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Abstract

Market-wide events (e.g., financial crises) and regulatory changes empirically have group het-
erogenous impact on firm outcomes. Inappropriate modelling of the heterogeneity by existing
econometric models such as time-fixed effect (assuming a homogenous response to shocks) and
industry-year interacted fixed effect (assuming a heterogenous responses to shocks based on in-
dustry) is likely to result in biased estimates. This paper investigates the effect of heterogenous
responses to common shocks for existing panel studies. We demonstrate theoretically and empir-
ically that ignoring time-varying unobserved heterogeneity that is correlated with regressors in
current empirical practices leads to biased estimates and standard errors. To overcome the bias,
we propose the use of the “group fixed effect, GFE” class of models, which produce consistent
estimates even under the two-way fixed effect and interacted fixed effect data generating pro-
cesses. We study the finite sample properties of GFE through simulations and demonstrate its
economic importance with two empirical applications. We also extend the GFE class of models
to accommodate two-stage least squares estimators. Finally, we provide researchers with guid-
ance and user-written functions in statistical packages to overcome the limitations of existing
approaches.
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1 Introduction

Market-wide events like the introduction of financial regulations (e.g. Sarbanes-Oxley Act, SOX)

and financial crises affect firms’ outcomes and policies. A salient empirical finding of the literature

on market-wide events is that these shocks have heterogenous group effects on firm outcomes, i.e.

firms in the same group respond similarly to the shocks, while the responses differ across groups.1

Response heterogeneity across groups may be due to differences in firms’ time-varying corporate

culture, attitude towards risk, product markets, and business strategies, and may be captured

by observable and unobservable managerial and firm attributes (e.g., profitability, industry, credit

rating, governance, managerial qualities, etc.). Given the empirical findings, several questions arise:

how should one account for heterogenous effects of common shocks in panel regressions? Does

ignoring the heterogeneity in econometric specifications affect slope estimates of interest, statistically

and economically? What determines the degree of bias? How should one account for the endogenous

grouping of firms with heterogenous responses in econometric models? In this paper, we provide

answers to these questions through econometric derivations, simulations and empirical examples.

While most finance scholars regularly observe heterogenous responses to common (regulatory)

shocks in financial markets, they routinely use time fixed effect models with homogenous impact

across firms, λt, to control for these shocks specified as:

yit = αi + λt + X
′
itβ+ εit i = 1, . . . ,N t = 1, . . . , T,

where the individual and time fixed effects αi and λt can be correlated with covariates Xit, but not

with the idiosyncratic error εit. As an example, we survey recently published empirical papers in

the top three finance journals for the use of fixed effects. In 2017 and 2018, there are 389 empirical

papers using panel data in the Journal of Finance (76), the Review of Financial Studies (156), and

the Journal of Financial Economics (157). There are 383 papers that use panel regressions and 6

that do not. Among those using panel regressions, 359 papers use fixed effect models: 95 papers

only use one-way fixed effects and 264 use two-way (individual and time) fixed effect (TFE) models.

Only 81 papers employ an interacted fixed effects (IFE) model, relaxing the homogeneity assump-

tion. Although interacted fixed effects models in finance mostly include time dummies interacted

with industry or state dummies, the grouping of firms should depend on the context of the research

1For example see Mitton (2002), Joh (2003), Lemmon and Lins (2003), Linck et al. (2009), Duchin et al. (2010a),
Duchin et al. (2010b), Banerjee et al. (2015), Thakor (2015), among many others.
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question and the economic outcomes of interest. The assumption that heterogenous responses are

driven by one covariate, e.g. industry or state, is unlikely to be correct, because: (1) it is incon-

sistent with the empirical evidence that the group heterogeneity is related to observable and to

unobservable corporate strategies, risk attitude, managerial and firm characteristics, and not (at

least only) to industry or states;2 (2) the pattern of group heterogeneity typically depends on the

outcome variable of interest, and it is difficult for a researcher to know the exact grouping of the

heterogeneity, ex ante;3 (3) few categorizations of individuals and firms in finance are intrinsically

exogenous (gender is one of the few cases). Categorization and grouping of economic agents and

firms is probably endogenously determined through both observable and unobservable determinants.

We study the econometric and economic implications of heterogenous effects of market-wide

shocks for the current econometric models, practices, and findings in the finance literature. We

theoretically derive the bias in the coefficient estimates and standard errors of current practices

under the data structure with time-varying group heterogeneity. We call this heterogeneity bias

and find that heterogeneity bias can be economically substantial in the estimates of TFE and IFE

models. The degree of bias depends on the correlation between the grouped time fixed effect and the

explanatory variables, as well as on the size of the heterogeneity. Particularly, the bias of coefficient

estimates is high when heterogenous responses to market-wide shocks are large and highly correlated

with the covariates.4

To overcome the problem of heterogeneity bias, we introduce a new class of models, “group fixed

effect” (GFE) models, which leave the groups unrestricted and identify them endogenously. GFE

2Two recent examples of the heterogeneous impact of common shocks on firm outcomes are the implementation
of the SOX Act and the 2008 financial crisis. The Securities and Exchange Commission SOX Act in 2002 affected
a myriad of market participants, who are regularly expected to make firm-related decisions, e.g. firm managers and
executive boards, and who affect firms and managers decisions, e.g. auditors and institutional investors. SOX was
implemented to strengthen the independence of auditing firms, to improve the quality and transparency of financial
statements and corporate disclosure, to enhance corporate governance, to improve the objectivity of research, and to
strengthen the enforcement of the federal securities laws. Several recent papers show the heterogenous effect of SOX
on corporate governance, due to the heterogeneity in observable and unobservable managers and firm characteristics,
see Engel et al. (2007), Chhaochharia and Grinstein (2007), Heron and Lie (2007), Koh et al. (2008), Cohen et al.
(2008), Linck et al. (2009), Bargeron et al. (2010), Carter et al. (2009), Duchin et al. (2010a), Duchin et al. (2010b),
Brochet (2010), and Banerjee et al. (2015). Work on recent financial crises finds that observable firm characteristics
(e.g., industry, profitability, and credit rating), as well as unobservable characteristics (e.g., managerial qualities and
characteristics) affect firms’ outcome variables in the cross-section (see Mitton, 2002; Joh, 2003; Lemmon and Lins,
2003; Campello et al., 2010, 2011; Thakor, 2015; Ho et al., 2016).

3In practice, the group membership that leads to heterogeneity is typically unknown, making such an interacted
fixed effect estimator an “infeasible” model or impossible to specify correctly, especially when unobservables are driving
the heterogenous responses. When the pre-specified group structure (e.g. industry or state) does not coincide with
the underlying heterogeneity pattern, the coefficient estimates produced by IFE are biased, and therefore, IFE does
not capture the heterogenous response to shocks.

4If the heterogeneous time fixed effect is independent from the covariates, the slope coefficients can still be
consistently estimated using standard two-way fixed effect models.
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models, first proposed by Bonhomme and Manresa (2015a), are analogous to the two-way fixed

effect models but allow for heterogenous responses to market shocks. GFE allows the heterogeneity

to be characterized by a latent group structure, which is endogenously recovered from the specified

model and the data rather than exogenously imposed by researchers, such as industry grouping.

The grouping of firms allows for a simple iterative procedure for the GFE estimation with desirable

asymptotic and finite-sample properties (Bonhomme and Manresa, 2015a). We propose a method

to evaluate whether GFE is the appropriate model in comparison to TFE and IFE, based on

a Hausman-type specification test. In addition, we extend GFE with a new methodology, two-

stage least squares “group fixed effect” (TSLS-GFE), to address heterogeneity bias and endogeneity

concerns.

Generally, GFE allows for heterogenous responses to market-wide shocks across groups through

θgi,t:

yit = αi + θgi,t + X
′
itβ+ εit, gi = 1, 2, ..., G,

where gi is the group membership of firm i, G is the number of groups, and the group specific time

effects θgi,t can be regarded as group interacted with time dummies. Intuitively, GFE groups firms

whose time profiles of outcomes conditional on covariates, i.e. residuals, are most similar. More

specifically, it employs the “kmeans” method (Forgy, 1965; Steinley, 2006) that estimates group

membership using least squares.

Asymptotically, the estimated group membership of each unit converges to the true popula-

tion membership, as the time dimension increases. The probability of misclassifying a unit into

the wrong group tends to zero at an exponential rate and each unit converges to the true popu-

lation membership, as the time series increases.5 We examine the finite sample properties of the

group membership estimator via Monte Carlo simulations under different data generating processes

(DGPs) and shock characteristics. Empirically, we show the reliability of the group estimator using

the setting of natural disasters (see Barrot and Sauvagnat, 2016), where we ex-ante know the ob-

servable determinants of group memberships. Specifically, we back out group memberships from a

GFE regression of sales growth on several determinants. We find that GFE groups cluster according

to the location and magnitude of natural disasters, differently from TFE and IFE estimates.

We conduct horse races via Monte Carlo simulations to evaluate the efficacy of the two-way fixed

5The standard convergence rate of least square estimates of β in fixed effects models is
√
NT , which is slower than

the exponential convergence rate of group membership estimates. The GFE procedure with TSLS estimation of slope
coefficients also leads to accurate estimates of group memberships, in the presence of endogenous variables.
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effect and interacted fixed effect models with respect to the GFE model, under different DGPs. The

coefficient estimates produced by GFE are consistent, while those produced by TFE and IFE can

be severely biased, when time effects are heterogeneous and the heterogeneity pattern does not

coincide with the specified grouping of IFE. These results show that GFE can capture heterogenous

responses and overcome the risk of misspecifying the group pattern in IFE models. We also show

that GFE provides consistent coefficient estimates not only under the assumption of time-varying

unobserved group heterogeneity, but also when units respond homogeneously (or heterogeneously

based on industry) to market-wide shocks under the DGP of TFE and IFE. In other words, GFE is

a robust method to incorporate time effects, providing consistent estimates regardless of whether

the time effect is heterogeneous or homogeneous.

Finally, we highlight the economic importance of GFE empirically by revisting the evidence

in Sunder et al. (2017). We examine the relation between CEO attributes and corporate innova-

tion using different estimators and find that the difference between GFE and competing models is

economically substantial. The results show that TFE and IFE can result in large biases in slope

estimates by ignoring unobserved time-varying variables like corporate strategies and culture.

Overall, our work is closely related to Gormley and Matsa (2014), which provides practical

guidance on how to handle unobserved (group) heterogeneity in empirical research. Complementing

their work, our results challenge the standard assumptions of empirical estimations in the presence of

unobserved group heterogeneity in empirical finance research, by showing the impact of heterogenous

responses to market-wide events on empirical studies. We propose a new robust method to overcome

the heterogeneity bias.

We contribute to the econometric literature of panel group structure models by complementing

the work of Bonhomme and Manresa (2015a), first by proposing a method to jointly estimate coef-

ficients and group membership using two-stage least squares (TSLS) in the presence of endogenous

regressors. Second, furthering the applicability of their work, we study GFE in general settings

that are commonly encountered by finance empiricists and compare GFE to various popular models

used in the finance literature. Currently, the literature does not inform us on the properties of GFE

estimates under TFE and IFE DGPs and on the magnitude of the bias, when using TFE and IFE

under time-varying heterogeneity. This is the first paper to explicitly derive the heterogeneity bias,

which is determined by the shock size and the correlation between heterogeneous responses and

regressors. We show that GFE is a robust estimator for TFE and IFE DGPs both theoretically

and in simulations. Third, we consider the case of time-varying group memberships and discuss
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under which situations GFE can capture the dynamics of the group membership structure. Finally,

we propose a specification test to evaluate GFE against TFE and IFE models. To facilitate and

encourage the use of GFE estimators, we provide guidance on its use and STATA user-written

functions.

Our paper is in line with the burgeoning work on econometric challenges faced by researchers

in empirical methods. Bertrand et al. (2004), Petersen (2009), and Thompson (2011) discuss meth-

ods on appropriately computing standard errors in the presence of cross-sectional and time series

dependence across residuals. Roberts and Whited (2013) and Grieser and Hadlock (2019) dis-

cuss and investigate limitations of IV techniques using lagged variables and the violation of the

strict-exogeneity assumption in finance panel-data applications, respectively. Flannery and Hank-

ins (2013) discuss the use of dynamic panel model in finance applications. Erickson and Whited

(2012) and Koh et al. (2018) discuss issues on measurement error in investment regressions and

missing data problem in R&D and patents.

The paper is organised as follows. The next section introduces the three main models we

investigate, TFE, IFE and GFE, derives the coefficient bias of different econometric models under a

GFE DGP, discusses the GFE model and methodology, and proposes the specification test. Section

3 conducts Monte Carlo simulations based on simulated data and the empirical distribution of

Compustat data. Section 4 provides evidence on the economic importance of GFE by replicating

current work in finance. Section 5 provides the two stage least square extensions and discusses

issues related to standard errors. Section 6 concludes.

2 Unobserved Heterogeneity

In this section, we analyze issues related to unobserved heterogeneity. First, we discuss the two-

way (individual and time) fixed effects model, the most widely used empirical model to address

unobserved heterogeneity. We then derive the bias of TFE estimates when the outcome variable

is characterized by time-varying group heterogeneity, i.e. the DGP of GFE. Next, we discuss the

interacted fixed effects model and derive its bias under the GFE DGP. Finally, we present the GFE

model and discuss its properties.

2.1 Two-way fixed effects model

We consider the following two-way fixed effect model:
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yit = αi + λt + X
′
itβ+ εit i = 1, . . . ,N t = 1, . . . , T (1)

where yit is the dependent variable for unit i at time t, αi models the unit fixed effects, λt models

the time fixed effects, Xit is a K × 1 vector of regressors, and εit is the error term.6 Both yit and

Xit are stationary. With strict exogeneity, it is typically assumed that

εit ∼ i.i.d (0, σ2ε),

var(Xit) = σ
2
X,

cov(εit, Xit) = 0,

cov(αi, Xit) 6= 0, cov(λt, Xit) 6= 0,

cov(εit, αi) = 0, cov(εit, λt) = 0.

These assumptions imply that the regressors, unit and time fixed effects are uncorrelated with errors.

However, regressors can be arbitrarily correlated with unit and time fixed effects as in Gormley and

Matsa (2014). As pointed out by Gormley and Matsa (2014), ignoring the nonzero covariance of the

unobserved characteristics and the explanatory variable of interest results in inconsistent estimates.

To estimate this model, we define yi = (yi1, . . . , yiT )
′ and Xi = (Xi1, . . . , XiT )

′ for unit i. We

define y = (y1, . . . , yN)
′ and X = (X1, . . . , XN)

′ across N cross-sectional units. Two-way fixed

effects estimators can be obtained by applying least squares on the transformed data, data that are

demeaned both in the cross-section and in the time-series dimension. In particular, we define the

transformation matrix M as:

M = IN ⊗ IT − IN ⊗ J̄T − J̄N ⊗ IT + J̄N ⊗ J̄T , (2)

where IN is an identity matrix of dimension N, IT is an identity matrix of dimension T , JT is a

matrix of ones of dimension T , JN is a matrix of ones of dimension N, J̄N = JN/N, J̄T = JT/T , and

⊗ is the Kronecker product. The transformed data ỹ = My and X̃ = MX have typical elements

as ỹit = (yit − ȳi· − ȳ·t + ȳ··) and X̃it = (Xit − X̄i· − X̄·t + X̄··), respectively, where ȳi· =
∑
t yit/T ,

ȳ·t =
∑
i yit/N, and ȳ·· =

∑
i

∑
t yit/(NT). Similar notation applies to X. The slope coefficient can

then be estimated by applying least squares on the transformed data: β̂TFE = (X ′MX)−1X ′My.

