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Abstract

We develop a new approach to specifying, solving, and estimating DSGE models with
occasionally binding collateral constraints. The new specification of the collateral constraint
that we propose assumes that the transition from the unconstrained to the constrained state
is a stochastic function of the endogenous level of leverage. This specification results in an
endogenous regime switching model, which we solve with a new general perturbation method,
highlighting the importance of using a second-order approximation. Next, using Bayesian full
information methods, we estimate a model with an occasionally binding constraint in the spirit
of Mendoza (2010), with Mexican quarterly data since 1981, considering a comprehensive set
of shocks as in Garcia-Cicco, Pancrazi, and Uribe (2010). We find that the estimated model
fits the data well, characterizing both their second moments and the 1995 Tequila crisis period,
without imposing a negative correlation between the productivity and the interest rate process.
It yields estimates of the regime probabilities that align well with narrative dates of Mexico’s
financial crisis and business cycle history. We also find that the estimated parameters of the
financial friction are tighter than previously assumed in the literature; a cocktail of shocks that
co-move in a particularly averse manner, rather than a sequence of unusually large negative
shocks, precede large sudden stops episodes like the Tequila crisis; expenditure and impatience
shocks drove Mexico’s economy into the Tequila crisis, while productivity and interest shocks
prevailed during that particular episode.
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1 Introduction

The aftermath of the Global Financial Crisis of 2008-09 stimulated a large positive and normative

literature that models financial crisis episodes as large economic dislocations associated with oc-

casionally binding collateral constraints. These constraints amplify the effects of regular business

cycle shocks and can provide a theoretical justification for policy interventions before and during

crisis times. However, structural estimation of the friction parameters and the analysis of the

shocks that historically might have driven the crisis events has been hampered by computational

challenges. As a result, this class of models lacks a Smets and Wouters (2007) style evaluation,

which is needed for implementation of the sound normative implications of dynamic, stochas-

tic general equilibrium (DSGE) models. This paper performs such an evaluation on a modified

version of the well-known model of Mendoza (2010), considering an encompassing set of shocks

previously considered in the literature, as in Garcia-Cicco et al. (2010). Thus, this paper bridges

the gap between the literature on the econometric evaluation of DSGE models in the spirit of

Smets and Wouters (2007) and the development and use of models with occasionally binding

collateral constraints as, for instance, Bocola (2015) or Jermann and Quadrini (2012).

Following the seminal contribution of Mendoza (2010), models with occasionally binding col-

lateral constraints have become the workhorse environment for the normative analysis of macro-

prudential policies, capital controls, as well as crisis resolution policies. Examples include Bianchi

(2011), Benigno et al. (2013), Benigno et al. (2016), Jeanne and Korinek (2010) and Bianchi and

Mendoza (2010) among many others. Korinek and Mendoza (2013) review this young literature

and conclude by stating that an important future step for the new research program is the “devel-

opment of numerical methods that combine the strengths of global solution methods in describing

non-linear dynamics with the power of perturbation methods in dealing with a large number of

variables so as to analyze sudden stops in even richer macroeconomic models.” Our paper develops

such an approach allowing us to empirically evaluate this class of models.

The paper makes four different contributions towards the formulation and estimation of models

with occasionally binding constraints. First, we propose a new specification of a typical occasion-

ally binding borrowing constraint (e.g. Kiyotaki and Moore, 1997) in which the transition from

the unconstrained to the constrained state of the world is a stochastic function of the endoge-

nous level of leverage in the model. Our model is such that, as leverage rises, the probability

of the constraint actually binding increases, but there is no specific leverage level at which the

constraint must bind. This specification results in an endogenous regime switching model. Our

second contribution is to develop perturbation methods to solve the ensuing endogenous regime

switching model rapidly and to higher orders, whereby an approximation at the second order is

shown to be necessary to capture precautionary behaviors. Third, using the second-order solution

of our model, we propose an algorithm to estimate its parameters with full-information Bayesian

methods. Fourth and finally, we apply the framework to study business cycles and financial crises
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in Mexico since 1981.

The core of the model economy we use as a laboratory is that of Mendoza (2010). This is a

small, open, production economy with an occasionally binding collateral constraint, though we

propose an alternative formulation for the collateral constraint itself. Differently from Mendoza

(2010), however, we consider a comprehensive and encompassing set of shocks, as in Garcia-

Cicco et al. (2010). The model is then estimated from 1981 to 2016, using quarterly data for

Mexico, showing that it fits the data well, producing second moments in line with the data,

estimated crisis regime probabilities consistent with narratives of Mexico’s currency crisis and

business cycle history. The model, however, cannot generate financial crises followed by protracted

economic stagnations, as it does not feature financial intermediation disruption or costly default

in equilibrium. The empirical results also show that while interest rate and productivity shocks

might have driven the 1995 Tequila crisis, expenditure and preference shocks might have lead the

economy into the crisis during the preceding 4-8 quarters.

Our empirical results show that while all shocks play a role in driving the economy, they have

varying relative importance for different features of the data. Variance decompositions show that

business cycle fluctuations in real quantities are driven primarily by productivity, expenditure,

and terms of trade shocks. Interest rate shocks, on the other hand, drive borrowing, the price

of capital, and the current account balance dynamics. Critically, the world interest rate drives

what we call the “borrowing cushion,” defined as the distance between actual borrowing and the

maximum value of debt consistent with the collateral constraint, which is a the state variable and

determines the probability of switching from borrowing being unconstrained to constrained.

The core of the framework that we develop to evaluate models with occasionally binding

constraints empirically is an endogenous regime switching model. In the endogenous regime

switching model, there are two regimes: one in which the collateral constraint binds, and one

in which the constraint is slack. The probability of transitioning from the unconstrained to

the constrained regime is endogenous and determined by all economic variables in the economy.

Likewise, the switch back from to the unconstrained regime depends on economic fundamentals.

In our framework, the probability of switching to the crisis regime is a logistic function of the

borrowing cushion. The borrowing cushion, in turn, is a function of the endogenous state variables

in the model, the exogenous shocks, as well as all control variables. Importantly, agents in the

economy know of this probability and how debt, output, and all other variables map into the

probability of moving in and out of each regime, consistent with the rational expectations solution

of the model. Our solution, therefore, ensures that decisions made when the constraint is slack

fully internalize how those decisions affect the probability of moving into the constrained regime,

as well how the economy will operate should that event occur.

The approach we develop captures the most salient features of an empirical model of financial

crises. The model captures the non-linear nature of a financial crisis, as when the constraint binds

the economy experience different dynamics and responses to to shocks. In addition, because we
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solve the regime switching model using a second-order approximation, we capture precautionary

behavior, which affects the decision rules as risk changes across regimes. As the transition prob-

abilities from one regime to the other are endogenous, in principle, the model can characterize

crisis episodes of varying duration. Since our solution method is perturbation-based, we can han-

dle multiple state variables and shocks, and hence we are less constrained than current non-linear

methods by the curse of dimensionality, allowing us to consider an encompassing set of shocks.

The speed of the perturbation solution method also means that we can use non-linear filters to

calculate the likelihood function of the model for a full Bayesian estimation of the relevant pa-

rameters and use Bayesian methods to evaluate the quantitative importance of different shocks

and frictions that characterize the data.

In the literature on Markov-switching DSGE models (MSDSGE), this paper is most closely

related to Foerster, Rubio-Ramirez, Waggoner, and Zha (2016), who developed perturbation meth-

ods for the solution of exogenous regime switching models working directly with the non-linear ver-

sion of the model. This differs from the Markov-Switching Linear Rational Expectations (MSLRE)

literature which starts with a system of linear rational expectations equations and imposes Markov

Switching after linearization of the model (e.g. Leeper and Zha, 2003; Davig and Leeper, 2007;

Farmer et al., 2011). Since our structural model has regime switching at its core, this is a very

natural approach. It has the added benefit that the MSDSGE model can be solved to higher

orders, whereas the MSLRE model is restricted to first order. Indeed, we find that a second-order

solution is critical for capturing precutionary behavior.

