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Abstract

Building upon endogenous growth theory, we show a causal impact of immigration

on innovation and dynamism in US counties. In order to identify the causal impact of

immigration, we use 130 years of detailed data on migrations from foreign countries to

US counties to isolate quasi-random variation in the ancestry composition of US counties

that results purely from the interaction of two forces: (i) changes over time in the relative

attractiveness of different destinations within the US to the average migrant arriving at

the time and (ii) the staggered timing of arrival of migrants from different origin countries.

We then use this plausibly exogenous variation in ancestry composition to predict the total

number of migrants flowing into each US county in recent decades. We show four main

results. First, immigration has a positive impact on innovation, measured by patenting of

local firms. Second, immigration has a positive impact on measures of local dynamism,

as endogenous growth theory predicts. Third, the positive impact of immigration on

innovation percolates over space, but spatial spillovers quickly die with distance. Fourth,

the impact of immigration on innovation is stronger for more educated migrants.
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1 Introduction

Does immigration cause more or less innovation and economic dynamism? In this paper, we

answer this question in the context of international migrations to the US over the last three

decades. We find a positive causal impact of immigration on both innovation and economic

dynamism at the county level.

Models of endogenous growth suggest that immigration should increase both innovation and

economic dynamism. As population grows with the inflow of migrants, more people can work

towards more and possibly harder innovations (Jones, 1995; Bloom et al., 2017). As innovation

is embedded in creative destruction at the microeconomic level, those new innovations facilitated

by the inflow of migrants should also lead to more creative destruction and a higher level of

overall economic dynamism (Aghion and Howitt, 1992; Grossman and Helpman, 1991; Klette

and Kortum, 2004). If local returns to scale are large enough, the arrival of migrants should

therefore cause innovation, economic dynamism, and economic growth within the receiving local

communities.

Contrasting with these predictions of canonical growth theory, fierce political controversies

surround the economic contribution of migrants: Are the new arrivals draining resources of

their host communities and stifling innovation and economic dynamism?

A rigorous quantification of the causal impact of immigration on innovation and dynamism

has proven elusive. The reason is that migrants do not allocate randomly across space, but

instead likely tend to choose destinations that offer the best prospects for them and their

families. In particular, it is plausible that migrants arriving in the US will tend to select

into regions that are innovative, economically dynamic, and fast-growing, creating a spurious

correlation between local immigration, local innovation, and local economic dynamism.

Our main contribution is to propose a formal identification strategy which allows us to quan-

tify the causal impact of migrations on local innovation and dynamism. To do so, we use 130

years of detailed data on migrations from foreign countries to US counties. Our identification

strategy combines a set of instruments for the pre-existing ethnic composition of US counties

(Burchardi et al., forthcoming) with a canonical shift-share approach (Altonji and Card, 1991)

to construct a valid instrument for migrations in the last 30 years. In a first step, we isolate

plausibly exogenous variations in the number of residents of a US county with ancestry from

different foreign countries, following Burchardi et al. (forthcoming). In a second step, we use

these exogenous components of pre-existing ancestry shares to predict where recent migrants

will settle within the US following Altonji and Card (1991). Doing so, we are immune to the
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potential critique that where migrants settle within the US, both in recent decades (the dis-

tribution of immigrants) and in the more distant past (the distribution of ancestry), may be

correlated with unobserved factors that also affect measures of local innovation and dynamism.

In our first step, we use the interaction of time-series variation in the relative attractiveness

of different destinations within the US with the staggered timing of arrival of migrants from dif-

ferent origins to isolate quasi-random variation in the settlement of migrants across US counties.

Implicitly, we assume that migrations are in part driven by (i) a push factor, causing emigration

from a given foreign country to the entire US, and (ii) a pull factor, causing immigration into

a given US county from all origins. To further ensure that our predicted immigration measure

is not contaminated by endogenous unobserved factors, we carefully leave out large population

groups when predicting ancestry. In particular, as our focus is on immigration to the US af-

ter 1970, primarily originating from non-European countries, we use European migrations to

predict where non-European migrants will settle. In other words, we predict that US counties

that were attractive to migrants from Europe in a period when a large number of migrants

from a given non-European origin country were arriving in the US will receive a large number

of migrants from that origin country. Iterating this procedure over 130 years, we are able to

isolate quasi-random variation in the distribution of ancestry across US counties in 1970.

In our second step, we use this predicted pre-existing distribution of ancestry to predict

where new migrants arriving in the US after 1970 will settle. Implicitly, we assume that

new migrants will tend to settle in locations where a large community from the same ethnic

background already lives. So if a large community with ancestry from origin country o already

resides in destination county d, and many migrants from o arrive in the US, we will predict a

large inflow of migrants from o to d. Summing over all possible origin countries, we are therefore

able to predict the total number of migrants flowing into different US counties. This predicted

immigration is plausibly exogenous to any unobserved factor which may make a destination US

county more innovative and dynamic after 1970.

Finally, to further guard against any lingering concerns about identification, we estimate the

impact of plausibly exogenous variations in immigration on changes in innovation, dynamism,

and growth, not on levels.

This formal identification strategy allows us to reach four main conclusions.

First, we find a strong and significant causal impact of immigration on the number of patents

filed per person: the arrival of 10,000 additional immigrants increases the flow of patents over a

5-year period by 1 patent per 100,000 people. Put differently, a one standard deviation increase
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in the number of migrants (about 12,000 migrants) increases the flow of patents by 27% relative

to its mean.

Second, we find a strong and significant causal impact of immigration on measures of eco-

nomic dynamism and growth at the local level. For our measures of economic dynamism, or

creative destruction, we use several variables, each shedding light on one aspect of economic

dynamism: a one standard deviation increase in a county’s number of immigrants increases the

job creation rate by 7%, the job destruction rate by 11%, the job growth skewness by 3%, and

local wages by 5%, all expressed as changes relative to their mean. The significant rise in local

wages suggests that immigration does not only affect innovation and creative destruction, but

also the overall level of economic growth.

Third, we find evidence that the positive effect of immigration on innovation and growth

diffuses over space, but this spatial diffusion dies out quickly with distance. For instance, if more

migrants settle in the US state surrounding county d, innovation in d increases significantly.

However, this spillover effect of immigration in nearby counties decays rapidly with distance:

compared to the direct effect of immigration in a county, the indirect effect is 30% smaller for

immigration 100km away (60 miles), 80% smaller at 250km (150 miles), and essentially zero

beyond 500km (300 miles).

Fourth, we find that the positive effect of immigration on innovation and growth is sig-

nificantly stronger for more educated migrants. We are able to reach this conclusion because

our identification strategy allows us to construct separate instruments for migrants from each

origin at each point in time. This versatility is one of the strengths of our identification strat-

egy. To separately identify the impact of the total number of incoming migrants from that of

their education level, we rely on the fact that the level of education of migrants varies across

countries of origin, and over time. We find large heterogeneity in the impact of immigration

on innovation as we exogenously vary the education level of migrants. For instance, relatively

uneducated migrants (in the bottom third of the distribution of years of schooling among in-

coming migrants) have almost no effect on innovation, while the increase in innovation induced

by highly educated migrants (in the top third) is an order of magnitude larger than for the av-

erage migrants: it only takes 1,000 highly educated migrants to increase patenting by 1 patent

per 100,000, compared to 10,000 for the average migrants.

Related Literature. Our paper builds upon several strands of the theoretical and applied

literature. First, our empirical study is motivated by theories of endogenous growth. While
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the seminal contribution of Romer (1990) predicts that a larger population, in levels, ought

to increase the rate of growth of the economy, subsequent refinements (Jones, 1995, 1999) in

so-called semi endogenous growth theory predict a positive link between the growth rate of pop-

ulation and economic growth. This purposefully brief description does not do full justice to the

rich debate on scale effects in growth, with other important theoreetical contributions including

Peretto (1998) and Young (1998). Empirical work by Laincz and Peretto (2006) further disen-

tangles predictions of the varying classes of models. In these models, a larger population, or a

higher population growth rate, allow an economy to grow because increasing returns to scale in

the technology for innovating overcome decreasing returns to scale in production (Solow, 1956).

Another key insight from this literature is that a larger population of (potential) innovators

may be better able to achieve increasingly hard innovations. Bloom et al. (2017) show evidence

that new ideas are in fact becoming harder to produce over time, so that an increasing amount

of resources are needed to continue innovating. We contribute to this literature first by showing

a positive impact of immigration –one channel through which population grows - on innovation

and growth. We also show evidence that the scale effects necessary for endogenous growth in

Jones (1995) operate and are statistically identifiable at the local level. Finally, we show that

a key input in the technology to produce innovation is human capital, whereby more educated

migrants contribute more to innovation than less educated migrants.

Endogenous growth theory also ties the innovation and growth process to creative destruc-

tion, as in the seminal contributions of Aghion and Howitt (1992), Grossman and Helpman

(1991), and Klette and Kortum (2004). We confirm the predictions from those theories: an

increase in population, induced by immigration, which feeds the innovation process, also in-

creases measures of creative destruction. US counties receiving more migrants experience both

higher rates of job creation and destruction, and they see more positively skewed growth, with

more “superstar” or right-tail growth of industries in their area.

Second, we contribute to the recent but growing literature on the link between immigration

and innovation. Surveys by Hanson (2009), Hanson (2010), and Lewis (2013) emphasize the

potential importance of a link between immigration and innovation. Early studies by Kerr

and Lincoln (2010) and Hunt and Gauthier-Loiselle (2010) display empirical evidence for a link

between migration and innovation. Using data on the age of mass migration and the expansion

of railways at the time, Sequeira et al. (forthcoming) show a long-run effect of immigration on

local economic development. Akcigit et al. (2017) show that many inventors are immigrants.

Bernstein et al. (2018) also show that many inventions originate in the work of immigrants.
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Peters (2017) investigates the link between historical refugees in Germany and industrialisation.

Kerr and Kerr (2016) study the case of immigrant entrepreneurship. Moving beyond impacts on

narrowly measured patenting or innovation, Lewis (2011) and Lafortune et al. (Forthcoming)

emphasize that the economic impact of migration may be mediated through its impact on

production processes, skill mixes, and capital responses. Tabellini (2018) shows that while

historical immigration to the US has fostered development, it has also sparked a political

backlash, a contemporaneous environment further detailed in Kerr (2018).

Third, we contribute to the empirical literature which has investigated the decline in dy-

namism, in particular in the US. Using aggregate trend data and a structural approach, Karahan

et al. (2016) show the declining dynamism in the US may potentially be due to lower population

growth. Khanna and Lee (2018) show a positive association between high skill migration and

detailed firm-level measures of dynamism and turnover. Using US census microdata, Decker

et al. (2014) document the declining dynamism in the US. Gordon (2012) contemplates the

idea that growth may have run out in the US. Alon et al. (2018) suggest that the decline in

US dynamism may be due to older firms. Using an endogenous growth theory, Akcigit and

Ates (2019) argue that the decline may be due to declining knowledge diffusion across firms.

Using data on aggregate trends, and guided by the theory, Hopenhayn et al. (2018) propose

that the decline in dynamism in the US is due to older firms and a lower population growth

rate. Hathaway and Litan (2014) also document declining measures of dynamism in the US.

We contribute to this literature by showing causal evidence that population growth, and in

particular population growth driven by immigration, may counteract the decline in dynamism

in the US economy.

The remainder of this paper is structured as follows. Section 2 introduces our data. Section

3 lays out our strategy for identification and isolates empirically quasi-random variation in

migrations to US counties. Section 4 formally estimates the causal effect of immigration on

innovation, economic dynamism, and income growth. Section 5 tests for geographic spill-overs

in the effect of immigration on innovation and disentangles the impact of high-skilled from that

of low-skilled migration. Section 6 concludes.

2 Data

We collect detailed data on migrations, ancestry, the education level of migrants, patents issued,

and measures of dynamism of local firms and local labor markets. Below is a description of our

data sources, and the construction of our main variables. Further details on the construction

5



and sources of the data are given in Appendix A.

Immigration and Ancestry. Following Burchardi et al. (forthcoming), our immigration and

ancestry data are constructed from the individual files of the Integrated Public Use Microdata

Series (IPUMS) samples of the 1880, 1900, 1910, 1920, 1930, 1970, 1980, 1990, and 2000 waves

of the US census, and the 2006-2010 five-year sample of the American Community Survey.