In the two-way fixed effects model, the effect of regressors of interest β can be consistently

6A unit can be thought of as a firm or an individual.
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estimated by within individual-time transformation, if the DGP coincides with model (1). A key

assumption of model (1) is that all individual units are exposed and respond homogeneously to

the same time-varying shock, λt. This assumption may not hold in practice due to heterogeneity

in individual units. In particular, when the dependent variable yit is influenced by some shocks,

units may respond to shocks differently. A group pattern of heterogeneity often exists, i.e. the

individual’s behavior and responses to shocks are similar within a group, even though there are

differences across groups. In this case, imposing the homogeneous time fixed effects as in model (1)

leads to biased estimates of the coefficients of interest, because the within transformation cannot

completely eliminate the heterogeneous time fixed effects.

2.1.1 Bias in two-way fixed effects models

To illustrate the mechanism behind the bias and to quantify the size of the bias, we assume that

there are G groups of units. Within the group, individual units have the same response to shocks,

while the response differs across the groups. Then the data generating process can be written as:

yit = α
0
i + θ

0
g0i ,t

+ X ′itβ
0 + εit, g0i = 1, . . . , G, (3)

where g0i is the group membership of unit i, and the superscript “0” denotes the true value of the

parameter. For example, if unit i belongs to group 1, then g0i = 1. In model (3), the outcome variable

is affected by heterogeneous time-varying shocks θ0g,t for group g. Intuitively, the within individual-

time transformation can only eliminate the common component of θ0
g0i ,t

, while the group-specific

components remain for each unit, which influence the coefficient estimates as omitted variables.

To quantify this bias, we define θ̃g0i ,t
= θ0

g0i ,t
−

∑
t θ
0
g0i ,t
/T −

∑
i θ
0
g0i ,t
/N +

∑
i

∑
t θ
0
g0i ,t
/(NT), the

within individual-time transformed group time effects . Then the bias of the two-way fixed effects

estimator can be obtained by:

bTFE = E
[
β̂TFE − β0

]
=

[
N∑
i=1

T∑
t=1

X̃ ′itX̃it

]−1 [ N∑
i=1

T∑
t=1

X̃ ′it

(
ε̃it + θ̃g0i ,t

)]

=

[
N∑
i=1

T∑
t=1

X̃ ′itX̃it

]−1  N∑
i=1

T∑
t=1

X̃ ′it θ̃g0i ,t︸︷︷︸
het. size


︸ ︷︷ ︸

covariance

, (4)

where ε̃it is the error term after applying transformation (2).
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The degree of bias depends on two components: on the covariance between the grouped time

fixed effects and the regressors and on the relative size of the heterogeneity with respect to the

variation of X̃it. Particularly, the bias of coefficient estimates is high when the heterogeneity is large

and highly correlated with X̃it. If the heterogeneous time fixed effects are independent from X̃it,

the slope coefficients can still be consistently estimated. However, existing empirical findings on

firms’ heterogeneous responses to market-wide events suggest that the responses are often correlated

with regressors and such bias is likely to exist. For example, Campello et al. (2010, 2011) find

heterogeneous impact of the 2008 financial crisis on firms due to unobservable characteristics, such as

managerial liquidity and credit management qualities. These findings imply that the heterogeneous

time effects are unlikely to be independent from the regressors, especially when some regressors are

likely to be a function of managerial characteristics.

Table 1
TFE transformation bias under GFE

The table presents a simple numerical example of how heterogeneity bias is caused by ignoring heterogeneity in
responses to shocks, when using a two-way fixed effects model. Columns (1)-(3) present the basic data structure:
(1) is the individual unique identification, (2) is the time period denomination, and (3) is the group identification.
Columns (4)-(6) present the data: (4) is the individual fixed effects, (5) is the time effects, and (6) is the total value
of fixed effects, i.e. (6) = (4) + (5). Column (7) presents the time-series average for each unit, column (8) presents
the cross-sectional average for each time period, column (9) is the total average for the sample. Column (10) shows
the demeaned cross-sectional fixed effects, α̃i = αi −

∑T
t=1 αi −

∑N
i=1 αi +

∑T
t=1

∑N
i=1 αi = 0, column (11) shows the

demeaned time fixed effect θ̃g,t = θg,t−
∑T
t=1 θg,t−

∑N
i=1 θg,t+

∑T
t=1

∑N
i=1 θg,t, and column (12) shows the demeaned

total fixed effects, i.e. (12) = (10) + (11), or alternatively, (12)=(6)−time series avg. (7)−cross sec. avg. (8)+total
avg. (9), as in equation (2).

Unit & Time Data Transformed data

Indiv. ID Time Group ID αi θ0g,t Total FE TS ave. CS ave. Total ave. α̃i θ̃g,t Total FE

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

1 1 1 2 3 5 6 8 10 0 1 1
1 2 1 2 4 6 6 10 10 0 0 0
1 3 1 2 5 7 6 12 10 0 -1 -1
2 1 1 4 3 7 8 8 10 0 1 1
2 2 1 4 4 8 8 10 10 0 0 0
2 3 1 4 5 9 8 12 10 0 -1 -1
3 1 2 6 3 9 12 8 10 0 -1 -1
3 2 2 6 6 12 12 10 10 0 0 0
3 3 2 6 9 15 12 12 10 0 1 1
4 1 2 8 3 11 14 8 10 0 -1 -1
4 2 2 8 6 14 14 10 10 0 0 0
4 3 2 8 9 17 14 12 10 0 1 1

Table 1 provides a numerical example of how heterogeneity bias arises. In this example, there

are four individual units, and they are realizations of two population groups. Individuals 1 and 2

belong to the same group as their response to shocks is homogeneous θ01,t, while individuals 3 and 4

belong to another group, sharing a common θ02,t that is different from θ01,t. The data is presented in
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columns (4)-(6). If we implement the TFE transformation in equation (2), i.e. first demean in the

time series and cross-sectionally as in columns (7) and (8) and then add the total average given in

column (9), the resulting data are given in column (12) of Table 1. It is clear that the transformed

total fixed effects is not a zero vector, because the time fixed effect is still not completely eliminated

by the transformation as shown by θ̃g,t in column (11). If we estimate the slope parameters simply

using the transformed X̃ and ỹ, we fail to incorporate the effect of θ̃g,t, which is non-zero and

possibly correlated with X̃it, and thus the slope estimates suffer from heterogeneity bias.

Note that if the heterogeneous time fixed effects only differ in a constant shift, then the within

individual-time transformation can successfully eliminate both the individual and time fixed effects

(see Table A.1 in the Appendix). This means that if the cross-sectional difference in a unit’s

response to shocks can be explained by the individual fixed effects, i.e., the cross-sectional difference

of response is time-invariant, then the TFE coefficient estimates are still consistent. However,

such time-invariant heterogeneity does not seem plausible in practice, since individuals experience

different types of shocks over time and the degree of heterogeneity in responses often depends on

shock features.

2.2 Interacted fixed effects model

A recent approach to control for time-varying heterogeneity is to include interactions of group and

time fixed effects (see e.g. Gormley and Matsa, 2014). We refer to this as an interacted fixed

effects model, as in Gormley and Matsa (2014). This model requires a priori knowledge of the

group structure, i.e. which group each unit belongs to. Typically, the grouping is based on observed

characteristics, such as industry, firm size, etc. Given the group pattern, we can construct the

(time-invariant) group dummies for each unit i as GDi = {GDi1, . . . , GDiG}
′ with GDig = 1 if unit

i belongs to group g and zero otherwise. Let TDt = {TDt1, . . . , TDtT }
′ be the (individual-invariant)

time dummies for each period t with TDts = 1 if t = s and zero otherwise. Then the interacted

fixed effects model can be written as

yit = αi + X
′
itβ+

G∑
g=1

T∑
s=1

(GDig × TDts)θg,s + εit, (5)

where θg,s is the heterogeneous time effect of group g at time s. For example, for industry-based

grouping, GD is a group dummy, and then
∑G
g=1

∑T
s=1(GDig×TDts) is an industry-time interaction

dummy. If the postulated grouping is correct, we can obtain consistent estimates of homogeneous
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slope parameter β by applying least squares on the following within-transformation regression:

ẏit = Ẋ
′
itβ+

G∑
g=1

T∑
s=1

(GDig × TDts)θ̇g,s + ε̇it,

where ẏit = yit−1/T
∑T
t=1 yit, Ẋit = Xit−1/T

∑T
t=1 Xit, ε̇it = εit−1/T

∑T
t=1 εit, and θ̇g,s represents

the transformed time effects.

However, in practice, the group membership is typically unknown and depends on the outcome

variable of interest. The group structure may be driven by unobserved characteristics or a mixture

of observables and unobservables. Hence, the precise group dummies are difficult to know, and the

estimator obtained from the “infeasible” model (5) with correctly specified group dummies is called

an infeasible estimator. In real applications, when we misspecify the group structure, IFE leads to

inconsistent slope coefficient estimates, if group-specific heterogeneity is correlated with regressors.

2.2.1 Bias in interacted fixed effects models

The bias of IFE estimates depends on how the IFE group structure is misspecified and there are

infinitely many misspecifications. To derive the bias in this case, we denote gIFEi as the postu-

lated group membership of unit i based on some observables specified by the econometrician, and

potentially gIFEi 6= g0i for some unit i ∈ {1, . . . ,N}. Misclassification can be caused by, e.g. under-

specification of the number of groups, incorrect choice of the grouping variables, or unavailability

of the grouping variables. Misclassification can be regarded as a measurement error in the group

dummies. In particular, the group dummies used in the IFE model (5) are now GDi = GD
0
i +mi,

where GD0i = {GD0i1, . . . , GD
0
iG}
′ is the group dummy based on the true group membership g0i and

mi = {mi1, . . . ,miG} is an error vector of unit i that is caused by possible deviation of the postu-

lated group membership from the true membership.7 This error may often be correlated with Xit

in practice, because the group pattern is likely to be correlated with other variables also included

in the regression model. In this case, we can rewrite equation (5) with measurement errors as:

yit = αi + X
′
itβ+

G∑
g=1

T∑
s=1

(GDig × TDts)θg,s + εit,

= αi + X
′
itβ+

G∑
g=1

T∑
s=1

(GD0ig × TDts)θg,s +
G∑
g=1

T∑
s=1

(mi × TDts)θg,s + εit. (6)

7Since GDi is a G× 1 vector of dummy variables, mi is also a vector of the same length whose elements only take
the value −1, 0, or 1.
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Obviously, the error term in equation (6) now contains two components, the idiosyncratic noise

and the measurement error of the group memberships. We stack the (transformed) explanatory

variables and all dummy interaction terms in a vector as Zit = {Ẋ ′it, GD
0
i1TDt1, . . . , GD

0
iGTDtT }

′ and

let θ = {θ1,1, . . . , θ1,T , θ2,1, . . . , θG,T }
′. Then we can obtain the bias of IFE estimators as:

E

 β̂IFE − β0

θ̂IFE − θ0

 =

[
N∑
i=1

T∑
t=1

Z ′itZit

]−1  N∑
i=1

T∑
t=1

G∑
g=1

S∑
s=1

Z ′it(mi × TDts)θ̇g,s

 . (7)

If the transformed group-time effects and the difference between the postulated and the true group

structure are both uncorrelated with Ẋit, we can still obtain unbiased and consistent slope coefficient

estimates under IFE. However, neither of the two conditions are likely to be satisfied in practice.

Empirical work typically classifies firms based on one or two popular observables, e.g. industry or

firm size, whereas in many applications the true group structure is driven by several observable and

even unobservable variables. These determinants of group structure are often closely related with

covariates. Moreover, these determinants typically vary across settings, since the group pattern of

heterogeneity in firms’ responses to shocks depends on the features of shocks, the samples, and the

variables of interest. The bias is large when the size of the heterogeneous response is large and when

the degree of misspecification is large and highly correlated with explanatory variables, as in TFE.

2.3 Time-varying heterogeneity: Group fixed effects model

To identify the group structure, we consider a linear panel data model, where the additive time fixed

effects have an unrestricted and flexible group pattern of heterogeneity, namely grouped fixed effects

(GFE). The group pattern is unrestricted and flexible, since it can depend on both observables and

unobserables, which we do not need to specify and may vary across applications. This model class

was proposed by Bonhomme and Manresa (2015a) as an effective way to avoid the issue of “incidental

parameter” (Neyman and Scott, 1948), while still allowing for unobserved heterogeneity, which may

be correlated with regressors. The idea of “grouped fixed effects” fits the argument in the empirical

finance literature that heterogeneous responses to market-wide shocks are due to unobserved time-

varying heterogeneity, such as unobservable managerial characteristics and corporate culture.
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2.3.1 GFE model and estimation method

The GFE model precisely coincides with the DGP in model (3) and can be written as

yit = αi + θgi,t + X
′
itβ+ εit, gi = 1, . . . , G. (8)

This model differs from the standard fixed effects model, because it includes a time-varying group

specific variable θgi,t, in addition to individual fixed effects αi. One may think of θgi,t as interactions

of group indicators with time dummies. The individual fixed effects capture the individual firm’s

characteristics, while the grouped-fixed effects parameter θgi,t models how firms respond to time-

varying common shocks. This response is common within a group but differs across groups. There

are two types of parameters to estimate, the group membership parameter gi for all units i =

1, . . . ,N and the standard regression parameters θgi,t, and β.8

To identify the latent group structure, we need the group separation condition:

plimT→∞ 1T
T∑
t=1

(θ0g,t − θ̄
0
g,t − θ

0
g̃,t + θ̄

0
g̃,t)

2 > 0, for g 6= g̃,

where θ̄0g,t = 1/T
∑T
t=1 θ

0
g,t and θ0g,t denotes the true value of θg,t. This implies that group hetero-

geneity exists after controlling for individual fixed effects, i.e. the group specific responses to shocks

are time-varying. Time-varying heterogeneity is consistent with the empirical observations in the

financial crises and market wide event literature.

To consistently estimate parameters in equation (8) without a priori knowledge of the group

membership, one can employ the least squares technique and jointly estimate the group and coeffi-

cient parameters by solving the following minimization problem:

QNT = min
θ,β,g

N∑
i=1

T∑
t=1

(ẏit − Ẋ
′
itβ− θgi,t)

2. (9)

Since the group membership parameters appear in the objective function in a nonlinear way, we

cannot analytically solve this optimization problem. An exhaustive search of the optimal group

partition is also virtually infeasible due to a large number of possible partitions. To solve the

optimization problem, Bonhomme and Manresa (2015a) suggest the following iterative procedure.

8Bonhomme et al. (2017) extended this model by allowing the number of groups to increase to N, and thus
incorporating individual heterogeneity. Alternatively, Bai (2009) proposes to model individual-specific responses to
shocks using an unobserved factor structure.
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Algorithm 1

1. Let g(0) be an initial value of grouping. Set s = 0.

2. For the given g(s), compute:

(θ(s+1), β(s+1)) = arg min
β,θ

N∑
i=1

T∑
t=1

(ẏit − Ẋ
′
itβ− θ

g
(s)
i ,t

)2.

3. Compute for all i ∈ {1, . . . ,N}:

g
(s+1)
i = arg min

g∈{1,...,G}

T∑
t=1

(ẏit − Ẋ
′
itβ

(s+1) − θ
(s+1)
gi,t

)2.

4. Set s = s+ 1 and go to Step 2 (until numerical convergence).

This algorithm iterates between estimating the coefficient parameters and group membership pa-

rameters and can be viewed as an EM-type algorithm (see, for example, Dempster et al., 1977).