The paper is also related to the literature that focuses on solving endogenous regime switching

models. Davig and Leeper (2008), Davig et al. (2010), and Alpanda and Ueberfeldt (2016) all con-

sider endogenous regime switching, but employ computationally costly global solution methods

that prevent the possibility of a likelihood-based estimation. Lind (2014) develops a regime-

switching perturbation approach for approximating non-linear models, but it requires repeatedly

refining the points of approximation and hence it is not suitable for estimation purposes. Most

closely related to our approach is the method developed by Barthlemy and Marx (2017), who

consider a class of models with regime-dependent steady states, and Maih (2015) develops an

approach for endogenous switching based on perturbation techniques that differs where the ap-

proximating point is regime dependent. In contrast, our generalization of the Foerster et al. (2016)

perturbation approach uses a single point of approximation that is well suited for solving models

in which the regime-dependency of the steady state may not be crucial given the relatively slow

moving nature of state variables such as capital and debt.

Finally, the paper relates to Guerrieri and Iacoviello (2015) that develops a set of procedures for

the solution of models with occasionally binding constraints, called OccBin. OccBin is a certainty

equivalent solution method which rules out precautionary effects, which are critical feature of

models with occasionally binding collateral constraints. A key feature of our approach is to allow

for precautionary behavior effects.
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The application of the methodology that we propose relates to the literature on emerging

market business cycles, including particularly, among others, Mendoza (1991), Neumeyer and Perri

(2005), Mendoza (2010), and Garcia-Cicco et al. (2010). Encompassing most shocks previously

considered in this literature, we include in our analysis productivity, preference, expenditure,

interest rate, and terms of trade shocks. Relative to Mendoza (2010), we provide a Bayesian

estimation of the model and consider a wider set of shocks, including expenditure and preference

shocks, capturing fiscal policy and private saving factors. While the implied model properties

are similar, we find that the estimated parameters of the collateral constraint are significantly

tighter than previously assumed. Relative to Garcia-Cicco et al. (2010), we evaluate empirically

the relative importance of interest shocks in a fully non-linear estimated framework, finding that

they are quantitatively important for certain features of the data, but not others. In particular,

interest rate shocks matter most for financial variables over the business cycle, and during the 1995

Tequila crisis. Expenditure and preference shocks, however, seem to more important than other

shocks in leading the economy into the crisis. Relative to Neumeyer and Perri (2005), we set up a

framework that fits the data well without assuming any correlation between the productivity and

the interest rate process. Nonetheless, we find that, while we can fit ergodic second moments of

the data well with uncorrelated shocks, high and averse correlation configurations are associated

with the simulated crisis dynamics in the model.

As Binning and Maih (2017) discuss, there are many possible applications of our approach to

the specification of models with occasionally binding collateral constraints. For example, Bocola

(2015) builds and estimates a model of sovereign debt default. The estimation procedure used is

to first estimate the model outside of the crisis period, using a solution technique that assumes

a crisis will not occur. Conditional on those parameter estimates a crisis probability is imposed

on the model. Our approach allows one to estimate model parameters fully incorporating the

possibility of a crisis outside of the crisis period, and hence allowing for that crisis to be a function

of the economic decisions. The methods here also apply to the literature on the zero-lower bound

on interest rates such as for instance Aruoba et al. (2018), and Atkinson et al. (2018).

The rest of the paper is organized as follows. Section 2 describes the model and discusses our

formulation of the collateral constraint. Section 3 develops the perturbation solution methodology

for endogenous regime switching models and describes our procedure for estimation using full

information Bayesian Methods. Section 4 reports the empirical results. Section 5 concludes.

Technical details are in the Appendix.

2 The Model

The model we set up and estimate is a small, open, production economy with an occasionally

binding collateral constraint that is subject to a relatively large set of structural shocks. Encom-

passing all shocks considered in the extant literature except permanent productivity ones, the
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model features temporary productivity, intertemporal preference, domestic expenditure, interest

rate, and terms of trade shocks.1 The restriction on access to international capital markets that

we specify depends on the endogenous variables of the model, including borrowing, capital and

its relative price, and leverage. Capital and debt choices respond to exogenous shocks, affecting

leverage. Leverage, in turn, affects the probability of a binding collateral constraint. Because of

the occasionally binding nature of the constraint, this framework can potentially account not only

for normal business cycles, but also key aspects of financial crises in emerging market economies as

in (Mendoza, 2010). In the rest of this section, we discuss the representative household-firm and

the borrowing constraint, focusing on key model features. The formal definition of the equilibrium

and a list with the full set of equilibrium conditions is reported in Appendix A.

2.1 Representative Household-Firm

There is a representative household-firm that maximizes the utility function

U ≡ E0

∞∑
t=0

{
dtβ

t 1

1− ρ

(
Ct −

Hω
t

ω

)1−ρ
}
, (1)

with Ct denoting consumption, Ht the supply of labor, and dt an exogenous and stochastic pref-

erence shock specified below, as in Garcia-Cicco et al. (2010). Households choose consumption,

labor, capital (Kt), imported intermediate inputs (Vt) given their relative price Pt, and holdings

of real one-period international bonds Bt. Negative values of Bt indicate that the household is

borrowing from abroad. Thus, households face the following budget constraint:

Ct + It + Et = Yt − φrt (WtHt + PtVt)−
1

(1 + rt)
Bt +Bt−1. (2)

Here, Yt denotes gross domestic product and is given by

Yt = AtK
η
t−1H

α
t V

1−α−η
t − PtVt, (3)

with At denoting an exogenous and stochastic temporary productivity shock, as in (Mendoza,

2010) and Garcia-Cicco et al. (2010). Et is an exogenous and stochastic domestic expendi-

ture process possibly interpreted as a fiscal shock as in Garcia-Cicco et al. (2010). The term

φrt (WtHt + PtVt) describes a working capital constraint, stating that a fraction of the wage and

intermediate good bill must be paid in advance of production with borrowed funds. The relative

price of labor and capital are given by wt and qt, respectively, both of which are endogenous vari-

ables, but taken as given by the household-firm. Gross investment, It, is subject to adjustment

1We omit permanent technological shocks of the type analyzed by Aguiar and Gopinath (2007) both for consis-
tency with Mendoza (2010) and because of the evidence reported by Garcia-Cicco et al. (2010), which suggests that
these shocks are not quantitatively important in a framework with an financial frictions like ours.
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costs as a function of net investment:

It = δKt−1 + (Kt −Kt−1)

(
1 +

ι

2

(
Kt −Kt−1

Kt−1

))
. (4)

Borrowing takes place in terms of one-period international bonds that pays the net interest

rate rt. The interest rate faced by borrowers is comprised of two exogenous components–one

persistent and one transitory–plus an endogenous debt-elastic country-specific component. Thus,

we specify the following interest rate process:

rt = r∗t + ψ
(
eB̄−Bt − 1

)
+ σrεr,t, (5)

where the persistent component, r∗t , is given by

r∗t = (1− ρr∗)r̄∗ + ρr∗r
∗
t−1 + σr∗εr∗,t, (6)

while εr∗,t and εr,t are i.i.d. N(0, 1) with σr∗ and σr denoting parameters that control the variances

of the two interest rate shocks.

