Resource Allocation across Fields: Proportionality, Demand Relativity, and Benchmarking

Marco Ottaviani Bocconi University

July 23, 2019

Thorniest question in research funding

Thorniest question in research funding

Two most common allocation methods:

- 1. Fixed Budget: Set field-by-field budgets ex ante—top down
 - National Science Foundation, NSF: \$7.8 B in 2018

Thorniest question in research funding

Two most common allocation methods:

- 1. Fixed Budget: Set field-by-field budgets ex ante—top down
 - National Science Foundation, NSF: \$7.8 B in 2018
- 2. **Proportional**: Budget allocated \propto field applications—bottom up
 - European Research Council, ERC: €13.1 B in 2014-20
 - EU Marie Skłodowska-Curie postdoc fellowships: €6.16 B in 2014-20
 - Canadian research funding agencies: Can\$4 B in 2018

Thorniest question in research funding

Two most common allocation methods:

- 1. Fixed Budget: Set field-by-field budgets ex ante—top down
 - National Science Foundation, NSF: \$7.8 B in 2018
- 2. **Proportional**: Budget allocated \propto field applications—bottom up
 - European Research Council, ERC: €13.1 B in 2014-20
 - EU Marie Skłodowska-Curie postdoc fellowships: €6.16 B in 2014-20
 - Canadian research funding agencies: Can\$4 B in 2018

Mix of 1&2: NIH ICs payline \rightarrow study sections: \$30.2 B in 2018

Thorniest question in research funding

Two most common allocation methods:

- 1. Fixed Budget: Set field-by-field budgets ex ante—top down
 - National Science Foundation, NSF: \$7.8 B in 2018
- 2. **Proportional**: Budget allocated \propto field applications—bottom up
 - European Research Council, ERC: €13.1 B in 2014-20
 - EU Marie Skłodowska-Curie postdoc fellowships: €6.16 B in 2014-20
 - Canadian research funding agencies: Can\$4 B in 2018

Mix of 1&2: NIH ICs payline \rightarrow study sections: \$30.2 B in 2018

Impact of proportional allocation on application incentives?

Thorniest question in research funding

Two most common allocation methods:

- 1. Fixed Budget: Set field-by-field budgets ex ante—top down
 - National Science Foundation, NSF: \$7.8 B in 2018
- 2. **Proportional**: Budget allocated \propto field applications—bottom up
 - European Research Council, ERC: €13.1 B in 2014-20
 - EU Marie Skłodowska-Curie postdoc fellowships: €6.16 B in 2014-20
 - Canadian research funding agencies: Can\$4 B in 2018

Mix of 1&2: NIH ICs payline \rightarrow study sections: \$30.2 B in 2018

Impact of proportional allocation on application incentives?

Paul Romer's meta-idea, supporting production and diffusion of other ideas

Proportional Accounting

- Total budget T assigned to panels i = 1, 2, ..., N representing fields
- Grant applications in each panel evaluated by field experts

Proportional Accounting

- Total budget T assigned to panels i = 1, 2, ..., N representing fields
- Grant applications in each panel evaluated by field experts
- If total funds requested by applications are $A_1, A_2, ..., A_N$ by field
 - budget allocated to field i follows proportional formula

$$\frac{A_i}{\sum_{j=1}^N A_j} T$$

". . . budget is calculated as the cumulative grant request of all proposals to the panel <u>divided</u> by the cumulative grant request of all proposals to the domain of the call, <u>multiplied</u> by the total indicative budget of the domain."

Proportional Accounting

- Total budget T assigned to panels i = 1, 2, ..., N representing fields
- Grant applications in each panel evaluated by field experts
- If total funds requested by applications are $A_1, A_2, ..., A_N$ by field
 - budget allocated to field i follows proportional formula

$$\frac{A_i}{\sum_{j=1}^N A_j} T$$

". . . budget is calculated as the cumulative grant request of all proposals to the panel <u>divided</u> by the cumulative grant request of all proposals to the domain of the call, <u>multiplied</u> by the total indicative budget of the domain."

Concern that proportional allocation dis/favors certain fields...