Specifically, Step 2 estimates the coefficient parameters for a given group structure as in the usual

least squares problem.9 Then Step 3 finds the optimal group in terms of minimum sum of squared

residuals over time for each unit, based on the estimated coefficient parameters from the previous

step. Put it differently, in step s+1, firm i will be classified into group g if its time-series summation

of squared residuals computed using the estimated coefficient parameters θ
(s+1)
g,t is less than that

computed using θ
(s+1)
g ′,t for any g ′ 6= g.10 Since the objective function decreases at each iteration step,

we can obtain the parameters that minimize equation (9) when the algorithm converges. Clearly,

this algorithm depends on the chosen initial values g(0). Certain initial values may lead to local

optima of the least squares objective function. To avoid local optima, one should try a large number

of initial values and select the one with the lowest sum of squared residuals.

2.3.2 Asymptotic properties of group membership and coefficient estimates

Bonhomme and Manresa (2015a) show that the group membership and coefficient estimates pro-

9In this step, group-specific time effects are captured by an interaction of group and time dummy variables.
Considering the computational issues highlighted by Gormley and Matsa (2014), in each iteration one can apply
within group transformation for each time period to compute the slope coefficient estimates for some given group
structure. This leads to the same results as interacting group and time dummies, but may be computationally less
costly.

10Whenever a group only contains a single unit, we reinitialize the group structure and restart the iterative
algorithm, so that we rule out the singleton group in this algorithm. In practice, singleton groups are rare in typical
financial data, such as CRSP/Compustat.
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duced by this “grouped fixed effects” approach are consistent and have the “oracle” property. In

particular, note that in step 3, the estimated gi minimizes the time series summation of squared

residuals. Therefore, one can show that the GFE estimate of group membership converges to the

true population membership, as the time-series dimension increases. Increases in the cross-sectional

dimension (N) do not contribute to the convergence of group membership estimates asymptoti-

cally, but they may improve the membership estimates indirectly in finite samples by improving the

estimation accuracy of coefficient parameters.

To more precisely quantify the asymptotic properties of group membership estimates, we consider

the probability of misclassification uniform across units, i.e.

Prob

(
sup

i∈{1,...,N}

|ĝi − g
0
i | > 0

)
,

where ĝi is the GFE estimate and g0i is the true value of the group membership of unit i. Bonhomme

and Manresa (2015a) show that the probability of misclassification uniform across units converges

to zero with the rate 1/T δ, where δ is an arbitrarily large positive number. This convergence rate

is much faster than the usual convergence rate of least squares estimates of β, i.e. 1/
√
NT , and we

often refer to it as “super-consistency”. Our generated and real data based simulations in Section 3

show that the GFE group membership estimates are accurate in finite samples, even when the

sample time series is moderately short.

Due to the super-consistent group membership estimates, the GFE estimates of coefficient pa-

rameters θg,t and β have the asymptotic “oracle” property that they are consistent and asymptoti-

cally equivalent to the infeasible estimate from model (5), as if we knew the true group membership.

The asymptotic equivalence further implies that if a large number of time series observations is

available, we can ignore the error caused by estimating unknown group memberships and estimate

standard errors of coefficient estimates using the sample analogue of the usual asymptotic robust

variance, namely the robust variance of the least squares estimator for each group. To compute this

variance, let ¯̇
Xĝi,t be the mean of Ẋit in group ĝi = g and define:

Σ̂β = plim(N,T)→∞ 1

NT

N∑
i=1

T∑
t=1

(Ẋit −
¯̇
Xĝi,t)(Ẋit −

¯̇
Xĝi,t)

′,

Ω̂β = lim
(N,T)→∞

1

NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E
[
ε̂itε̂js(Ẋit −

¯̇
Xĝi,t)(Ẋjs −

¯̇
Xĝj,s)

′
]
,
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where ε̂it is the residual from the GFE model (8). Then, we can obtain the asymptotic variance of

β̂gfe as:

var(β̂gfe) =
1

NT
Σ̂−1
β Ω̂βΣ̂

−1
β .

This variance is robust to heteroscedasticity and correlation across groups and time, but it does

not take into account the uncertainty caused by estimating the group membership. Given that the

group membership estimator converges very quickly as the number of time periods increases, the

asymptotic variance can often be a good approximate of variance. However, if the panel has small T ,

one should account for errors caused by the group estimation, because misclassification may increase

the small-sample dispersion of the estimator. A possible way to account for the uncertainty caused

by the group estimation is to use a bootstrapped standard error estimate based on re-sampling unit

blocks of (yi, Xi) from the sample. This is easy to implement but computationally more intense.11

2.3.3 Time-varying group membership

Although the group membership index g in model (8) does not explicitly depend on time, the GFE

specification can implicitly model time-varying group memberships provided that the time variation

of memberships and the number of individuals that change their memberships are both limited.

Particularly, since classification is based on the entire time path of θg,t, individuals that change

their group memberships can always be segmented to form new groups, so that no membership

change occurs in any group during the sample period.

For example, suppose at time t = 1 there are two groups (g11 and g21) with 500 firms each, where

firms within each group respond similarly to the shock at time t1; see Table 2. At time t = 2, 200

firms in group 1 respond to the shock in a similar way to firms in group 2, (g12 and g22). For sample

periods 1 to 2, these firms are equivalent to three groups with time-invariant memberships: the

first group contains the 300 firms from g11 that do not change memberships, G1; the second group

contains the 200 firms that change their membership into g22, G2; the final group contains the 500

firms from the original g21 that do not change membership, G3. Thus, time-varying memberships

can be accommodated in the GFE procedure by allowing for more groups.

11Alternatively, one can also compute an analytical version of finite-sample standard errors using the formulas
provided in Bonhomme and Manresa (2015b).
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Table 2
Time-varying group memberships

t = 1 t = 2 GFE Group

1 1 1

2
...

...
... 300 300
... g12 G1

499
500

301 301

g11 302
...

... 500

501
...

502
... G2

...
...

...
... 501

999 999
...

1000 1000 1000

g21 g22 G3

2.3.4 Determining the number of groups

So far in this section, we have assumed that the number of groups G is known. However, the number

of groups G is unknown a priori, in practice. We first consider any issues that might arise due to

the misspecification of the number of groups, and then discuss how to appropriately determine this

number. When the postulated number of groups is less than the true number, the GFE estimator

of slope coefficients β̂gfe is inconsistent, if the heterogeneous responses of misclassified units are

correlated with regressors. However, if one over-specifies the number of groups, one can still achieve

a consistent estimator of β, but probably with less efficiency (Liu et al., 2018; Bonhomme and

Manresa, 2015b).

Using these properties, we can determine the number of groups by examining the values of β̂gfe

for different choices of G. In particular, since β̂gfe remains consistent for an over-specified G but

not for an under-specified G, we should expect that β̂gfe converges to a certain value and remains

relatively stable as G increases. Thus, we can choose G, when β̂gfe is stable. To determine G, one

can use information criteria as suggested by Bonhomme and Manresa (2015a) and Su et al. (2016):

BIC(G) =
1

NT

T∑
t=1

N∑
i=1

(ẏit − Ẋ
′
itβ̂

(G)
gfe − θ̂

(G)
gi,t

)2 + σ̂2
GT + K+N

NT
log(NT), (10)
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where β̂
(G)
gfe and θ̂

(G)
gi,t

are the GFE estimators with G groups and σ̂2 is a consistent estimate of the

variance of εit, e.g. the sum of squared residuals obtained from Gmax groups.

GFE as a robust estimator

Overall, the results show that GFE is a robust method compared to TFE and IFE approaches.

In particular, if the DGP is TFE, GFE can still produce consistent coefficient estimates, although

it may be potentially less efficient. This is a direct outcome of the consistency of GFE under

overspecification of the number of groups. If industry is the true group structure (as specified in

IFE models), GFE can consistently identify the industry group structure and produce consistent

coefficient estimates. However, if a non-industry related group pattern of heterogeneity in responses

exists, GFE still produces consistent estimates, but TFE and IFE coefficient estimates will be

biased. This robust property of GFE also facilitates the selection between GFE and TFE/IFE

using a specification test discussed in the next subsection.

2.3.5 Specification test for group fixed effects

To evaluate which of the two models, two-way or group fixed effects, provides a better description

of the data, we can perform specification tests. The null hypothesis is the TFE model

yit = αi + λt + X
′
itβ+ εit,

and the alternative hypothesis is the group fixed effects model

yit = αi + θgi,t + X
′
itβ+ εit.

The alternative is the encompassing general model that nests the null model by setting θgi,t homo-

geneously across units at each time t.

The GFE estimator is consistent in both null and alternative models, but it is less efficient under

the null, because it unnecessarily divides the sample into sub-groups and needs to estimate group

memberships. The TFE estimator is consistent under the null, but not under the alternative model

due to neglecting the heterogeneous time effects (see Section 2.2.1). These observations suggest

that we can use a Hausman test statistic to evaluate the two models. With a similar argument to

Bai (2009), we can show that var(β̂GFE − β̂TFE) = var(β̂GFE) − var(β̂TFE), and thus a Hausman-type
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test statistic can be obtained by

H = (β̂GFE − β̂TFE)
′
[
var(β̂GFE) − var(β̂TFE)

]−1
(β̂GFE − β̂TFE) ∼ χ

2
K.

When the difference between the two estimates is statistically large, i.e. large H, it suggests that

the TFE estimator is likely to be inconsistent, and one should use GFE for more reliable results. On

the contrary, when the two estimates are not statistically different, TFE yields consistent estimates.

The above discussion also applies to testing interacted versus group fixed effects, as the tradeoffs

between consistency and efficiency are similar, depending on whether the interacted grouping is the

correct specification. In particular, when firms respond to shocks heterogeneously according to their

interacted groups, both interacted and group fixed effects estimators are consistent, with the latter

being potentially less efficient since the group memberships need to be estimated. On the contrary,

if interacted grouping is misspecified, the group fixed effects remain consistent, while interacted

fixed effects are not. Thus, a similar Hausman-type test statistic can be used to compare the two

models.

3 Simulation

In this section, we investigate the finite sample properties of grouped fixed effects estimates and

compare them with the two-way and interacted fixed effects estimates via Monte Carlo simulations.

The purpose of the simulation study is twofold. First, we compare GFE with two widely used

models in finance applications and evaluate their relative advantages in different DGPs. We use

data generated from an extensive set of simulation designs, including heterogeneous shocks that

occur at different frequency, homogeneous shocks, shocks with different degrees of correlation with

the regressors, and shocks of different sizes. We also consider the case when the number of groups is

relatively large and the case when the number of groups is misspecified. The second purpose of this

simulation study is to examine the performance of GFE in typical finance data sets, especially the

accuracy of group membership estimation. We conduct a natural experiment using data on natural

disasters, as well as a real-data-based experiment that generates the group structure and outcome

variable based on natural disasters.
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3.1 Simulation with generated data

3.1.1 Data generating process

We generate the data from the following linear panel data model with time-varying and potentially

heterogeneous shocks:

yit = αi + θgi,t +

2∑
l=1

Xl,itβl + εit, i = 1, . . . ,N; t = 1, . . . , T ; εit ∼ N(0, σ2ε), (11)

where αi = 1/T
∑T
t=1 X1,it, Xit = (X1,it, X2,it)

′ is a vector of regressors with loadings β = (β1, β2)
′ =

(1, 2) ′. The major difference between model (11) and standard panel data models lies in θgi,t for

g = 1, . . . , G with G = 5 that captures the group-wise heterogenous response to time-varying shocks.

To generate the correlation between θgi,t and Xit, they are both driven by a group structure, i.e.

Xl,it = cττl,gi,t + νit, for l = 1, 2

and

θgi,t = g
2
i (τ1,gi,t + τ2,gi,t)/cθ,

where τl,gi,t is the group component drawn from G(= 5) different normal distributions with mean

g and variance 2g for g = 1, . . . , G, and νit is the idiosyncratic component drawn from the normal

distribution with mean 1 and variance σ2ν = 5. One may think of τl,gi,t as an unobserved group

specific determinant of X, like corporate risk culture, which also drives the heterogeneous response

to a shock. The constant cτ reflects the importance of the group component in X and determines

the degree of correlation between X and θ. The constant cθ controls the size of shocks. To make

the variation of error terms comparable to that of the regressors, we set σ2ε = 5.
12

Since the nature and the characteristics of shocks are important for the consistency of each

econometric model, we consider three different types of shocks:

DGP1 (Frequent shocks): Shocks occur every time period t.

DGP2 (Sparse shocks): Shocks occur only 25% of the time.

DGP3 (Homogeneous shocks): Common shocks with homogeneous impact on all units at each

12Setting these variances to 5 is not essential. However, we need to ensure that the variation of the regressors and
the error is of comparable size, in order to generate a reasonable signal to noise ratio as well as realistic shock sizes.
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time period.

DGP1 and DGP2 allow for heterogeneous responses to shocks. DGP2 contains less shocks than

DGP1, and from theory we should expect the bias of TFE in DGP2 to be smaller than that in

DGP1. DGP3 assumes that the effect of shocks is homogeneous across units, and therefore it is the

same data generating process as the TFE model with individual and time fixed effects. Hence, GFE

and TFE are expected to produce similar results under DGP3, see robust estimator discussion in

Section 2.3.4.

Within each DGP, we also consider different choices of key parameters, i.e. cτ, cθ, and the

number of groups G. These extensions help to better understand how estimation bias is affected by

the correlation between regressors and heterogenous responses, the size of shocks, and the number

of groups. In addition, we also consider the case of misspecifying G for GFE.

To mimic typical empirical data in corporate finance studies, we consider panels with largeN and

moderate T . In particular, we conduct simulations under three different sample sizes: (N = 1000,

T = 15), (N = 1000, T = 30), and (N = 2000, T = 15). These sample sizes allow us to examine how

the dimension of N and T affects the relative performance of various models.

3.1.2 Model comparison and evaluation

We compare three models: grouped fixed effects, two-way fixed effects, and interacted fixed effects.

The major difference between GFE and IFE lies in that the grouping in IFE is specified exogenously

by researchers, while the group pattern in GFE is determined by the data. The group pattern

produced by GFE is case specific and depends on the nature of the shock and outcome variable.

The validity of IFE obviously depends on the specification of groups and shocks, and we consider

four scenarios for IFE. Scenario 1 correctly specifies the group memberships of all units and the time

of all shocks (denoted as IFEgt), which is impossible in practice. We refer to this as an infeasible

estimator. Scenario 2 exactly specifies the groups but not the shocks (denoted as IFEg). In IFEg,

when the shocks are misspecified we generate a time dummy variable every 1/3 of the time. Scenario

3 correctly specifies the shocks but not the groups (denoted as IFEt). In IFEt, when the groups

are misspecified we assign 30% of units in one group to the closest neighboring groups. Scenario 4

misspecifies both groups and shocks (denoted as IFEnull).

We evaluate all models based on the accuracy of grouping and of the slope coefficient estimates.

We measure the accuracy of grouping by the average of the misclassification frequency across repli-
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cations, defined as AMF = 1/R
∑R
r=1 MFr, where R = 1000 is the number of replications, and

MFr =
1

N

N∑
i=1

I(ĝi 6= g0i ).

The misclassification variable MF counts the number of units that are assigned wrongly (misclassi-

fied) as a proportion of the total number of units, for each replication. We compute the bias, the

estimated standard deviation, and the root mean square error (RMSE) as:

Bias(β̂) =
1

R

R∑
r=1

β̂r − β0, Std(β̂) =

√√√√ 1

R− 1

R∑
r=1

(β̂r − ¯̂β)2

and

RMSE(β̂) =

√√√√ 1

R

R∑
r=1

||β̂r − β0||2,

where β̂r is the estimator in the r-th replication, β0 is the true value, and ¯̂β = 1/R
∑R
r=1 β̂

r is the

sample average across replications. We report the empirical standard deviation across replications,

because it can capture the uncertainty caused by estimating the unknown group structure.13,14

3.1.3 Results

In this section, we present the simulation results, in line with our theoretical discussion in Section 2.