A few remarks are in order here to highlight similarities and differences relative to other

specifications of the interest rate process proposed in the extant literature. First, unlike previous

studies, we do not assume any correlation between the innovations to the interest rate process

and the productivity process spelled out below. Second, the endogenous interest rate component

in equation (5) above serves the sole purpose of inducing independence of the model steady state

from initial conditions, as in Schmitt-Grohe and Uribe (2003). In fact, in our model, as in as

in Mendoza (2010), the endogenous component of the country spread is driven by the collateral

constraint multiplier when the latter is binding. Because of this feature, the parameter ψ will be

calibrated to a very small value and will not be estimated. Third and finally, note that the set

of observable variables, unlike Garcia-Cicco et al. (2010), will include also the country interest

rate constructed following Uribe and Yue (2006) and a measure of the Mexico’s terms of trade.

While εr∗,t and εr,t are not identified separately in equations (5) and (6), εr,t will be identified in

the data because assumed to have different persistence, and will turn out to be important to fit

Mexico’s current account balance and external debt dynamics.

The remaining processes, the preference shock dt, the temporary productivity shock At, the

shock to the relative price of intermediate goods Pt, and the domestic expenditure shock Et, are

governed by the following autoregressive processes:

log dt = ρd log dt−1 + σdεd,t, (7)

logAt = (1− ρA)A∗ + ρA logAt−1 + σAεA,t, (8)
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logPt = (1− ρP )P ∗ + ρP logPt−1 + σP εP,t, (9)

and

logEt = (1− ρE)E∗ + ρE logEt−1 + σEεE,t, (10)

where ε.,t are i.i.d. N(0, 1) innovations, and the σ.,t parameters control the size of their variances.

2.2 Borrowing Constraint

The collateral constraint limits total debt to a fraction of the market value of capital, thus limiting

leverage in the economy. As in Mendoza (2010), Kiyotaki and Moore (1997), Aiyagari and Gertler

(1999), and Kocherlakota (2000), among others, the collateral constraint does not derive from an

optimal credit contract, but is imposed directly on the economy. Here, we follow Mendoza (2010)

and include working capital in the borrowing constraint to amplify the supply response of the

economy during financial crises.

While our constraint is the same as in the quantitative financial friction literature above, we

propose a new specification of its occasionally binding nature that is more tractable for estimation

purposes and has appealing empirical properties. The main difference relative to the typical

formulation in the literature is that we transform the deterministic relationship between leverage

and the binding state of the borrowing constraint into a stochastic one. In the typical specification

used in the literature, there is one specific leverage ratio associated with a binding constraint. In

contrast, with our specification, increased leverage raises the probability of a binding constraint,

but does not necessarily force the constraint to bind, consistent with how borrowing limits affect

actual firm and household borrowing decisions.

The probabilities of switching from one state to the other depend on critical endogenous

variables of the model. The probability of switching from the non-binding state to the binding

state is a logistic function of the distance between actual borrowing and the borrowing limit equal

to a fraction of the value of collateral. Therefore it is ultimately affected by all endogenous variables

in the model. The probability of switching from the binding state back to the unconstrained one,

instead, is a logistic function of the collateral constraint multiplier.

This formulation captures key findings of the empirical literature on financial crises, which

document that the likelihood of a financial crisis increases with leverage, but high leverage does

not necessarily lead to a financial crisis. Not having a unique level of leverage at which the

collateral constraint binds, but rather a range of leverage levels that affect the likelihood of the

constraint binding in a smooth manner adds an element of realism to the model. Empirical

investigations into the anatomy of borrowing constraints find that when borrowers hit leverage

limits, they adjust expenditures gradually by tapping into other sources of financing such as cash,

precautionary credit lines, and asset sales. Thus, collateral constraints, in practice, do not bind

at any particular leverage ratio in the real world, and representing them as stochastic functions
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of leverage is a reasonable approximation for positive purposes.2

Most importantly, in our set up, agents know that higher leverage and borrowing levels increase

the probability of switching to a constrained state, and vice-versa. This preserves the interaction

in agents’ behavior between the two states that gives rise to precautionary behavior, distinguishing

this class of models from those in which financial frictions are always binding or are approximated

with solution methods that eliminate these interactions across regimes.

Specifically, we model the occasionally binding nature of the borrowing constraint as an en-

dogenous regime switching process. Thus, there is one regime in which the constraint binds and

one in which it does not, where the regimes are denoted by st ∈ {0, 1}. When st = 0, the con-

straint does not bind and lenders finance all desired borrowing for debt and working capital loans:

1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) . (11)

In this regime, desired borrowing is pinned down by the presence of the debt elastic component

of the interest rate in steady state, and the knowledge that higher debt will lead to a higher

probability of crisis regime in the future outside the steady state defined below.

When st = 1, the constraint binds strictly, and total borrowing is equal to a fraction of the

value of collateral, with

1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) = −κqtKt, (12)

where on the left hand side of this equation we have total debt and working capital loans, while

on the right hand side there is the value of capital qtKt times the leverage ratio κ. Thus, the

constraint limits total borrowing, and hence consumption smoothing as well as the purchase of

intermediate imported inputs for production purposes. The latter restricts output supply, causing

the constraint to bind even tighter.3 In the rest of this section, we discuss our proposed formulation

of the slackness condition typically associated with an occasionally binding borrowing constraint

and how we cast the model above in the form of an endogenous regime switching framework.

2.2.1 The Regime-Switching Slackness Condition

Denote the Lagrange multiplier associated with equation (11) as λt and define the “borrowing

cushion” as the distance of the actual borrowing level from the debt limit:

B∗t =
1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) + κtqtKt. (13)

2See, for instance, Campello et al. (2010) for survey information on the behavior of financially constrained firms
and Ivashina and Scharfstein (2010) for loan level data showing that credit origination dropped during the crisis be-
cause firms drew down from pre-existing credit lines in order to satisfy their liquidity needs. Bank lending standards
fluctuating over the cycle could also be consistent with a stochastic specification of the collateral constraint.

3Note here that, when the constraint binds, as the quantity and value of capital fluctuates, the amount of
borrowing will also fluctuate.
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Thus, when the borrowing cushion is small, total borrowing is high relative to the value of collat-

eral, meaning the leverage ratio is high. The critical step for mapping the model above into an

endogenous regime-switching framework is to modify the typical slackness condition from models

with strict inequality constraints (B∗t λt = 0), so that the two variables, B∗t and λt = 0, are zero

only in the relevant regime. Thus, we must have that in the unconstrained regime (st = 0) the

constraint does not bind so λt = 0, and in the constrained regime (st = 1) so that the borrowing

constraint binds, and hence the borrowing cushion B∗t = 0.

To accomplish this mapping, and to be consistent with the literature on regime-switching

DSGE models in which parameters are the model objects that switch across regimes, define two

auxiliary regime-dependent parameters, ϕ (st) and ν (st), such that ϕ (0) = ν (0) = 0, and ϕ (1) =

ν (1) = 1. 4 Next, we introduce the regime-switching slackness condition, written as

ϕ (st)B
∗
ss + ν (st) (B∗t −B∗ss) = (1− ϕ (st))λss + (1− ν (st)) (λt − λss) , (14)

where B∗ss and λss are the steady state borrowing cushion and collateral constraint multiplier,

respectively, defined more precisely in Section 3 below. It is now easy to see that equation (14)

implies that, when st = 0, λt = 0, while when st = 1 B∗t = 0. Yet, equation (14) remains

continuously differentiable for any value of B∗t , as no inequality constraint is imposed on it.

Technically, this formulation of the slackness condition “preserves” information in our pertur-

bation approximation, since, at first order, both variables are constant in the respective regimes.