Proportional Allocation Equalizes Success Rates

Under proportional allocation, the success rate in field i is

budget available for funding projects in field i

$$\frac{\overbrace{\sum_{j=1}^{N} A_j}^{A_i} T}{\underbrace{\sum_{j=1}^{N} A_j}} = \underbrace{T}_{\sum_{j=1}^{N} A_j} = : p,$$

budget demanded by applications in field i

automatically equalized across fields—a.k.a. PAYLINE

Proportional Allocation Equalizes Success Rates

• Under proportional allocation, the success rate in field i is

budget available for funding projects in field i

$$\frac{\overbrace{\sum_{j=1}^{N} A_{j}}^{A_{i}} T}{\underbrace{A_{i}}_{A_{j}}} = \frac{T}{\sum_{j=1}^{N} A_{j}} =: p,$$

budget demanded by applications in field i

automatically equalized across fields—a.k.a. PAYLINE

- NIH payline system with percentiled scores is proportional in disguise
 - Congress assigns separate budgets to each of 27 IC

Proportional Allocation Equalizes Success Rates

• Under proportional allocation, the success rate in field i is

budget available for funding projects in field i

$$\frac{\overbrace{\sum_{j=1}^{N} A_{j}}^{A_{i}} T}{\underbrace{A_{i}}} = \underbrace{T}_{\sum_{j=1}^{N} A_{j}} =: p,$$

budget demanded by applications in field i

automatically equalized across fields—a.k.a. PAYLINE

- NIH payline system with percentiled scores is proportional in disguise
 - Congress assigns separate budgets to each of 27 IC
 - Each IC awards grants to applications to different study sections (\approx 180) in top $100 \times p_{IC}\%$ of percentiled scores
 - payline p_{IC} set to exhaust IC's budget

- Field *i* with continuum of risk-neutral potential applicants [=agents]
- Atomistic agents disregard their negligible impact on success rate p
- Agent observes own merit $heta \sim G_i$

- Field i with continuum of risk-neutral potential applicants [=agents]
- Atomistic agents disregard their negligible impact on success rate p
- Agent observes own merit $heta \sim G_i$
- To apply, agent must spend **application cost** $c_i > 0$
- If application is successful, agent obtains **benefit** $v_i > c_i$

- Field i with continuum of risk-neutral potential applicants [=agents]
- Atomistic agents disregard their negligible impact on success rate p
- Agent observes own merit $\theta \sim G_i$
- To apply, agent must spend **application cost** $c_i > 0$
- If application is successful, agent obtains **benefit** $v_i > c_i$
- For every applicant, evaluator observes **signal** $x \sim F_i^{\theta,\sigma_i}$

$$F_i^{\theta,\sigma_i}(x) = F_i\left(\frac{x-\theta}{\sigma_i}\right) \tag{1}$$

with location θ (agent type) & scale σ_i (signal noise/dispersion)

- Field i with continuum of risk-neutral potential applicants [=agents]
- Atomistic agents disregard their negligible impact on success rate p
- Agent observes own merit $heta \sim G_i$
- To apply, agent must spend **application cost** $c_i > 0$
- If application is successful, agent obtains **benefit** $v_i > c_i$
- For every applicant, evaluator observes **signal** $x \sim F_i^{\theta,\sigma_i}$

$$F_i^{\theta,\sigma_i}(x) = F_i\left(\frac{x-\theta}{\sigma_i}\right) \tag{1}$$

with location θ (agent type) & scale σ_i (signal noise/dispersion)

• Assume: G_i and F_i with continuous densities $+ f_i$ logcav $[\Leftrightarrow MLRP]$

What's Next?

Proportional Allocation Method

Analyze model with costly applications in terms of **demand & supply**:

- 1. Characterize partial equilibrium in SMALL panel, GIVEN payline p
 - Panel experts [evaluator] select best $100 \times p\%$ submissions

What's Next?

Proportional Allocation Method

Analyze model with costly applications in terms of **demand & supply**:

- 1. Characterize partial equilibrium in **SMALL** panel, GIVEN payline p
 - Panel experts [evaluator] select best $100 \times p\%$ submissions
- 2. Determine full equilibrium with endogenous success rate

$$p = \frac{T}{\sum_{j=1}^{N} A_j},$$

- success rate responds to applications in own field &
- applications in other fields respond to success rate

Partial Equilibrium in Small Field i, for Given p

Timing:

- 1. Each agent observes own type θ and decides whether to apply or not
- 2. Evaluator observes signal x & accepts best $100 \times p\%$ applicants

Partial Equilibrium in Small Field i, for Given p

Timing:

- 1. Each agent observes own type θ and decides whether to apply or not
- 2. Evaluator observes signal x & accepts best $100 \times p\%$ applicants