We first present the detailed results for DGP1 – DGP3 under a benchmark parametrization. Then,

we consider alternative parametrizations in order to examine how the performance of different

models is affected by the shock size, the correlation between responses and regressors, and the

number of groups. We also examine how GFE performs when the number of groups is misspecified.

Frequent shocks

Table 3 presents the bias and the mean square error of estimated coefficients under DGP1. We

consider the parameterization cτ = 0.5, cθ = 15, and G = 5 as a benchmark. This translates to

13This standard deviation differs from the quantity 1
R

∑R
r=1 σ̂β̂, where σ̂β̂ is the estimated asymptotic standard

error of β̂, which does not take into account the grouping uncertainty. With a moderate time-series dimension, these
two standard deviation estimates are equivalent, because the group estimation is super-consistent with the convergence
rate of an arbitrarily large exponential order of T (see Theorem 2 of Bonhomme and Manresa (2015a)). However, they
differ slightly from each other when T is small. Our unreported simulation results (available upon request) suggest
that when T is larger than 15, the difference between these two estimates is small.

14Note that RMSE(β̂) is not precisely the square root of the summation of squared Bias(β̂) and Std(β̂), since
Std(β̂) is the estimated standard deviation of β̂ and not the true one.
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moderate shocks, occurring 35% of the dependent variable time series, and the correlation between

the time aggregated shocks (
∑T
t=1 θt) and X is 0.3. We first focus on the results in Panel A

of Table 3 with 1000 cross-sectional and 15 time-series observations. In this setting where units

respond differently to shocks, TFE does not capture the heterogeneity and results in around 60%

bias for β1 (Bias=0.595 where β1=1) and 30% bias for β2 (Bias=0.599 for β2=2). On the other

hand, GFE successfully captures the heterogeneous response, and it correctly classifies more than

85% of units. The GFE coefficient estimate has a small bias (around 0.01).

IFEgt is the best among all estimators as it correctly specifies (not estimates) all the groups and

the shocks. IFEgt is more accurate than GFE because there is no estimation of groups involved.

However, it is very difficult, if not impossible, to always exactly specify all groups and shocks in

practice. If there is any misspecification, IFE may perform differently. To assess how misspecifi-

cation influences the IFE estimator performance, we compare IFEg, IFEt, and IFEnull. Results in

Panel A of Table 3 show that incorrectly specifying the shocks (IFEg) leads to 50% bias for β1 and

25% bias for β2, and misspecification in grouping (IFEt) causes 25% bias for β1 and 12% bias for

β2. Naturally, misspecifying both shocks and groups (IFEnull) leads to an even larger bias.15

Comparing the standard deviation of different estimators, we find that GFE produces a slightly

larger standard deviation than IFEgt, suggesting that estimating the groups introduces little extra

uncertainty. The standard deviation of TFE is almost twice as large as GFE. The misspecified

IFE also has much larger standard deviation than GFE. Turning to the tradeoff between bias and

variance, the RMSE of GFE is only slightly higher than that of the infeasible estimator IFEgt.

However, the RMSE of TFE is almost 50 times larger than that of GFE. Incorrectly specifying the

groups and shocks also dramatically decreases the performance of IFE (with RMSE 45 times larger

than that of GFE), and the performance depends on the degree of misspecification.

Panels B and C of Table 3 examine how the sample size affects the performance of different

models. Increasing the sample size (N and/or T) improves the accuracy of GFE and IFEgt, but not

the accuracy of TFE and other versions of IFE. For GFE, increasing the time dimension remarkably

reduces the misclassification frequency, but increasing the unit dimension does not improve the

classification, because only the time series variation contributes to the accurate classification of

units. In fact, the convergence rate of group estimation is 1/T δ, where δ is any arbitrary positive

number, and N does not affect the convergence rate. Both the bias and the standard deviation of

15The impact of misspecification obviously depends on the degree of misspecification. Unreported results (available
upon demand from the authors) confirm that if we increase the proportion of individuals that are misclassified or
decrease the number of specified shocks, the bias of IFE increases.
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GFE estimates decrease by increasing N and T . The accuracy of IFEgt also improves by increasing

either dimension of the sample, since it is asymptotically equivalent to GFE. On the contrary, the

RMSEs of TFE and other versions of IFE do not decrease by increasing the sample size. The

improvement in GFE and IFEgt performance confirms the consistency of these two estimators.

Sparse shocks

Next, we study the case where shocks occur infrequently, as presented in Table 4. In this DGP,

we add another IFE estimator, which correctly specifies groups but over-specifies the shocks by

interacting groups with time dummies of each time period, denoted as IFEgot. Since the shocks

remain of the same size but appear less frequently, the aggregate heterogeneous response of the

dependent variable to the shocks is of a smaller magnitude. Hence, although the estimators that

omit these heterogeneous responses, i.e. TFE, IFEg, IFEt, and IFEnull, continue to be biased, the

biases are all smaller than in the case of frequent shocks.

GFE continues to perform well in grouping with misclassification frequency less than 10% in

all cases and its coefficient estimates remain highly accurate, although the standard deviations

are slightly larger than in DGP1. This is because GFE unnecessarily models the shock at each

time period while there are actually fewer shocks. This also explains the difference between GFE

and IFEgt, which exactly identifies both grouping and shocks. Similarly, we find that imposing

more shocks (IFEgot) does not affect the consistency but only weakens the efficiency of IFE. Given

sufficient observations in our case, the efficiency loss in IFEgot is ignorable (compared to IFEgt).
16

Homogeneous shocks

The previous results have shown that when individuals respond differently to shocks, ignoring such

heterogeneity can lead to severely misleading results for TFE and IFE estimations with misspecified

groups. A natural question is, if the data generating process has homogeneous shocks, i.e. the impact

of shocks is homogeneous across individuals, then how much inefficiency will be caused by assuming

a relatively complicated model of grouped fixed effects?

To answer this question, we generate the data by model (11) but set G = 1. Table 5 compares

various estimators in the homogeneous-shock case. We see that TFE and IFEgt now perform

equivalently well, because both models coincide with the DGP. As for GFE, we consider two cases

16This result suggests that one could simply include time dummies for all periods, and not necessarily specify the
time of shocks precisely.
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with estimated number of groups Ĝ = 1 and Ĝ = 4.

When Ĝ = 1, GFE boils down to TFE and IFEgt, and it performs identically to the other two

models. When Ĝ = 4, we over-specify the number of groups, which only marginally increases the

RMSE for GFE. This confirms the theoretical result of Bonhomme and Manresa (2015a) that over-

specifying the number of groups does not affect the consistency of the slope coefficient estimators.

In such large sample sizes, the potential efficiency loss is ignorable.17 We also observe that when

the sample size increases, the RMSE decreases as expected.

Larger and more correlated shocks

Next we change the parametrization of the data to investigate how the size of the shocks and their

correlation with regressors affect the performance of different models. We first consider larger shocks

(cθ = 5 and other parameters remaining the same) that is roughly 60% of the magnitude of the

dependent variable on average. The results in Panel A of Table 6 show that the biases of TFE and

misspecified IFE (IFEg, IFEt, and IFEnull) all increase, as expected. However, GFE is not affected

by the size of shocks, and it remains as accurate as the infeasible estimator IFEgt. The classification

of GFE is even more accurate with less than 1% misclassification frequency, because larger shocks

allow for clearer group separation.

Panel B of Table 6 examines the case when the correlation between shocks and regressors is high.

To mimic this situation, we set cτ = 1 while other parameters remain the same. This setting has a

correlation of 0.5 between shocks and regressors, and the size of shocks remains 35% of the dependent

variable on average. We find that a high correlation increases the bias of all estimators (compared

to Panel B of Table 3). However, GFE remains the most accurate among all feasible estimators,

with 1% bias. GFE also produces the second smallest RMSE after the infeasible estimator IFEgt.

The RMSEs produced by TFE and IFEg are both 100 times larger than those of IFEgt.

Incorrect Ĝ

The estimated number of groups Ĝ may be misspecified in two ways: underestimated or overesti-

mated, see Section 2.3.4. The experiment in DGP3 shows that overestimating the number of groups

does not affect the consistency of GFE slope coefficient estimates. However, underestimation of G

theoretically affects consistency. If the number of groups is under-specified, then some groups will

17The net effect of overspecifying G on standard error estimates depends on the degree of improvement in model
fitness and efficiency loss caused by increasing the number of parameters.
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contain heterogeneous individuals. Since units within a group are treated homogeneously, this leads

to ignoring heterogeneity and a biased GFE estimator.

Table 7 presents the case where the true number of groups G = 4 is incorrectly specified as

Ĝ = 2 in the GFE estimation. It shows that GFE is biased when G is under-specified, and this bias

does not decrease as the sample size increases. However, we find that even in this case the degree

of bias and the RMSE of GFE are still much smaller than those of TFE. The direction of the bias

of GFE estimates depends on the correlation between regressors and heterogenous responses.

Based on these results, a recommendation for best practice is to choose a larger G, if the number

of groups is uncertain and the slope coefficients are the main variable of interest. In general, the

cost of over-specification seems much smaller than under-specification, especially for large sample

sizes. Therefore, one can use GFE also for TFE and IFE DGPs.

Large number of groups

Finally, we consider the situation where the data are generated by a large number of groups, i.e.

G = 10 and G = 20, respectively. Enlarging the number of groups results in an even larger degree

of heterogeneity. Therefore, we should expect the bias of TFE and misspecified IFE to increase,

and GFE to remain consistent.18 Table 8 shows the performance under G = 10 and G = 20. The

RMSEs of TFE and misspecified IFE increase at least 7 times compared to those in DGP1, while

the accuracy of GFE is unaffected.

3.2 Accuracy of the estimated group membership

The previous sections have shown that GFE can correctly estimate group membership even when

membership is unknown, theoretically and in simulations. In practice, we would also like to know

how accurately the group memberships of individual units are estimated by GFE. In this section, we

first evaluate the accuracy of the group estimator through an empirical application and supplement

the first exercise with a simulation based on parameters that closely match the empirical data.

The design of a perfect setting for an empirical application to evaluate the group estimator is

challenging, as it is nearly impossible to know ex-ante the correct endogenous groupings that are

driven by both observable and unobservable determinants. As a result, we can never fully verify

the accuracy of the grouping because of the unobservable determinants. However, if the grouping

18Bonhomme and Manresa (2015b) propose an alternative algorithm (variable neighborhood search) that poten-
tially works more efficiently than the iterative algorithm for high-dimensional heterogeneity.
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is predominantly driven by observable determinants and we know these determinants ex-ante, we

can evaluate the GFE group estimator based on those observables.

We study the performance of the GFE group estimator using the empirical application of the

effect of the severity of major natural disasters on sales growth. The use of natural disasters as

an observable determinant of firm grouping is ideal, as we can compare the GFE estimated group

membership to the firms affected by the natural disasters. Moreover, the timing and geographical

severity of the disasters is exogenous but correlated to the explanatory variables. The shortcoming

of the exercise is that we ignore the role of unobservable characteristics in grouping. As a result,

the GFE estimated grouping, which is based on observables and unobservables, will be positively

but imperfectly related to groups based on only the location of natural disasters.

3.2.1 Sales growth and natural disasters

Section 2.3 discusses the estimation of the latent group membership and the “oracle” property of

the GFE estimator, as both dimensions of the panel data increase. In this application, we study

the determinants of firms’ sales growth in the presence of major natural disasters. Barrot and

Sauvagnat (2016) finds that firms’ sales growth decreases by 3.3 to 4.5 percent for three consecutive

quarters following a natural disaster. From Barrot and Sauvagnat (2016), we expect θgi,t in the

sales growth regression to be negative and to pick up some of these sizable geographical effects for

the disaster-affected firms in each year, even in the presence of other unobservable determinants

of heterogeneity (firm and managerial characteristics). This application provides some degree of

validity check on the group membership estimator and focuses on how the estimated time effect

corresponds to the severity of the disaster impact on the work force in the affected firms.

We regress log sales growth on several firms characteristics and different fixed effects. We

estimate the following regression:

ln(Sales growth)i,t = αi + θgi,t + X
′
i,t−1β+ εi,t, gi ∈ {1, ..., G} (12)

where ln(Sales growth)i,t is the natural log of sales growth for firm i in year t. Xi,t−1 is a 6×1 vector

of lagged variables that affect sales growth. We include the following commonly used explanatory

variables in our regressions: natural log total assets (TA), Tobin’s q (q), return on assets (ROA),

capital expenditure (Capex), leverage (Leverage), and cash flow (CF). αi is the firm fixed effect and

θgi,t is a time-varying group effect. For TFE, θgi,t = θt and for IFE, θgi,t is industry interacted with
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year fixed effects.19 We use Compustat data for firm characteristics and natural disaster information

from Barrot and Sauvagnat (2016). The sample period is 1987 to 2010.

We expect the estimates of θt from TFE, θindustryi,t from IFE, and θgi,t from GFE to be negative

for affected firms in disaster states on the year of the disasters, as firms sales growth decrease due to

disasters. Furthermore, we also expect the cross-sectional heterogeneity to be negatively correlated

with the share of total U.S. employment affected by the disasters, according to Barrot and Sauvagnat

(2016). In other words, firms based in disaster states which have a higher percentage of employment

affected by disasters should experience a larger drop in sales.

For exposition purposes, we first focus on 2004 as a year of very large natural disasters. Figure 1

depicts the estimates of the state aggregated effects for 2004. We average the estimates of θ across

firms according to their headquarter states, as in Barrot and Sauvagnat (2016). Panel A of Figure

1 shows the share of total U.S. employment affected by four major hurricanes (Charles, Fracis, Ivan

and Jeanne), as computed from the County Business Pattern data, provided by the U.S. Census

Bureau. Panel B of Figure 1 shows the GFE estimates, where θgi,t is negative and is negatively

correlated with states with larger disaster-affected work force. IFE estimates θindustryi,t in Panel

C are also negative, but do not coincide with the state dispersion of workforce affected in Panel A.

Panel D shows that while the TFE estimates are negative, they are uncorrelated with the share of

total U.S. employment affected by disasters at the state level.

Using the sample from 1987-2010, Panel A of Table 9 reports the univariate regression estimates

of θ for TFE, IFE, and GFE on disaster-affected employment across all natural disasters for the sam-

ple period. Consistent with the above findings, disaster-affected employment is negatively related

to GFE θgi,t . Barrot and Sauvagnat (2016) report an average drop in employment of 22 percent

in major disaster-affected states, which leads to an estimated drop of three to five percent in sales

based on the GFE coefficient of -0.25, close to Barrot and Sauvagnat’s reported estimate of 3.3 to

4.5 percent. On the other hand, TFE and IFE estimates suggest a positive but economically small

increase in sales with an increase in affected employment, contrary to what we expect from theory

and empirical observations. These results demonstrate the reliability of the GFE group estimator.

To quantify the economic significance of misspecifying the econometric model for typical sales

growth regressions, Panel B of Table 9 presents the coefficient estimates of the determinants of sales

growth using the TFE, IFE based on industry grouping, and GFE based on G = 10, 15, 30 models.20

19For IFE we include individual fixed effects to capture individual heterogeneity. The interacted fixed effect is based
on industry, because the assumption is that firms respond to shocks heterogeneously based on industry characteristics.

20To implement the GFE estimation, we first need to determine the number of groups G. We consider two evaluation
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In general, there are substantial differences between GFE, TFE and IFE estimates, confirmed by

the Hausman test statistics. The test statistics suggest that TFE and IFE estimates are incorrect.

Particularly, the coefficient estimates for total assets, capex, and cash flow are significant for all

GFE specifications, but are much larger for TFE and insignificant for IFE. The leverage effect is

insignificant for TFE and negative for GFE. We also see economically significant differences across

estimates for Tobin’s q, where TFE yields a coefficient 5 times larger than GFE. Overall, the results

in this section show that GFE accurately classifies firms into groups when a group structure exists.