The use of the regime-dependent auxiliary switching parameters ϕ (st) and ν (st) follows from the

Partition Principle of Foerster et al. (2016), which separates parameters based upon whether they

affect the steady state or not. Intuitively, ϕ(st) captures the fact that the level of the economy

changes across regimes, while ν(st) captures the fact that the dynamic responses differ across

regimes. For this reason,

2.2.2 Modelling Endogenous Regime Switching

To model the transition from one regime to the other, we rely on logistic functions, which are

tractable and parsimoniously parameterized.5 Specifically, assume that the transition between

regimes is a logistic function of endogenous variables determined in equilibrium. In the non-

binding regime, the transition into a binding regime is assumed to depend on the borrowing

cushion, B∗t :

Pr (st+1 = 1|st = 0, B∗t ) =
exp (−γ0B

∗
t )

1 + exp (−γ0B∗t )
. (15)

4While in our model the auxiliary parameters coincide with the regime-switching indicator variable st, in more
general settings they may not. For this reason, in the following section, we provide a general formulation of the
endogenous regime switching that is applicable to setups possibly different than the one associated with our specific
application. See, for example, the different applications discussed by Binning and Maih (2017).

5Davig et al. (2010) and Bi and Traum (2014) use it to study fiscal policy, while Kumhof et al. (2015) use a
logistic fuction to model theoretically the transition to a default regime. In Appendix B, we provide a possible
structural interpretation of our formulation in terms of a stochastic monitoring technology shock.
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Thus, the likelihood that the constraint binds in the following period depends on the size of the

borrowing cushion in the current period. The parameter γ0 controls the steepness of the logistic

function, determining the sensitivity of the probability of switching regime to the size of the

borrowing cushion. For small values of γ0, the cushion has a small impact on the probability of

a switch to the binding regime. For larger values of this parameter, the probability of a switch

to the crisis regimes increases more rapidly toward 1, as B∗t crosses the borrowing threshold

defined by the collateral constraint. Note here that, for certain draws from the logistic function,

the borrowing cushion could become negative and the economy could temporarily remain in the

non-binding regime, but long spells with a negative borrowing cushion are unlikely.

Similarly, when the constraint is binding, the transition probability is a logistic function of the

Lagrange multiplier, λt, according to

Pr (st+1 = 0|st = 1, λt) =
exp (−γ1λt)

1 + exp (−γ1λt)
. (16)

The probability of switching back from a constrained to an unconstrained regime, therefore,

depends on the shadow value of the economy’s desired borrowing relative to the limit set by the

collateral constraint. A large positive multiplier implies that, when the constraint binds tightly,

the probability of staying in the binding regime is higher. As in the case of a switch from the

constrained to constrained regime, the parameter γ1 affects the sensitivity of this probability to

the value of the multiplier. In particular, in the binding regime, it is possible that the desired

level of borrowing is less than the level forced upon it, which would manifest itself with a negative

collateral constraint multiplier.

Putting equations (15) and (16) together, the regime-switching model has an endogenous

transition matrix, denoted Pt, with elements given by pst,st+1,t, so

Pt =

[
p00,t p01,t

p10,t p11,t

]
=

[
1− exp(−γ0B∗t )

1+exp(−γ0B∗t )
exp(−γ0B∗t )

1+exp(−γ0B∗t )
exp(−γ1λt)

1+exp(−γ1λt) 1− exp(−γ1λt)
1+exp(−γ1λt)

]
. (17)

A few other remarks are useful to illustrate how our stochastic formulation of the borrowing

constraint works and differs relative to a typical formulation of an occasionally binding collateral

constraint such as Kiyotaki and Moore (1997) or Mendoza (2010). First, whether or not the

constraint binds in a given period is determined before exogenous shocks are realized and economic

decisions are made during that period. Figure 1 provides a graphical representation of the model

timing and illustrates that, at the start of a given period t, the regime outcome st is drawn

from the logistic distributions as a function of previous period borrowing cushion or value of the

collateral constraint multiplier, B∗t−1 and λt−1. Next, exogenous shocks, which are orthogonal to

the realization of the regime, are realized and agents take decisions during period t based on their

knowledge of the regime outcome, st, as well as a probability distribution over the next period

regime realization, st+1, as in equation (15) or (16). Finally, the regime realization for period t+1
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Figure 1: Model Timing

 

t t+1 

The regime 𝑠" is 
realized as a function 
of the previous period 
shocks and decisions, 
summarized by 𝐵"$%∗  
and λt-1. 

Period t shocks (orthogonal 
to regime realization 𝑠")  
are realized, and agent 
decisions are made with a 
probability distribution over 
future regime realization  
𝑠"'%, pinning down 𝐵"∗ and λt. 

The regime 𝑠"'% is 
realized as a function 
of the previous period 
shocks and decisions, 
summarized by 𝐵"∗ 
and λt, and so and so. 

is drawn based on exogenous shocks and agents’ decisions that pin down B∗t and λt, and so on.

Second, as already noted, an implication of our setup is that entry and exit of the economy

from the binding regime might be temporarily associated with a counter intuitive value of the

multiplier and the borrowing cushion. For instance, in the non-binding regime, the logistic function

potentially allows the borrowing constraint to bind in the following period, even if the borrowing

cushion in the current period is still positive. Conversely, negative values of the borrowing cushion

in the non-binding regime are possible if the probability of a binding regime is elevated but such

outcome is not realized. How likely these outcomes are depend on the parameter of the relevant

logistic function, γ0. The same logic applies to a probabilistic exit from the binding regime that

depends on the multiplier λt and the relevant parameter of the logistic function γ1. Despite

positive values of the multiplier, the economy may end up coming out of the binding regime

early. Conversely, the economy might be stuck in the constrained regime past the time when

the collateral constrained multiplier turned negative. In fact, in this case, the economy may be

“forced” to borrow the amount set by the constraint, which might be more than desired, until a

non-binding realization of the regime is drawn. In our set up, therefore, the collateral constraint

multiplier λt can take on negative values when the economy would like to borrow less than the

value imposed by the collateral constraint, but it has not switched to the not constrained regime.

The third implication of our setup is that by making the probability of transitions from one

regime to the other dependent upon endogenous variables, the model can generate transition

probabilities that vary over time. In contrast, the exogenous Markov-switching setup used by

Davig and Leeper (2007), Farmer et al. (2011), and Foerster et al. (2016), among others, has a

constant probability of transitioning between regimes, which implies a flat hazard function that is

independent of the structural shock realizations and the agent decisions. Thus, our endogenous-

switching framework can in principle generate long- or short-lived binding regime episodes with

non-constant hazard functions depending on the realization of shocks and agents’ decisions: large

or repeated contractionary shocks will tend to produce longer binding constraint periods than
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smaller, infrequent shocks.

3 Solving and Estimating the Endogenous Switching Model

Having cast our model it in terms of an endogenous regime switching framework, this Section

describes our solution method and our estimation procedure.

3.1 Model Solution

The model developed in the previous section can in principle be solved using global solution

methods, as for example in Davig et al. (2010). However, such an approach would be time-

consuming and would preclude model estimation. Instead, we solve the model using a perturbation

approach, which allows for an accurate approximation that is fast enough to permit estimation.

Perturbation generates Taylor-series expansions of the functions characterizing the solution of the

set of equilibrium conditions. The competitive equilibrium of the endogenous regime switching

version of the model is defined formally in Appendix A. We next discuss two important features of

these approximations. First, how to define a steady state in this set up, which is the point around

which the expansions are generated. Second, the importance of approximating to a second-order

in our framework.

3.1.1 Defining the Steady State

Given the regime-switching slackness condition (14), defining a non-stochastic steady state of an

endogenous regime-switching framework is challenging. A steady state in our framework can be

defined as a state in which all shocks have ceased and the regime switching variables that affect

the steady state take their ergodic mean values across regimes associated with the steady state

transition matrix:

Pss =

[
p00,ss p01,ss

p10,ss p11,ss

]
=

[
1− exp(−γ0B∗ss)

1+exp(−γ0B∗ss)
exp(−γ0B∗ss)

1+exp(−γ0B∗ss)
exp(−γ1λss)

1+exp(−γ1λss) 1− exp(−γ1λss)
1+exp(−γ1λss)

]
. (18)

Note here that, since this matrix also depends on the steady state level of the borrowing cushion

and the multiplier, which in turn depend upon the ergodic means of the regime-switching variables,

such steady state is the solution of a fixed point problem that describe in more detail in Appendix

C.