We weigh observations using the personal weights provided by these data sources. Appendix

Table 1 summarizes specific samples and weights used. We cannot use data from the 1940, 1950

and 1960 censuses, because these did not collect information on the year of immigration. The

original 1890 census files were lost in a fire.

Throughout the paper, we use t−1 and t to denote the end years of consecutive 5-year peri-

ods,1 o for the foreign country of origin, and d for the US destination county. We construct the

number of migrants from origin o to destination d at time t, I to,d, as the number of respondents

born in o who live in d in a given census year and emigrated to the United States between t− 1

and t. The exception to this rule is the 1880 census (the first in our sample), which also did not

record the year of immigration. The variable I1880
o,d instead measures the number of residents

who were either born in o or whose parents were born in o, thus covering the two generations of

immigrants arriving prior to 1880.2 Since 1980, respondents have also been asked about their

primary ancestry in both the US Census and the American Community Survey, with the option

to provide multiple answers. Ancestry Ato,d corresponds to the number of individuals residing

in d at time t who report o as first ancestry. Note that this measure captures self-reported

(recalled) ancestry.3

The respondents’ residence is recorded at the level of historic counties, and at the level of

historic county groups or PUMAs from 1970 onwards. Whenever necessary we use contempo-

raneous population weights to transition data from the historic county group or PUMA level

to the historic county, and then use area weights to transition data from the historic county

level to the 1990 US county level. The respondents’ stated ancestry (birthplace) often, but not

always, directly corresponds to foreign countries in their 1990 borders (for example, “Spanish”

or “Denmark”). When no direct mapping exists (for example, “Basque” or “Lapland”), we

construct transition matrices that map data from the answer level to the 1990 foreign coun-

1Due to data limitations in the reporting of year of immigration in the 1970-1990 censuses, the length of
periods vary slightly over this time frame.

2If the own birthplace is in the United States, imprecisely specific (e.g., a continent), or missing, we instead
use the parents’ birthplace, assigning equal weights to each parent’s birthplace.

3See Duncan and Trejo (2017) for recent evidence on recalled versus factual ancestry in CPS data.
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try level, using approximate population weights where possible and approximate area weights

otherwise. In the few cases when answers are imprecisely specific or such a mapping cannot

be constructed (for example, “European” or “born at sea”), we omit the data.4 The resulting

dyadic dataset covers 3,141 US counties, 195 foreign countries, and 10 census waves.

Innovation. We use patent data to measure innovation. Starting from the universe of patent

microdata provided by the US Patent and Trademark Office (USPTO) from 1975 until 2010, we

study corporate utility patents with US assignees, around 4.7 million observations. We convert

assignee locations provided by the USPTO in coordinate form to 2010 US counties, tabulating

the number of corporate utility patents granted to assignees in each county in each year of the

sample, and then use area weights to transition to 1990 US counties. In the earlier periods,

when there was more personalized US innovation, inventor location is the natural measure of

geography (Akcigit et al., 2017); however, in recent years the overwhelming majority of patents

are assigned to corporations, making assignees the natural baseline location measure for our

purposes. Nevertheless, in addition to this baseline choice we also explore alternative means of

locating patents by inventors, and we also conduct various quality or citation weighting checks

following Hall et al. (2001). We sum patent flows over five-year periods, with the measure in t

corresponding to the sum of patents in a given county d over the five years between t− 1 and t.

We then scale this measure by the 1970 population of county d from the Census microdata to

yield a five-year patents per capita variable. The change in the flow of patents per capita from

period t− 1 to t is our primary outcome of interest.5

Dynamism. A growing empirical literature emphasizes that measures of dynamism and cre-

ative destruction in the United States have declined in recent decades (Decker et al., 2014).

Our dynamism measures come from two sources, motivated by the prior work on this subject.

The first dataset - the US Business Dynamism Statistics (BDS) database from the US Census

- represents measures computed from the underlying Longitudinal Business Data microdata on

the employment levels of the universe of US business establishments. The BDS data include

job creation and job destruction rates (gross flows representing the ratio of the number of jobs

created or destroyed as a fraction of employment) at the yearly level and spanning 1977–2015.

4Appendix Tables 2 and 3 report summary statistics on these data transitions, including the share of affected
respondents. Appendix A.1 provides a detailed description of the data transformation.

5We manually check the patenting per capita measure for outliers likely due to errors in location coding
by the USPTO, finding a few instances in which manual correction was possible. However, to guard against
the possibility that any miscoding remains, we winsorize the resulting distribution of the change in patents per
capita outcome variable.

7



The sum of these measures is known as the job reallocation rate, and the difference between

them is the net employment growth rate. We apportion the native MSA geography to 1990

US counties by population. Our main dynamism outcomes of interest from the BDS data in

county d in period t correspond to the change in either job creation or job destruction rates

from t− 1 to t.

In addition to measures of gross employment flows, the dynamism literature also empha-

sizes a decline over time in the skewness of employment growth rates, i.e., a decline in the

relative importance of “superstar” growth performance in driving US employment dynamism.

In this spirit, we construct growth rate skewness measures starting from the US Census County

Business Patterns (CBP) dataset. The raw data contain county by year by 4-digit industry

employment levels from 1985 to 2010. For each county and year, we compute the Kelley Skew-

ness of employment growth rates across 4-digit sectors. This measure gives a sense of whether

certain strongly performing industries drive overall employment growth in that period and lo-

cation. The final measure of interest for county d in period t is the change in the growth rate

skewness measure over the five years from t− 1 to t.

Other Data. We measure local income using average annual wage bills computed from the

Quarterly Census of Wages (QCEW) dataset provided by the US Bureau of Labor Statistics.

The data stem from state-level unemployment insurance records. It records employment and

wages at the county-by-industry-by-year level starting in 1975. We compute the total wages

per capita in a given county-year combination and use the Personal Consumption Expenditure

price index to adjust wages. The outcomes of interest in specifications studying income growth

is the change in wages per capita in county d over the five-years period ending in t.

Summary Statistics. Table 1 reports summary statistics on the outcomes described above,

as well as various other instruments and derived variables studied below. The series are observed

at the county by 5-year window level. The table reveals sensible patterns. Counties on average

received around 1.4 thousand non-European immigrants in each 5-year period between 1975

and 2010, a meaningful contribution to overall population growth of around four thousand.

Innovation (as measured by per capita patenting) increased on average over the period, with

substantial heterogeneity across counties. As emphasized by the dynamism literature, measures

of creative destruction including job creation rates, job destruction rates, and growth rate

skewness declined on average during our sample, although the average obscures wide differences

in experience: some counties became substantially more dynamic over the period we study.
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Wages per capita grew on average, as expected. The statistics on the remaining variables,

reflecting the variation in subsets of our data or several constructed instruments, will become

useful in our discussion below.

3 Constructing a Valid Instrument for Immigration

Our aim is to estimate the causal impact of immigration on innovation and growth. To do so,

we estimate the following equation

∆Y t
d = δt + δs + β · Immigrationtd + εtd, (1)

where Immigrationtd is a measure of the number of migrants flowing into destination county d

at time t, ∆Y t
d is a change in either a measure of innovation or of local dynamism, and δt and

δs are full sets of time and state fixed effects.

The main concern with a simple OLS estimate of (1) is that unobserved factors may affect

both immigration and innovation or dynamism. For instance, it is likely that migrants are

disproportionately drawn to more innovative destinations within the US. We estimate (1) in

differences, so that any systematic differences in the level of innovation are controlled for. But

it remains possible that migrants are disproportionately drawn to counties within the US which

are on an upward innovation trend.

To address this concern, one possibility would be to construct a “shift-share” instrument in

the spirit of Altonji and Card (1991) and Card (2001), predicting immigration flows using the

interaction of pre-existing ancestry shares in a destination county with current inflows from ori-

gin countries, and then summing over origin countries. However, it is likely that omitted factors

which make a set of US counties more innovative may also have attracted disproportionately

many migrants from specific sets of origin countries in the past, rendering pre-existing ancestry

shares endogenous. For example, Indian engineers may have historically migrated to Silicon

Valley and to other information technology hubs because those provided attractive employment

opportunities; and more Indian engineers may systematically migrate to Silicon Valley and other

information technology hubs whenever there is a boom in software development. If this were the

case, the canonical shift-share approach would falsely identify a causal effect of immigration

on innovation, when in reality innovations in software are the reason why destinations with

high pre-existing Indian ancestry shares receive more immigration. Thus, if ancestry shares

are themselves endogenous – i.e. are potentially correlated with unobserved factors affecting
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innovation – this poses a challenge to the canonical shift-share approach (Goldsmith-Pinkham,

Sorkin, and Swift, 2018).

To overcome this challenge we augment the canonical shift-share approach with a set of

instruments that isolate quasi-random variation in the pre-existing ancestry composition of

US counties. This variation results only from the coincidental timing of two historical forces

driving migration to the US: (i) time-series variation in the relative attractiveness of different

destinations within the United States to the average migrant arriving at the time (e.g. end

of nineteenth century Midwest versus early twentieth century West) and (ii) the staggered

arrival of migrants from different origins (e.g. end of nineteenth century China versus early

twentieth century Japan). We use the interaction of these two forces to instrument for the

distribution of ancestries across US counties, and then use those exogenous ancestry shares to

predict migrations. Doing so, we are immune to concerns that pre-existing ancestry shares may

be themselves endogenous.

3.1 Constructing an Instrument for Immigration

In order to construct a valid instrument for immigration, we build upon the methodology

developed in Burchardi et al. (forthcoming) combined with the “shift-share” approach of Altonji

and Card (1991) and proceed in three steps. While this procedure may seem complex when

considered in its entirety, each step is easy to implement, and follows a simple logic. In a

nutshell, we first use the quasi-random timing of the interaction between the arrival of migrants

from different origin countries to the US, and the relative attractiveness of destination counties

to all migrants. Summing over cohorts of migrants, this allows us to predict the number of

residents of a given US county with ancestry from a given origin country in a baseline year.

Second, we interact those predicted pre-existing ancestry levels in the baseline year with the

overall number of migrants arriving from a given origin country in the five years after that

baseline year, to predict the number of migrants from a given origin to a given US county

during that period. Finally, we sum this predicted number of recent migrants across all origins

for each US county, to get a valid instrument for the overall inflow of migrants from all origins

into a given US county. Formally, the three steps of our procedure are as follows.

Step 1: Isolating quasi-random variation in ancestry. We predict the number of resi-

dents of destination county d with ancestry from origin country o in baseline year t (in thou-
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sands), Ato,d, by estimating

Ato,d = δto,−r(d) + δtc(o),−d +X ′o,dβ
t +

t∑
τ=1880

bτr(d)Ĩ
τ
o,−r(d)

IτEuro,d
IτEuro

+ uto,d, (2)

with Ĩτo,−r(d) = Iτo,−r(d)

IτEuro,r(d)

IτEuro,−r(d)

.

I to,−r(d) is the total number of migrants arriving from o who settle in locations outside of the

region where d is located over the 5-year period ending in t. I tEuro,d is the number of is the

total number of migrants from Europe who settle in d at time t, and I tEuro =
∑

d I
t
Euro,d.

Further, I tEuro,r(d) (respectively I tEuro,−r(d)) is the total number of migrants from Europe who

settle in the region where d is located (resp. outside this region) in the period ending in year t.

δto,−r(d) and δtc(o),−d are a series of origin country-destination region and continent of origin-

destination interacted fixed effects, while Xo,d contains a series of time invariant controls for

{o, d} characteristics (including distance and latitude difference). We estimate (2) separately

for each t = 1980, 1985, 1990, 1995, 2000, 2005, 2010 on all non-European countries.

From this estimation, we derive predicted ancestry in county d from origin o at time t as

Âto,d =
t∑

τ=1880

b̂τr(d)

(
Ĩτo,−r(d)

IτEuro,d
IτEuro

)⊥
, (3)

where
(
Ĩτo,−r(d)

IτEuro,d
IτEuro

)⊥
are residuals of a regression of Ĩτo,−r(d)

IτEuro,d
IτEuro

on δto,−r(d), δ
t
c(o),−d and Xo,d.