If the group structure is ignored, coefficient estimates are biased and inference is incorrect. Later,

we demonstrate the economic importance of using GFE and how economic and statistical inferences

change by replicating a recently published paper.

3.2.2 Simulation based on empirical parameters

The shortcoming of the above exercise is that we are never sure about the true grouping in the

data, due to the unobserved determinants of group membership. To more critically evaluate the

GFE group estimator, we perform Monte Carlo simulations based on empirical parameters from the

observed data. For simulation convenience, we drop firms if any of the six explanatory variables

are missing during the sample period 1987–2001 to construct a balanced panel.21 This leads to a

sample containing 207 firms with 15 years of observations. All the data is from Compustat.

For a given number of groups, we generate the dependent variable by

yit = θgi,t + X
′
i,t−1β+ εit, i = 1, . . . ,N; t = 1, . . . , T ; εit N(0, σ2ε) (13)

where Xit contains the six explanatory variables in regression (12). To specify the slope coefficients

and group fixed effects, we first estimate model (13) on the empirical dataset using the GFE ap-

proach. Then, we fix the GFE estimates of β and θgi,t as their true values, respectively. The true

group memberships gi for all i are also fixed to their corresponding GFE estimated memberships.

Finally, we generate the error terms from i.i.d. normal distributions with zero mean and variance

equal to the variance of the GFE residuals.

criteria, the Bayesian Information Criterion (BIC) given by equation (10) and the convergence of slope coefficient
estimates. The BIC serves as an effective criterion to tradeoff between the model fitness and the number of parameters
(degree of complication of the model), and we select the number of groups that minimizes this criterion. Figure 2(a)
depicts how the BIC varies for different numbers of groups in the sales growth regression. The value of BIC decreases
dramatically when we increase the number of groups from 1 to 10, and it reaches its minimum when G = 10.

21We use a shorter sample for this simulation to maximize the number of firms (cross-section) of the balanced
sample and to have similar T to the baseline simulations in Section 3.1.2.
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We evaluate the performance of GFE based on the accuracy of grouping and coefficient estimates.

We use the average misclassification frequency to measure grouping accuracy. For each coefficient

estimator β̂l, we employ relative bias to facilitate comparison, different from the absolute bias used

in Section 3.1, because the magnitude of the true coefficients varies significantly across variables.

Specifically, we compute the absolute value of the relative bias for each β̂l as

|Relative bias| =

∣∣∣∣∣Bias(β̂l)β0l

∣∣∣∣∣ ,
where β0l is the true value of βl, and l = 1, . . . , 6.

Table 10 presents the misclassification frequency, absolute relative bias, and overall RMSE. We

find that when T = 15 and G = 5, GFE can correctly classify more than 90% of the units. The

relative bias of GFE is much smaller than TFE and IFE for all variables, and the RMSE of GFE is

almost half of that produced by TFE and IFE. Increasing the number of groups marginally affects

the performance of GFE as expected, but the bias and RMSE of TFE and IFE increase sharply.

In summary, we have demonstrated the effectiveness of the GFE group membership estimator

through an empirical application where we recover the grouping based on ex-ante known and ob-

servable determinants. We further show the reliability of the group estimator through a simulation

based on parameters drawn from the empirical distributions of the variables of interests.

4 Economic importance of GFE

The previous section (3.2.1) examined the reliability of the group membership estimation and showed

that economic inference can vary, when using different econometric approaches. In this section, we

demonstrate the importance of GFE for economic and statistical inference through revisiting the

study of pilot CEO’s influence on corporate innovation, Sunder et al. (2017).

Sunder et al. (2017) argues that “CEOs who combine risk tolerance with a desire for new ex-

periences achieve greater innovation success.” The paper collects information about CEO’s pilot

credentials from Federal Aviation Administration (FAA) records and studies the differences in in-

novation outcomes across firms with pilot and non-pilot CEOs. The paper finds that CEOs’ hobby

of flying airplanes is associated with significantly better innovation outcomes, measured by patents

and citations. The paper argues that “sensation seeking combines risk taking with a desire to pursue

novel experiences and has been associated with creativity.” The econometric model in the paper
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controls for year and industry fixed effects, CEO and firm characteristics, including age, human

capital proxied by CEO tenure and academic achievement, explicit risk-taking incentives, military

experience, and overconfidence. However, Sunder et al. (2017) cautions about the interpretation of

their findings and acknowledges the important role of time-varying corporate risk preferences and

the issue of endogenous matching between CEOs and firms.

For example, a group of firms with preferences for risk will select corporate leaders with similar

risk preferences. As a result, studying the association between the risk taking behavior of a firm

and an observable variable that measures manager’s taste for risk might lead to misguided economic

inference without accounting for firms’ time-varying unobserved heterogeneity of such groups, i.e.

their changing strategy on risk taking. In this section, we revisit and replicate the study of pilot

CEO and the success of innovation investment by estimating various econometric models using

TFE, IFE, and GFE and compare the resulting estimates.22

4.1 Pilot CEO and corporate innovation

We model corporate innovation success as follows:

ln(1+citation)it = αind + θgi,t + X
′
i,tβ+ εi,t, gi ∈ {1, ..., G}, (14)

where ln(1+citation)it is the natural log of the number of raw citations multiplied by the weighting

index of Hall et al. (2001) to all the patents applied for by firm i in year t. αind is the industry fixed

effect and θgi,t is a time-varying group effect. As in Sunder et al. (2017), Xit is a 17×1 vector of

variables affecting patent citations: pilot CEO dummy, log total assets (TA), ratio of net property,

plant, and equipment over the number of employees (PPE/EMP), stock returns, Tobin’s q, institu-

tional holdings, CEO tenure, CEO stock and option delta and vega, CEO age, CEO overconfidence,

and dummy variables for: top university, PhD, no school information, finance education, technical

education, CEO military background. Table A.2 in the appendix provides all variable definitions.

The data is from ExecuComp, BoardEx, Compustat, NBER patent database, and the U.S. Fed-

eral Aviation Administration airmen certification records. We exclude financial firms and regulated

utilities and apply similar filters as in Sunder et al. (2017). The sample period is 1993 to 2003.

The TFE estimator includes industry fixed effects and year dummies as in Sunder et al. (2017),

22For brevity, we will focus on the results for patent citation, see Column 6 of Table 4 in Sunder et al. (2017). We
also study other outcome variables in their paper and reach similar conclusions (results are available from the authors
upon demand).
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θgi,t = θt. IFE includes an industry fixed effect and θgi,t is the industry fixed effect interacted

with year fixed effects. To implement the GFE estimation, we first need to determine the number

of groups G. We consider two evaluation criteria, the Bayesian Information Criterion (BIC) given

by (10) and the convergence of slope coefficient estimates. The BIC serves as an effective criterion

to tradeoff between the model fitness and the number of parameters (degree of complication of

the model), and we select the number of groups that minimizes this criterion. Figure 2(b) depicts

how the BIC varies for different numbers of groups in regression (14). The value of BIC decreases

dramatically when we increase the number of groups from 1 to 10, and reaches its minimum when

G = 10. From G = 10 onwards, increasing the number of groups does not significantly improve the

model fitness, while introducing a much larger set of parameters to estimate. For robustness, we

examine the behavior of slope coefficient estimates for G=15 and find little difference with G=10.

Table 11 presents the coefficient estimates of the determinants of patent citations obtained from

two-way fixed effect, interacted fixed effect based on industry grouping, and grouped fixed effect

regressions. Hausman tests strongly reject the null hypothesis that TFE, IFE and GFE produce

the same coefficient estimates. In general, we observe substantial differences in the estimated

coefficients, which leads to different economic inferences between GFE and other estimators.

Consistent with Sunder et al. (2017), we find that pilot CEO is positively correlated with firms’

total patent citations, when we account for industry and year fixed effect (TFE).23 In particular,

firms with pilot CEOs have an estimated 0.46 (exp0.38−1) more citations that firms with non-

pilot CEOs. We also find qualitatively similar statistical relations between the covariates and

patent citations. These relations remain similar and the pilot CEO coefficient remains positive and

significant when we control for interacted fixed effects with industry-year interaction fixed effects.

Column 3 of Table 11 reports the estimated coefficients from GFE. Contrary to the TFE and

IFE results, we find that there is statistically no difference in citations per year for firms with

pilot CEOs compared to firms with non-pilot CEOs. This is consistent with the idea that a firm

seeking to change its corporate culture or risk taking strategy will select a CEO with similar risk

preferences. The inclusion of θgt, which might potentially capture the endogenous grouping of this

changing culture, allows the model to compare pilot versus non-pilot CEOs across firms with similar

time-varying risk culture or management strategy. If firm heterogeneous responses are only driven

by observables that are correlated with pilot CEOs, controlling for these observables may reduce the

23Our point estimate of 0.38 for TFE is slightly different from the Sunder et al. (2017) reported estimate of 0.61,
see Table 4 Column 6.
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heterogeneity bias. The bias of pilot CEOs exists because there is an unobserved variable, such as

corporate risk preferences, that is correlated with the appointment of pilot CEOs and heterogeneous

responses to shocks. Although it would be ideal to be able to identify the economic mechanism that

gives rise to the bias, the unobserved source of the bias prevents us from further investigation.

GFE’s estimates for other CEO characteristics and compensation variables are mainly consistent

with the literature’s findings. We find that larger firms with higher capital intensity, higher Tobin’s

q and lower institutional holdings have more cited patents. We find a positive relation between

innovation and delta indicating that a strong CEO incentive alignment with shareholders generates

better innovation outcomes. We also find that CEOs at the beginning of their tenure engage with

riskier and more successful innovations. Education-related coefficients also suggest that education

especially those related to finance and technical degrees play an important part in firms’ innovation

outcomes. We find that firms with military CEOs have slightly lower patent citations consistent

with the literature’s finding that military CEOs allocate less resources to research and development,

see Benmelech and Frydman (2015), which is different from Sunder et al. (2017).

Overall, we demonstrate how the failure of TFE and IFE to appropriately account for time-

varying group unobserved heterogeneity, possibly related to business strategy and corporate risk

culture, can lead to incorrect economic inference and biased estimates of treatment and control

variables.

5 Endogeneity and standard errors

5.1 Endogeneity

So far, we have focused on the model with exogenous regressors. However, often some regressors of

interest may be endogenous. In this case, least squares estimation (9) leads to inconsistent estimates

of slope coefficients, and instrument variable estimation is required. We extend the GFE approach

to incorporate endogenous variables in a two-stage least squares (TSLS) framework.

Consider the structural equation of interest

yit = θgi,t + Xitβ+ εit, (15)

where Xit is a K × 1 vector of variables, (some of) which may be correlated with εit and thus

endogeneous. The conditional expectation of Xit can be written as the following reduced form
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model given a P × 1 vector of variables Zit:

Xit = f(Zit, π) + uit, (16)

where π is anM×1 vector of parameters, f(·, ·) is a presumed known function that maps RP×RM to

RK, and uit is K× 1 satisfying E(uit|Zit) = 0. This suggests that Zit can serve as valid instruments

for K× 1 endogenous variables Xit, if rank(Zit) ≥ rank(Xit). The reduced form (16) can be applied

to widely used econometric models, such as linear or threshold regressions, etc. In the following

analysis, we use linear pooled regressions as an example, and in this case we have:

Xit = α+ Z ′itγ+ uit. (17)

Note that we do not allow for endogeneity in the group membership determination, namely that

the group membership is not determined by endogenous variables. Neither do we allow for a group

pattern of heterogeneity in the reduced form model (16). Moreover, the standard rank condition

must be satisfied to identify the structure parameters.

For this system, we can estimate the group membership, group fixed effects, and slope coefficients

jointly by minimizing the following objective function as

(θ̃, β̃, g̃) = arg min
θ,β,g

N∑
i=1

T∑
t=1

(
yit − X̂

′
itβ− θgi,t

)2
, (18)

where X̂it is the predicted value of Xit based on the first-stage regression model (17). To solve this

optimization problem, one can again employ the iterative algorithm that iteratively estimates the

group membership parameter g and slope and intercept parameters. In particular, we can modify

Algorithm 1 as follows:

Algorithm 2

1. Compute: X̂it = α̂+ Z ′itγ̂, where α̂ and γ̂ are the least squares estimates from (17).

2. Let g(0) be an initial value of grouping. Set s = 0.

3. For the given g(s) and X̂it, compute:

(θ(s+1), β(s+1)) = arg min
β,θ

N∑
i=1

T∑
t=1

(
yit − X̂

′
itβ− θgi,t

)2
,
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where X̂it is the predicted value of Xit from the first stage regression of Xit on Zit.

4. Compute for all i ∈ {1, . . . ,N}:

g
(s+1)
i = arg min

g∈{1,...,G}

T∑
t=1

(
yit − X̂

′
itβ

(s+1) − θ
(s+1)
gi,t

)2
.

5. Set s = s+ 1 and go to Step 3 (until numerical convergence).

Our TSLS approach complements the IV estimation method for GFE briefly discussed in Bon-

homme and Manresa (2015b), because we address endogeneity in both group membership and

coefficient estimation. Bonhomme and Manresa (2015b) first estimate group memberships in a

GFE regression with endogenous variables using least squares as in equation (9), and then use this

group membership in the IV regression. In some situations, the endogeneous variables can influence

the estimation of group memberships either directly or indirectly via slope coefficients, leading to

inconsistent membership estimates. Using inconsistent group membership estimates further leads

to inconsistent coefficient estimates. In contrast, we explicitly address the endogeneity issue in

estimating both group memberships and slope coefficients in a TSLS framework, and thus obtain

consistent estimates.

We show the effectiveness of this procedure through simulations. We generate the data from the

linear panel data model with time-varying heterogeneous shocks as in our benchmark simulation

design (11), except that now X1,it is endogenous. We generate X1,it = Zit + εit/5, where Zit is

independent of εit and generated by Zit = cττ1,gi,t + νit with the same parameterization as in

Section 3. The remaining parameters are also set in the same way as in Section 3, and we focus on

DGP1, the case of frequent but moderate shocks. Coefficients are estimated using TSLS.

We evaluate the performance of GFE estimators using the misclassification frequency, bias, and

RMSE, and compare with the TSLS with two-way fixed effect estimator. Table 12 shows that the

misclassification frequency is slightly higher than in the cases of exogenous regressors (see Table 3).

This could be due to an efficiency loss caused by the two-stage estimation. Nevertheless, GFE

still correctly classifies more than 80% of units even in the smallest sample with T = 15. The

misclassification rate decreases as T increases, confirming the consistency of group membership

estimates, but it does not decrease as N increases, as expected. The accuracy of GFE coefficient

estimates improves as either N or T increases. On the contrary, the estimates produced by TFE are

severely biased. Increasing the sample size does not seem to help to reduce the bias and RMSE of
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the TFE estimates.

In principle, we can replace the two-stage least squares estimation by (optimal) GMM. In that

case, the estimation of the optimal weight matrix requires a careful treatment since it depends on

the group membership estimates.

5.2 Standard errors

Petersen (2009) highlights the importance of using the correct methods to estimate standard errors.

Here we discuss the standard error estimation in the presence of group fixed effects. Our discussion

is twofold. First, we investigate the properties of standard error estimates produced by GFE.

Second, we discuss how other standard error estimates perform, if the data generating process is

characterized by group-specific heterogeneous responses to shocks.

There are two versions of standard errors for the GFE method, an asymptotic standard error

and a finite sample standard error. The asymptotic standard error estimate is identical to White’s

(1984) robust standard error for OLS estimators under true group membership (see also Corollary

1 of Bonhomme and Manresa (2015a)). This asymptotic estimate is often a good proxy because the

group membership is estimated super-consistently, and the estimation errors caused by unknown

grouping can be ignored. When the time dimension is particularly short, the finite sample standard

error estimates need to be used to account for the group estimation error.24 Since most financial

data have moderate time series, our discussion here focuses on asymptotic standard error estimates

of GFE.