All equilibria have a monotonic structure: in each field i

• Supply: by MLRP, $E[\theta|x]$ increases in signal, so evaluator accepts for

$$x \geq \hat{x}_i$$

Partial Equilibrium in Small Field i, for Given p

Timing:

- 1. Each agent observes own type θ and decides whether to apply or not
- 2. Evaluator observes signal x & accepts best $100 \times p\%$ applicants

All equilibria have a monotonic structure: in each field i

• Supply: by MLRP, $E[\theta|x]$ increases in signal, so evaluator accepts for

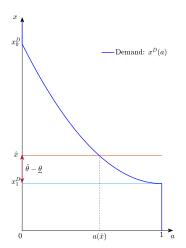
$$x \geq \hat{x}_i$$

• Demand: higher θ agents are accepted w/ higher prob, thus apply for

$$\theta \geq \hat{\theta}_i$$

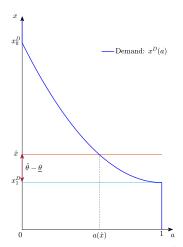
Demand

Acceptance **standard** \hat{x} [like price] against **demand** $a^D(\hat{x})$



Demand

- When standard $\hat{x} \uparrow$, win prob is lower for all applicants:
 - fewer agents apply, a \downarrow ; marginal applicant $\hat{\theta}\uparrow$



When top a agents apply, pa applications are accepted, so $\hat{x}^{S}(a)$ solves

$$\int_{G^{-1}(1-a)}^{ar{ heta}} \left[1 - F\left(rac{\hat{x} - heta}{\sigma}
ight)
ight] g(heta) d heta = pa$$

When top a agents apply, pa applications are accepted, so $\hat{x}^{S}(a)$ solves

$$\int_{G^{-1}(1-a)}^{\theta} \left[1 - F\left(\frac{\hat{x} - \theta}{\sigma}\right)\right] g(\theta) d\theta = pa$$

$$x_1^S + \bar{\theta} - \underline{\theta}$$

$$x_2^S + \bar{\theta} - \hat{\theta}$$

$$x_3^S$$

$$x_1^S$$

$$\bar{\theta} - \hat{\theta}$$

$$-\bar{\theta} + \sigma F^{-1}(a)$$

$$-1 - G(\hat{\theta})$$

$$-Supply: x^S(a)$$

Intuitively, demand [MARGINAL] generates its own supply [AVERAGE]... $_{\sim \sim}$

When top a agents apply, pa applications are accepted, so $\hat{x}^{S}(a)$ solves

$$\int_{G^{-1}(1-a)}^{\theta} \left[1 - F\left(\frac{\hat{x} - \theta}{\sigma}\right)\right] g(\theta) d\theta = pa$$

$$x_1^S + \bar{\theta} - \underline{\theta}$$

$$x_2^S + \bar{\theta} - \hat{\theta}$$

$$x_3^S$$

$$x_1^S$$

$$\bar{\theta} - \hat{\theta}$$

$$-\bar{\theta} + \sigma F^{-1}(a)$$

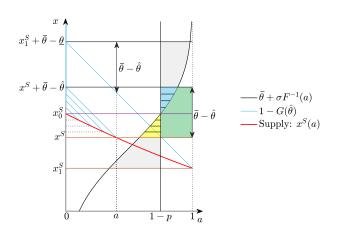
$$-1 - G(\hat{\theta})$$

$$-Supply: x^S(a)$$

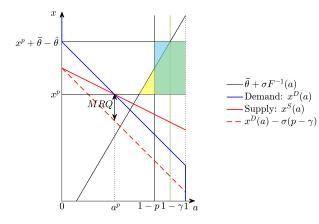
Intuitively, demand [MARGINAL] generates its own supply [AVERAGE]... $_{\sim \sim}$

Proportional supply [in RED] curve slopes down!