More specifically, consider the model regime-specific parameters defined above and distinguish

between ϕ(st), which can affect the level behavior of the economy, and ν(st), which can affect

only its dynamics with no effects on the steady state. Then denote with ξ = [ξ0, ξ1] the ergodic

vector of Pss. Next, apply the Partition Principle of Foerster et al. (2016) and write the ergodic
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mean of the parameter that affects the steady state as

ϕ̄ = ξ0ϕ (0) + ξ1ϕ (1) . (19)

Defining the steady state as the state in which the auxiliary parameter ϕ (st) is at its ergodic

mean value implies that the approximation point constructed lies between the steady state that

would result in a model in which only the non-binding regime occurs, and one in which only the

binding regime realizes. How close our approximation point is to each of these two other steady

state concepts, therefore, will depend on the frequency of being in each of the two regimes. We

note here that, since in our application we are modelling binding episodes with limited duration,

the ergodic mean is a natural candidate as perturbation point. Given the nature of our application

with slow-moving capital and debt state variables, the perturbation point will be in the area of the

state space in which the economy operates most frequently. In fact, since the binding regime tends

to be self-limiting–that is, being in the binding regime causes the economy to reduce leverage and

hence switch back to the non-binding regime–the economy will rarely reach the area around the

steady state of the “binding regime only” version of the model. 6

3.1.2 On the Importance of Approximating at least to the Second-Order

Equipped with the steady state of the endogenous regime-switching economy, we then construct

a second-order approximations to the decision rules by taking derivatives of the equilibrium con-

ditions. We relegate details of these derivations to Appendix C, but here we provide a summary.

For each regime st, The solutions to our model take the form

xt = hst (xt−1, εt, χ) , yt = gst (xt−1, εt, χ) , (20)

where xt denotes predetermined variables, yt, non-predetermined variables, ε the set of shocks,

and χ a perturbation parameter such that when χ = 1 the fully stochastic model results and when

χ = 0 the model collapses to the non-stochastic steady state defined above. Using these functional

forms, we can express the equilibrium conditions conditional on regime st as

Fst (xt−1, εt, χ) = 0.

We then stack the regime-dependent conditions for st = 0 and st = 1, denoting the resulting

system of equations with F (xt−1, εt, χ), and successively differentiate with respect to (xt−1, εt, χ),

6Alternative methods for finding solutions to endogenous regime-switching models, such as Maih (2015) and
Barthlemy and Marx (2017), advocate using regime-dependent steady states as multiple approximation points.
Such a strategy would be ill-suited for our purposes because the binding regime steady state is a poor point of
approximation given that the state is infrequent and usually of shorter duration than normal cycles of expansions
and contractions.
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evaluating at steady state. The systems

Fx (xss,0, 0) = 0, Fε (xss,0, 0) = 0, Fχ (xss,0, 0) = 0 (21)

can then be solved for the unknown coefficients of the first-order Taylor expansion of the solutions

(20). A second-order approximation can be found by taking the second derivatives of F (xt−1, εt, χ).

In the end, we have matrices H
(1)
st and G

(1)
st characterizing the first-order coefficients, and H

(2)
st

and G
(2)
st characterizing the second-order coefficients. Therefore, the approximate solutions are

xt ≈ xss +H(1)
st St +

1

2
H(2)
st (St ⊗ St) (22)

yt ≈ yss +G(1)
st St +

1

2
G(2)
st (St ⊗ St) (23)

where St =
[

(xt−1 − xss)
′ ε′t 1

]′
.

Our endogenous regime switching framework must be solved at least to the second order. If

we were to use only a first-order approximation, our estimation would not capture precautionary

behavior associated with rational expectations about the dependency of the probability of a regime

change on the borrowing cushion and the multiplier. The following Proposition states this result

formally.

Proposition 1 (Irrelevance of First-Order). The first-order solution to the endogenous regime-

switching model is identical to the first-order solution to an exogenous regime-switching model

where the transition probabilities are given by the steady-state transition matrix Pss.
Proof. See Appendix C.

This result illustrates that using a second-order approximation to the solution is necessary to

characterize the model properties associated with the endogenous nature of the regime switching,

including particularly precautionary behavior. This result is similar to the one stating that, in

models with only one regime, first-order solutions are invariant to the size of shocks, second-order

solutions captures precautionary behavior, and third-order solutions are needed to capture the

effects of stochastic volatility (Fernandez-Villaverde et al., 2015). Unfortunately, however, the

need to use a second-order approximation creates additional challenges for estimation purposes.

We now turn to our proposed strategy to address them.

3.2 Estimating the Endogenous Switching Model

We estimate the model with a full information Bayesian procedure. The posterior distribution

has no analytical solution so we use Markov-Chain Monte Carlo methods to sample from the

posterior. A key obstacle in using this approach to sample from the posterior is the evaluation of

the likelihood function. We face two difficulties here relative to linear DSGE models. The first
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Table 1: Calibrated Parameters

Parameter Value

Discount Factor β = 0.9798
Risk Aversion ρ = 2
Labor Supply ω = 1.846
Capital Share η = 0.3053
Labor Share α = 0.5927
Depreciation Rate δ = 0.02277
Import Price Mean P ∗ = 1.028
Expenditure Mean E∗ = 0.2002
Interest Rate Debt Elasticity ψr = 0.001
Neutral Debt Level B̄ = −6.117

is the nonlinearity due to the regime-switching model; the second is the need to approximate to

the second-order the solution that governs the decision rules in each regime. Following Binning

and Maih (2015), we use the Unscented Kalman Filter (UKF) to compute approximations to the

evaluation of the likelihood function using Sigma Points.7 Since the Metroplis-Hastings algorithm

we use for sampling is a standard tool used in the literature, we omit a discussion of this step in

our procedure. 8

Our objective is to estimate critical parameters governing the model’s dynamics in both the

binding and non-binding regime, as well as the parameters that govern the transitions between

regimes on which we do not have strong a priori information. In order to make inference about

these parameters using non-informative priors, we calibrate the subset of parameters on which we

have good prior information from the extant literature; these parameters are listed in Table 1. We

set these parameters largely following Mendoza (2010), based upon stylized facts from Mexico’s

National Accounts. The parameters that do not comes from Mendoza (2010) are: β, which we

set to match the capital-to-output ratio; ψr, which we set to a very small value to eliminate the

dependency of the steady state from initial conditions, while avoiding to have an impact on the the

model dynamics (see Schmitt-Grohe and Uribe, 2003); and B̄, which targets the debt-to-output

ratio.

We then give uniform priors on the parameters to be estimated. The uniform distribution

ranges are shown in Table 2. They impose sign restrictions and rule out values that generate

implausible moments in model simulations. While possible in principle, we do not allow for

regime switching in the shocks processes, because we want the collateral constraint to drive regime

switching, rather than changes in the stochastic processes.9

7Binning and Maih (2015) provide a discussion of why the Sigma Point filters perform better than the Particle
Filter in a regime switching context.

8The details of the construction of the state space representation and the filtering steps for the evaluation of the
likelihood are reported in the Technical Appendix.