The GFE asymptotic standard error is unbiased in the presence of fixed firm and homogeneous

time effects, because αi and θg,t control the firm and time effects, leaving an idiosyncratic error

term. The GFE asymptotic standard error is also unbiased if the time effect is group-specifically

heterogeneous, i.e., if the firm effect changes over time but in a group pattern. Such time-varying

group effect is captured by θg,t, and thus leaves only the idiosyncratic component in the error term.

Next, we discuss the properties of other standard error estimates in the presence of group-specific

heterogeneous responses. The standard errors of OLS, fixed effects (FE), and TFE are all biased

to different extents. The bias of FE standard errors has been demonstrated by equation (22) in

Appendix A.1. Given the bias of FE standard errors, we can expect that the OLS standard errors

are even more biased, because OLS fails to take into account both firm and group fixed effects. We

24There are two ways to compute the finite sample standard error estimates. One can use the analytical formula
proposed in Section 2.2.2 of Bonhomme and Manresa (2015a) or bootstrap the standard error estimate by resampling
unit specific blocks of observations from the original sample.

36



show the bias of TFE standard errors using the case with only one explanatory variable. The within

individual-time transformed variables are denoted by X̃it and θ̃gi,t. Then the variance of the TFE

estimator is

var(β̂TFE) =

( N∑
i=1

T∑
t=1

X̃it(θ̃gi,t + ε̃it)

)2( N∑
i=1

T∑
t=1

X̃2it

)−2


=

 T∑
t=1

N∑
i=1

X̃2it(θ̃gi,t + ε̃it)
2 +

T∑
t=1

∑
i6=j
X̃itX̃jt(θ̃gi,t + ε̃it)(θ̃gj,t + ε̃jt)

( N∑
i=1

T∑
t=1

X̃2it

)−2

=

[
T∑
t=1

N∑
i=1

X̃2itε̃
2
it + C

](
NTσ2X

)−2

=
σ2ε
NTσ2X

[
1+NTσ2XC

]
, (19)

where C =
∑T
t=1

∑N
i=1 X̃

2
itθ̃

2
gi,t

+ 2X̃itθ̃gi,tε̃it +
∑T
t=1

∑
i 6=j X̃itX̃jt(θ̃gi,t + ε̃it)(θ̃gj,t + ε̃jt), which is

nonzero as long as X̃it and θ̃gi,t are correlated.

Table 13 presents the standard errors structure in the presence of group fixed effects. This

structure resembles that of two-way fixed effects except that the firms in distinct groups are not

correlated even at the same time point, because the time shocks impose heterogeneous effects

across groups (assuming groups are independent). In the presence of group fixed effects, standard

errors only clustered by firm are clearly biased because it imposes that residuals between firms are

completely uncorrelated. In contrast, standard errors clustered by both firm and time are unbiased,

but can be inefficient because they allow all firms (across groups) to be correlated at the same time.

In Appendix A.1, we also discuss the issue of standard errors for event studies, which are widely

used in empirical studies, in the presence of group heterogeneous time effects.

6 Conclusions

Firms are often exposed to market-wide shocks such as regulatory changes and financial crises.

Failing to appropriately incorporate the effects of these market-wide shocks in regression analysis

can lead to inconsistent estimates of treatment effects and can affect statistical inference. The

most widely used approach to model market-wide shocks is the two-way fixed effects model, which

assumes that all firms or individuals respond homogeneously to these common shocks. However,

it is well-documented that regulatory changes like the Sarbanes-Oxley Act and financial crises
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have heterogenous impact on firms outcomes. In this paper, we demonstrate how ignoring this

heterogeneity results in biased slope coefficient estimates, when heterogeneous shocks are correlated

with explanatory variables. More specifically, we formally quantify the bias of the estimates of

existing models in using two-way fixed effects and interacted industry-year fixed effects models.

We propose the use of the “grouped fixed effects” estimator to account for heterogenous responses

to market-wide shocks. The group fixed effect estimators assume that there is an underlying latent

group pattern for the population of firms. Within the group, firms respond similarly to each shock,

while they respond differently across groups. One important advantage of this approach is that

the group structure can be consistently estimated from the data, jointly with the other regression

parameters. Therefore, no a priori knowledge of grouping is required. This avoids possible estimate

inconsistency caused by the misspecification of the group structure.

We theoretically compare the GFE estimators with popular alternatives, such as two-way fixed

effects and interacted fixed effects with artificially imposed group structure (e.g. industry-based

grouping). We show that two-way fixed effect estimates are inconsistent if firms respond differently

to the shocks. On the contrary, grouped fixed effects models always produce consistent slope

coefficient estimates, when the number of groups is not under-specified. GFE is asymptotically

equivalent to the interacted fixed effects model, if the imposed group structure in IFE happens to

coincide with the data generating process. However, if the group structure of IFE is misspecified,

IFE estimates are no longer consistent. We provide guidelines on how to appropriately correct for

standard errors based on the group structure. We propose new methods to select between GFE

and TFE/IFE model specifications and to estimate group membership and coefficient parameters

in the presence of endogenous explanatory variables.

We conduct a large number of Monte Carlo simulation experiments, controlling for the size and

the frequency of shocks, the degree of heterogeneity among units, the correlation between responses

and regressors, the number of groups, etc. Simulation results confirm our theoretical argument

that conventional models are biased to different extents, depending on the feature of shocks, the

correlation, and specification of groups, etc. On the contrary, GFE remains a consistent approach

even when all firms respond homogeneously.

We demonstrate the economic importance of accounting for heterogeneity through an empirical

model of CEO attributes and corporate innovation. We find that accounting for time-varying

heterogeneity plays an important role in practice. Our findings and the proposed GFE estimator

are likely to be of increasing importance and of practical use to empirical researchers.
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Figure 1
Firms’ sales growth responses to natural disasters in 2004

The figure presents the effect of natural disasters on employment and the estimated effect on sales growth in 2004.
Panel A shows the share of total U.S. employment affected by 4 natural disasters with damages exceeding $1 billion
in 2004: Hurricane Charley, Hurricane Frances, Hurricane Ivan, and Hurricane Jeanne. Employment numbers are
computed from the County Business Pattern data, provided by the U.S. Census Bureau. Panels B, C, and D present
the time effect estimates of the sales growth regression using GFE, TFE and IFE respectively for firms in the affected
states in 2004, estimated for the sample period from 1987-2010 using data from Compustat. Figure B shows the
estimate θgi,t for GFE: yit = αi + θgi,t + X

′
itβ + εit, gi ∈ {1, ..., G}. Figure C shows the estimate θt for TFE

yit = αi + θt + X
′
itβ+ εit. Figure D shows the estimate θindustry,i,t for IFE yit = αi + θindustry,i,t + X

′
itβ+ εit. yit

is log annual sale changes and Xit is a 6×1 vector of variables: natural log total assets, Tobin’s q, return on assets,
capital expenditure, leverage, and cash flow. Table A.2 in the Appendix provides all variable descriptions. Darker
colors indicate stronger effects.

Panel A: Percentage of affected
employment

Panel B: GFE θgi,t

Panel C: TFE θt Panel D: IFE θindustry,i,t
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Figure 2
Bayesian information criterion and number of groups

The figure presents the Bayesian information criterion (BIC) for different numbers of groups for the empirical examples.
Figure A presents the BIC for the sales growth regression: ln(Sales growth)i,t = αi+θgi,t+X

′
i,t−1β+εi,t, gi ∈ {1, ..., G},

where Xit is a 6×1 vector of variables: natural log total assets, Tobin’s q, return on assets, capital expenditure, leverage,
and cash flow. Figure B presents the BIC for the pilot CEO regression: ln(1+citation)it = αind + θgi,t + X ′i,tβ +
εi,t, gi ∈ {1, ..., G}. ln(1+citation)it is the natural log of the number of raw citations adjusted by the weighting index
of Hall et al. (2001) to all the patents applied for by firm i in year t, αind is the industry fixed effect, θgi,t is the
time-varying group effect, and Xit is a 17×1 vector of variables: pilot CEO dummy, natural log total assets, ratio
of net property, plant, and equipment over the number of employees, stock returns, Tobin’s q, institutional holdings,
CEO tenure, CEO stock and option delta and vega, CEO age, CEO overconfidence, and dummy variables for: top
university, PhD, no school information, finance education, technical education, CEO military background. The x-axis
is the number of groups, and the y-axis is the BIC. Table A.2 in the Appendix provides all variable descriptions.
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Table 3
Frequent moderate shocks

The table presents the results for simulations under DGP1 for different econometric specifications. DGP1 is generated
using the procedure described in Section 3, where shocks occur at every time t and heterogenous responses to shocks
are allowed. The parameters in the DGP are set as cτ = 0.5, cθ = 15, and G = 5. cτ is a constant which determines the
degree of correlation between X and θ, cθ is a constant which controls the size of shocks, G is the number of groups. We

present the bias: Bias(β̂) = 1
R

∑R
r=1 β̂

r−β0, the estimated standard deviation (Std.): Std(β̂) =
√

1
R−1

∑R
r=1(β̂

r − ¯̂β)2,

and the root mean square error (RMSE): RMSE(β̂) =
√
1
R

∑R
r=1 ||β̂

r − β0||2 of estimated coefficients, where β̂r is the

estimator in the r-th replication, β0 is the true value, and ¯̂β = 1/R
∑R
r=1 β̂

r is the sample average across replications.
Misclassification frequency (Misclass. Freq.) is the average proportion of units that are misclassified by GFE across
replications: AMF = 1/R

∑R
r=1 MFr, where R is the number of replications and MFr = 1

N

∑N
i=1 I(ĝi 6= g0i ). The

table reports the results using the following methods: grouped fixed effects (GFE), two-way fixed effects (TFE), and
group-time interacted fixed effects (IFE). The IFE method includes 4 different specifications: IFEgt exactly specifies
the group memberships of all individuals and the timing of all shocks (perfect hindsight), IFEg exactly specifies the
groups but correctly specifies the shocks every 1/3 of the time, IFEt correctly specifies the shocks but not the groups,
and IFEnull misspecifies both groups and shocks. When the groups are misspecified, we assign 30% of individuals to
the closest neighboring groups. The details of these methods are presented in Section 3.1.2. N is the number of units,
and T is the number of time series observations. Panels A to C report results for three different sample sizes N and
T. Each simulation consists of 1000 replications.

GFE TFE IFEgt IFEg IFEt IFEnull

Panel A. N = 1000, T = 15

Misclass. Freq. 0.1491
β1 Bias 0.0109 0.5954 0.0002 0.5125 0.2548 0.5693

Std. 0.0119 0.2057 0.0108 0.2203 0.1061 0.2148
β2 Bias 0.0102 0.5991 −0.0006 0.5145 0.2590 0.5720

Std. 0.0124 0.2102 0.0109 0.2206 0.1089 0.2133
β RMSE 0.0183 0.8858 0.0144 0.9898 1.0035 0.8500

Panel B. N = 1000, T = 30

Misclass. Freq. 0.0739
β1 Bias 0.0054 0.6107 0.0004 0.6336 0.2625 0.6577

Std. 0.0075 0.1383 0.0072 0.1465 0.0733 0.1449
β2 Bias 0.0051 0.6110 0.0002 0.6347 0.2591 0.6588

Std. 0.0077 0.1381 0.0072 0.1453 0.0719 0.1433
β RMSE 0.0120 0.8869 0.0102 0.9235 0.3831 0.9558

Panel C. N = 2000, T = 15

Misclass. Freq. 0.1460
β1 Bias 0.0096 0.6045 0.0005 0.5208 0.2571 0.5778

Std. 0.0093 0.2006 0.0077 0.1978 0.1055 0.1950
β2 Bias 0.0092 0.6072 −0.0002 0.5217 0.2666 0.5806

Std. 0.0089 0.2064 0.0072 0.2102 0.1088 0.2052
β RMSE 0.0147 0.9008 0.0105 0.7929 0.3969 0.8664
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Table 4
Sparse moderate shocks

The table presents the results for simulations under DGP2 for different econometric specifications. DGP2 is generated
using the procedure described in Section 3, where shocks occur 25% of the time and heterogenous responses to shocks
are allowed. The parameters in the DGP are set as cτ = 0.5, cθ = 15, and G = 5. cτ is a constant which determines the
degree of correlation between X and θ, cθ is a constant which controls the size of shocks, G is the number of groups. We

present the bias: Bias(β̂) = 1
R

∑R
r=1 β̂

r−β0, the estimated standard deviation (Std.): Std(β̂) =
√

1
R−1

∑R
r=1(β̂

r − ¯̂β)2,

and the root mean square error (RMSE): RMSE(β̂) =
√
1
R

∑R
r=1 ||β̂

r − β0||2 of estimated coefficients, where β̂r is the

estimator in the r-th replication, β0 is the true value, and ¯̂β = 1/R
∑R
r=1 β̂

r is the sample average across replications.
Misclassification frequency (Misclass. Freq.) is the average proportion of units that are misclassified by GFE across
replications: AMF = 1/R

∑R
r=1 MFr, where R is the number of replications and MFr = 1

N

∑N
i=1 I(ĝi 6= g0i ). The

table reports the results using the following methods: grouped fixed effects (GFE), two-way fixed effects (TFE), and
group-time interacted fixed effects (IFE). The IFE method includes 5 different specifications: IFEgt exactly specifies
the group memberships of all individuals and the timing of all shocks, IFEg exactly specifies the groups but correctly
specifies the shocks every 1/3 of the time, IFEgot exactly specifies the groups but over-specifies the shocks at each
time period, IFEt correctly specifies the shocks but not the groups, and IFEnull misspecifies both groups and shocks.
When the groups are misspecified, we assign 30% of individuals to the closest neighboring groups. The details of these
methods are presented in Section 3.1.2. N is the number of units, and T is the number of time series observations.
Panels A to C report results for different N and T. Each simulation consists of 1000 replications.

