 0.185* 0.028 0.048 -0.021 -0.079 -0.046 0.092
(0.306) (0.109) (0.034) (0.033) (0.058) (0.090) (0.045) (0.077)

ln(Robot capital stock) -0.080*** 0.005** -0.007*** 0.013*** 0.044*** 0.012*** 0.024***
(0.011) (0.002) (0.002) (0.003) (0.007) (0.003) (0.006)

Lack of information on tech. -0.865***
(0.275)

Probit inverse mills ratio 0.049 0.006 -0.001 0.107 0.007 0.046 0.075*
(0.046) (0.020) (0.009) (0.076) (0.047) (0.054) (0.040)

Industry fixed effects Y N N N N N N N

Region fixed effects Y N N N N N N N

Year fixed effects Y Y Y Y Y Y Y Y

Organization fixed effects N Y Y Y Y Y Y Y

Observations 17,449 17,449 17,449 17,449 17,449 17,449 17,449 17,449

pseudo-R-squared 0.18

log likelihood -8,896

Adj R-squared 0.69 0.88 0.19 0.58 0.04 0.30 0.39

Standard errors in parentheses, clustered by industry.  All regressions using WES data use sampling weights.  *** p<0.01, ** p<0.05, * p<0.1
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S9 Regression results by industry 

 
Here, we show the results of our main employment specification for our NALMF sample (also including OLS) by 

industries in our data, using the same industry definitions as in section S2.  Overall, we find results consistent 

with our original baseline regressions, although the substantially smaller sample size and/or lower prevalence of 

robot adoption reduces statistical power in some cases for our firm fixed effect specifications. 

Table A17. Employment regressions by industry 

 

Table A18. Employment regressions by industry 

 

(1) (2) (3) (4) (5) (6) (7) (8)

OLS FE OLS FE OLS FE OLS FE

Industry: Automotive Automotive

Petroleum 

and plastics

Petroleum 

and plastics

Minerals and 

metals

Minerals and 

metals

Machinery 

manufacturing

Machinery 

manufacturing

Dependent variable: 

ln(Total 

employees)

ln(Total 

employees)

ln(Total 

employees)

ln(Total 

employees)

ln(Total 

employees)

ln(Total 

employees)

ln(Total 

employees)

ln(Total 

employees)

ln(Total assets) 0.461*** 0.148*** 0.433*** 0.205*** 0.459*** 0.257*** 0.502*** 0.301***
(0.026) (0.040) (0.010) (0.029) (0.008) (0.019) (0.010) (0.030)

Multi-unit enterprise 0.395*** 0.064 0.416*** 0.109*** 0.329*** 0.075*** 0.297*** 0.121***
(0.079) (0.044) (0.035) (0.026) (0.029) (0.020) (0.039) (0.033)

ln(Robot capital stock) 0.021*** 0.024*** 0.035*** 0.009*** 0.017*** 0.012*** 0.019*** 0.007**
(0.008) (0.005) (0.005) (0.003) (0.005) (0.003) (0.003) (0.003)

Industry fixed effects Y N Y N Y N Y N

Region fixed effects Y N Y N Y N Y N

Year fixed effects Y Y Y Y Y Y Y Y

Organization fixed effects N Y N Y N Y N Y

Observations 6,655 6,655 21,997 21,997 50,750 50,750 23,981 23,981

Adj R-squared 0.72 0.95 0.70 0.95 0.65 0.93 0.67 0.93

Standard errors in parentheses, clustered by firm.  *** p<0.01, ** p<0.05, * p<0.1

(1) (2) (3) (4) (5) (6) (7) (8)

OLS FE OLS FE OLS FE OLS FE

Industry:

Computer and 

electronic 

manufacturing

Computer and 

electronic 

manufacturing

Other 

manufacturing

Other 

manufacturing Healthcare Healthcare

Other 

services

Other 

services

Dependent variable: 

ln(Total 

employees)

ln(Total 

employees)

ln(Total 

employees)

ln(Total 

employees)

ln(Total 

employees)

ln(Total 

employees)

ln(Total 

employees)

ln(Total 

employees)

ln(Total assets) 0.445*** 0.242*** 0.415*** 0.209*** 0.201*** 0.124*** 0.325*** 0.174***
(0.013) (0.034) (0.005) (0.013) (0.012) (0.015) (0.002) (0.004)

