Technological Change and Climatic Resiliency: Evidence from Irrigation in the United States

Eric C. Edwards, North Carolina State University
Steven M. Smith, Colorado School of Mines

NBER DAE
Summer Institute
July 9, 2019
US Irrigated Agriculture

Irrigated Acres (millions)

- East
- West
Background

- Droughts in the 1890s and 1930s had dramatic agricultural, social, and financial consequences (Hansen and Libecap 2004; Landon-Lane, Rockoff and Steckel 2009; Hornbeck 2012)

- Expanded irrigation and other technological advances increased level of ag production in arid western counties (Hornbeck and Keskin 2014; Edwards and Smith 2018; Olmstead and Rhode 2011)

- Growing literature on temperature shocks, but not drought and irrigation (e.g. Schlenker, Hannemann, and Fisher 2005; Deschenes and Greenstone 2007; Burke and Emerick 2016)

- Limited work on extent and mechanism by which irrigation mitigates shocks (Hornbeck and Keskin 2014; Hansen, Libecap and Lowe 2011)
Motivation

Dalhart, TX (ca. 1938)

Lubbock/Dalhart (ca. 2010s)
Expansion of Irrigation Storage

Groundwater Pumping

Federal Dams
Research Design and Data

- How do counties with potential storage react to drought before/after 1945 relative to those without?
- Create individual county measures of precipitation shock
 - Relative changes versus levels
- Does this change based on type of storage?
 1. Small stream (irrigation but no storage)
 2. Large river (surface storage)
 3. Aquifer
 4. Joint (Large river and aquifer)
- Ag census data 1910-2007 (digitized by Haines, 2010)
 - Crop value
 - Irrigated acres
 - Failed cropland
Measuring Storage Potential
Western Precipitation
Crop Value Pre-1950

The graph illustrates the crop value per acre for different drought bins. The x-axis represents the drought bin, ranging from -2 to 2, while the y-axis shows the crop value per acre, ranging from -0.6 to 0.4. Two lines are depicted: a dashed red line labeled "Small Stream" and a solid green line labeled "Storage." Both lines show a decrease in crop value as the drought bin increases.
Crop Value Post-1950

Post-1950

Crop Value per Acre

Drought Bin

-2 -1 0 1 2

Small Stream

Storage
Crop Value by Storage Type Post-1950

Post-1950

Crop Value per Acre

Drought Bin

Large Stream
Aquifer
Large and Aquifer
Fraction Irrigated by Storage Type Post-1950

Post-1950

Fraction Irrigated

Drought Bin

Large Stream
Aquifer
Large and Aquifer
Summary and Next Steps

- US agriculture has become more resilient to drought, but only partially as a result of adding large dams and groundwater.
- The type of irrigation technology affects how the production process changes: resiliency is interaction between technological and behavior changes.
- Refine and test robustness of measures of drought/temperature:
 - Palmer Drought Severity Index
 - Heat shocks
- Ag census data (1850-1900)
- Data by specific crops (1850-2012)
- Irrigation expansion in the East
Thank you!
Drought Status in 1934
1934 Binned Drought Status

Legend

1934 Drought Status
Precip. Coef. of Var.

- Red: <-1.5
- Orange: -1.5 to -0.5
- Light Orange: -0.5 to 0.5
- Yellow: 0.5 to 1.5
- Green: >1.5
Wettest Year: 1941
Precipitation Bins