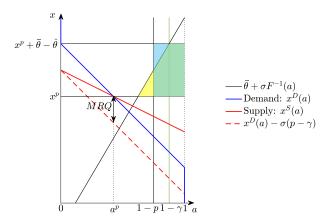
• as $a\uparrow$, average applicant quality \downarrow , so $\hat{x}\downarrow$ to award constant fraction p



Partial Equilibrium for Fixed Payline



Partial Equilibrium for Fixed Payline

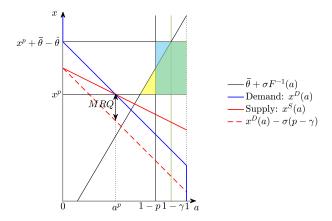


Both demand & supply slope down

If supply flatter than demand ⇒ equilibrium is unique & stable

mand Supply **Equilibrium** Suggestive Evidence Welfare Design Benchmarking Field Gam

Partial Equilibrium for Fixed Payline



Both demand & supply slope down

If supply flatter than demand ⇒ equilibrium is unique & stable

When does this hold? What happens more generally?

We head to show that:

1. "realistic" conditions ⇒ MULTIPLE equilibria

We head to show that:

1. "realistic" conditions ⇒ MULTIPLE equilibria

We head to show that:

- 1. "realistic" conditions ⇒ **MULTIPLE equilibria**
- 2. applications in all stable full equilibria in a field increase in NOISE of evaluation in that field

We head to show that:

- 1. "realistic" conditions ⇒ **MULTIPLE equilibria**
- 2. applications in all stable full equilibria in a field increase in NOISE of evaluation in that field

We head to show that:

- 1. "realistic" conditions ⇒ MULTIPLE equilibria
- applications in all stable full equilibria in a field increase in NOISE of evaluation in that field
- 3. if evaluation is *sufficiently precise*, applications **UNRAVEL** to zero

Preview of Insights Proportional Allocation Method

We head to show that:

- 1. "realistic" conditions ⇒ MULTIPLE equilibria
- applications in all stable full equilibria in a field increase in NOISE of evaluation in that field
- 3. if evaluation is sufficiently precise, applications UNRAVEL to zero
- 4. simple **DESIGN** modifications reduce perverse incentives

Preview of Insights Proportional Allocation Method

We head to show that:

- 1. "realistic" conditions ⇒ MULTIPLE equilibria
- applications in all stable full equilibria in a field increase in NOISE of evaluation in that field
- 3. if evaluation is sufficiently precise, applications UNRAVEL to zero
- 4. simple **DESIGN** modifications reduce perverse incentives
- 5. perverse incentives are enhanced by **STRATEGIC** behavior by fields

Proposition

(a) If in every field i the type distribution has Increasing Hazard Rate (HR)

$$\frac{d}{d\theta}\frac{g_{i}\left(\theta\right)}{1-G_{i}\left(\theta\right)}\geq0,$$

the equilibrium is unique

Proposition

(a) If in every field i the type distribution has Increasing Hazard Rate (HR)

$$\frac{d}{d\theta}\frac{g_{i}\left(\theta\right)}{1-G_{i}\left(\theta\right)}\geq0,$$

the equilibrium is unique

(b) If HR has a decreasing segment for some field, there are multiple equilibria for some parameters

Proposition

(a) If in every field i the type distribution has Increasing Hazard Rate (HR)

$$\frac{d}{d\theta}\frac{g_{i}\left(\theta\right)}{1-G_{i}\left(\theta\right)}\geq0,$$

the equilibrium is unique

(b) If HR has a decreasing segment for some field, there are multiple equilibria for some parameters

If a field is expected to attract more applications

- that field will have more funding
- lower type applicants become more keen to apply

Proposition

(a) If in every field i the type distribution has Increasing Hazard Rate (HR)

$$\frac{d}{d\theta}\frac{g_{i}\left(\theta\right)}{1-G_{i}\left(\theta\right)}\geq0,$$

the equilibrium is unique

(b) If HR has a decreasing segment for some field, there are multiple equilibria for some parameters

If a field is expected to attract more applications

- that field will have more funding
- lower type applicants become more keen to apply
- provided they are not much worse
- thus justifying initial expectation

Equilibrium Applications Decrease in Accuracy

Proposition

In every stable equilibrium, applications increase in noise of the evaluation signal in the field

$$\frac{da_i}{d\sigma_i} \ge 0$$

Equilibrium Applications Decrease in Accuracy

Proposition

In every stable equilibrium, applications increase in noise of the evaluation signal in the field

$$\frac{da_i}{d\sigma_i} \ge 0$$

• Also, applications decrease in variance τ_i of type distr G_i :

$$\frac{da_i}{d\tau_i} \leq 0$$

Equilibrium Applications Decrease in Accuracy

Proposition

In every stable equilibrium, applications increase in noise of the evaluation signal in the field

$$\frac{da_i}{d\sigma_i} \ge 0$$

• Also, applications decrease in variance τ_i of type distr G_i :

$$\frac{da_i}{d\tau_i} \le 0$$

Flatter/noisier fields apply more and get more funding—PERVERSE

• in more egalitarian fields, allocation is more random

mand Supply **Equilibrium** Suggestive Evidence Welfare Design Benchmarking Field Game