Multi-unit enterprise 0.408*** 0.151*** 0.517*** 0.118*** 0.982*** 0.158 0.538*** 0.148***
(0.059) (0.039) (0.022) (0.019) (0.129) (0.112) (0.010) (0.008)

ln(Robot capital stock) 0.026*** 0.005 0.020*** 0.002 0.061*** 0.118*** 0.026*** 0.008*
(0.005) (0.004) (0.005) (0.003) (0.016) (0.002) (0.005) (0.004)

Industry fixed effects Y N Y N Y N Y N

Region fixed effects Y N Y N Y N Y N

Year fixed effects Y Y Y Y Y Y Y Y

Organization fixed effects N Y N Y N Y N Y

Observations 13,371 13,371 103,673 103,673 12,165 12,165 696,570 696,570

Adj R-squared 0.67 0.93 0.63 0.93 0.41 0.92 0.47 0.91

Standard errors in parentheses, clustered by firm.  *** p<0.01, ** p<0.05, * p<0.1
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S10 Standard errors clustered by geographic region 

 
While the relatively small number of provinces in Canada decreases the reliability of standard errors (Cameron 

and Miller 2015), for robustness we show results for our key regressions here with standard errors clustered by 

province.1415  As Tables A19 and A20 show, we find similar results.  

 

Table A19. Employment, strategic priority, and training regressions clustered by province 

 

 

  

                                                           
14 In the WES data, the three Atlantic provinces of Newfoundland, New Brunswick, and Nova Scotia were combined by 

Statistics Canada into a single geographic region.   
15 For brevity, we refer to both provinces and territories here simply as provinces. 

(1) (2) (3) (4) (5) (6) (7) (8)

FE FE FE FE FE FE FE FE

Dataset: NALMF WES WES WES WES WES WES WES

Dependent variable: 

ln(Total 

employees)

ln(Total 

managers)

ln(Total non-

mgr. 

employees)

Reducing 

labor costs

Reducing 

other 

operating 

costs

Improving 

product/ser

vice quality

Computer 

hardware 

training

Professional 

training

ln(Total assets) 0.191***
(0.008)

ln(Total revenues) 0.084** 0.243*** -0.011 0.049 0.105 0.042 0.065**
(0.029) (0.028) (0.141) (0.075) (0.131) (0.028) (0.031)

Multi-unit enterprise 0.139*** 0.032 0.046 -0.199* 0.178 -0.201 -0.003 -0.076*
(0.010) (0.097) (0.060) (0.108) (0.144) (0.140) (0.035) (0.046)

Unionized 0.168 0.026 -0.144 -0.527* -0.335** 0.014 -0.014
(0.168) (0.028) (0.253) (0.279) (0.124) (0.041) (0.051)

ln(Robot capital stock) 0.007*** -0.080** 0.005** 0.027 -0.117** 0.107*** 0.020** 0.034**
(0.002) (0.028) (0.002) (0.050) (0.043) (0.021) (0.010) (0.014)

Year fixed effects Y Y Y Y Y Y Y Y

Organization fixed effects Y Y Y Y Y Y Y Y

Observations 929,162 17,449 17,449 8,906 8,906 8,906 17,449 17,449

Adj R-squared 0.92 0.69 0.88 0.32 0.34 0.38 0.38 0.47

Standard errors in parentheses, clustered by province.  All regressions using WES data use sampling weights.  *** p<0.01, ** p<0.05, * p<0.1
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Table A20. Task allocation regressions clustered by province 

   

(1) (2) (3) (4) (5) (6)

FE FE FE FE FE FE

Dependent variable: 

Non-

managerial 

employees Managers

Business 

owners or 

Corp HQ

Non-

managerial 

employees Managers

Business 

owners or 

Corp HQ

ln(Total revenues) -0.001 0.000 0.019 0.002 0.061 -0.049
(0.018) (0.028) (0.022) (0.004) (0.038) (0.051)

Multi-unit enterprise 0.010 -0.022 0.107 -0.008 0.039 0.069
(0.020) (0.079) (0.117) (0.011) (0.092) (0.121)