This procedure for identifying plausibly exogenous variations in ancestry builds upon Bur-

chardi et al. (forthcoming). We implicitly assume that two forces are present in motivating the

choice of where foreign migrants settle in the US: a “push” factor, the total number of migrants

from country o that settle in the US in the five-year period denoted by t; and a “pull” factor,

the proportion of all European migrants to the US that settle in county d in period t. The

intuition is as follows. More migrants from origin country o will tend to settle in any location in

the US in periods when many migrants happen to arrive from this country o in aggregate: when

Iτo,−r(d) (the push factor) is large in some period τ . And those migrants will have a tendency to

disproportionately settle in a specific destination county d if this county is precisely at the same

time attractive to migrants in general, irrespective of their origin: for instance if
IτEuro,d
IτEuro

(the pull

factor) is large in the same period τ . If coincidentally a county d is attractive to migrants of

all origins precisely at the time when many migrants arrive from country o, we expect many of

the migrants from o to settle in d. It is this variation in the stock of d’s ancestry from o which
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we exploit to create exogenous variation in the ancestry composition of county d at any time

t. Summing over many periods, equation (2) cumulates this variation in the stock of residents

with a given ancestry over repeated waves of migrations starting before 1880.

To further guard against confounding factors, we combine this “push-pull” approach with

a stringent leave-out restriction. Our focus in the main regressions of interest is on migrants

who arrived in the US in recent decades, since 1970, from non-European countries. This is

a period over which indeed most migrants were not coming from Europe. We predict the

historic settlement patterns of non-European immigrants, and hence their associated modern

ancestry stocks, from a pull factor based on nothing but European migrants. This ensures

that our results are not driven by origin countries with similar characteristics and therefore

similar settlement patterns. In addition, for the push factor we remove from all migrants from

o arriving to the US those that happen to settle in the census division where d is located. This

exclusion removes the possibility that the time variation in the total number of migrants from

o to the US is being driven by changes in migrant flows to the census division in which d is

located. Put differently, any unobserved time-varying factors which make destinations in the

census division r(d) particularly attractive for migrants from o, and hence attract immigration

from o to that census region, will not confound our measure of the push factor of o to r(d).6

Moreover, to adjust for the fact that some divisions may be larger than others, we add a simple

scaling factor
Iτ
Euro,r(d)

Iτ
Euro,−r(d)

.

Finally, as we are predicting ancestry at the {o, d} level, we are able to control for a very

large set of fixed effects as well as {o, d}-specific controls. Any factor which would make a given

destination county more attractive to migrants from a specific continent, or make migrants

from a given origin settle in a specific region, is controlled for by the set of δo,−r(d) and δc(o),−d

fixed effects. We control for the distance between origin country o and destination d to account

for variation in migration due to proximity and we control for latitude distance between o and

d to account for the potential effect of “similar climates” on migration choices. Notice that

in (3) we only use variation in push-pull factors that is orthogonal to any of those potentially

confounding factors.

To fix ideas around these push and pull factors more concretely, directly examining the

underlying variation proves useful. Figure 1 plots the share of non-European immigration into

the US from the 14 non-European origin nations with the largest cumulative immigration to

the US. This push-factor variation within countries is generally clustered in time in “bursts” of

6Note that our approach here imposes a stricter requirement than simply excluding the number of migrants
to d.
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immigration to the US, typically driven by historic events in the home countries. For example,

Mexican migration to the US experiences a spike during the period of the Mexican Revolution

from 1910-20. Cuban immigration flows increase during the 1960s and 1970s in the decades after

the Cuban revolution. Immigration from Vietnam reaches substantial numbers only from the

mid-1970s onwards in the wake of US involvement in the Vietnam War. Chinese and Japanese

migration to the US fell from relatively higher levels early in the sample to low levels before

rising over time, in this case as the various US immigration exclusion acts were repealed.

As the different nations in Figure 1 sent immigrants at different points in time to the US, the

location of relatively attractive destination counties – our source of variation for the pull factor

– shifted substantially. Figure 2 plots color-coded maps of migration into the US over Census

waves from 1880 to 2010, with darker shades representing a higher intensity of migration to a

given county. Early on in the sample during the late 19th century northeastern locations were

particularly attractive destinations. But by the early 1900’s the favored destinations shifted

to the midwest and western regions, before shifting yet again to the coastal and southeastern

regions later on.

So to summarize, the rich variation in Figures 1 and 2 allows us to consider a narrow

subset of migration flows and hence resulting ancestry levels. Instead of, say, considering data

on all flows of Mexican migrants to the US, our eventual set of quasi-random variation instead

exploits, say, the fact that certain southeastern and midwestern regions happened to be popular

destinations (“pulling” people into destination counties d) during the period of heavy Mexican

immigration around the Mexican Revolution (“pushing” people out of that origin nation o).

Step 2: Predicting migrations from individual countries. Having isolated plausibly

exogenous variations in the stock of ancestry at the {o, d} level for all periods after 1970, we

are now ready to implement a “shift-share” method similar to Altonji and Card (1991), without

being worried that ancestry itself is an endogenous variable. We predict immigration from o to

d in period t by estimating

I to,d = δo−r(d) + δc(o)−d +X ′o,dβ +
∑
τ

γτ · δτ · [Âτ−1
o,d × Ĩ

τ
o,−r(d)] + νto,d, (4)

where Âτ−1
o,d is predicted ancestry from (3) and δτ are time fixed effects. This equation is based

upon the simple idea that newly arrived migrants from o (Ĩτo,−r(d)) will tend to settle in places

where a large community of individuals with the same o ancestry already reside (Âτ−1
o,d ).

Again, to guard against confounding factors, when predicting migrations from o to d, we
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leave out o’s migrants who settle not only in d, but also in the entire census division where d

is located. As before, we control for a large set of origin-region pair and destination-continent

fixed effects as well as distance and latitude-distance between o and d.

Step 3: Predicting aggregate migrations. We are finally able to generate our main

instrument for the total number of migrants settling in county d in period t, Immigrationtd in

equation (1),

Î td =
∑
o

γ̂t · [Ât−1
o,d × Ĩ

t
o,−r(d)]. (5)

A sufficient condition for the validity of this instrument can be written as

Ĩso,−r(d)

IsEuro,d
IsEuro

⊥ εtd∀o, d, s ≤ t. (6)

It requires that confounding factors that correlate with increases in a given county’s innovation

or dynamism post-1975 and historically made a given destination more attractive for migration

from a given non-European origin country do not also correlate with past instances of the

interaction of the settlement of European migrants with the total number of migrants arriving

from that non-European origin who settle in other US census regions. If this condition is

satisfied, the ancestry shares used to predict immigration in Step 2 are exogenous, as is the

variation in total immigration calculated in (5).7

We believe this assumption is plausible: consider again a shock to productivity of software

development in Silicon Valley that attracts Indian software engineers. This confounding shock,

and any other origin-destination specific factor that drives migration and might affect the

destination’s capacity for future innovation, in general affects neither Âo,d nor Ĩ to,−r(d); the

former depends only on how the historical destination choices of Europeans coincided with the

number of Indians arriving in the US who chose destinations other than the West Coast, while

the latter depends only on the number of Indians arriving in t who again do not settle on the

West Coast. In order to violate (6), the confounding shock would instead have to systematically

affect both the destination choices of Indians and large numbers of Europeans (enough to sway

shares), while also attracting large numbers of Indians to US counties outside of the West Coast.

7Exogeneity of ancestry shares is a sufficient, but generally not a necessary condition for the validity of the
canonical shift-share approach. It is not a necessary condition for our approach either. For work identifying
necessary and sufficient conditions for the validity of the shift-share instrument as proposed by Altonji and Card
(1991) and Bartik (1991) see Borusyak, Hull, and Jaravel (2018).
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3.2 The Construction and Performance of the Instrument

We now review the estimation results of each of the steps towards the construction of our

instrument, including the performance of the resulting instrument for county-level immigration

in the relevant first-stage regression.

In step 1 of our instrument construction, we predict ancestry levels by using historical push-

pull factors in (3). Figure 3 reports the coefficients in this regression predicting 2010 ancestries,

and reports the coefficients on the interaction term by time period (assuming for presentational

purposes only that bτr(d) = bτ ∀r(d)). The results indicate that we identify variation in current

ancestry levels based on push and pull factors from across the full range of time periods in

our sample, with precise contributions from periods as far back as the pre-1900’s census waves.

These coefficients are positive and mostly significant. The negative coefficient in the late 1920s

is consistent with large return-migrations during the Great Depression, when arriving migrants

swiftly returned home and possibly attracted earlier migrants to follow their steps. Figure 4

presents a bin scatter plot of the resulting predicted ancestry levels against realized ancestry in

2010. Realized and predicted ancestry are tightly aligned along the 45-degree line. We conclude

that Step 1 successfully predicts plausibly exogenous variation in ancestry.

In Step 2, we interact lagged predicted ancestry with contemporaneous scaled push factors

(Ât−1
o,d × Ĩ to,−r(d)) to predict plausibly exogenous variation in immigration I to,d at the {o, d} level

in (4). We allow the coefficient γ to vary by time period t, and Table 2 reports the resulting

estimates. Our ancestry and push factors positively predict immigration at the origin-county

level in all time periods, with R2 values indicating high explanatory power in Column 1 with

no other predictors included. Adding a range of other controls and fixed effects in Columns 2-4

changes the overall R2 values by little, and the coefficients on ancestry and push factors remain

stable even in Column 5 when including the endogenous total flow of European migration to the

same county as an additional control. We conclude that Step 2 successfully predicts plausibly

exogenous variation in immigration at the {o, d} level.

In step 3, we sum across origin nations to compute an instrument Î td for total non-European

immigration to county d at time t (5). Table 3 reports the first-stage regression of county-

level non-European immigration on this instrument. Column 1 is the simplest specification,

regressing immigration on the instrument itself alone, with a strong first-stage F -statistic and a

positive impact of our instrument on realized immigration. Column 2 allows for census division

level and time fixed effects, with a stable coefficient and continued first-stage strength. The

same conclusion is reached with disaggregate state and time effects in Column 3. Later on we
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also analyze a more restricted sample of counties for use with the natively MSA-level BDS data

described above, and Column 4 shows that a strong positive first-stage relationship exists in

this narrow subsample as well.

Figure 5 presents a series of maps displaying our predicted migrations for each 5-year period

from 1975 to 2010. To make those maps easier to read, and to match our econometric procedure

more closely, we remove state and time fixed effects. Two states are particularly informative

about our identification strategy, Michigan and Pennsylvania. For Michigan, the patterns for

actual and predicted migrations are very similar. This suggests our model of migrations is

well suited to describe actual migrations to Michigan: the historical interaction of push and

pull factors explains the distribution of foreign ancestry well, and recent migrations are to a

large extent shaped by pre-existing ancestry. The picture for Pennsylvania is more nuanced.

For instance, our predicted immigration shocks identify migrations towards both the greater

Pittsburgh and Philadelphia areas, while actual immigration is primarily concentrated around

Philadelphia. This suggests that migrations towards Philadelphia are more likely to be driven

by endogenous factors.

4 The Impact of Immigration on Innovation and Growth

Classical endogenous growth theories links population growth to innovation, dynamism, and

income growth at the local level, a result which we lay out in a straightforward theoretical

derivation in Appendix B. In this section, we exploit our quasi-random variation in immigration

above to test these predictions explicitly.

4.1 Immigration and Innovation

We first test the hypothesis that immigration causes an increase in innovation at the county

level. Table 4 shows estimates of (1) where we instrument for the number of immigrants arriving

in the county during the 5-year period. The dependent variable is the change in patents per

capita over the same period. Column 2 shows our standard specification which includes state

and time fixed effects, thus controlling for differential trends in innovation growth at the state

level. The estimated effect is positive and statistically highly significant (0.101, s.e.=0.031). It

implies that the arrival of 10,000 additional immigrants in a given county increases the flow of

patents filed over a 5-year period by 1 patent per 100,000 people. Comparing these magnitudes
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to the summary statistics above, an increase in immigration flows of one standard deviation -

12 thousand immigrants - causes around 1.2 more patents per 100,000 people, an increase of

27% relative to mean (4.45 patents per 100,000 people).

Column 1 shows the OLS estimate of (1) for comparison. As expected, it is somewhat larger

than our preferred estimate (by about 2 standard errors), consistent with the view that, other

things equal, immigrants select into innovative counties in equilibrium.