9Allowing for regime change in the shock processes may improve overall fit, but makes it harder to assess the
model’s ability to characterize financial crises as episodes in which the collateral constraint is binding.
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Table 2: Estimated Parameters

Parameter Prior Posterior Mode

ι Uniform(0,50) 12.5557
φ Uniform(0,0.5) 0.4502
r∗ Uniform(0,0.03) 0.02
κ Uniform(0,1) 0.1002
ρa Uniform(0,1) 0.981
ρe Uniform(0,1) 0.8881
ρp Uniform(0,1) 0.9696
ρd Uniform(0,1) 0.5567
ρw Uniform(0,1) 0.8126
σa Uniform(0,0.1) 0.0079
σe Uniform(0,0.5) 0.0939
σp Uniform(0,0.1) 0.0463
σd Uniform(0,0.5) 0.0431
σr Uniform(0,0.1) 0.0024
σw Uniform(0,0.1) 0.0053
γ0 Uniform(0,150) 135.194
γ1 Uniform(0,150) 44.9981

The model is estimated with quarterly data for in gross domestic product (gross output less

intermediate input payments), consumption growth, investment growth, and import price growth,

as well as the current account-to-output ratio, and the real interest rate.10 Following Uribe and Yue

(2006), the real interest rate measure that we use is the nominal rate less inflation expectations,

with expectations computed as forecasts from an autoregressive process. The fact that we have

six data series and six structural shocks means that we do not need measurement errors in our

estimation. However, measurement errors in the observation equation improves performance of

the non-linear filtering algorithm and accounts for any actual measurement error in our data. To

limit their impact on the inference we draw from the data, we limit their variance to 5% of the

variance of the observable variables.

4 Empirical Results

Our empirical findings comprise three sets of results. The first includes the estimated parameters

and various measures of model fit that are informative on the quality of the economic inference

that we draw from the estimation exercise. The second set includes model moments that inform

us about the ergodic properties of the model economy and the relative importance of different

shocks for regular business cycles. This set of results will permit us to compare results and model

properties with the extant literature on modeling business cycles in emerging markets. The third

set of result pertain the model’s ability to describe and interpret financial crises. In particular, we

10See Appendix D for details on variable definitions and data sources.
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will look at how financial crisis episodes can be viewed through the lens of the model and which

shocks are important to characterize specific historical episodes. We look at both a ’typical’ crisis,

as well as the anatomy of the 1995 “Tequila” crisis.

4.1 Estimated Parameters and Model Fit

Table 2 reports the mode of the posterior distribution of the estimated parameters. The param-

eters of the exogenous processes indicate that all shocks have a high degree of persistence, as it

is typical in DSGE models, except the preference shock, d. The estimated mean interest rate, at

2% per quarter, is close to the value estimated by Mendoza (2010) and reflects that fact that our

sample starts while US nominal interest rates were very high by historical standard.

The estimate of the investment adjustment cost parameter, ι, which does not affect the steady

state and cannot be directly parameterized using National Accounts data and typically controls

investment volatility, is 12.5. To provide context, this parameter was calibrated to the value of

2.75 by Mendoza (2010), although that calibration is at an annual frequency. The estimate for the

working capital constraint parameter, at 44%, is an intermediate value between the very high 100%

assumed by Neumeyer and Perri (2005) and the relatively low value of 25.79% set by Mendoza

(2010). The estimated value of the haircut parameter in the borrowing constraint (κ), another

parameter that cannot be pinned down from the data directly, is 0.099. This is significantly tighter

than the benchmark value of 0.20 chosen by Mendoza (2010), who experimented with alternative

values, ranging from 0.15 to 0.30. These are important differences since these parameters affect

the ergodic moments of the economy and control amplification when the constraint binds, but

cannot be calibrated from the data directly.

The estimated posterior modes of the logistic parameters in equation (15) and (16) are 135 and

45, respectively. These estimates have three implications. First, as they are significantly different

from zero, thus suggesting that the data reject a model specification in which the transition

probabilities are exogenous, which is in principle allowed for under the prior distribution. Second,

they also suggests that the the probability of switching from the non-binding to the binding

regime is less steep than the probability of exiting the binding regime, consistent with the notion

that regular business cycles typically have longer duration than financial crises associated with

sudden stops in capital flows. To illustrate this point, Figure 2 plots the complement of the

probabilities in equation (15) and (16)—i.e., the probability of staying in the non-binding regime

and the probability of staying in the binding regime given that the economy is in these regimes—

evaluated at the posterior mode of γ0 and γ1, together with the estimated ergodic distributions

of their arguments, the borrowing cushion, B∗ and the the constraint multiplier λ. The figure

shows that the ergodic distribution of the borrowing cushion is centered on a positive value, as

the economy spends most of its time above the borrowing limit. As the borrowing cushion falls,

the probability of staying in the non-binding regimes falls, and drops to zero for small negative

values, with very little probability mass on large negative realizations. On the other hand, once
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Figure 2: Logistic Functions and Ergodic Distributions of Their Arguments

Note: The Figure plots the probability of staying in a regime given that the economy is in that regime

together with the ergodic distribution of its argument.

the economy is in the binding regime, the ergodic distribution of the multiplier λ = 0 is centered

on zero, with more probability mass on the right tail than the left tail. As λ approaches 0,

the probability of staying in the binding regime falls much more sharply than in the case of the

probability of staying in the non-binding regime because of the much smaller estimated value of

γ1.

Model fit is summarized by Figure 3, which plots observable variables used in the estimation
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Figure 3: Data and Model Estimates

together with the fitted values. The estimated processes largely follow the data, in part due to

the relatively small measurement error used in the estimation procedure. Importantly, the model

estimates track the data consistently throughout the sample, without major fit losses during

times of currency crisis in Mexico according to the Reinhart and Rogoff (2009) classification. For

example, during the “Tequila Crisis” of 1994-1995, the data showed large drops and rebounds

in output, consumption, and investment growth, and a sharp increase in the current account to

output ratio. The model tracks these movements as well as it does track regular fluctuations

throughout the rest of the sample. If, by contrast, one were to observe a fit loss during these

20



Figure 4: Smoothed Probability of Binding Regime

periods, it would suggest that our estimated model has finds it difficult to match the model

dynamics during these episodes of critical interest in the empirical analysis.

The estimated model also provides a time-varying model-based estimate of the smoothed (i.e.

based upon the full sample) probability of being in each regime. In the model, the regime is known

by the household-firm, but the estimation procedure does not observe the regime and it must be

inferred based on the information in the data. Figure 4 plots the estimated probability of being

in the binding regime at each date against Reinhart and Rogoff (2009) currency crisis periods and

the OECD-defined recession periods of Mexico. The red bar identifies periods in Mexico’s history
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Figure 5: Transition Probabilities

in which the definition of a financial crisis typically used in the empirical sudden stop literature is

met.11 The figure shows that the model provides a clear signal of when the economy is constrained,

with estimates that are either near zero or one for most of the sample. The estimates indicate

that Mexico had an elevated probability of being, or actually was in, the constrained regime for a

number of years before the Tequila crisis in 1994-1995, and eventually entered an episode of large

sudden stop in 1995:Q1 that lasted for two quarters. The model also signal a high probability of

being in the binding regime earlier in the sample, during the debt crisis of the 1980s, but does not

11We provides this definition precisely, together with a more detailed discussion, below.
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identify an crisis episode with protracted sluggish recovery as in the data. It also misses the 1998

and 2008 episodes associated with the Russian default and the LTCM collapse and the financial

crisis in the United States. This result may reflect the fact that the latter two episodes were

precipitated by shocks ultimately originating outside Mexico rather domestic ones. In addition,

the fact that this probability does not align in the same way with OECD-defined recessions, as

illustrated by the lower panel of Figure 4, correctly identifying most of these episodes, indicates

that normal business cycle fluctuations are captured by the non-binding regime.

Figure 5 plots the filtered (or pseudo real-time) estimated transition probabilities to switch

to the binding regime from the non-binding regime or to stay in the binding regime, based on

equations (15) and (16), together with the Reinhart and Rogoff (2009) currency crisis narrative

of Mexico. These probabilities provide the odds switching from one regime to the other as the

model travels through the sample. Their behavior is driven by the estimated parameters γ0 and

γ1 and the estimated values of B∗ and λ. In the top panel, the figure plots the probability of

switching into the binding regime given that the economy is in the nonbinding regime. In the

bottom panel, the figure plots the probability to exit a binding regime. Both probabilities are

time-varying, suggesting that a model with exogenous and constant switching probabilities would

be misspecified. When the borrowing cushion is low, the model produces high odds of switching to

the binding regime; when the multiplier is high the probability of staying in the binding regime is

likewise high. Again, these probabilities align well with the Reinhart and Rogoff (2009) narrative

of currency crisis in Mexico, as well as the estimates of the actual regime seen previously in Figure

4.