Equilibrium Applications Decrease in Accuracy

Proposition

In every stable equilibrium, applications increase in noise of the evaluation signal in the field

$$\frac{da_i}{d\sigma_i} \ge 0$$

• Also, applications decrease in variance τ_i of type distr G_i :

$$\frac{da_i}{d\tau_i} \le 0$$

Flatter/noisier fields apply more and get more funding—PERVERSE

• in more egalitarian fields, allocation is more random

When success is difficult to predict, strong incentives to apply!

Unique Equilibrium Path as Noise Increases

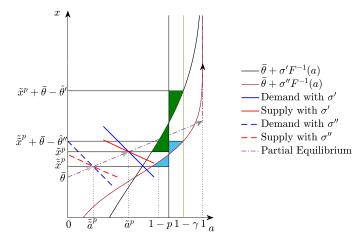


Figure: Partial equilibrium path as signal dispersion σ increases in example with G uniform and F normal.

UNRAVELING for Sufficiently Precise Evaluation

- $\sigma \to \infty$, signal x is **completely uninformative** about θ
 - becomes a **lottery**, with everyone applying for c < pv

UNRAVELING for Sufficiently Precise Evaluation

- $\sigma \to \infty$, signal x is **completely uninformative** about θ
 - becomes a **lottery**, with everyone applying for c < pv
- Now reduce noise to $\sigma < \infty$
 - given cost c > 0, only top researchers self select into applying
 - ullet within this self-selected pool, only top p applications win
 - lower applicant types withdraw

mand Supply **Equilibrium** Suggestive Evidence Welfare Design Benchmarking Field Game

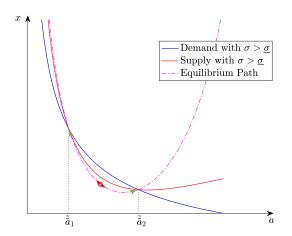
UNRAVELING for Sufficiently Precise Evaluation

- $\sigma \to \infty$, signal x is **completely uninformative** about θ
 - becomes a **lottery**, with everyone applying for c < pv
- Now reduce noise to $\sigma < \infty$
 - given cost c > 0, only top researchers self select into applying
 - within this self-selected pool, only top p applications win
 - lower applicant types withdraw
- $\sigma \rightarrow 0$, signal becomes **perfectly informative**
 - applicants know $x = \theta$, so spend c if they are SURE to win
 - but only a FRACTION p < 1 of these applicants must win...
 - so, unique equilibrium ALWAYS unravels, with nobody applying!
- Type distr. w/ thick tail: $HR(\theta) \Rightarrow$ unraveling for $\sigma < \bar{\sigma}$ for $\bar{\sigma} > 0$

Type Distribution with Thick Tail: Multiplicity Example: 1 panel with G Pareto-Lomax & 1 panel with G uniform

Type Distribution with Thick Tail: Multiplicity

Example: 1 panel with G Pareto-Lomax & 1 panel with G uniform

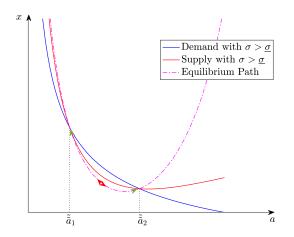


 $\sigma_a > \underline{\sigma}_a$: 1 stable unraveling eq + 2 interior eq: unstable & stable

mand Supply **Equilibrium** Suggestive Evidence Welfare Design Benchmarking Field Game

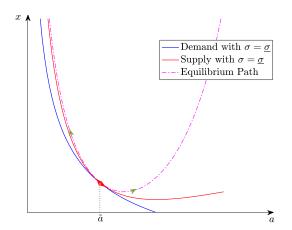
Type Distribution with Thick Tail: Multiplicity

Example: 1 panel with G Pareto-Lomax & 1 panel with G uniform

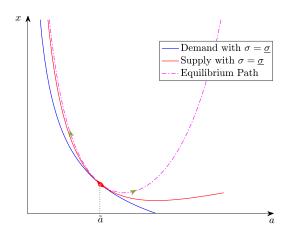


 $\sigma_a > \underline{\sigma}_a$: 1 stable unraveling eq + 2 interior eq: unstable & stable Full equilibrium path as σ increases

Type Distribution with Thick Tail: Tipping and Unraveling



Type Distribution with Thick Tail: Tipping and Unraveling



For $\sigma_a < \underline{\sigma}_a$, with $\underline{\sigma}_a > 0$: ONE stable equilibria w/ unraveling!