Columns 3 and 4 show similar results for the impact of population growth on innovation,

either in a simple OLS specification (column 3), or if we instrument population growth using

historical migrations (column 4).

Robustness: Alternative Instruments. Table 5 shows how our instrumentation and iden-

tifying assumptions affect our estimates of (1). Column 1 shows the effect of immigration on

innovation in the simplest OLS setting. Column 2 follows Altonji and Card (1991) to instrument

for immigration, taking the actual ancestry shares in the data. Column 3 is our standard IV

specification, where we instrument for immigration using predicted ancestry rather than actual

ancestry. In column 4, we predict ancestry in 1975 only, not in subsequent periods, and use

this initial ancestry to predict immigration in all subsequent periods. Columns 5 and 6 show

variations in our leave-out strategy, leaving out countries with similar immigration patterns

from the ‘pull’ factor in column 5, and leaving out migrants from the same continent from the

‘push’ factor in column 6.

As expected, the estimated impact of migrations on innovation is largest in the OLS specifi-

cation (0.167 in column 1), intermediate if we use actual ancestry shares as in Altonji and Card

(1991) (0.132 in column 2), and smallest in our preferred estimate when we predict ancestry

(0.101 in column 3). This suggests that the forms of endogenous selection mentioned above

do operate in the data, although they are not strong enough to overturn the overwhelmingly

positive association between immigration and measured innovation in our baseline estimate in

column 3. We should also note that those differences are not large, and not statistically signif-

icant. Our preferred estimate is also almost unaffected if we freeze ancestry at its 1975 level

(column 4), or if we use variations in our leave-out strategy (columns 5 and 6).

Robustness: Additional Controls. In Table 6 we go one step further and control paramet-

rically for a number of initial conditions that could be considered drivers of long-term economic

growth: population density in 1970, the number of patents generated in 1975 per 1,000, 1970

inhabitants (1975 is the first year for which our patent data is available), and the share of the
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1970 population that is high-school and college educated, respectively. All of these covariates

could be considered “bad controls” (Angrist and Pischke, 2009), in the sense that they are

themselves outcomes of migration and should thus more appropriately be thought of as various

channels through which historical migrations and ancestry may affect innovation. Nevertheless,

it is comforting for our identifying assumption that controlling for these initial conditions has

only modest effects on our result. The largest change in the coefficient of interest occurs when

we include the share of the population with a college education in 1970, lowering it from 0.101

to 0.082, less than one standard error (s.e.=0.031). Column 6 imposes an even stronger iden-

tification restriction, by including a county fixed effect to control for county-specific trends in

innovation. Throughout these variations, the estimated effect of immigration varies little, and

it remains positive and statistically highly significant.

Robustness: Alternative Samples. Table 7 probes the robustness of these results by

dropping important origin countries. We drop migrations from the five largest sending countries

post 1975 (Mexico, China, India, Philippines, and Vietnam) from the sum in (5), thus treating

migrations from these countries as endogenous. While dropping Mexican migrations from our

instrument lowers the F-statistic in the first stage by about half, the coefficient estimates vary

little across these variations, showing that no single large sending country drives our results.

Robustness: Alternative Measures of Innovation. We show in Appendix A Table 4 that

our results are robust to alternative measures of innovation. Our measure for innovation comes

from USPTO patent microdata. In our main specification, we assign patents to a specific

county d according to the firm or assignee owning the patents, and we treat all patents as

equally important, simply counting the total number of patents. We consider two variations on

each dimension. First, we assign patents according to the place of residence of the inventor of

the patent, not the firm owning the patent. Second, we weight each patent according to their

relative citation counts following Hall et al. (2001) in order to distinguish between high impact-

high citation patents and low impact-low citation patents. Across all four possible measures

of patents, our results are similar, with a positive and significant effect of immigration on

innovation, and a similar estimated size for this effect. The differences in the point estimates

simply reflect differences in the scale of the various measures of innovation.
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4.2 Immigration and Economic Dynamism

In Table 8, we supplement our analysis of immigration’s impact on innovation with a range of

additional economic dynamism and income growth outcomes which endogenous growth theory

suggests should link positively to innovation.

Immigration causes an increase in creative destruction or gross flows in jobs, as reported in

columns 1 and 2. Both the job creation rate and job destruction rate increase with immigration,

implying that the overall churning or reallocation in the labor market also responds positively.

Recall that dynamism measures decline on average over this period, as emphasized by the

wide literature on declining creative destruction in the US. Our positive estimated responses

to immigration indicate that immigration may help to dampen such declines. Turning to

magnitudes, a one standard deviation increase in immigration in a county - around 12 thousand

more people - leads to an increase of job creation rate of 2.1 percentage points (around 7%

relative to the mean decline) and an increase in the job destruction rate of 1.8 percentage

points (around 11% relative to the mean decline).8

Exploring our alternative measure of dynamism, higher immigration causes an increase in

the skewness of employment growth (column 3). Intuitively, when more immigrants arrive, the

importance of superstar employment growth experiences across sectors in an area increases. A

one standard deviation increase in immigration causes about a 3% increase in skewness relative

to the mean decline in this measure over the sample.

4.3 Immigration and Income Growth

At their core, endogenous growth models link innovation to income growth, and Column 4 of

Table 8 confirms that more immigration causes an increase in wages per person. Immigration of

around 12 thousand more people to a county increases wages per capita by around 5% relative

to the mean observed growth.

To summarize the estimates in this section, immigration causes moderately large increases

creative destruction and income growth at the local level, validating traditional endogenous

growth theories and potentially serving as a potent counterweight to trend decline in dynamism

and growth in the US in recent decades.

8It is worth noting that although most endogenous growth theories link higher dynamism to innovation,
higher income growth, and higher welfare, the impact of dynamism on the subjective wellbeing of individuals
exposed to such creative destruction is more ambiguous (Aghion et al., 2016).
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5 Spillovers and Education

The local positive impact of immigration on innovation that we document above validates

long-standing theoretical mechanisms linking innovation to growth in population. However,

two natural questions remain. First, if ideas and goods flow across regions, to what extent

do the impacts of immigration spill over across counties in our data? Second, since most

theoretical models predict that more highly skilled workers bring more effective input to bear

for innovation or production, to what extent do the impacts of immigration on innovation vary

with the education level of migrants? We tackle both issues directly in this section, finding

that positive spillovers appear meaningful and that the impact of immigration on innovation

increases with average schooling levels.

5.1 Spatial Spillovers

To explore the impact of cross-county spillovers, we consider two geographic spillover concepts

in Table 9. First, we consider within-state spillovers, constructing for each destination county

d at each time t a measure of immigration to all counties other than d in the same state.

This measure, labeled ImmigrationtState, varies at the same level as the county-specific baseline

immigration flow Immigrationtd. To construct a separate instrument for state-level immigration

flows we follow a symmetric procedure, adding the immigration shocks up for all other counties

within the same state as d.

In a second approach, we consider a specification allowing spillovers from neighboring coun-

ties to vary smoothly by distance. For any county d at each time t, we construct the sum of

all immigration to other counties, inversely weighted by the distance to the reference county d.

The distance measures reflect a matrix of great circle distances computed from county centroids

using the Census mapping files for county geographies. The resulting distance-weighted mea-

sure of immigration to other counties, labeled Neighbor′s Immigrationtd, varies at the county

d by time t level. As in the case of state-level spillovers, we take an inverse distance weighted

sum of all other counties’ predicted immigration shocks. We also consider a non-parametric

estimate for the diffusion of effect of immigration, with separate instruments for immigration

within 100km (60 miles), excluding county d, immigration between 100km and 250km (150

miles), and immigration beyond 500km (300 miles).

We explore the spatial spillovers of immigration on both innovation (panel A of Table 9),

and on local wages (panel B of Table 9).

20



Innovation Spillovers. In column 1 of Table 9, we report a duplicate IV estimate of the

effect of own-county immigration on innovation. As we control for state-specific immigration

in other specifications, we control for census division fixed effects instead of state fixed effects.

This accounts for the small change in estimates compared to table 4. Column 2 adds a second

endogenous variable, the state-level sum across other counties’ immigration. The first-stage

F statistics reveal strong power for both the own-county and state-level immigration flows.9

The impact of own-county migration on immigration remains strongly positive with a similar

magnitude. But more immigration to other counties within the same state also increases inno-

vation. The magnitudes implied by Column 2 are sensible. A one-standard deviation increase

in immigration to your own county (12 thousand people) increases patenting per capita by

29% relative to mean, holding state-level immigration to other counties constant. Similarly, a

one-standard deviation increase in immigration to all other counties in the state (1.4 million

more immigrants), holding your own county’s immigration flow constant, increases patenting

per capita by around 31% relative to mean. In other words, both immigration locally and

immigration to your state positively impact your own innovation. Although migrants to other

counties matter less individually for an individual county’s own innovation, the larger scale of

those flows means that such immigrants bring similarly sized innovation impacts to the local

economy.

Columns 3 and 4 explore the spatial diffusion of the effect of immigration on innovation,

doing away with the somewhat arbitrary notion of state boundaries. Column 3 shows that

immigration to nearby counties, where we discount distant counties inversely with distance.

This measure is akin to a measure of market access in international trade. We show that

immigration to nearby counties (defined as geographically proximate counties) has a strong

positive effect on innovation. Column 4 quantifies this spatial diffusion in a non parametric

way. It shows that immigration to close-by counties has a positive effect on innovation, but this

effect dies out with distance. A one standard deviation increase in immigration within 100km

increases innovation by 80% relative to mean; a one standard deviation increase in immigration

between 100km and 250km increases innovation by 42%; but immigration beyond 500km no

longer has any effect on innovation.

Wage Growth Spillovers. The spatial spillovers of the effect of immigration on wage growth,

shown in panel B of Table 9, are similar to those on innovation, although they seem more local

9For all specifications involving multiple endogenous variables, we use the Angrist and Pischke first-stage
F -statistic, testing for each regressor separately the null of weak identification.
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than the innovation spillovers. Immigration to other counties within the state (column 2) do not

have a significant impact on wage growth. Immigration to nearby counties, using an inverse

distance weighted sum of immigration to other counties does have a strong and significant

impact on local wage growth (column 3). But this spatial diffusion for wage growth operates

over shorter distances than for innovation. Immigration within 100km positively affects local

wage growth, with a one-standard deviation increase leading to around a 20% increase relative

to mean. However, the effect disappears beyond 250km.

5.2 Education of Immigrants

We now explore whether more educated immigrants have different impacts on various outcomes

of interest. First, to measure educational attainment for individuals who might reasonably have

had the time to attend school, we limit ourselves to the analysis of immigrants age 25 or greater,

constructing the endogenous measure of immigration at the county level within this subset of

immigrants. We then interact this overall adult immigration flow with the average schooling

levels - total years of education or total years of college, in two alternative versions - adding a

second endogenous variable to our baseline specification.

To successfully instrument for both the total immigration flow and the interaction of immi-

gration and education, we exploit the fact different countries send migrants with different levels

of education to the US. Our identification strategy allows us to construct a separate instrument

for each origin country o - destination county d pair and each time period t, Î to,d = Ât−1
o,d ×Ĩ to,−r(d).

We disaggregate our baseline instrument to this level, using the predicted immigration shocks

for each of the the top 20 origin countries as a joint set of instruments for both total im-

migration and immigration interacted with average education. Since migrants from different

countries have different schooling levels, and they emigrate to different counties, we are able to

isolate variations in the level of education of migrants across counties.

Innovation and Education Table 10 reports the results of our analysis. The top panel ex-

amines heterogeneity in the impact of immigrants on innovation by education level. Column 1

replicates our standard specification for the age 25+ immigration sample, with a positive - now

slightly stronger than baseline - impact of immigration on the growth of patenting per capita.

Column 2 adds the interaction of immigration with (demeaned) average years of education for

immigrants to the same county. First-stage F -statistics reveal the strong power of our instru-

mentation strategy for both total immigration and the interacted immigration measure. The
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estimates indicate that more highly educated immigrants cause a bigger increase in innovation.