![Histogram of Coefficient of Variation (Precip)]
Regression Results: Storage

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1) Pre-1950 Ln(Crop Value)</th>
<th>(2) Post-1950 Ln(Crop Value)</th>
<th>(3) Pre-1950 Pctg Irr.</th>
<th>(4) Post-1950 Pctg Irr.</th>
<th>(5) Pre-1950 Ln(Failure)</th>
<th>(6) Post-1950 Ln(Failure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bin 1</td>
<td>0.336*** (0.102)</td>
<td>-0.0841 (0.059)</td>
<td>3.94E-05 (0.002)</td>
<td>-0.0109*** (0.002)</td>
<td>-1.692*** (0.082)</td>
<td>0.398** (0.187)</td>
</tr>
<tr>
<td>Bin 2</td>
<td>0.289*** (0.092)</td>
<td>0.00597 (0.037)</td>
<td>-0.00156 (0.003)</td>
<td>-0.00692*** (0.002)</td>
<td>-0.451 (0.322)</td>
<td>-0.146 (0.142)</td>
</tr>
<tr>
<td>Bin 4</td>
<td>-0.394*** (0.090)</td>
<td>-0.0344 (0.045)</td>
<td>0.00131 (0.001)</td>
<td>-0.000265 (0.001)</td>
<td>1.067*** (0.253)</td>
<td>0.504*** (0.126)</td>
</tr>
<tr>
<td>Bin 5</td>
<td>-0.338*** (0.078)</td>
<td>-0.250*** (0.094)</td>
<td>-0.00149 (0.003)</td>
<td>-0.00649** (0.003)</td>
<td>0.371 (0.255)</td>
<td>1.220*** (0.137)</td>
</tr>
<tr>
<td>Storage × Bin 1</td>
<td>-0.358*** (0.126)</td>
<td>0.118* (0.069)</td>
<td>-0.00508* (0.003)</td>
<td>0.00454 (0.004)</td>
<td>2.612*** (0.254)</td>
<td>-0.351* (0.204)</td>
</tr>
<tr>
<td>Storage × Bin 2</td>
<td>-0.256** (0.103)</td>
<td>-0.0419 (0.041)</td>
<td>-0.00285 (0.004)</td>
<td>0.00327 (0.002)</td>
<td>0.496 (0.374)</td>
<td>0.122 (0.154)</td>
</tr>
<tr>
<td>Storage × Bin 4</td>
<td>-0.0811 (0.106)</td>
<td>0.0582 (0.050)</td>
<td>-0.000416 (0.001)</td>
<td>0.000362 (0.002)</td>
<td>-0.02 (0.266)</td>
<td>-0.0695 (0.143)</td>
</tr>
<tr>
<td>Storage × Bin 5</td>
<td>-0.236** (0.092)</td>
<td>0.197** (0.100)</td>
<td>0.00526* (0.003)</td>
<td>0.00153 (0.004)</td>
<td>0.976*** (0.288)</td>
<td>-0.394** (0.163)</td>
</tr>
</tbody>
</table>

Observations: 1,914 6,617 1,914 6,688 954 3,285
R-squared: 0.335 0.355 0.094 0.151 0.315 0.719
Number of stcounty: 479 479 479 479 478 474

Robust standard errors in parentheses

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
Irrigated Acreage Pre-1950
Irrigated Acreage Post-1950

Post-1950

Fraction Irrigated

Drought Bin

-2 -1 0 1 2

Small Stream

Storage
Crop Failure Pre-1950

The graph shows the relationship between failed crops and drought bins for the period Pre-1950. The graph includes two lines:
- The green line represents 'Storage' with markers indicating failed crops.
- The red dashed line represents 'Small Stream' with markers indicating failed crops.

The x-axis represents the Drought Bin, ranging from -2 to 2, and the y-axis represents Failed Crops, ranging from -2 to 2.
Regression Results: Storage Types

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1) Pre-1950 Ln(Crop Value)</th>
<th>(2) Post-1950 Ln(Crop Value)</th>
<th>(3) Pre-1950 Pctg Irr.</th>
<th>(4) Post-1950 Pctg Irr.</th>
<th>(5) Pre-1950 Ln(Failure)</th>
<th>(6) Post-1950 Ln(Failure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bin 1</td>
<td>0.337***</td>
<td>-0.084</td>
<td>5.03E-05</td>
<td>-0.0109***</td>
<td>-1.714***</td>
<td>0.399**</td>
</tr>
<tr>
<td></td>
<td>(0.102)</td>
<td>(0.059)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.083)</td>
<td>(0.188)</td>
</tr>
<tr>
<td>Bin 2</td>
<td>0.291***</td>
<td>0.00595</td>
<td>-0.00154</td>
<td>-0.00691***</td>
<td>-0.456</td>
<td>-0.145</td>
</tr>
<tr>
<td></td>
<td>(0.092)</td>
<td>(0.037)</td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.324)</td>
<td>(0.142)</td>
</tr>
<tr>
<td>Bin 4</td>
<td>-0.393***</td>
<td>-0.0346</td>
<td>0.00137</td>
<td>-0.000284</td>
<td>1.081***</td>
<td>0.504***</td>
</tr>
<tr>
<td></td>
<td>(0.090)</td>
<td>(0.045)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.254)</td>
<td>(0.127)</td>
</tr>
<tr>
<td>Bin 5</td>
<td>-0.337***</td>
<td>-0.250***</td>
<td>-0.00138</td>
<td>-0.00657**</td>
<td>0.386</td>
<td>1.219***</td>
</tr>
<tr>
<td></td>
<td>(0.078)</td>
<td>(0.094)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.256)</td>
<td>(0.137)</td>
</tr>
<tr>
<td>Aquifer x Bin 1</td>
<td>-0.467***</td>
<td>0.188**</td>
<td>-0.00602*</td>
<td>0.00245</td>
<td>2.831***</td>
<td>-0.323</td>
</tr>
<tr>
<td></td>
<td>(0.152)</td>
<td>(0.077)</td>
<td>(0.003)</td>
<td>(0.006)</td>
<td>(0.266)</td>
<td>(0.221)</td>
</tr>
<tr>
<td>Aquifer x Bin 2</td>
<td>-0.305***</td>
<td>-0.0193</td>
<td>-0.00187</td>
<td>0.00459*</td>
<td>0.791*</td>
<td>0.126</td>
</tr>
<tr>
<td></td>
<td>(0.117)</td>
<td>(0.045)</td>
<td>(0.004)</td>
<td>(0.003)</td>
<td>(0.414)</td>
<td>(0.166)</td>
</tr>
<tr>
<td>Aquifer x Bin 4</td>
<td>-0.0973</td>
<td>0.0754</td>
<td>-0.000474</td>
<td>0.0042</td>
<td>0.141</td>
<td>0.0128</td>
</tr>
<tr>
<td></td>
<td>(0.127)</td>
<td>(0.053)</td>
<td>(0.001)</td>
<td>(0.003)</td>
<td>(0.276)</td>
<td>(0.152)</td>
</tr>
<tr>
<td>Aquifer x Bin 5</td>
<td>-0.243**</td>
<td>0.198*</td>
<td>0.00476</td>
<td>-0.00131</td>
<td>1.186***</td>
<td>-0.440**</td>
</tr>
<tr>
<td></td>
<td>(0.114)</td>
<td>(0.106)</td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.322)</td>
<td>(0.190)</td>
</tr>
</tbody>
</table>
Regression Results: Storage Types