GFE TFE IFEgt IFEg IFEgot IFEt IFEnull

Panel A. N = 1000, T = 15

Misclass. Freq. 0.0953
β1 Bias 0.0032 0.3584 −0.0002 0.2712 −0.0001 0.1340 0.3178

Std. 0.0130 0.3537 0.0093 0.3835 0.0105 0.1328 0.3609
β2 Bias 0.0035 0.3386 −0.0008 0.2410 −0.0005 0.1268 0.2897

Std. 0.0161 0.3191 0.0086 0.3345 0.0100 0.1257 0.3159
β RMSE 0.0212 0.6852 0.0127 0.6246 0.0144 0.2596 0.6438

Panel B. N = 1000, T = 30

Misclass. Freq. 0.0482
β1 Bias 0.0018 0.4515 0.0003 0.4489 0.0001 0.1657 0.4744

Std. 0.0067 0.2559 0.0062 0.3171 0.0068 0.0978 0.3068
β2 Bias 0.0016 0.4450 0.0001 0.4425 0.0003 0.1618 0.4672

Std. 0.0081 0.2639 0.0062 0.3214 0.0071 0.0973 0.3069
β RMSE 0.0114 0.7326 0.0087 0.7751 0.0098 0.2695 0.7945

Panel C. N = 2000, T = 15

Misclass. Freq. 0.0973
β1 Bias 0.0027 0.3636 0.0004 0.2754 0.0004 0.1280 0.3186

Std. 0.0097 0.3438 0.0063 0.3622 0.0072 0.1240 0.3456
β2 Bias 0.0023 0.3682 −0.0005 0.2866 −0.0005 0.1262 0.3316

Std. 0.0125 0.3216 0.0063 0.3655 0.0071 0.1178 0.3381
β RMSE 0.0192 0.6993 0.0089 0.6498 0.0101 0.2480 0.6669
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Table 5
Homogeneous shocks

The table presents the results for simulations under DGP3 for different econometric specifications. DGP3 is generated
using the procedure described in Section 3, where shocks occur at every time t and there is a homogenous response to
the shock. The parameters in the DGP are set as cτ = 0.5, cθ = 15, and G = 1. cτ is a constant which determines the
degree of correlation between X and θ, cθ is a constant which controls the size of shocks, G is the number of groups.We

present the bias: Bias(β̂) = 1
R

∑R
r=1 β̂

r−β0, the estimated standard deviation (Std.): Std(β̂) =
√

1
R−1

∑R
r=1(β̂

r − ¯̂β)2,

and the root mean square error (RMSE): RMSE(β̂) =
√
1
R

∑R
r=1 ||β̂

r − β0||2 of estimated coefficients, where β̂r is the

estimator in the r-th replication, β0 is the true value, and ¯̂β = 1/R
∑R
r=1 β̂

r is the sample average across replications.
The table reports the results using the following methods: grouped fixed effects (GFE), two-way fixed effects (TFE),

and group-time interacted fixed effects (IFE). GFE is estimated under two specifications of groups, Ĝ = 1 and Ĝ = 4.
The IFE method includes 4 different specifications: IFEgt exactly specifies the group memberships of all individuals
and the timing of all shocks, IFEg exactly specifies the groups but correctly specifies the shocks every 1/3 of the
time, IFEt correctly specifies the shocks but not the groups, and IFEnull misspecifies both groups and shocks. The
details of these methods are presented in Section 3.1.2. N is the number of units, and T is the number of time series
observations. Panels A to C report results for different N and T. Each simulation consists of 1000 replications.

GFE GFE TFE IFEgt IFEg IFEt IFEnull
(Ĝ = 1) (Ĝ = 4)

Panel A. N = 1000, T = 15

β1 Bias 0.0003 0.0007 0.0003 0.0003 0.0557 0.0003 0.0531
Std. 0.0106 0.0095 0.0106 0.0106 0.0632 0.0106 0.0384

β2 Bias −0.0002 0.0000 −0.0002 −0.0002 0.0542 −0.0001 0.0494
Std. 0.0110 0.0095 0.0110 0.0110 0.0633 0.0110 0.0381

β RMSE 0.0152 0.0167 0.0152 0.0152 0.1184 0.0153 0.0905

Panel B. N = 1000, T = 30

β1 Bias 0.0002 0.0003 0.0002 0.0002 0.0666 0.0002 0.0658
Std. 0.0073 0.0069 0.0073 0.0073 0.0385 0.0073 0.0289

β2 Bias 0.0001 0.0000 0.0001 0.0001 0.0667 0.0001 0.0669
Std. 0.0071 0.0069 0.0071 0.0071 0.0402 0.0071 0.0275

β RMSE 0.0102 0.0106 0.0102 0.0102 0.1089 0.0102 0.1006

Panel C. N = 2000, T = 15

β1 Bias 0.0000 −0.0001 0.0000 0.0000 0.0566 0.0000 0.0527
Std. 0.0071 0.0068 0.0071 0.0071 0.0627 0.0071 0.0362

β2 Bias 0.0000 −0.0001 0.0000 0.0000 0.0535 0.0000 0.0490
Std. 0.0074 0.0068 0.0074 0.0074 0.0623 0.0074 0.0344

β RMSE 0.0102 0.0113 0.0102 0.0102 0.1177 0.0103 0.0875
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Table 6
Large and highly correlated shocks

The table presents the results for simulations under DGP1 for different shock and correlation sizes across different
econometric specifications. DGP1 is generated using the procedure described in Section 3, where shocks occur at
every time t and heterogenous responses to shocks are allowed. We present the bias: Bias(β̂) = 1

R

∑R
r=1 β̂

r − β0,

the estimated standard deviation (Std.): Std(β̂) =
√

1
R−1

∑R
r=1(β̂

r − ¯̂β)2, and the root mean square error (RMSE):

RMSE(β̂) =
√
1
R

∑R
r=1 ||β̂

r − β0||2 of estimated coefficients, where β̂r is the estimator in the r-th replication, β0 is

the true value, and ¯̂β = 1/R
∑R
r=1 β̂

r is the sample average across replications. Misclassification frequency (Misclass.

Freq.) is the average proportion of units that are misclassified by GFE across replications: AMF = 1/R
∑R
r=1 MFr,

where R is the number of replications and MFr =
1
N

∑N
i=1 I(ĝi 6= g

0
i ). The table reports the results using the following

methods: grouped fixed effects (GFE), two-way fixed effects (TFE), and group-time interacted fixed effects (IFE).
The IFE method includes 4 different specifications: IFEgt exactly specifies the group memberships of all individuals
and the timing of all shocks, IFEg exactly specifies the groups but correctly specifies the shocks every 1/3 of the time,
IFEt correctly specifies the shocks but not the groups, and IFEnull misspecifies both groups and shocks. When the
groups are misspecified, we assign 30% of individuals to the closest neighboring groups. The details of these methods
are presented in Section 3.1.2. Panel A presents the results for cτ = 0.5, a larger time series shock cθ = 5, and
G = 5, and Panel B presents the results for a larger correlation cτ=1. cτ is a constant which determines the degree of
correlation between X and θ, cθ is a constant which controls the size of shocks, G is the number of groups. We report
the results for 1000 cross-sectional units (N), 30 time periods (T), and 5 groups (G). Each simulation consists of 1000
replications.

(N = 1000, T = 30) GFE TFE IFEgt IFEg IFEt IFEnull

Panel A. Large shocks: cτ = 0.5, cθ = 5, and G = 5

Misclass. Freq. 0.0061
β1 Bias 0.0012 1.8553 −0.0002 1.9234 0.8076 1.9969

Std. 0.0073 0.4343 0.0068 0.4613 0.2225 0.4565
β2 Bias 0.0013 1.8431 0.0000 1.9104 0.7990 1.9844

Std. 0.0076 0.4295 0.0073 0.4588 0.2189 0.4542
β RMSE 0.0107 2.6855 0.0100 2.7878 1.1781 2.8878

Panel B. Highly correlated shocks: cτ = 1, cθ = 15, and G = 5

Misclass. Freq. 0.1385
β1 Bias 0.0148 0.6809 −0.0004 0.6930 0.3723 0.7051

Std. 0.0091 0.1079 0.0071 0.1174 0.0828 0.1119
β2 Bias 0.0144 0.6833 −0.0004 0.6961 0.3745 0.7085

Std. 0.0087 0.1101 0.0069 0.1161 0.0826 0.1125
β RMSE 0.0242 0.9769 0.0099 0.9960 0.5409 1.0120
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Table 7
Under-specify G

The table presents the results for simulations under DGP1 for an underspecified number of groups G for GFE and TFE.
DGP1 is generated using the procedure described in Section 3, where shocks occur at every time t and heterogenous
responses to shocks are allowed. The parameters in the DGP are set as cτ = 0.5, cθ = 15, and G = 4. cτ is a
constant which determines the degree of correlation between X and θ, cθ is a constant which controls the size of
shocks, G is the number of groups. We present the bias: Bias(β̂) = 1

R

∑R
r=1 β̂

r −β0, the estimated standard deviation

(Std.): Std(β̂) =
√

1
R−1

∑R
r=1(β̂

r − ¯̂β)2, and the root mean square error (RMSE): RMSE(β̂) =
√
1
R

∑R
r=1 ||β̂

r − β0||2

of estimated coefficients, where β̂r is the estimator in the r-th replication, β0 is the true value, and ¯̂β = 1/R
∑R
r=1 β̂

r

is the sample average across replications. The table reports the results using grouped fixed effects (GFE) and two-way

fixed effects (TFE). The estimates are generated using two groups, Ĝ = 2, where the true DGP has G=4. The
details of these methods are presented in Section 3.1.2. N is the number of units, and T is the number of time series
observations. Each simulation consists of 1000 replications.

N = 1000, T = 15 N = 1000, T = 30 N = 2000, T = 15
GFE TFE GFE TFE GFE TFE

β1 Bias 0.0799 0.2772 0.0808 0.2848 0.0781 0.2833
Std. 0.0397 0.1082 0.0277 0.0793 0.0365 0.1027

β2 Bias 0.0778 0.2762 0.0819 0.2826 0.0777 0.2782
Std. 0.0416 0.1061 0.0266 0.0764 0.0391 0.1117

β RMSE 0.1255 0.4196 0.1213 0.4160 0.1224 0.4250
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Table 8
Large number of groups

The table presents the results for simulations under DGP1 for two different number of groups G and different econo-
metric specifications. DGP1 is generated using the procedure described in Section 3, where shocks occur at every time
t and heterogenous responses to shocks are allowed. The parameters in the DGP are set as cτ = 0.5, cθ = 15. cτ is a
constant which determines the degree of correlation between X and θ, cθ is a constant which controls the size of shocks.
We consider the number of groups G = 10 and G = 20 in DGP. We present the bias: Bias(β̂) = 1

R

∑R
r=1 β̂

r − β0,

the estimated standard deviation (Std.): Std(β̂) =
√

1
R−1

∑R
r=1(β̂

r − ¯̂β)2, and the root mean square error (RMSE):

RMSE(β̂) =
√
1
R

∑R
r=1 ||β̂

r − β0||2 of estimated coefficients, where β̂r is the estimator in the r-th replication, β0 is

the true value, and ¯̂β = 1/R
∑R
r=1 β̂

r is the sample average across replications. Misclassification frequency (Misclass.

Freq.) is the average proportion of units that are misclassified by GFE across replications: AMF = 1/R
∑R
r=1 MFr,

where R is the number of replications and MFr =
1
N

∑N
i=1 I(ĝi 6= g

0
i ). The table reports the results using the following

methods: grouped fixed effects (GFE), two-way fixed effects (TFE), and group-time interacted fixed effects (IFE).
The IFE method includes 4 different specifications: IFEgt exactly specifies the group memberships of all individuals
and the timing of all shocks, IFEg exactly specifies the groups but correctly specifies the shocks every 1/3 of the time,
IFEt correctly specifies the shocks but not the groups, and IFEnull misspecifies both groups and shocks. When the
groups are misspecified, we assign 30% of individuals to the closest neighboring groups. The details of these methods
are presented in Section 3.1.2. We report the results for 1000 cross-sectional units (N) and 30 time periods (T). Each
simulation consists of 1000 replications.

GFE TFE IFEgt IFEg IFEt IFEnull

G = 10 (N = 1000, T = 30)

Misclass. Freq. 0.0734
β1 Bias 0.0040 5.0593 −0.0002 4.9302 2.8958 5.0519

Std. 0.0073 0.6131 0.0071 0.6419 0.4988 0.6227
β2 Bias 0.0048 5.0731 0.0006 4.9358 2.8899 5.0528

Std. 0.0079 0.5423 0.0077 0.5978 0.4745 0.5704
β RMSE 0.0124 7.2112 0.0105 7.0312 4.1485 7.1947

G = 20 (N = 1000, T = 30)

Misclass. Freq. 0.0613
β1 Bias 0.0051 5.0402 0.0011 4.9088 2.8528 5.0238

Std. 0.0078 0.6268 0.0075 0.6510 0.4893 0.6313
β2 Bias 0.0039 5.0259 −0.0002 4.8785 2.8488 4.9996

Std. 0.0076 0.5917 0.0075 0.6173 0.4883 0.6025
β RMSE 0.0126 7.1697 0.0107 6.9785 4.0904 7.1411
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Table 9
Sales growth and major natural disasters

The table presents the relation between sales growth and natural disasters. Panel A reports results from univariate
regressions of TFE, IFE and GFE estimated time effects on the percentage of employment affected by U.S. major
disasters (in %), θ = α + βA.Employmentit + εi,t, where i is the state and θ is the estimated year/state effect
from the following regressions regressions: θt is the TFE estimate from yit = αi + θt + X ′itβ + εit, θindustry,i,t
are the IFE estimates from yit = αi + θindustry,i,t + X ′itβ + εit, and θgi,t are the GFE estimates from yit =
αi + θgi,t + X

′
itβ + εit, gi = 1, 2, ..10. yit is log annual sales changes and Xit is a 6×1 vector of variables: natural

log total assets (TA), Tobin’s q, return on assets (ROA), capital expenditure (Capex), leverage, and cash flow (CF).
Disaster affected employment numbers are computed from County Business Pattern data, publicly provided by the
U.S. Census Bureau. Panel B presents regressions of log annual sales changes on explanatory variables using different
estimation models. TFE is the firm and year fixed effect estimator, IFE is the firm fixed effect with industry and
year interaction estimator. GFE estimates are obtained based on G = 10, 15, 30, selected from a range of G based
on various information criteria. For IFE, preliminary within-transformation is taken to integrate out the individual
specific effect as in GFE. The industry IFE is based on 2-digit SIC code. Clustered standard errors are reported in
parentheses for TFE and IFE. For GFE, we present the asymptotic standard errors. ***, **, * denote significance at
1%, 5%, and 10% level, respectively. p-values of Hausman tests for TFE and IFE against GFE (G = 10) are presented.
All variables are from Compustat and the sample period is 1987-2010. All variables are described in Table A.2 in the
Appendix.

Panel A. Relation of TFE, IFE, GFE, and disaster-affected employment

TFE IFE GFE
(θt) (θindustry,i,t) (θgi,t)

Disaster-affected Employment 0.01 0.03 -0.25
t-stats 2.13 3.86 -3.85

# Obs 66,185

Panel B. Sales growth regression

TFE IFE GFE GFE GFE
G = 10 G = 15 G = 30

TA 0.0232∗∗∗ 0.0045 0.0074∗∗∗ 0.0094∗∗∗ 0.0085∗∗∗

(4.47) (1.05) (2.30) (3.24) (3.27)
ROA -0.0001 0.0113 0.0101 0.0066 0.0149

(-0.01) (0.89) (1.15) (0.75) (1.18)
Capex 5.60e-06∗∗∗ 3.08e-06 2.87e-06∗ 3.16e-06∗∗ 3.46e-06∗∗

(2.52) (1.61) (1.70) (1.98) (1.93)
Leverage -0.0146 -0.0215∗∗ -0.0141∗ -0.0165∗∗ -0.0148∗

(-1.19) (-2.05) (-1.82) (-2.26) (-1.76)
Tobin’s q 0.0003∗∗∗ 0.0001∗ 0.0001∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗

(3.44) (1.72) (4.09) (5.06) (4.12)
CF 0.0010∗∗ 0.0000 0.0002∗∗∗ 0.0001∗∗∗ 0.0002∗∗∗

(1.92) (1.64) (7.37) (4.64) (3.02)

p-val of Hausman test 0.000 0.000 – – –
Obs 66,185 66,185 66,185 66,185 66,185
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Table 10
Compustat data based simulation

The table presents the results for simulations using empirical parameters from Compustat data for different econo-
metric specifications, as specified in Section 3.2.2. The simulation is based on the Compustat data for sales growth,
major natural disasters, and six control variables: natural log total assets (TA), Tobin’s q, return on assets (ROA),
capital expenditure (Capex), leverage, and cash flow (CF). See Table A.2 in the Appendix for all variable definitions.

We present the absolute relative bias: |Relative bias| =
∣∣∣Bias(β̂l)

β0
l

∣∣∣ , where β0l is the true value of βl, the root mean

square error (RMSE): RMSE(β̂) =
√
1
R

∑R
r=1 ||β̂

r − β0||2 of estimated coefficients, where β̂r is the estimator in the

r-th replication, β0 is the true value, and ¯̂β = 1/R
∑R
r=1 β̂

r is the sample average across replications. Misclassification
frequency (Misclass. Freq.) is the average proportion of units that are misclassified by GFE across replications:
AMF = 1/R

∑R
r=1 MFr, where R is the number of replications and MFr = 1

N

∑N
i=1 I(ĝi 6= g0i ). The table reports

the results using the following methods: grouped fixed effects (GFE), two-way fixed effects (TFE), and group-time
interacted fixed effects (IFE). Each simulation consists of 1000 replications.