To inspect the magnitude of the heterogeneity at work here, consider two counties both receiv-

ing 10 thousand more migrants. A county receiving migrants of average education of around

11 years per person would see innovation increase by around 10× 0.200 = 2 more patents per

100,000 people. However, a county receiving the same number of immigrants with one standard

deviation (about 3.5) extra years of education per person would see 10× (0.200+3.5×0.221) =

9 more patents per 100,000 people. Column 3 reports a similar analysis, but measuring ed-

ucational attainment by average years of college completed rather than average years of to-

tal schooling. Unsurprisingly, the impact of immigration on innovation increases even more

strongly with college attainment than with overall educational attainment. Note that columns

2 and 3 rely on a linear interaction of immigration and education, imposing functional form

restrictions on the link between education and innovation responses. So Column 4 conducts a

nonparametric analysis, separately instrumenting for the immigration into counties receiving

migrants with low, medium, and high levels of average education per person by terciles. The

more flexible analysis in this column reveals that counties receiving the most highly educated

immigrants see an order of magnitude higher impact on patenting relative to counties receiving

medium-education migrants, while the impact of the lowest-education immigrants is too noisy

to determine.

Wage Growth and Education The bottom panel of Table 10 examines heterogeneity in

the impact of immigration on overall wages per capita by education levels, with a structure

identical to the top panel. The average immigrant in our sample increases average wages in

Column 1. Column 2 reveals a higher impact in counties which receive immigrants with a

higher average education level. To evaluate magnitudes, once again consider two counties both

receiving 10 thousand more migrants. A county receiving migrants of average education of

around 11 years per person would see wage increases by around 10 × 0.034 × $1000 = $340

more per person over 5 years. However, a county receiving the same number of immigrants

with one standard deviation (about 3.5) extra years of education per person would see more

wage growth by around 10 × (0.034 + 3.5 × 0.029) × $1000 = $1400 per person over 5 years.

Column 3 reveals similar - unsurprisingly stronger - patterns for college education rather than

total years of education. And in Column 4, a nonparametric analysis splitting education levels

into terciles reveals that, just as in the case of patenting, the most highly skilled immigrants

have an order of magnitude higher impact on local wages per person than moderately educated

23



immigrants, with only noisily estimated impacts from the lowest-educated migrants.

5.3 Growth Models and Population Change

Endogenous growth models often link growth to total population change, rather than immi-

gration per se. Furthermore, different models imply different functional forms. For example,

innovation growth rates respond to absolute population in “strong scale effects” models (Romer,

1990), suggesting a positive semi-elasticity of innovation to people. By contrast, “weak scale ef-

fects” models (Jones, 1995, 1999) suggest a positive growth response to population growth rates

or elasticity specifications. Although we build a suggestive motivating model in Appendix B,

our data does not have the sometimes centuries-long time scale required to cleanly differentiate

alternative models, and our results relate to local or relative innovation rather than aggregate

dynamics. However, with those limitations in mind, Table 11 explores a range of variations on

our baseline specification loosely inspired by the endogenous growth literature.

First, Column 1 duplicates our baseline results. We then note that if population growth rates

determine innovation growth, as in models with weak scale effects, counties with larger absolute

immigration flows - and lower corresponding population growth rates induced by immigration

- should see smaller increments in innovation. Column 2 tests for such concavity by adding

the squared immigration flow, instrumenting for this higher order term with the square of the

baseline predicted immigration instrument. The negative coefficients on squared innovation

suggests that such nonlinearities or concavities are present.

To this point we have found it convenient to conservatively analyze the impact of immi-

gration on the change in patenting in order to flexibly account for any permanent destination-

county specific variation in the levels of patent flows. However, baseline growth models typically

relate to the flow of patenting rather than its difference. So we explore the implications of a

switch to this flow measure, first duplicating our baseline specification and revealing a posi-

tive impact of immigration on patent flows (Column 3) and evidence of some concavity again

(Column 4).

The final four columns switch to an alternative outcome measure, the inverse hyperbolic

sine (IHS) of patent flows. This outcome, approximately equivalent in changes to natural

logs for positive values, allows us to examine the semi-elasticity or elasticity of innovation to

various changes, with different classes of growth models mapping to each concept as discussed

above. Column 5 reveals a positive semi-elasticity of innovation to immigration. Although our

instrument was designed to predict immigration rather than overall population change, and has
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less power for predicting overall population change as measured by the first-stage F-statistic,

Column 6 reveals a positive semi-elasticity to total population changes induced by predicted

immigration. Columns 7 and 8 repeat the exercise, instrumenting for the IHS of immigration or

population change. The resulting coefficients are interpretable as elasticities, with a one-percent

increase in immigration inducing 1.7% higher innovation in Column 7. Column 8, for which we

have the least first-stage power and more noisy estimates, reveals an increase in innovation of

around 2.5% after 1% higher population change.

6 Conclusion

We find that plausibly exogenous variation in migration at the county level induced by quasi-

random variation in historical “push” and “pull” factors for immigration strongly predicts

overall realized immigration. We then estimate that over the past four decades immigration

at the local level has spurred increased innovation or patenting per capita. A strong tradition

in endogenous growth theory predicts exactly these links, with more immigrants bringing new

ideas, purchasing power, and scale which contribute to innovation. The impact of immigration

on innovation spills over positively to nearby counties and unsurprisingly increases with the

schooling of immigrants.

However, we also find that immigration increases dynamism or creative destruction at the

local level. Classic theoretical models predict that such creative destruction, which has been

declining on average in the US overall in recent decades, should move with overall innovation,

consistent with our findings on patents above. We conclude that increased immigration in

recent decades may have prevented even worse declines in dynamism at the local level, and

might contribute to further mitigating the downward trend in dynamism if allowed in the

future.

Finally, we show that immigration to an area also has increased income growth or wages

per capita at the local level.

Given the relevance of innovation, dynamism, and growth for the long-run prospects of the

US economy as well as for macro models of growth, we view our results as relevant to the

ongoing debate about the appropriate choice of immigration policy.

25



References

Aghion, P., U. Akcigit, A. Deaton, and A. Roulet (2016): “Creative destruction and

subjective well-being,” American Economic Review, 106, 3869–97.

Aghion, P. and P. Howitt (1992): “A model of growth through creative destruction,”

Econometrica (1986-1998), 60, 323.

Akcigit, U. and S. T. Ates (2019): “Ten Facts on Declining Business Dynamism and

Lessons from Endogenous Growth Theory,” Working paper.

Akcigit, U., J. Grigsby, and T. Nicholas (2017): “The rise of American ingenuity:

Innovation and inventors of the Golden Age,” National Bureau of Economic Research working

paper.

Alon, T., D. Berger, R. Dent, and B. Pugsley (2018): “Older and slower: The startup

deficit’s lasting effects on aggregate productivity growth,” Journal of Monetary Economics,

93, 68–85.

Altonji, J. G. and D. Card (1991): “The effects of immigration on the labor market

outcomes of less-skilled natives,” in Immigration, trade, and the labor market, University of

Chicago Press, 201–234.

Angrist, J. D. and J.-S. Pischke (2009): Mostly harmless econometrics: An empiricist’s

companion, Princeton university press.

Bartik, T. (1991): Who Benefits from State and Local Economic Development Policies?, W.E.

Upjohn Institute.

Bernstein, S., R. Diamond, T. McQuade, and B. Pousada (2018): “The Contribution

of High-Skilled Immigrants to Innovation in the United States,” Working paper.

Bloom, N., C. I. Jones, J. Van Reenen, and M. Webb (2017): “Are ideas getting harder

to find?” National Bureau of Economic Research working paper.

Borusyak, K., P. Hull, and X. Jaravel (2018): “Quasi-Experimental Shift-Share Re-

search Designs,” Working Paper.

Burchardi, K., T. Chaney, and T. Hassan (forthcoming): “Migrants, Ancestors, and

Foreign Investments,” Review of Economic Studies.

26



Card, D. (2001): “Immigrant Inflows, Native outflows, and the Local Labor Market Impacts

of Higher Immigration,” Journal of Labor Economics, 19, 22–64.

Decker, R., J. Haltiwanger, R. Jarmin, and J. Miranda (2014): “The secular decline

in business dynamism in the US,” Working paper.

Duncan, B. and S. J. Trejo (2017): “The complexity of immigrant generations: Implica-

tions for assessing the socioeconomic integration of Hispanics and Asians,” ILR Review, 70,

1146–1175.

Goldsmith-Pinkham, P., I. Sorkin, and H. Swift (2018): “Bartik Instruments: What,

When, Why and How,” Working Paper.

Gordon, R. J. (2012): “Is US economic growth over? Faltering innovation confronts the six

headwinds,” National Bureau of Economic Research working paper.

Grossman, G. M. and E. Helpman (1991): “Quality ladders in the theory of growth,” The

Review of Economic Studies, 58, 43–61.

Hall, B. H., A. B. Jaffe, and M. Trajtenberg (2001): “The NBER Patent Citaitons

Data File: Lessons, Insights, and Methodological Tools,” NBER Working Paper 8498.

Hanson, G. H. (2009): “The economic consequences of the international migration of labor,”

Annual Review of Economics, 1, 179–208.

——— (2010): “Future Directions for Research on Immigration,” American Economic Asso-

ciation, Ten Years and Beyond: Economists Answer NSF’s Call for Long-Term Research

Agendas.

Hathaway, I. and R. E. Litan (2014): “Declining business dynamism in the United States:

A look at states and metros,” Brookings Institution, 2.

Hopenhayn, H., J. Neira, and R. Singhania (2018): “From Population Growth to Firm

Demographics: Implications for Concentration, Entrepreneurship and the Labor Share,” Na-

tional Bureau of Economic Research working paper.

Hunt, J. and M. Gauthier-Loiselle (2010): “How Much Does Immigration Boost Inno-

vation?” American Economic Journal: Macroeconomics, 2, 31–56.

27



Jones, C. I. (1995): “R&D-Based Models of Economic Growth,” Journal of Political Economy,

103.

——— (1999): “Growth: with or without scale effects?” American Economic Review, 89,

139–144.

Karahan, F., B. Pugsley, and A. Sahin (2016): “Demographic origins of the startup

deficit,” New York Fed working paper.

Kerr, S. P. and W. R. Kerr (2016): “Immigrant entrepreneurship,” National Bureau of

Economic Research working paper.

Kerr, W. R. (2018): The Gift of Global Talent: How Migration Shapes Business, Economy,

& Society, Stanford University Press.

Kerr, W. R. and W. F. Lincoln (2010): “The Supply Side of Innovation: H1B Visa

Reforms and U.S. Ethnic Invention,” Journal of Labor Economics, 28, 473–508.

Khanna, G. and M. Lee (2018): “High-skill Immigration, Innovation, and Creative Destruc-

tion,” NBER Working Paper 24824.