<table>
<thead>
<tr>
<th></th>
<th>Joint x Bin 1</th>
<th>Joint x Bin 2</th>
<th>Joint x Bin 4</th>
<th>Joint x Bin 5</th>
<th>Large Stream x Bin 1</th>
<th>Large Stream x Bin 2</th>
<th>Large Stream x Bin 4</th>
<th>Large Stream x Bin 5</th>
<th>Observations</th>
<th>R-squared</th>
<th>Number of stcounty</th>
<th>Fixed Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.147 (0.120)</td>
<td>-0.264** (0.121)</td>
<td>-0.0719 (0.114)</td>
<td>-0.244** (0.113)</td>
<td>-0.238 (0.182)</td>
<td>-0.0418 (0.140)</td>
<td>-0.00778 (0.135)</td>
<td>-0.162 (0.117)</td>
<td>1,914</td>
<td>0.338</td>
<td>479</td>
<td>Year, Cty</td>
</tr>
<tr>
<td></td>
<td>0.0132 (0.088)</td>
<td>-0.0814* (0.049)</td>
<td>0.052 (0.055)</td>
<td>0.152 (0.108)</td>
<td>0.0858 (0.106)</td>
<td>-0.0452 (0.055)</td>
<td>0.0182 (0.063)</td>
<td>0.290** (0.116)</td>
<td>6,617</td>
<td>0.356</td>
<td>479</td>
<td>Year, Cty</td>
</tr>
<tr>
<td></td>
<td>-0.00448 (0.004)</td>
<td>-0.00601 (0.006)</td>
<td>0.000169 (0.002)</td>
<td>0.00905* (0.005)</td>
<td>-0.00405 (0.004)</td>
<td>0.00213 (0.004)</td>
<td>-0.00111 (0.001)</td>
<td>0.000272 (0.003)</td>
<td>1,914</td>
<td>0.101</td>
<td>479</td>
<td>Year, Cty</td>
</tr>
<tr>
<td></td>
<td>0.00827 (0.009)</td>
<td>-0.000584 (0.004)</td>
<td>-0.00686* (0.004)</td>
<td>-0.00326 (0.006)</td>
<td>0.00465 (0.003)</td>
<td>0.00558*** (0.002)</td>
<td>-0.000345 (0.002)</td>
<td>0.0144*** (0.004)</td>
<td>6,688</td>
<td>0.143</td>
<td>479</td>
<td>Year, Cty</td>
</tr>
<tr>
<td></td>
<td>-0.406* (0.237)</td>
<td>0.760* (0.184)</td>
<td>-0.164 -0.135</td>
<td>1.002*** (0.185)</td>
<td>-0.346</td>
<td>-0.835 (0.207)</td>
<td>-0.469 (0.191)</td>
<td>-0.442* (0.251)</td>
<td>954</td>
<td>0.331</td>
<td>478</td>
<td>Year, Cty</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,285</td>
<td>0.719</td>
<td>474</td>
<td>Year, Cty</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses

* **p < 0.01, **p < 0.05, *p < 0.1
Crop Value by Storage Type Pre-1950

Pre-1950

Crop Value per Acre

Drought Bin

Large Stream
Aquifer
Large and Aquifer
Fraction Irrigated by Storage Type Pre-1950

Pre-1950

Drought Bin

Fraction Irrigated

Large Stream
Aquifer
Large and Aquifer
Fraction Irrigated by Storage Type Post-1950
Crop Failure by Storage Type Pre-1950

Drought Bin

Failed Crops

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Pre-1950

Large Stream Aquifer Large and Aquifer
Crop Failure by Storage Type Post-1950

Post-1950

Failed Crops

Drought Bin

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Large Stream

Aquifer

Large and Aquifer