Unionized -0.041 -0.071 -0.141 -0.001 0.232 -0.527*
(0.146) (0.240) (0.177) (0.005) (0.193) (0.219)

ln(Robot capital stock) 0.074*** -0.077*** 0.004 -0.000 -0.069*** 0.075***
(0.011) (0.008) (0.003) (0.000) (0.013) (0.011)

Year fixed effects Y Y Y Y Y Y

Organization fixed effects Y Y Y Y Y Y

Observations 6,173 6,173 6,173 6,173 6,173 6,173

Adj R-squared 0.29 0.33 0.39 0.30 0.31 0.33

Training decisions Choice of Production Technology

Standard errors in parentheses, clustered by province.  All regressions use sampling weights. *** p<0.01, ** 

p<0.05, * p<0.1
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S11 Productivity 

 

As an additional test, we examine whether investments in robotics lead to increases in firm productivity.16  As 

Columns 2 through 4 in the table below show, the coefficient for robot capital stock is positive and significant, 

providing evidence that robots do in fact increase firm productivity. 

 

Table A21. Productivity regressions 

 

  

                                                           
16 Logged materials, labor, and capital stock were calculated using measures of each variable provided in the NALMF data. 

(1) (2) (3) (4)

Dependent variable: ln(Total revenues)

OLS OLS FE

Levinsohn-

Petrin

ln(Materials) 0.411*** 0.411*** 0.235*** 0.265***
(0.024) (0.024) (0.021) (0.003)

ln(Labor) 0.445*** 0.443*** 0.310*** 0.312***
(0.025) (0.025) (0.023) (0.004)

ln(Non-Robot capital stock) 0.226*** 0.224*** 0.279*** 0.220***
(0.041) (0.041) (0.019) (0.005)

ln(Robot capital stock) 0.019*** 0.007*** 0.008***
(0.003) (0.001) (0.002)

Industry fixed effects Y Y N
Region fixed effects Y Y N
Year fixed effects Y Y Y

Organization fixed effects N N Y

Observations 929,162 929,162 929,162 929,162

Adj R-squared 0.87 0.87 0.97

Standard errors in parentheses, clustered by industry.  Standard errors for Levinsohn-Petrin 

estimation are bootstrapped with 100 repetitions. *** p<0.01, ** p<0.05, * p<0.1
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S12 Descriptive statistics and correlation tables 

 
Table A22. Descriptive statistics, NALMF sample  

 

 
 

 

 
Table A23. Descriptive statistics, WES sample 

 

 

 

Note: To prevent the harmful disclosure of any organization-specific information, Statistics Canada does not allow minimum 

and maximum values for variables to be reported. 

  

Variable Mean σ      1 2 3 4

1. ln(Total employees) 3.23    0.76      1.00

2. ln(Total assets) 14.13  1.55      0.62 1.00

3. Multi-unit enterprise 0.05    0.22      0.36 0.30 1.00

4. ln(Robot capital stock) 0.07    0.89      0.16 0.15 0.08 1.00

N = 929,162

Variable Mean σ      1 2 3 4 5 6 7 8 9 10

1. ln(Total managers) 1.32    0.77      1.00

2. ln(Total non-mgr. employees) 3.08    0.87      0.42 1.00

3. Mgr. Hiring Rate 0.20    0.31      0.10 0.13 1.00

4. Nonmgr. Hiring Rate 0.22    0.59      0.07 -0.02 0.17 1.00

5. Mgr. Turnover 0.15    0.26      -0.30 0.06 0.21 0.03 1.00

6. Nonmgr. Turnover 0.17    0.31      0.15 -0.14 0.20 0.54 -0.01 1.00

7. ln(Robot capital stock) 0.02    0.46      0.01 0.03 0.02 -0.003 0.02 -0.01 1.00

8. ln(Total revenues) 14.67  1.29      0.50 0.68 0.07 -0.02 0.01 -0.05 0.02 1.00

9. Multi-unit enterprise 0.08    0.28      0.21 0.35 0.02 -0.03 0.01 -0.01 0.003 0.33 1.00

10. Unionized 0.19    0.39      0.15 0.26 0.05 -0.01 0.08 -0.04 0.02 0.26 0.21 1.00

N = 17,449
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