Klette, T. J. and S. Kortum (2004): “Innovating firms and aggregate innovation,” Journal

of Political Economy, 112, 986–1018.
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Tables and figures

Table 1: Summary Statistics by County-Year

mean sd iqr
Immigration Flows and Population Change
Non-Euro. immigration (1000s) 1.42 12.21 0.22
Difference in population (1000s) 4.03 19.56 2.56
Instrument for Non-Euro. immigration (1000s) 0.00 4.99 0.24
Patents
Patenting per 100,000 people 32.60 94.73 20.66
Difference in patenting per 100,000 people 4.45 47.83 6.45
Difference in patenting per 100,000 people (Inventors) 18.85 90.45 41.13
Difference in patenting per 100,000 people (Citation Weighted) 5.23 63.91 6.04
Dynamism and Wages
Difference in job creation rate -32.47 209.90 50.00
Difference in job destruction rate -17.37 199.58 38.46
Difference in skewness of employment growth -6.82 48.91 51.87
Difference in average annual wage ($1,000) 1.90 5.62 2.58
Immigration and Education
Non-Euro. immigration, age 25+ 0.80 6.91 0.11
Non-Euro. immigration, age 25+: Average years college 1.50 1.41 1.82
Non-Euro. immigration, age 25+: : Average years education 10.88 3.65 4.59
Immigration for Spillovers
State (minus own county) non-Euro. immigration (1000s) 808.00 1,438.90 557.47
Instrument for state (minus own county) non-Euro. immigration (1000s) 31.92 366.25 60.89
Inverse-distance weighted non-Euro. immigration (1000s) 1.15 0.78 0.65
Instrument for inverse-distance weighted non-Euro. immigration (1000s) -0.01 0.15 0.03
Non-Euro. immigration to counties within 100km of d (1000s) 18.58 64.65 9.21
Instrument for non-Euro. immigration to counties within 100km of d (1000s) -0.24 11.69 2.93
Non-Euro. immigration to counties within 250km of d (1000s) 74.96 133.50 67.60
Instrument for non-Euro. immigration to counties within 250km of d (1000s) -2.46 26.90 10.81
Non-Euro. immigration to counties within 500km of d (1000s) 123.10 149.52 143.69
Instrument for non-Euro. immigration to counties within 500km of d (1000s) 0.00 36.88 10.01
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Table 2: Regressions of Immigration on Shift-Share Instruments at the Country-County Level

Immigrationto,d

(1) (2) (3) (4) (5)

Â1975
o,d × Ĩ1980

o,−r(d) 0.0036*** 0.0036*** 0.0035*** 0.0035*** 0.0035***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Â1980
o,d × Ĩ1985

o,−r(d) 0.0016*** 0.0016*** 0.0016*** 0.0016*** 0.0016***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Â1985
o,d × Ĩ1990

o,−r(d) 0.0018*** 0.0018*** 0.0018*** 0.0018*** 0.0018***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Â1990
o,d × Ĩ1995

o,−r(d) 0.0005*** 0.0005*** 0.0005*** 0.0005*** 0.0005***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Â1995
o,d × Ĩ2000

o,−r(d) 0.0004*** 0.0004*** 0.0004*** 0.0004*** 0.0004***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Â2000
o,d × Ĩ2005

o,−r(d) 0.0002*** 0.0002*** 0.0002*** 0.0002*** 0.0002***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Â2005
o,d × Ĩ2010

o,−r(d) 0.0002*** 0.0002*** 0.0002*** 0.0002*** 0.0002***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
I tEuro,d 0.0109***

(0.0031)

N 3,583,881 3,583,881 3,583,881 3,583,881 3,583,881

F-Stat 1.35e+06 1.36e+06 3.55e+05 3.55e+05 3.39e+05

R2 0.656 0.657 0.709 0.709 0.709

Controls:
Distance no yes yes yes yes
Latitude Dis. no yes yes yes yes
Region-Country FE no no yes yes yes
County-Continent FE no no yes yes yes
Time FE no no no yes yes
Concurrent European Immigration no no no no yes

Notes: This table reports coefficient estimates for step 2 of our instrument construction, shown
in Equation (4), at the country-county level. Moving from column 1 to column 5 we introduce
additional fixed effects and controls into the regression specification. We report the first-stage
F -statistic on the excluded instruments for each specification. Standard errors are clustered by
country for all specifications and *,**, and *** denote statistical significance at the 10%, 5%, and
1% levels, respectively.
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Table 3: Panel Regressions of Immigration and Population Change on Predicted Immigration
Flows at the County Level for 1980 to 2010

(1) (2) (3) (4)

5-Year Non-European Immigration

̂Immigration
t

d 2.107*** 2.107*** 2.100*** 2.111***
(0.046) (0.062) (0.061) (0.068)

N 21,987 21,987 21,987 6,600

F-Stat 2,139 1,168 1,202 951

R2 0.741 0.768 0.777 0.771

5-Year Population Growth

̂Immigration
t

d 1.890*** 1.890*** 1.818*** 1.767***
(0.168) (0.190) (0.180) (0.157)

N 21,986 21,986 21,986 6,600

F-Stat 127 99 102 126

R2 0.233 0.272 0.314 0.370

Controls:
Geogrpahy FE None division state state
Time FE no yes yes yes
MSA Counties no no no yes

Notes: This table reports the results for step 3 of instrument
construction, or the coefficient estimates for the first stage
specification for non-European immigration (1,000s) (Panel
A) and population change (1,000s) (Panel B). Column 1 pro-
vides the results from a regression of non-European immi-
gration or population change on the instrument described in
equation (5). Column 2 then adds to that regression time and
census division effects while Column 3, our main specification,
includes state and time fixed effects. Column 4 shows the first
stage estimated on a restricted sample of counties, which is
used in analyses of natively MSA-level BDS data. We report
the first-stage F -statistic on the excluded instrument for each
specification. Standard errors are clustered by state for all
specifications and *,**, and *** denote statistical significance
at the 10%, 5%, and 1% levels, respectively.
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Table 4: Panel Regressions of 5-year Difference in Patenting per 100,000 People on Immigra-
tion (and Population Growth) at the County Level

5-year Difference in Patenting
per 100,000 People Post-1980

(1) (2) (3) (4)

Immigrationtd 0.167** 0.101***
(0.080) (0.031)

∆ Populationtd 0.223*** 0.113***
(0.066) (0.030)

N 18,846 18,846 18,846 18,846

Controls:
Specification OLS IV OLS IV
Geography FE state state state state
Time FE yes yes yes yes

Notes: This table reports the results of our second stage
specification, described in Equation (1), where the depen-
dent variable is the change in patenting per 100,000 people
(population is based on baseline 1970 levels) in county d in
the 5-year period ending in t and the endogenous variable
is non-European immigration (1,000s) (columns 1 and 2) or
population growth (1,000s) (columns 3 and 4) in d and period
t. Column 1 and 3 provide the results of the OLS estimation
of Equation (1) while columns 2 and 4 provide an IV esti-
mate of the second stage. Standard errors are clustered by
state for all specifications and *,**, and *** denote statisti-
cal significance at the 10%, 5%, and 1% levels, respectively.
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Table 5: Robustness - Alternative Instruments

Specification: OLS Card Baseline Ancestry in Leave-Out Leave-Out
Specification Instrument Instrument 1975 Only Correlated Counties Own Continent

(1) (2) (3) (4) (5) (6)

5-year Difference in Patenting per 100,000 People Post-1980

Immigrationtd 0.167** 0.132** 0.101*** 0.093*** 0.098*** 0.094***
(0.080) (0.055) (0.031) (0.027) (0.033) (0.027)

N 18,846 18,846 18,846 18,846 18,846 18,846

First Stage

̂Immigration
t

d 0.860*** 2.119*** 2.171*** 2.215*** 2.121***
(0.045) (0.070) (0.063) (0.196) (0.074)

N 18,846 18,846 18,846 18,846 18,846

F-Stat 361 911 1,171 127 830

R2 0.901 0.762 0.747 0.462 0.763

Geography FE state state state state state state
Time FE yes yes yes yes yes yes

Notes: This table displays the first stage (Panel B) and second stage (Panel A), described in Equation (1), where
the dependent variable is the change in patenting per 100,000 people (population is based on baseline 1970 levels)
and the endogenous variable is non-European immigration (1,000s) to d in t. In this table, each column utilizes
a different instrumentation strategy. Column 1 shows the OLS specification while column 2 uses the traditional
Card Instrument. Column 3 then provides our baseline instrument and column 4 uses our baseline instrument
strategy but uses predicted ancestry in 1975 for all periods in the panel. Column 5 also follows the same approach
for instrument construction as our standard instrument except that the leave-out strategy in Step 1 is changed:
the push factor excludes all destination counties whose overall time-series of immigration flows are correlated with
those of d (as opposed to excluding counties in the same census division (r(d)) as d). Column 6 follows the same
procedure as our baseline instrument construction but replacing the pull factor in Step 1 with the share of all
migrants who settle in d but excluding migrants from the same continent as o). Finally, column 5 relies on a
traditional shift-share procedure where the instrument is the sum over countries o of the interaction of baseline
ancestry shares for country o with the number of migrants from o to the US in period t. We report the first-stage
F -statistic on the excluded instrument for each specification in Panel B. Standard errors are clustered by state for
all specifications and *,**, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 6: Robustness - Additional Controls from Baseline Year (1970)

5-year Difference in Patents per 100,000 People for 1980 to 2010

(1) (2) (3) (4) (5) (6)

Immigrationtd 0.101*** 0.102*** 0.100*** 0.092*** 0.082*** 0.108***
(0.031) (0.032) (0.031) (0.029) (0.027) (0.033)

Population Density (1970) -0.001
(0.004)

Patents per 1,000 People (1975) 0.089**
(0.042)

Share High School Education (1970) 27.821**
(11.059)

Share 4+ Years College (1970) 103.990***
(29.961)

N 18,846 18,846 18,846 18,846 18,846 18,846

First Stage F-Stat 911 1,658 911 945 1,017 85

Controls:
Geography FE state state state state state county
Time FE yes yes yes yes yes yes

Notes: This table reports the results of our second stage specification, described in Equation (1), where
the dependent variable is the change in patenting per 100,000 people (population is based on baseline 1970
levels) and the endogenous variable is non-European immigration (1,000s) to d in t. Column 1 repeats our
main specification while columns 2 through 5 add as a control county d’s population density in 1970; patents
per 1,000 people in 1975 (1970 population is used to match the dependent variable); share of high school
educated; and share of the population with 4+ years of college, respectively. Finally, column 6 then adds a
county fixed effect. We report the first-stage F -statistic on the excluded instrument for each specification.
Standard errors are clustered by state for all specifications and *,**, and *** denote statistical significance
at the 10%, 5%, and 1% levels, respectively.
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Table 7: Robustness - Alternative Samples

Difference in Patenting per 100,000 People Post-1980

Excluding: Mexico China India Philippines Vietnam

(1) (2) (3) (4) (5)

Immigrationtd 0.080*** 0.102*** 0.101*** 0.100*** 0.101***
(0.025) (0.032) (0.031) (0.031) (0.031)

N 18,846 18,846 18,846 18,846 18,846

First Stage F-Stat 666 1,576 1,267 1,261 1,179

Controls:
Geography FE state state state state state
Time FE yes yes yes yes yes

Notes: This table reports the results of our second stage specification, de-
scribed in Equation (1), run on alternative samples where the dependent vari-
able is the change in patenting per 100,000 people (population is based on
baseline 1970 levels) and the endogenous variable is non-European immigra-
tion (1,000s) to d in t. Each column drops migrants from one of the five largest
sending countries post 1975 (Mexico, China, India, Philippines, and Vietnam)
from the sum in Equation (5). We report the first-stage F -statistic on the
excluded instrument for each specification. Standard errors are clustered by
state for all specifications and *,**, and *** denote statistical significance at
the 10%, 5%, and 1% levels, respectively.
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Table 8: Panel Regressions of All Outcomes on Immigration

5-Year Job Job Job Growth Average
Difference in: Creation Destruction Rate Annual

Rate Rate Skewness Wage

(1) (2) (3) (4

Immigrationtd 0.176*** 0.152*** 0.019*** 0.008***
(0.033) (0.035) (0.004) (0.002)

N 6,600 6,600 12,564 21,976

First Stage F-Stat 951 951 151 1,202

Controls:
Geography FE state state state state
Time FE yes yes yes yes

Notes: This table reports the results of our second stage specification,
described in Equation (1), for each of our dependent variables with
non-European immigration (1,000s) to d in t as the endogenous vari-
able. Columns 1 and 2 report the results of our second stage with the
job creation rate and job destruction rate as the dependent variable, re-
spectively. Column 3 then provides results for job growth rate skewness
as the dependent variable while the dependent variable for the specifi-
cation shown in column 4 is the change in the average annual real wage
($1,000) over the 5-year period ending in t. Standard errors are clus-
tered by state for all specifications and *,**, and *** denote statistical
significance at the 10%, 5%, and 1% levels, respectively.
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Table 9: Spillovers Analysis

(1) (2) (3) (4)

5-Year Difference in Patenting per 100,000 People Post-1980

Immigrationtd 0.130*** 0.107*** 0.072** 0.080**
(0.039) (0.035) (0.032) (0.037)

ImmigrationtState 0.001***
(0.000)

Neighbors’ Immigrationtd (Inverse Distance Weight) 6.600***
(1.593)

Immigrationt100km 0.056***
(0.018)

Immigrationt250km 0.014***
(0.005)

Immigrationt500km 0.006
(0.005)

N 18,846 18,846 18,846 18,846

First Stage F-Stat d 876 1,792 2,175 6,065

First Stage F-Stat Spillover 470 162 383

First Stage F-Stat Spillover 150

First Stage F-Stat Spillover 66

5-Year Difference in Average Annual Wage ($1,000) Post-1975

Immigrationtd 0.010*** 0.009*** 0.005*** 0.005***
(0.002) (0.003) (0.001) (0.002)