Comparison of ERC Grants: 2008-14 v. 2014-20

Google scholar citations for Advanced Grant PIs (principal investigators)

ERC	Average	Variability	Average	Variability	′%
Panel	citations	in citations	citations	in citations	budget
code	2008-14	2008-14	2015-20	2015-20	fraction
(0)	(1)	(2)	(3)	(4)	(5)
LS1	389.82	1.65	467.58	2.21	-21.52%
PE1	192.08	1.55	208.66	1.51	-27.27%
PE10	274.99	1.03	345.64	1.37	11.1%
SH1	418.12	1.73	654.4	1.29	-0.31%
SH2	260.58	1.54	413.79	1.88	-1.59%
SH3	220.79	1.34	290.04	1.43	46.22%
SH4	323.44	1.19	441.44	0.94	0.15%
SH5	35.8	2.27	109.66	2.89	91.45%
SH6	101.95	1.9	270.96	2.84	15.74%

Comparison of ERC Grants: 2008-14 v. 2014-20

Panels with higher variability in PI citations in first period:

- in second period obtain more funding
- for PIs that tend to attract less citations

Comparison of ERC Grants: 2008-14 v. 2014-20

Panels with higher variability in PI citations in first period:

- in second period obtain more funding
- for PIs that tend to attract less citations
- Correlation 0.27 between:
 - coefficient of variation of citations in the first period (column 2)
 - growth in funding from first to second period (column 5)
- Correlation −0.16 between:
 - coefficient of variation of citations in the first period (column 2)
 - average citations in the second period (column 3)

ERC v. NSF

NSF's success rates vary across fields:

• pure science higher success rates than applied science

ERC v. NSF

NSF's success rates vary across fields:

• pure science higher success rates than applied science

Fields with **higher success rate** at NSF

have been attracting declining proportion of budget at ERC

(In)efficiency

Consider:

• N=2 fields otherwise identical fields with $\sigma_1=0$ & $\sigma_2=\infty$

(In)efficiency

Consider:

- N=2 fields otherwise identical fields with $\sigma_1=0$ & $\sigma_2=\infty$
- Proportional allocation assigns all funds in field 2, randomly
 - in this admittedly extreme, worst possible system!

Optimizing Allocation Formula

Social welfare
$$W = \sum_{i=1}^{N} \int_{\hat{\theta}_{i}}^{\overline{\theta}} \{ \int_{\hat{x}_{i}}^{\overline{x}} [E\left(\theta|x; \theta \geq \hat{\theta}_{i}\right) - f_{i} + \underbrace{v_{i}}_{\text{agent}}]f\left(x|\theta\right) dx - \underbrace{c_{i}}_{\text{agent}} \}g\left(\theta\right) d\theta$$
evaluator
expected net merit
expected net merit

where

- $E\left(\theta|x;\theta\geq\hat{\theta}_i\right)$ incorporates self-selection into applying
- f_i is evaluator opportunity cost of funds for field i

Optimizing Allocation Formula

Social welfare
$$W = \sum_{i=1}^{N} \int_{\hat{\theta}_{i}}^{\overline{\theta}} \{ \int_{\hat{x}_{i}}^{\overline{x}} [E\left(\theta|x; \theta \geq \hat{\theta}_{i}\right) - f_{i} + \underbrace{v_{i}}_{\text{agent}}]f\left(x|\theta\right) dx - \underbrace{c_{i}}_{\text{agent}} \}g\left(\theta\right) d\theta$$
evaluator
expected net merit
expected net merit

where

- $E\left(\theta|x;\theta\geq\hat{\theta}_i
 ight)$ incorporates self-selection into applying
- f_i is evaluator opportunity cost of funds for field i

Some proportionality is desirable if $\frac{c_i}{v_i} \neq \frac{c_j}{v_i}$ [NIH]

