Technological Change and Climatic Resiliency: Evidence from Irrigation in the United States

Eric C. Edwards, North Carolina State University Steven M. Smith, Colorado School of Mines

> NBER DAE Summer Institute July 9, 2019

US Irrigated Agriculture

Background

- Droughts in the 1890s and 1930s had dramatic agricultural, social, and financial consequences (Hansen and Libecap 2004; Landon-Lane, Rockoff and Steckel 2009; Hornbeck 2012)
- Expanded irrigation and other technological advances increased level of ag production in arid western counties (Hornbeck and Keskin 2014; Edwards and Smith 2018; Olmstead and Rhode 2011)
- Growing literature on temperature shocks, but not drought and irrigation (e.g. Schlenker, Hannemann, and Fisher 2005; Deschenes and Greenstone 2007; Burke and Emerick 2016)
- Limited work on extent and mechanism by which irrigation mitigates shocks (Hornbeck and Keskin 2014; Hansen, Libecap and Lowe 2011)

Motivation

Dalhart, TX (ca. 1938)

Lubbock/Dalhart (ca. 2010s)

Expansion of Irrigation Storage

Groundwater Pumping

Federal Dams

Research Design and Data

How do counties with potential storage react to drought before/after 1945 relative to those without?

- Create individual county measures of precipitation shock
 - Relative changes versus levels
- Does this change based on type of storage?
 - 1. Small stream (irrigation but no storage)
 - 2. Large river (surface storage)
 - 3. Aquifer
 - 4. Joint (Large river and aquifer)
- Ag census data 1910-2007 (digitized by Haines, 2010)
 - Crop value
 - Irrigated acres
 - Failed cropland

Measuring Storage Potential

Western Precipitation

Crop Value Pre-1950

Crop Value Post-1950

Crop Value by Storage Type Post-1950

Fraction Irrigated by Storage Type Post-1950

Summary and Next Steps

- US agriculture has become more resilient to drought, but only partially as a result of adding large dams and groundwater
- The type of irrigation technology affects how the production process changes: resiliency is interaction between technological and behavior changes
- Refine and test robustness of measures of drought/temperature
 - Palmer Drought Severity Index
 - Heat shocks
- Ag census data (1850-1900)
- Data by specific crops (1850-2012)
- Irrigation expansion in the East

Drought Status in 1934

1934 Binned Drought Status

Wettest Year: 1941

Precipitation Bins

Regression Results: Storage

	(1) Pre-1950	(2) Post-1950	(3) Pre-1950	(4) Post-1950	(5) Pre-1950	(6) Post-1950
VARIABLES	Ln(Crop Value)	Ln(Crop Value)	Pctg Irr.	Pctg Irr.	Ln(Failure)	Ln(Failure)
Bin 1	0.336***	-0.0841	3.94E-05	-0.0109***	-1.692***	0.398**
	(0.102)	(0.059)	(0.002)	(0.002)	(0.082)	(0.187)
Bin 2	0.289***	0.00597	-0.00156	-0.00692***	-0.451	-0.146
	(0.092)	(0.037)	(0.003)	(0.002)	(0.322)	(0.142)
Bin 4	-0.394***	-0.0344	0.00131	-0.000265	1.067***	0.504***
	(0.090)	(0.045)	(0.001)	(0.001)	(0.253)	(0.126)
Bin 5	-0.338***	-0.250***	-0.00149	-0.00649**	0.371	1.220***
	(0.078)	(0.094)	(0.003)	(0.003)	(0.255)	(0.137)
Storage x Bin 1	-0.358***	0.118*	-0.00508*	0.00454	2.612***	-0.351*
	(0.126)	(0.069)	(0.003)	(0.004)	(0.254)	(0.204)
Storage x Bin 2	-0.256**	-0.0419	-0.00285	0.00327	0.496	0.122
	(0.103)	(0.041)	(0.004)	(0.002)	(0.374)	(0.154)
Storage x Bin 4	-0.0811	0.0582	-0.000416	0.000362	-0.02	-0.0695
	(0.106)	(0.050)	(0.001)	(0.002)	(0.266)	(0.143)
Storage x Bin 5	-0.236**	0.197**	0.00526*	0.00153	0.976***	-0.394**
	(0.092)	(0.100)	(0.003)	(0.004)	(0.288)	(0.163)
Observations	1,914	6,617	1,914	6,688	954	3,285
R-squared	0.335	0.355	0.094	0.151	0.315	0.719
Number of stcounty	479	479	479	479	478	474