ImmigrationtState 0.000
(0.000)

Neighbors’ Immigrationtd (Inverse Distance Weight) 0.560***
(0.191)

Immigrationt100km 0.006***
(0.002)

Immigrationt250km -0.001
(0.001)

Immigrationt500km -0.000
(0.001)

N 21,976 21,976 21,976 21,976

First Stage F-Stat d 1,166 2,289 3,482 7,967

First Stage F-Stat Spillover 434 165 395

First Stage F-Stat Spillover 157

First Stage F-Stat Spillover 67

Controls:
Geography FE division division division division
Time FE yes yes yes yes

Notes: This table reports the results of our second stage specification for the change in patenting per 100,000 people
(population is based on baseline 1970 levels) (Panel A) and the change in the average annual wage ($1,000s) (Panel B)
with non-European immigration (1,000s) to d in t as the endogenous variable. The first column repeats our baseline
specification but with census division controls. Column 2 adds as a second endogenous variable total non-European
immigration to the state in which d is located, excluding own-immigration to d, in period t and a comparable instrument.
Column 3 adds as a second endogenous variable the inverse-distance-weighted sum of non-European immigration to all
counties in the US, excluding own-immigration, and an instrument constructed in the same way. Column 4 includes
variables, and appropriate instruments, for non-European immigration to counties within 100km, 250km, and 500km of
county d. For each specification we report the first-stage F -statistic(s), utilizing the F -statistic described in Angrist and
Pischke (2009, p. 217-218) in the case of multiple endogenous variables. Standard errors are clustered by state for all
specifications and *,**, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 10: Education Analysis

(1) (2) (3) (4)

5-year Difference in Patenting per 100,000 People Post-1980

Immigrationtd 0.165*** 0.200*** 0.415***
(0.002) (0.070) (0.076)

Average Years Educationtd × Immigrationtd 0.221***
(0.068)

Average Years Collegetd × Immigrationtd 0.887***
(0.166)

1{Low Avg. Years Education} × Immigrationtd 1.863
(4.539)

1{Medium Avg. Years Education} × Immigrationtd 0.084*
(0.044)

1{High Avg. Years Education} × Immigrationtd 1.401*
(0.792)

N 18,846 18,846 18,846 18,846

First Stage F-Stat 1,000,642 871,892 154,901 1,041

First Stage F-Stat 49,425 4,563 1,242,524

First Stage F-Stat 3,242

5-year Difference in Average Annual Wage ($1,000) Post-1975

Immigrationtd 0.028** 0.034*** 0.053***
(0.011) (0.007) (0.013)

Average Years Educationtd × Immigrationtd 0.029***
(0.006)

Average Years Collegetd × Immigrationtd 0.089***
(0.020)

1{Low Avg. Years Education} × Immigrationtd -0.013
(0.015)

1{Medium Avg. Years Education} × Immigrationtd 0.019**
(0.008)

1{High Avg. Years Education} × Immigrationtd 0.200***
(0.066)

N 21,976 21,976 21,976 21,976

First Stage F-Stat 284,264 209,169 42,824 100,244

First Stage F-Stat 31,561 7,266 192,212

First Stage F-Stat 2,734

Controls:
Geography FE state state state state
Time FE yes yes yes yes

Notes: This table reports the results of our second stage specification for the change in patenting per 100,000 people
(population is based on baseline 1970 levels). Column 1 repeats our main specification but adjusting the migrant pool
to those aged 25+ (1,000s). Columns 2 and 3 then add a second endogenous variable for the interaction of immigration
with the (demeaned) average years of education or (demeaned) average years of college education, respectively, of those
migrants. Column 4 uses as endogenous variables adult immigration interacted with indicators for the terciles of average
years of education of migrants across counties in period t. In all specifications, for instrumentation we exploit the fact
that in our initial instrument construction we created quasi-exogenous immigration shocks for each origin country-o ×
destination county-d pair in each time period t; each specification utilizes the predicted immigration shocks for each of
the the top 20 origin nations as a joint set of instruments. For each specification we report the first-stage F -statistic(s),
utilizing the F -statistic described in Angrist and Pischke (2009, p. 217-218) in the case of multiple endogenous variables.
Standard errors are clustered by state for all specifications and *,**, and *** denote statistical significance at the 10%,
5%, and 1% levels, respectively.
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Table 11: Growth Models and Population Change

Difference in Patenting per Patenting per 100,000 IHS of Patents
100,000 People Post-1980 People Post-1975 Post-1975

(1) (2) (3) (4) (5) (6) (7) (8)

Immigrationtd 0.101*** 0.509*** 0.501** 2.505*** 0.028***
(0.031) (0.090) (0.190) (0.268) (0.011)

sq(Immigrationtd) -0.001*** -0.004***
(0.000) (0.000)

∆ Populationtd 0.033***
(0.012)

IHS(Immigrationtd) 1.723***
(0.111)

IHS(∆ Populationtd) 2.471***
(0.510)

N 18,846 18,846 21,987 21,987 21,987 21,986 21,987 21,986

First Stage F-Stat 911 95 1,202 102 1,202 102 94 16

First Stage F-Stat 11,231 11,879

Controls:
Geography FE state state state state state state state state
Time FE yes yes yes yes yes yes yes yes

Notes: This table reports the results of our second stage specification, described in Equation (1), for changes in patenting
per 100,000 people (columns 1 and 2), patenting per 100,000 people (columns 3 and 4), and IHS of patents (columns
5 through 8). Column 1 repeats our main specification while column 2 adds as a dependent variable the square of
non-European immigration (1,000s) to d in t as the endogenous variable. Columns 3 and 4 repeat the specifications in
columns 1 and 2 but with patenting as the dependent variable. Finally, columns 5 and 6 include as endogenous variables
non-European immigration and population change in d at t, respectively, while columns 7 and 8 include as endogenous
variables the IHS of non-European immigration and population change in d at t, respectively. Standard errors are clustered
by state for all specifications and *,**, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.
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Figure 1: Origins of Non-European Immigrants to the U.S.

Notes: This figure plots the share of non-European immigration into the US from the
14 non-European origin nation (except for Canada which is included in “Other”) with
the largest cumulative immigration to the US. The figure highlights variation in the push
factor, showing that the number of migrants from a given source country o to the US
varies by period t. The year 1975 is marked with a vertical line.
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Figure 2: Destinations of Immigrants to the United States, pre-1880 to
2010

Notes: This figure maps immigration flows into US counties by 10-year periods (except
between 1930 and 1950). We regress the number of immigrants into US county d at time
t, Itd, on destination county d and year t fixed effects, and calculate the residuals. The
map’s color coding depicts the 20 quantiles of the residuals across counties and within
census periods. Darker colors indicate a higher quantile.
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Figure 3: Stage 0: Predicting Ancestry

Notes: Red lines give 95% confidence intervals. Standard errors are clus-
tered at the origin country level. (F-stat 32,645.9)

Notes: This figure displays the coefficients and standard errors in the ancestry prediction
regression, equation (3), for estimating 2010 reported ancestry (assuming for presenta-
tional purposes only that bτr(d) = bτ ∀r(d)). The figure shows that we identify variation in
current ancestry levels based on push-pull interactions from the full range of time periods
in our sample.
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Figure 4: Stage 0: Predicting Ancestry (2010)

Notes: This figure plots actual ancestry in 2010 against predicted ancestry, as given in
equation (3), with the size of each circle indicating the log number of observations in a
given bin of predicted ancestry. The labeled counties are those with the highest number
of individuals declaring a given ancestry in 2010.
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Figure 5: Immigrantion Shock Conditional on State and Time FE

Notes: This figure maps the instrumented non-European immigration flows into US coun-
ties by 5-year periods. We regress the instrument for immigration into US county d at
time t on state and year t fixed effects, and calculate the residuals. This figure provides a
visualization for the labor shock used as in instrument in the regression shown in columns
2 and 4 of Table 4. The map’s color coding depicts the 20 quantiles of the residuals across
counties and within census periods. Darker colors indicate a higher quantile.
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A Data Appendix

A.1 Details on the construction of migration and ethnicity data

Details calculation of post-1880 flow of immigrants

For each census wave after 1880, we count the number of individuals in each historic US county

d who were born in historic country o (as identified by birthplace variable “bpld” in the raw

data) that had immigrated to the United States since the last census wave that contains the

immigration variable (not always 10 years earlier). Then we transform these data

• from the non-1990 foreign-country (“bpld”) level to the 1990 foreign-country level using

bpld-to-country transition matrices.

• from the US-county group/puma level to the US-county level using group/puma-to-county

transition matrices.

• from the non-1990 US-county level to the 1990 US-county level using county-to-county

transition matrices.

• from the post-1990 US-county level to the 1990 US county level. Based on the infor-

mation from https://www.census.gov/geo/reference/county-changes.html, a new

county is either created from part of ONE 1990 county or assigned a new FIPS code after

1990, so we manually change that county’s FIPS code to what it was in 1990. A few

counties’ boundaries have been changed after 1990 but that only involved a tiny change

in population, so we ignore these differences.
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Details calculation of pre-1880 stock of immigrants

For the year 1880, we calculate for each historic US county d the number of individuals who

were born in a historic foreign country o (no matter when they immigrated). We add to those

calculations the number of individuals in county d who were born in the United States, but

whose parents were born in historic foreign country o. (If the parents were born in different

countries, we count the person as half a person from the mother’s place of birth, and half a

person from the father’s place of birth). Then we transform these data

• from the pre-1880 foreign-country (“bpld”) level to the 1990 foreign-country level using

the pre-1880 country-to-country transition matrix.

• from the pre-1880 US-county level to the 1990 US-county level using the pre-1880 county-

to-county transition matrix.

Details calculation of stock of ancestry (1980, 1990, 2000, and 2010)

For the years 1980, 1990, 2000, and 2010, we calculate for each US county group the number

of individuals who state as primary ancestry (“ancestr1” variable) some nationality/area. We

transform the data

• from the ancestry-answer (“ancestr1”) level to the 1990 foreign-country level using ancestry-

to-country transition matrices.

• from the US-county group/puma level to the US county-level using group/puma-to-county

transition matrices.

• from the non-1990 US-county level to the 1990 US-county level using county-to-county

transition matrices.

• from the post-1990 US-county to the 1990 US-county level. Based on the information

from https://www.census.gov/geo/reference/county-changes.html, a new county

is either created from part of ONE 1990 county or assigned a new FIPS code after 1990,

so we manually change that county’s FIPS code to what it was in 1990. A few coun-

ties’ boundaries have been changed after 1990 but that only involved a tiny change in

population, so we ignore the difference.
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Appendix Table 1: Description of each IPUMS wave

Wave Description

1880 We use the 10% sample with oversamples; the sample is weighted, so we use the
provided person weights to get to a representative sample; we use the region identifiers
statefip and county.

1900 We use the 5% sample; the sample is weighted, so we use the provided person weights
to get to a representative sample; we use the region identifiers statefip and county.

1910 We use the 1% sample; the sample is unweighted; we use the region identifiers statefip
and county.

1920 We use the 1% sample; the sample is weighted, so we use the provided person weights
to get to a representative sample; we use the region identifiers statefip and county.

1930 We use the 5% sample; the sample is weighted, so we use the provided person weights
to get to a representative sample; we use the region identifiers statefip and county.

1970 We use the 1% Form 1 Metro sample; the sample is unweighted; we use the region
identifiers statefip and cntygp97 (county group 1970); note that only four states can
be completely identified because metropolitan areas that straddle state boundaries
are not assigned to states; identifies every metropolitan area of 250,000 or more.

1980 We use the 5% State sample; the sample is unweighted; we use the region identifiers
statefip and cntygp98 (county group 1980); the sample identifies all states, larger
metropolitan areas, and most counties over 100,000 population.

1990 We use the 5% State sample; the sample is weighted, so we use the provided person
weights to get to a representative sample; we use the region identifiers statefip and
puma; the sample identifies all states, and within states, most counties or parts of
counties with 100,000 or more population.

2000 We use the 5% Census sample; the sample is weighted, so we use the provided person
weights to get to a representative sample; we use region identifiers statefip and puma;
the sample identifies all states, and within states, most counties or parts of counties
with 100,000 or more population.