Optimizing Allocation Formula

Social welfare
$$W = \sum_{i=1}^{N} \int_{\hat{\theta}_{i}}^{\overline{\theta}} \{ \int_{\hat{x}_{i}}^{\overline{x}} [E\left(\theta|x; \theta \geq \hat{\theta}_{i}\right) - f_{i} + \underbrace{v_{i}}_{\text{agent}}]f\left(x|\theta\right) dx - \underbrace{c_{i}}_{\text{agent}} \}g\left(\theta\right) d\theta$$
evaluator
expected net merit
expected net merit

where

- $E\left(\theta|x; \theta \geq \hat{\theta}_i\right)$ incorporates self-selection into applying
- f_i is evaluator opportunity cost of funds for field i

Some proportionality is desirable if $\frac{c_i}{v_i} \neq \frac{c_j}{v_j}$ [NIH] less so with highly heteregeneous dispersion $\sigma_i \neq \sigma_i$ [ERC]

Adjusting Proportionality ρ

Sub/super-proportional $\rho \leq 1$ allocation formula:

budget available for funding projects in field i

$$p(A_i, A_j) := \frac{\overbrace{\frac{\alpha_i A_i^{\rho}}{\sum_{j=1}^{N} \alpha_j A_j^{\rho}}}^{\alpha_i A_i^{\rho}} T}{\underbrace{\frac{A_i}{\sum_{j=1}^{N} \alpha_j A_j^{\rho}}}} = \frac{T \alpha_i A_i^{\rho-1}}{\sum_{j=1}^{N} \alpha_j A_j^{\rho}}$$

budget demanded by applications in field i

Adjusting Proportionality ρ

Sub/super-proportional $\rho \leqslant 1$ allocation formula:

budget available for funding projects in field i

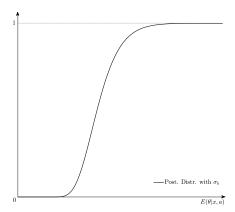
$$p\left(A_{i},A_{j}\right):=\frac{\overbrace{\sum_{j=1}^{N}\alpha_{j}A_{j}^{\rho}}^{\alpha_{i}A_{i}^{\rho}}T}{\underbrace{A_{i}}_{\text{budget demanded by applications in field }i}=\frac{T\alpha_{i}A_{i}^{\rho-1}}{\sum_{j=1}^{N}\alpha_{j}A_{j}^{\rho}}$$

ullet Increase in proportionality, responsiveness of applications \uparrow

$$\frac{\partial}{\partial \rho} \left(\frac{\partial \mathbf{a}_i}{\partial \sigma_i} \right) > 0$$

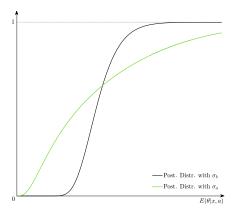
Clever Design Tweak: Improves Accuracy Incentives!

Distribution of **previous** scores $E[\theta|b,x]$, from normal signal with σ_b



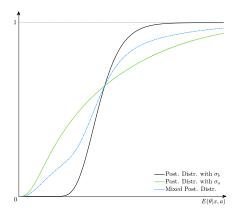
Clever Design Tweak: Improves Accuracy Incentives!

With $\sigma_a < \sigma_b$, current scores $E[\theta|a,x]$ are MORE dispersed



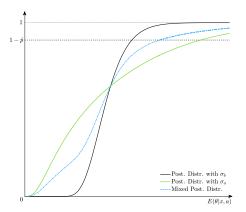
Clever Design Tweak: Improves Accuracy Incentives!

Mixture distribution of current & previous scores



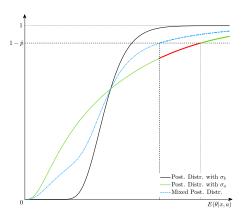
Clever Design Tweak: Improves Accuracy Incentives!

Projects above payline \hat{p}



Clever Design Tweak: Improves Accuracy Incentives!