Robust standard errors in parentheses

***p < 0.01, **p < 0.05, *p < 0.1

Irrigated Acreage Pre-1950

Irrigated Acreage Post-1950

Crop Failure Pre-1950

Crop Failure Post-1950

Post-1950

Regression Results: Storage Types

	(1)	(2)	(3)	(4)	(5)	(6)
	Pre-1950	Post-1950	Pre-1950	Post-1950	Pre-1950	Post-1950
VARIABLES	Ln(Crop Value)	Ln(Crop Value)	Pctg Irr.	Pctg Irr.	Ln(Failure)	Ln(Failure)
Bin 1	0.337***	-0.084	5.03E-05	-0.0109***	-1.714***	0.399**
	(0.102)	(0.059)	(0.002)	(0.002)	(0.083)	(0.188)
Bin 2	0.291***	0.00595	-0.00154	-0.00691***	-0.456	-0.145
	(0.092)	(0.037)	(0.003)	(0.002)	(0.324)	(0.142)
Bin 4	-0.393***	-0.0346	0.00137	-0.000284	1.081***	0.504***
	(0.090)	(0.045)	(0.001)	(0.001)	(0.254)	(0.127)
Bin 5	-0.337***	-0.250***	-0.00138	-0.00657**	0.386	1.219***
	(0.078)	(0.094)	(0.003)	(0.003)	(0.256)	(0.137)
Aquifer x Bin 1	-0.467***	0.188**	-0.00602*	0.00245	2.831***	-0.323
	(0.152)	(0.077)	(0.003)	(0.006)	(0.266)	(0.221)
Aquifer x Bin 2	-0.305***	-0.0193	-0.00187	0.00459*	0.791*	0.126
	(0.117)	(0.045)	(0.004)	(0.003)	(0.414)	(0.166)
Aquifer x Bin 4	-0.0973	0.0754	-0.000474	0.0042	0.141	0.0128
	(0.127)	(0.053)	(0.001)	(0.003)	(0.276)	(0.152)
Aquifer x Bin 5	-0.243**	0.198*	0.00476	-0.00131	1.186***	-0.440**
	(0.114)	(0.106)	(0.004)	(0.005)	(0.322)	(0.190)

Regression Results: Storage Types

Joint x Bin 1	-0.147	0.0132	-0.00448	0.00827		-0.406*
	(0.120)	(0.088)	(0.004)	(0.009)		(0.237)
Joint x Bin 2	-0.264**	-0.0814*	-0.00601	-0.000584	0.760*	0.15
	(0.121)	(0.049)	(0.006)	(0.004)	(0.455)	(0.184)
Joint x Bin 4	-0.0719	0.052	0.000169	-0.00686*	-0.164	-0.135
	(0.114)	(0.055)	(0.002)	(0.004)	(0.311)	(0.185)
Joint x Bin 5	-0.244**	0.152	0.00905*	-0.000326	1.002***	-0.289
	(0.113)	(0.108)	(0.005)	(0.006)	(0.354)	(0.210)
Large Stream x Bin 1	-0.238	0.0858	-0.00405	0.00465		-0.346
	(0.182)	(0.106)	(0.004)	(0.003)		(0.263)
Large Stream x Bin 2	-0.0418	-0.0452	0.00213	0.00558***	-0.835	0.0515
	(0.140)	(0.055)	(0.004)	(0.002)	(0.528)	(0.207)
Large Stream x Bin 4	-0.00778	0.0182	-0.00111	-0.000345	-0.469	-0.227
	(0.135)	(0.063)	(0.001)	(0.002)	(0.378)	(0.191)
Large Stream x Bin 5	-0.162	0.290**	0.000272	0.0144***	0.201	-0.442*
	(0.117)	(0.116)	(0.003)	(0.004)	(0.423)	(0.251)
Observations	1,914	6,617	1,914	6,688	954	3,285
R-squared	0.338	0.356	0.101	0.153	0.331	0.719
Number of stcounty	479	479	479	479	478	474
Fixed Effects	Year, Cty	Year, Cty	Year, Cty	Year, Cty	Year, Cty	Year, Cty

Robust standard errors in parentheses

***p < 0.01, **p < 0.05, *p < 0.1

Crop Value by Storage Type Pre-1950

Crop Value by Storage Type Post-1950

Fraction Irrigated by Storage Type Pre-1950

Fraction Irrigated by Storage Type Post-1950

Crop Failure by Storage Type Pre-1950

Crop Failure by Storage Type Post-1950