2010 We use the American Community Service (ACS) 5-Year sample; the sample is
weighted, so we use the provided person weights to get to a representative sample;
we use region identifiers statefip and puma, which contain at least 100,000 persons;
the 2006-2010 data contains all households and persons from the 1% ACS samples
for 2006, 2007, 2008, 2009 and 2010, identifiable by year.
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Appendix Table 2: Historical birthplace to current country: transition matrices

Panel A: Birthplace weights ∈ (0, 1) weight = 1 weights = 0

1880 # of answers 22 258 9
# of persons 26,301 50,177,184 4,933
% of persons 0.05% 99.94% .01%

1900 # of answers 15 131 6
# of persons 23,345 6,555,140 5,339
% of persons 0.35% 99.56% .08%

1910 # of answers 20 99 4
# of persons 31,072 5,613,136 3,105
% of persons 0.55% 99.39% .05%

1920 # of answers 13 174 7
# of persons 36,070 3,905,455 12,559
% of persons 0.91% 98.77% .32%

1930 # of answers 25 194 9
# of persons 35,930 3,086,341 61,462
% of persons 1.13% 96.94% 1.93%

1970 # of answers 12 77 3
# of persons 318,800 6,323,100 230,800
% of persons 4.64% 92.00% 3.36%

1980 # of answers 32 222 7
# of persons 491,760 4,774,820 313,300
% of persons 8.81% 85.57% 5.61%

1990 # of answers 24 209 7
# of persons 721,595 8,532,585 484,433
% of persons 7.41% 87.62% 4.97%

2000 # of answers 11 136 0
# of persons 1,122,532 13,144,632 0
% of persons 7.87% 92.13% 0%

2010 # of answers 14 137 1
# of persons 1,302,255 11,131,046 17,148
% of persons 10.46% 89.40% .14%

2010* # of answers 14 188 1
# of persons 3,512,123 300,415,680 37,469
% of persons 1.16% 98.83% .01%

Panel B: Ancestry weights ∈ (0, 1) weight = 1 weights = 0

1980 # of answers 29 227 143
# of persons 924,400 198,525,616 27,412,380
% of persons 0.41% 87.51% 12.08%

1990 # of answers 29 239 9
# of persons 2,941,941 217,720,512 27,445,182
% of persons 1.19% 87.75% 11.06%

2000 # of answers 17 137 22
# of persons 6,000,639 191,300,704 84,120,558
% of persons 2.13% 67.98% 29.9%

2010 # of answers 19 142 30
# of persons 8,454,279 229,211,968 66,299,030
% of persons 2.78% 75.41% 21.81%

The table reports statistics on the transition of data from the ‘answer’ level to 1990
country level. For each survey wave, and each question – birthplace in Panel A and
primary ancestry in Panel B – the table reports the number of answers that can be
directly linked to a 1990 country (weight = 1), that are assigned to several 1990
countries using population weights (weights ∈ (0, 1)) and that cannot be linked to
any modern country with sufficient certainty (weights = 0). The table also reports
the number of respondents (scaled from the original data using the person weights
provided) in each category. Answers with weights zero essentially consists of ”Not
Reported” (e.g. 23, 24, 54 and 30 million respondents for the 1980, 1990, 2000 and
2010 ancestry data, respectively) and ”African-American” (e.g. 26, 22 and 25 million
respondents for the 1990, 2000 and 2010 ancestry data, respectively). The remainders
are mostly cases such as ”African”, ”Uncodable”, ”Bohemian”, ”Nuevo Mexicano”,
”Other”, etc. In Panel A, all years except 1880 consist of the number of persons that
report birthplace since the last Census wave. For the 2010 Census wave the additional
entry (denoted by a *) reports the respective numbers for all respondents in that wave.
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Appendix Table 3: Historical state-county unit to 1990 state-county unit: transition matrices

Census wave weights ∈ (0, 1) weight = 1 weights = 0

1880 # of counties 658 1854 1
% of persons (birthplace data) 21.54% 78.45% .01%

1900 # of counties 2211 7 4
% of persons (birthplace data) 99.09% 0.87% .05%

1910 # of counties 1517 5 1
% of persons (birthplace data) 99.00% 0.94% .05%

1920 # of counties 1355 7 0
% of persons (birthplace data) 90.80% 9.20% 0%

1930 # of counties 1801 6 0
% of persons (birthplace data) 90.61% 9.39% 0%

1970 # of countygroups 310 98 0
% of persons (birthplace data) 34.07% 65.93% 0%

1980 # of countygroups 580 573 0
% of persons (birthplace data) 17.96% 82.04% 0%

% of persons (ancestry data) 40.02% 59.98% 0%

1990 # of PUMAs 541 1185 0
% of persons (birthplace data) 8.97% 91.03% 0%

% of persons (ancestry data) 32.15% 67.85% 0%

2000 # of PUMAs 620 1451 0
% of persons (birthplace data) 10.66% 89.34% 0%

% of persons (ancestry data) 30.36% 69.64% 0%

2010 # of PUMAs 619 1449 1
% of persons (birthplace data) 12.31% 87.65% .03%

% of persons (ancestry data) 30.13% 69.81% .05%

The table reports statistics on the transition of data from the ‘historical spatial
area’ level to 1990 US county level. For each Census wave the table reports the
number of contemporaneous spatial areas that are a subset of a 1990 US county
(weight = 1) and the number of contemporaneous spatial areas whose data
is transitioned to 1990 US county level using non-degenerate weights (weights
∈ (0, 1)). For Census waves 1880 to 1930 the share of their contemporaneous
county spatial area in each 1990 US county area is used as weight. For waves
1970 to 2010 there are two steps: In step 1 the share of their contemporaneous
countygroup (waves 1970 and 1980) or PUMA (waves 1990 to 2010) population
in the contemporaneous county population are used as weights; in step 2 the
share of their contemporaneous county spatial area in each 1990 US county area
is used as weight. The two-step procedure is necessary because the 1970 to 2010
Census waves do not have a county-level identifier (to protect the privacy of the
respondents). The table also reports the share of respondents affected by this
transition in the birthplace and ancestry data, respectively.
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Appendix Table 4: Panel Regression of 5-Year Difference in Patenting per 100,000 People on
Immigration using Alternative Patent Counts

Difference in Patenting per 100,000 People Post-1980

Assignee Assignee Inventors Inventors
(Unweighted) (Cite Weight) (Unweighted) (Cite Weight)

(1) (2) (3) (4

Immigrationtd 0.101*** 0.162*** 0.269*** 0.487***
(0.031) (0.042) (0.092) (0.140)

N 18,846 18,846 18,846 18,846

First Stage F-Stat 911 911 911 911

Controls:
Geography FE state state state state
Time FE yes yes yes yes

Notes: This table reports the results of our second stage specification, described in
Equation (1), fo rthe change in patenting per 100,000 people (population is based
on baseline 1970 levels) with non-European immigration (1,000s) to d in t as the en-
dogenous variable. Column 1 repeats our main specification where patent location is
based on assignees and raw patent counts are used. Column 2 also uses the assignee
for patent location but uses citation-weighted patent counts. Columns 3 and 4 then
provide results when inventors are used for identifying patent location where patent
counts are unweighted and citation-weighted, respectively. Standard errors are clus-
tered by state for all specifications and *,**, and *** denote statistical significance
at the 10%, 5%, and 1% levels, respectively.
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Appendix Figure 1: Destinations of Immigrants to the United States,
pre-1880 to 2010

Notes: This figure maps immigration flows into US counties by 10-year periods (except
between 1930 and 1950). We regress the number of immigrants into US county d at time
t, Itd, on destination county d and year t fixed effects, and calculate the residuals. The
map’s color coding depicts the 20 quantiles of the residuals across counties and within
census periods. Darker colors indicate a higher quantile.
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B Growth, Population Growth, Innovation, & Dynamism

In this appendix we sketch out a deliberately simple theoretical mechanism linking innova-

tion, income growth, dynamism, and population growth. We present the minimum ingredients

needed from a combination of the “semi-endogenous growth” model outlined in Jones (1995)

and the micro-level distribution of creative destruction from Schumpeterian growth models

(Aghion and Howitt, 1992; Grossman and Helpman, 1991; Klette and Kortum, 2004). We

show that in such a model the long-run balanced growth path per capita growth rate of the

economy must be proportional to the growth rate of labor input in the economy and that the

economy-wide growth rate links positively to the rates of creative destruction and innovation at

the micro level. These two outcomes concisely justify our empirical analysis linking population

dynamics to measures of scaled innovation, dynamism rates, and income growth, abstracting

from cross-economy spillovers and heterogeneity in labor input, both of which we nevertheless

explore empirically.

B.1 Environment

Final Goods Production We examine a closed local economy in continuous time t. Final

output Yt is produced according to the technology

log Yt =

∫
log yjtdj

utilizing a unit mass of intermediate varieties j.

Intermediate Goods Production Intermediate goods are each produced with a symmetric

technology combining production labor lPjt and variety-specific quality qjt, with yjt = qjtl
P
jt.

Incumbent intermediate goods firms f produce portfolios of intermediate varieties j for which

they operate the current leading-edge quality level qjt. Let logQt =
∫

log qjtdj be the average

quality level in the economy.

Innovation For an individual variety, innovation is embodied in instantaneous increase in the

quality level qjt in that good’s production, i.e., a switch from qjt to qjt+∆ = λqjt, where λ > 1

is a quality ladder or innovation step size. Incumbent firms f may innovate by hiring labor for
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innovation in the amount sIft to guarantee an innovation arrival rate pIft satisfying

pIft ∝ sIft
γ
Q−αt ,

where α, γ > 0. A mass of potential entrants each hires labor for innovation sEt to guarantee

an innovation arrival rate pEt satisfying

pEt ∝ sEt
γ
Q−αt .

In both of the innovation technologies, innovation arrival probabilities depend positively on

innovation input – labor – but negatively on the current average quality level in the economy

Qt. Solving harder problems to improve upon a higher existing average quality level requires

more input. When an innovation occurs, for either an entrant or incumbent, they become the

leading-edge incumbent producer of a random variety.

Labor Input The exogenous instantaneous growth rate of labor input or the population of

the economy Lt is n, and total labor input in any period must equal the sum of the total

amounts of labor used for production, incumbent innovation, and entrant innovation.

Lt = LPt + SIt + SEt

B.2 Balanced Growth

A range of straightforward and standard additional machinery needed for description of a

decentralized equilibrium along a stationary balanced growth path – along the lines of the

equilibria described in Klette and Kortum (2004) or Grossman and Helpman (1991) – could be

added to the framework already outlined above. But we do not need additional elements for

our desired implications. Instead, we simply note that in standard decentralizations output per

capita is proportional to the average quality level Qt. We also note that along any stationary

balanced growth path in this economy by definition there must be constant output growth

rates, constant quality growth rates, constant ratios of production labor and innovation labor

to total labor input, and a stationary distribution of outcomes at the firm and variety levels.

But then note that constant quality growth rates and constant innovation rates for incum-

bents and entrants - given the innovation technologies - imply that

Qα
t ∝ SIt

γ ∝ SEt
γ ∝ Lγt → αgQ = γn→ gQ =

γ

α
n.
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In other words, average quality growth, which is equal to per capita growth in this economy,

must be positively proportional to the population growth rate n. This is our first desired result,

echoing Jones (1995). Then, given the definition of average quality Qt, the implication of a

constant growth rate gQ = ∂ logQt
∂t

is that

gQ = p log λ,

where p = pI + pE is the sum of the constant incumbent and entrant innovation rates and λ is

the quality ladder step size described above. But note that

p = P(Innovation) = P(Displacement)

in this Schumpeterian economy. So we obtain that

P(Innovation) = P(Displacement) =
gQ

log λ
=

γ

α log λ
n,

i.e., the rate of creative destruction and the innovation rate are positively proportional to

population growth. This is our second result, following directly from the logic of creative

destruction-based growth models.

B.3 Implications

Along a balanced growth path, in models with the ingredients outlined above, we must have

the following implications.

• Per-capita output and income growth rates positively link to population growth rates.

• Innovation rates positively link to population growth rates.

• Creative destruction or displacement rates positively link to population growth rates.
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