T = 15,G = 5 T = 15,G = 10
GFE TFE IFE GFE TFE IFE

Misclass. Freq. 0.0565 0.1439

|Relative bias| TA -0.0154 0.2015 0.1999 -0.0340 0.6930 0.6316
ROA 0.0122 0.1009 0.8163 -0.1235 1.0103 3.9146
Capex -0.0227 -0.1423 -0.0882 0.3648 2.0938 1.4327
Leverage -0.0030 0.6245 0.8416 -0.5154 -9.4913 -16.5195
Tobin’s q -0.0264 -8.2434 -1.5863 -0.0592 -0.6009 -1.0451
CF -0.0086 0.5552 0.5819 -0.1762 -3.7295 -3.4110

Overall RMSE 0.0378 0.0775 0.0765 0.0528 0.1862 0.1791

48



Table 11
Pilot CEOs and patent citations

The table presents the results of the effect of pilot CEOs on patent citation counts. TFE is the industry and year fixed
effect estimator, IFE is a firm fixed effect with industry and year interaction estimator. GFE estimates are obtained
based on G = 10, 15, selected from a range of G from 1 to 30 based on various information criteria, and includes
industry fixed effects. For IFE, preliminary within-transformation is taken to integrate out the industry specific effect
as in GFE. The industry IFE is based on two-digit SIC codes. Following Sunder et al. (2017), the dependent variable
is Log(1 + citation). Citation is the number of raw citations multiplied by the weighting index of Hall et al. (2001)
to all the patents applied for during the year. Pilot CEO is an indicator variable equal to one if the CEO has been a
pilot and zero otherwise. All regressors are lagged by one year. All variable definitions are provided in Table A.2 in
the Appendix. Following Sunder et al. (2017), the sample period is from 1993 to 2003. Standard errors are clustered
at firm level for TFE and IFE, and the asymptotic standard errors for GFE. t-statistics are reported in parentheses.
***, **, * denote significance at 1%, 5%, and 10% level, respectively. p-val are the p-values of Hausman tests for TFE
and IFE against GFE (G = 10).

TFE IFE GFE GFE
G = 10 G = 15

Pilot CEO 0.376∗ 0.203∗ -0.027 -0.043
(1.67) (1.66) (-0.44) (-0.65)

TA 0.589∗∗∗ 0.611∗∗∗ 0.264∗∗∗ 0.335∗∗∗

(9.06) (9.15) (13.73) (14.64)
PPE/EMP 0.000 -0.0002∗∗∗ 0.000 0.000

(2.70) (-3.64) (1.07) (-0.40)
Stock return -0.098 -0.168∗∗∗ 0.001 -0.020

(-1.33) (-4.31) (-0.01) (-0.62)
Tobin’s q 0.156∗∗∗ 0.114∗∗∗ 0.020∗∗ 0.045∗∗∗

(3.04) (8.38) (2.01) (3.48)
Institutional holdings 0.148 -0.061 -0.331∗∗∗ -0.136

(0.53) (-0.43) (-5.92) (-1.43)
Log(1 + tenure) -0.149∗∗∗ 0.0002 -0.079∗∗ -0.104∗∗∗

(-2.22) (0.00) (-3.34) (-3.45)
Log(1 + delta) -0.001 0.035 0.029∗∗ 0.031∗∗∗

(-0.01) (1.11) (2.18) (3.30)
Log(1 + vega) 0.145∗∗ 0.066 0.022 0.002

(2.18) (1.30) (1.28) (0.14)
Log(CEO age) 0.296 -0.562 0.213 0.400

(0.45) (-1.34) (0.87) (1.63)
Top university -0.002 -0.037 -0.240∗∗∗ -0.065

(-0.01) (-0.21) (-3.96) (-0.90)
Finance education 0.520∗∗∗ 0.243 1.448∗∗∗ 1.438∗∗∗

(3.02) (0.40) (3.21) (3.05)
Technical education 1.253 0.960 1.795∗∗∗ 1.513∗∗∗

(1.00) (1.61) (10.02) (8.67)
PhD 0.154 -0.042 0.090 0.201∗∗∗

(0.56) (-0.26) (1.08) (2.72)
No school information 0.299∗ 0.044 0.028 0.086

(1.84) (0.60) (0.54) (1.59)
Military 0.004 -0.043∗∗∗ -0.017∗∗∗ -0.014∗∗∗

(0.62) (-7.11) (-7.51) (-4.72)
Overconfidence 0.109 0.034 0.051 0.002

(0.92) (0.31) (1.15) (0.05)

p-val of Hausman test 0.000 0.000 – –
Obs 2450 2450 2450 2450
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Table 12
Simulation with endogenous regressors

The table presents the results for simulations under DGP1 with endogenous regressors for grouped fixed effects
(GFE) and two-way fixed effects (TFE). DGP1 is generated using the procedure described in Section 5.1, where
shocks occur at every time t and heterogenous responses to shocks are allowed. Xit is correlated with the error term.
The parameters in the DGP are set as cτ = 0.5, cθ = 15, and G = 5. cτ is a constant which determines the degree
of correlation between X and θ, cθ is a constant which controls the size of shocks, G is the number of groups. We

present the bias: Bias(β̂) = 1
R

∑R
r=1 β̂

r−β0, the estimated standard deviation (Std.): Std(β̂) =
√

1
R−1

∑R
r=1(β̂

r − ¯̂β)2,

and the root mean square error (RMSE): RMSE(β̂) =
√
1
R

∑R
r=1 ||β̂

r − β0||2 of estimated coefficients, where β̂r is the

estimator in the r-th replication, β0 is the true value, and ¯̂β = 1/R
∑R
r=1 β̂

r is the sample average across replications.
Misclassification frequency (Misclass. Freq.) is the average proportion of units that are misclassified by GFE across
replications: AMF = 1/R

∑R
r=1 MFr, where R is the number of replications and MFr =

1
N

∑N
i=1 I(ĝi 6= g

0
i ). The table

reports the results using grouped fixed effects and two-way fixed effects. Both GFE and TFE employ TSLS estimation
with Xit instrumented by Zit. Each simulation consists of 1000 replications.

N = 1000, T = 15 N = 1000, T = 30 N = 2000, T = 30
GFE TFE GFE TFE GFE TFE

Misclass. Freq. 0.1877 0.1252 0.1232
β1 Bias 0.0215 0.6010 0.0093 0.6112 0.0101 0.6255
β2 Bias 0.0232 0.6087 0.0105 0.6156 0.0099 0.6323
β RMSE 0.0378 0.9028 0.0172 0.8561 0.0221 0.9063

Table 13
Residual cross product matrix: Group fixed effects

The table presents a sample covariance matrix of the residuals for a group fixed effect DGP. In the presence of group
fixed effecs, residuals of the same firm across different years as well as residuals of the same year and the same group,
may be correlated. However, residuals of the same year but different groups are assumed to be uncorrelated, and thus
reported as zero in the matrix.

Firm 1 Firm 2 Firm 3

ε211 ε11ε12 ε11ε13 ε11ε21 0 0 0 0 0
Group 1 Firm 1 ε21ε11 ε212 ε12ε13 0 ε12ε22 0 0 0 0

ε13ε11 ε13ε12 ε213 0 0 ε13ε23 0 0 0

ε21ε11 0 0 ε221 ε21ε22 ε21ε23 0 0 0
Firm 2 0 ε22ε12 0 ε22ε21 ε222 ε22ε23 0 0 0

0 0 ε23ε13 ε23ε21 ε23ε22 ε223 0 0 0

0 0 0 0 0 0 ε231 ε31ε32 ε31ε33
Group 2 Firm 3 0 0 0 0 0 0 ε32ε31 ε232 ε32ε33

0 0 0 0 0 0 ε33ε31 ε33ε32 ε233
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A Appendix

A.1 Event study standard errors

Another popular method to control for heterogeneous responses in empirical finance is event studies.

There are two potential problems with event studies. First, event studies require that there are

relatively few shocks over the entire sample period, and the timing of the shocks needs to be

precisely specified. However, in some cases, there may be many shocks over the whole sample

period, or different time effects in each period. Then event studies are less reliable, since the time

period within each subsample is short. More importantly, if the timing of shocks is incorrectly

identified or several shocks are ignored, event studies generally result in inconsistent estimates.

Second, the conventional standard errors provided by event studies are often inappropriate, be-

cause they do not take into account cross-sectional correlation. The group specific responses suggest

that an unobserved group pattern of features drives heterogeneity in responses, e.g. managerial and

institutional characteristics, and it is likely that these characteristics will also affect firm’s responses

to any kind of corporate related events. Therefore, we can expect unobserved group characteristics

in both the independent variables and the residuals to possibly change over time. These time-varying

group effects cannot be canceled out by the fixed effects transformation.

To obtain appropriate standard error estimates in event studies, one should explicitly take into

account the latent group pattern, and calculate the group-clustered standard error. Our GFE

estimates of the group membership thus provide a natural and reliable estimate of the latent group

pattern, which can be used to construct clustered standard errors.

To see how the correlation causes bias in standard errors, suppose we apply FE estimators to

each regime segmented by the pre-specified event. In each regime, the within-transformed residuals

still contain two components, a group-specific time-varying component γgi,t and an idiosyncratic

component ηit for each individual unit, namely

ε̇it = γgi,t + ηit. (20)

Also, the transformed independent variable Ẋ is driven by a group-specific time-varying component

and an idiosyncratic component, and it can specified as

Ẋit = δgi,t + νit. (21)

For notation simplicity, we assume that all four components γgi,t, ηit, δgi,t, and νit are independent

from each other and across time, and they all have a zero mean and finite variance, σ2γ, σ2η, σ
2
δ,

and σ2ν, respectively. We consider an example of a single regressor, thus Xit is a scalar. Due to the

group-specific components, the residual and regressor of individual units (firms) are correlated with

each other with the following correlation structure
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corr(Ẋit, Ẋjs) = 1 for i = j and t = s

= ρx = σ
2
δ/σ

2
X for gi = gj and t = s

= 0 for all gi 6= gj or t 6= s,

and

corr(ε̇it, ε̇js) = 1 for i = j and t = s

= ρε = σ
2
γ/σ

2
ε for gi = gj and t = s

= 0 for all gi 6= gj or t 6= s.

Under such residual and regressor structure, the fixed effects coefficient estimate in a given regime

is still consistent, but its standard error estimate is downward biased due to disregarding the group

correlation. In particular, we obtain the asymptotic variance of the fixed effects coefficient estimate

as

var(β̂FE) =

( N∑
i=1

T∑
t=1

Ẋitε̇it

)2( N∑
i=1

T∑
t=1

Ẋ2it

)−2


=

 N∑
i=1

T∑
t=1

Ẋ2itε̇
2
it +

∑
i,j∈g

T∑
t=1

ẊitẊjtε̇itε̇jt

( N∑
i=1

T∑
t=1

Ẋ2it

)−2


=

NTσ2Xσ2ε + G∑
g=1

Ng(Ng − 1)TρXρεσ
2
Xσ

2
ε

[NTσ2X
]−2

=
σ2ε
NTσ2X

1+ 1/N G∑
g=1

Ng(Ng − 1)ρXρε

 , (22)

where Ng is the number of individuals in the g-th group. Under a group structure, individuals

within a group share the same component in both the independent variable and residuals, leading

to a positive correlation. Therefore, the fixed effects standard error estimates underestimate the

true standard errors.
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Table A.1
Demonstrating example: Time-invariant heterogeneity

The table presents a simple numerical example of the two-way fixed effect absorbing the time invariant unobserved
heterogeneity. Columns (1)-(3) present the basic data structure: (1) is the individual unique identification, (2) is the
time period denomination, and (3) is the group identification. Columns (4)-(6) present the data: (4) is the individual
fixed effect, (5) is the time effect, and (6) is the total value of fixed effects, i.e. (6) = (4) + (5). Column (7) shows
the demeaned cross-sectional fixed effect, α̃i = αi −

∑T
t=1 αi −

∑N
i=1 αi +

∑T
t=1

∑N
i=1 αi = 0, column (8) shows the

demeaned time fixed effect θ̃g,t = θg,t−
∑T
t=1 θg,t−

∑N
i=1 θg,t+

∑T
t=1

∑N
i=1 θg,t, and column (9) shows the demeaned

total FE, i.e. (12) = (10) + (11).

Unit & Time Data Transformed data

Indiv. ID Time Group ID αi θg,t Total FE α̃i θ̃g,t Total FE
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 1 1 2 3 5 0 0 0
1 2 1 2 4 6 0 0 0
1 3 1 2 5 7 0 0 0
2 1 1 4 3 7 0 0 0
2 2 1 4 4 8 0 0 0
2 3 1 4 5 9 0 0 0
3 1 2 6 4 10 0 0 0
3 2 2 6 5 11 0 0 0
3 3 2 6 6 12 0 0 0
4 1 2 8 4 12 0 0 0
4 2 2 8 5 13 0 0 0
4 3 2 8 6 14 0 0 0
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Table A.2
Variable description

Variable Description

Citation The number of citations per firm summed across all patents applied for
during the year. Each patent’s number of citations is multiplied by the
weighting index from Hall et al. (2001).

Employment affected by major disasters The number of employees affected by natural disasters by U.S. state as
computed by County Business Pattern data, publicly provided by the
U.S. Census Bureau.

Pilot CEO An indicator variable equal to one for CEOs with a pilot license and
zero otherwise.

TA Natural log of total assets in millions.
ROA Return on assets.
Leverage The long-term debt plus short-term debt divided by total assets.
Capex The capital expenditure divided by total assets.
Cash flow Lagged Operating Income before depreciation minus total income taxes,

minus change in deferred taxes from the previous year to the current
year minus gross interest expense minus preferred dividend requirement
on cumulative preferred stock and dividends paid on non-cumulative
preferred stock minus total dollar amount of dividends declared on com-
mon stock. Cash flow is divided by TA.

Tobin’s q The market value of assets divided by the book value of assets where the
market value of assets equals the book value of assets plus the market
value of common equity less the sum of the book value of common
equity and balance sheet deferred taxes.

PPE/EMP The ratio of net property, plant, and equipment over the number of
employees.

Stock return Firm buy-and-hold return over the fiscal year.
Institutional holdings Percentage of shares outstanding held by financial institutions.
Tenure CEO tenure in months.
Delta Dollar change in CEO stock and option portfolio for a 1% change in

stock price.
Vega Dollar change in CEO option holdings for a 1% change in stock return

volatility.
CEO age CEO age in years.
Top university An indicator variable equal to one if the CEO’s undergraduate insti-

tution is listed as one of the top 50 schools ranked by U.S. News &
World Report in any year during the period 1983 through 2007 and
zero otherwise.

Finance education An indicator variable equal to one if the CEO received a degree in
accounting, finance, business (including MBA), or economics and zero
otherwise.

Technical education An indicator variable equal to one for CEOs with undergraduate or
graduate degrees in engineering, physics, operations research, chem-
istry, mathematics, biology, pharmacy, or other applied science and
zero otherwise.

PhD An indicator variable equal to one for CEOs with a PhD and zero
otherwise.

No school information An indicator variable equal to one if we cannot identify the CEO’s
undergraduate school and zero otherwise.

Military An indicator variable equal to one for CEOs with military background
and zero otherwise.

Overconfidence An indicator variable equal to one for all years after the CEO’s options
exceed 67% moneyness and zero otherwise.
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