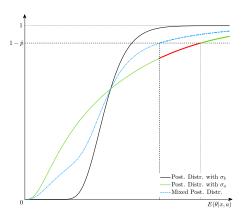
With improved accuracy, more applications win-extra RED



Interpretation: Panel with Subfields

Implications for Panel Design

Same logic for panels made up of multiple subfields: clinical v. basic



Field Game

- Each field faces a collective action problem
- Scientific associations can coordinate field-level outcomes by
 - advertising availability of grants & supporting applications through
 - seed grant schemes, information sessions & seminars on grant writing

Field Game

- Each field faces a collective action problem
- Scientific associations can coordinate field-level outcomes by
 - advertising availability of grants & supporting applications through
 - ullet seed grant schemes, information sessions & seminars on grant writing
- ullet Field association i's maximizes total payoff of researchers in field

$$\max_{a_i} \underbrace{v_i p\left(a_i, a_{-i}\right)}_{\text{inverse demand } P_i\left(a_i, a_{-i}\right) = \frac{T}{a_i + a_{-i}}} a_i - \underbrace{c_i}_{\text{marginal cost}} a$$

Proportional allocation rule induces hyperbolic demand

Field Game

- Each field faces a collective action problem
- Scientific associations can coordinate field-level outcomes by
 - advertising availability of grants & supporting applications through
 - ullet seed grant schemes, information sessions & seminars on grant writing
- Field association i's maximizes total payoff of researchers in field

$$\max_{a_i} \underbrace{v_i p(a_i, a_{-i})}_{\text{inverse demand } P_i(a_i, a_{-i}) = \frac{T}{a_i + a_{-i}}} \quad a_i - \underbrace{c_i}_{\text{marginal cost}} a_i$$

Proportional allocation rule induces hyperbolic demand

Proposition

In unique interior equilibrium of the field game, applications in field i are $a_i^{(N)} = (N-1) \ T \frac{\sum_{j=1}^N \gamma_j - (N-1)\gamma_i}{\left(\sum_{j=1}^N \gamma_j\right)^2} \ \ \text{with payline} \ p = \frac{\sum_{j=1}^N \gamma_j}{N-1} \ . \ \ \text{If fields have}$

identical $\gamma_i = \gamma$, equilibrium surplus in each field is vT/N^2 & total surplus is vT/N. In limit as $N \to \infty$, the success rate $p \to \gamma^+$ and surplus of each field as well as the total surplus of all fields converges to zero.

- Mostly stressed cons of proportional system:
 - rewards noise + multiple equilibria
 - flatter/noisier fields apply more & get more funds—PERVERSE

- Mostly stressed cons of proportional system:
 - rewards noise + multiple equilibria
 - flatter/noisier fields apply more & get more funds—PERVERSE
 - allocation orthogonal to social benefit

- Mostly stressed cons of proportional system:
 - rewards noise + multiple equilibria
 - flatter/noisier fields apply more & get more funds—PERVERSE
 - allocation orthogonal to social benefit
- But proportional system also has pros:
 - bottom up: quickly reacts to demand-side signals
 - hungier fields apply more & get more funds—VIRTUOUS

- Mostly stressed cons of proportional system:
 - rewards noise + multiple equilibria
 - flatter/noisier fields apply more & get more funds—PERVERSE
 - allocation orthogonal to social benefit
- But proportional system also has pros:
 - bottom up: quickly reacts to demand-side signals
 - hungier fields apply more & get more funds—VIRTUOUS
 - hands off: robust to lobbying/meddling by politicians/administrators

Broader Relevance

- Pressure to equalize success rates also with fixed budgets
- Academic **journals** subject to a similar, but informal, pressure to:
 - allocate space to different sub-fields in proportion to submissions

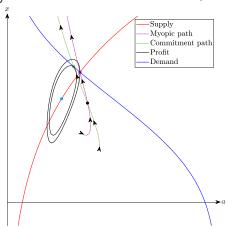
Broader Relevance

- Pressure to equalize success rates also with fixed budgets
- Academic journals subject to a similar, but informal, pressure to:
 - allocate space to different sub-fields in proportion to submissions
- Similarly, university admission boards are tempted to:
 - · admit students to different programs in proportion to applications, or
 - increase slots available in areas that attract more applications...

Senior Applicants

Know Well Their Quality

Evaluator optimally commits to raise standard: $\hat{x}^E > \hat{x}^N$

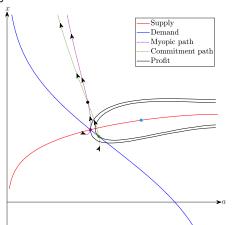


Evaluator bliss point (a_E^*, \hat{x}_E^*) to South West of (a^N, x^N)

Junior Applicants

Know Poorly Their Quality

Evaluator optimally commits to reduce standard: $\hat{x}^{E} > \hat{x}^{N}$



Evaluator bliss point (a_E^*, \hat{x}_E^*) to North East of (a^N, x^N)