In summary, our results suggest that the values of the parameters critical for the specification

of the borrowing constraint previously used in the literature might be too conservative, in the

sense that the friction seems to be even tighter in the data than previously assumed. Also, our

model fits not only the observable macroeconomic and financial data series, but also narratives

of the business cycle and financial crisis history of Mexico. So we now turn to the analysis and

discussion of the model implied business cycle and crisis properties.

4.2 Business Cycles Properties

Next, we report and discuss simulated model moments to characterize the estimated model’s

dynamics. These statistics are generated by simulating the model from the posterior mode esti-

mates.12 All statistics reported are unconditional, rather than conditional on a particular regime.

In fact, when we compare simulated moments across regimes, we find that they are virtually iden-

tical for all variables except those related to the current account balance and the debt position,

which are directly affect by the precautionary saving behavior.

12For these simulations, we generate 1,000 samples of 144 quarters long (the length of our data sample), after
a burn-in period of 1,000 quarters. We then compute and report mean values across these 1,000 runs. We use a
pruning method (Andreasen et al., 2018) to avoid explosive simulation paths.
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Table 3: Simulated Second Moments: Data and Model

Std. Dev. Relative Std. Dev. Correlations Autocorrelation

Data Model Data Model Data Model Data Model

Output Growth 1.41 3.02 1 1 1 1 0.15 -0.35
Consumption Growth 1.76 5.8 1.25 1.92 0.73 0.91 0.19 -0.53
Investment Growth 7.57 26.88 5.37 8.91 0.53 0.73 -0.1 -0.68
Country Interest Rate 1.92 0.91 1.36 0.3 -0.11 -0.04 0.95 0.73
Current Account to Output Ratio 2.2 3.51 1.56 1.16 -0.1 -0.63 0.89 -0.53
Import Price Growth 4.82 4.65 3.42 1.54 -0.27 -0.29 0.15 -0.01

The simulated second moments are reported in Table 3. The model closely matches the

ranking of the relative volatilities of the observable variables, even though the model economy

is much more volatile than the data in absolute terms, as in Mendoza (2010), except for the

country interest rate that is significantly less volatile than in the data. Correlations with GDP

have the correct sign and magnitude for all variables, except the current account balance as a

share of GDP that is estimated to have a much lower correlation in a sample that extend to

2016 compared to what usually reported in the literature. The model captures the persistence

of the country interest rate driven by the persistence of the process for the US real interest rate,

but clearly misses the persistence of output, consumption, investment growth, and the current

account balance.13 Overall, the model broadly captures the distinguishing features of emerging

market business cycles. Consumption is more volatile than output. The country interest rate and

output growth are negatively correlated, and the current account balance is counter-cyclical, with

persistence well below one. Note however that, unlike the extant literature, the model performance

is not aided by assuming that the technology and interest rate shocks are negatively correlated.

Table 4 reports variance decompositions. Since the model is nonlinear, these decompositions

are obtained by simulating the model using only one shock at the time, and normalizing so that

they sum to 100.14 The table illustrates that all shocks play a quantitatively sizable role in the

model, even though different shocks matter more for different variables. Indeed, we will see below

that the likelihood loss associated with turning off one shock at the time is broadly similar across

shocks (see the top panel of Figure 8 below). A second important message from this table is that

the estimated relative importance of different shocks is consistent with comparable estimation

exercises conducted with linear models. In particular, we can see that output and consumption

are driven by productivity and terms of trade shocks. Investment is significantly affected also by

the intertemporal preference shock. In contrast, the financial variables of the model (the trade

and current account balance, as well as the EFPD), are more driven by demand, preferences and

13Note here that the data moments, as well as the observable variables used in estimation, are in first difference.
The gap between data and model persistence, therefor, is not comparable to that typically obtained in calibration
exercises with HP filtering of the data and the simulated series.

14As a result, the decomposition ignores nonlinear interactions among the shocks that are present in the model
when all shocks active; we ignore these nonlinearities for a more transparent comparison with linear models.
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Table 4: Estimated Variance Decomposition (Unconditional)

Shocks TFP Expend. Terms of Trade Preference Temporary Persistent
Variables Int. Rate Int. Rate

Y 52.4 11.29 27.36 3.648 1.072 4.23
C 48.39 14.75 24.72 4.897 1.84 5.401
I 31.92 23.48 17.99 12.45 3.911 10.25
H 46.46 13.49 24.36 7.052 2.592 6.047
V 27.1 7.87 55.88 4.113 1.512 3.527
W 46.46 13.49 24.36 7.052 2.592 6.047
Q 25.09 27.28 14.61 15.63 4.957 12.43
B∗ (level) 10.31 28.46 7.656 22.44 7.038 24.1
B/Y (level) 32.94 22.91 16.78 9.128 3.016 15.23
CA/Y (level) 9.258 34.14 8.386 22.9 8.181 17.14
TB/Y (level) 8.771 31.32 7.783 21.01 8.797 22.33
EFPD (level) 8.979 35.28 8.332 24.43 8.423 14.55
r (pp) 0 0 0 0 21.33 78.67
λ (level) 8.466 36.01 8.127 24.36 8.424 14.61
µ 48.43 16.66 24.19 4.697 1.129 4.898

Note: The variance decomposition is normalized so that it sums to 100 by row. All variables in log-change

except when otherwise noted.

US interest rate shocks. The magnitude of the variance shares are broadly aligned with those

estimated by Garcia-Cicco et al. (2010). Not surprisingly, our borrowing cushion variable, which

is a function of the price of capital and debt, is largely driven by the expenditure shock and the

persistent interest rate shock. We interpret these results as suggesting that both real and financial

shocks matter for emerging market regular fluctuations.

4.3 Model-based Financial Crises Properties

The defining feature of the model we estimated is its ability to capture and describe the conse-

quences of occasionally binding borrowing constraints and characterize episodes of financial crises.

We now turn to empirical results on these episodes. Consistent with both the empirical literature

on sudden stops and the quantitative literature on models with occasionally binding constraints,

we define a financial crisis episode in our simulations an instance in which: (i) the economy is in a

binding regime, with λ > 0, (ii) GDP growth is negative by more than one standard deviation and

(iii) the TB/Y ratio increases by more than one standard deviation. As customary, this defini-

tion tries to avoid episodes of binding collateral constraint associated with small current account

reversals and output drops.

Figure 6 reports statistics on the frequency and the duration of the crisis episodes as defined

as above, generated by simulating 1,000 sample paths of 144 observations, like in our data sample.

We then track crisis episodes that meet the definition above. The histogram shows the number of

quarters in which the model meets the definition of a crisis provided relative to the total number
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Figure 6: Financial Crises Statistics

of time periods in the sample draw (144). The figure says that the mean, across sample draws,

of the unconditional crisis probability is 2.2%, which is close to typical estimates in the empirical

literature on sudden stops, to which quantitative models with occasionally binding collateral

constraints are often calibrated. Indeed, this probability is very close to the crisis probability in

Mendoza (2010) or Benigno et al. (2013). However, the mean frequency masks some heterogeneity,

with a mode frequency of 3 quarters out of 144, about 3 percent of the samples having no crises,

and a number of samples having more than 6 quarters out of 144.

While the model can generate episodes with long sequences of binding collateral constraints, the

average duration of crisis episodes as defined above is one quarter, as Mendoza (2010). Indeed,

when we compute the same histogram as in the lower panel of Figure 6 without imposing the

restriction that the binding constraint is associated with a large output drop and current account

reversal, we find substantial heterogeneity in duration, with some samples with fewer than 30

quarters in the binding regime and some with more than 90. This means that, while the model

can easily generate sample paths in which the economy spends long spells of time in the binding

regime, most of them are not associated with persistent current account adjustment and output

drops. In other words, the model does not generate crisis episodes characterized by repeated large

current account reversals and output drops.

We next look at Sudden Stop dynamics through the lens of the model. Figure 7 reports the

output from a long simulation of the model, again using parameters from the posterior mode.

Each time the economy goes into a financial crisis as defined above, the simulated data is saved 5

quarters before the constraint binds and 5 quarters afterwards. We then plot the mean response

and date the crisis as t = 0. Figure 7 show that the typical crisis episode is characterized by
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shocks that comove in a distinctively averse manner: before the crisis, productivity falls; the price

of intermediate input increases; expenditure and impatience rises, while the persistent portion of

the real interest rate increases. Even though the structural shocks fed to the model are assumed to

be orthogonal, and the estimated one are near orthogonal in the full sample, episodes characterized

by a binding collateral constraint and large economic dislocation are preceded by shocks that are

highly correlated. For instance, several of the correlations between the estimated shocks in our

sample, during the 4 quarters before the Tequila crisis, have a correlation that is above 0.5− 0.6,

and in some cases close to 1, in absolute value. Furthermore, the sequence of bad economic shocks

persists well after the sudden stop, or does not reverts during the event. These results explain

why linearized models of business cycles in emerging markets perform better at matching the

simulated second moments when the productivity shock is assumed to be negatively correlated

with the interest rate shocks, as extensively discussed by Neumeyer and Perri (2005).

As a result of the persistent sequence of averse shocks, the economy heads into a crisis episode

with a borrowing cushion that is zero for several quarters. Because of the exhausted borrowing

capacity that drives the logistic function, the probability of switching to the constrained regime

increases from .5 to 1, and eventually the economy switches to a binding regime one quarter before

reaching the peack of the crisis. Once entered into the large sudden stop phase, output, consump-

tion and investment collapse, and the trade balance reverts, swinging abruptly into surplus. Wages

and the relative price of capital plummet, and the EFPD premium spikes.

Note here that, after the crisis occurs, economic activity rebounds sharply and quickly, as the

model does not generate episodes with multiple large current account reversals and output drops.

This result is not surprising, as we do not have financial intermediation or equilibrium default in

the model, and suggests that the estimated estimated cannot generate episodes characterized by

sluggish recoveries from crises, and is better suited to study V-shaped crisis as those experienced

by emerging markets in 1990s. Indeed, as we saw earlier in Figure 4, the estimated model accu-

rately can identify accurately the two-quarter long Tequila crisis episode, but fails to capture the

persistency of the debt crisis of the 1980s.

So far, we have examined average model-based financial crisis episodes across simulations.

These are useful for understating the economic dynamics of a crisis from the lens of our model.

But one advantage of our framework is that we can also examine the historical shocks that drove

a particular crisis episode and compared their relative importance with the same exercise over the

full sample period.

As a counterfactual analysis, we calculate the likelihoods by turning off an individual shock

at the time, inside the Unscented Kalman filter, and set all other remaining shocks to the filtered

estimates obtained from the estimated parameter values. We consider three time windows: the

full sample, the 4 quarters before the Tequila crisis episode, which according to the model starts

in 1995:Q1 and ends in 1995:Q2. We then perform the following calculation: using the full

sample likelihood as a benchmark, we counterfactually turn off one shock, and take the simple
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Figure 7: Dynamics of Crisis Episodes

difference between the benchmark and the resulting log-likelihood values. So, if the value of the

log-likelihood in the full sample with all shocks is 100, and when we turn the productivity shock

off over a particular time period the log likelihood drops to -90, the measure of contribution of

the shock during that period will be 100-(-90) or 190. We then rank the shocks based on the the

decreasing value of log-likelihood loss.

Figure 8 reports the results for the three sample periods we consider: the full sample, the

run up to the 1995 Tequila crisis, and the two-quarter long crisis itself. As we can see, in the

full sample, all shocks are contributing similarly, although one could argue that terms of trade
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Figure 8: Counterfactuals

and persistent interest rate shocks are slightly more important. Before the crisis, shocks that

increase aggregate demand seem to be the most important. In particular, the expenditure and

the preference shocks seem to have had a larger role, arguably capturing the role of fiscal policy

and other factors negatively affecting saving. In contrast, during the Tequila crisis, we can see

that the two interest rate shocks and the productivity shock played a particularly large role.

Interestingly, when we conduct a similar exercise for the mean estimated crisis probability

reported in Figure 6, we find results fully consistent with these likelihood based counterfactuals.
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Table 5: Decomposition of the Crisis Frequency

Variable Mean StdDev

All Shocks 2.25 1.14
No Expenditure Shock 0.76 0.88
No Preference Shock 1.55 1.4
No TFP Shock 2.39 1.66
No Import Price Shock 2.42 1.64
No Transitory Interest Rate Shock 2.47 1.78

Note: The table reports the frequency of crisis episodes.

In fact, Table 5 provides a variance decomposition of the relative frequency with which crisis

episodes realize across sample draws, by shutting down one shock at a time. As we can see,

turning off the TFP shock, the terms of trade shock, and the transitory interest rate shock has

almost no impact on the frequency of crises. Persistent interest rate shocks and preference shocks,

and especially expenditure shocks, however, have a much larger impact on the crisis probability.

This confirms that the latter shocks may play a relatively larger role in the theoretical model in

driving the occurrence of crises.

When we look at the importance of different shocks for different variables in the run up to the

Tequila crisis, we can confirm that expenditure shocks seem most important for understanding

movement in the borrowing cushion. Preference shocks behaved in a similar fashion, driving

debt movements in the second part of the crisis. World interest rate shocks drove the borrowing

cushion, the current account, debt and interest rates, showing the importance of financial shocks

during the crisis.

5 Conclusions

In this paper we propose a new approach to specifying, solving and estimating Dynamic Stochastic

General Equilibrium (DSGE) models with occasionally binding collateral constraints. We first

specify the occasionally binding constraint in such a way that the transition from the unconstrained

to the constrained state of the world is a stochastic function of the endogenous variables in the

model, which permits to cast the framework as an endogenous regime switching model. Next,

we develop perturbation methods to solve this model and design an algorithm to estimate its

parameters with full-information Bayesian methods. Finally, we apply the framework to quarterly

Mexican data since 1981, finding that the model fit the data well, critical parameter estimates

differ significantly to what previously used in the literature, and that aggregate demand shocks

seems to matter more heading into crisis episodes, while productivity and interest rate shocks

prevails during crisis episodes. All estimated shocks play an important role in the full sample.

The estimated correlation of the shocks before the Tequila crisis appears particularly averse.

The model does not produce persistent large financial crisis like the debt crisis of the 1980s, or
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the Sub Prime crises in the United States. We regard the estimation of a model with financial

intermediation or equilibrium default to generate persistent crisis as an important area of future

research.
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Appendix A Competitive Equilibrium Definition

A competitive equilibrium of our economy is a sequence of quantities {Kt, Bt, Ct, Ht, Vt, It, At,

Et, Yt, B
∗
t } and prices {Pt, r∗t , rt, qt, wt, µt, λt} that, given the 5 exogenous processes, satisfy the

first-order conditions for the representative household-firm

dt

(
Ct −

Hω
t

ω

)−ρ
= µt (A.1)

(1− α− η)AtK
η
t−1H

α
t V
−α−η
t = Pt

(
1 + φrt +

λt
µt
φ (1 + rt)

)
(A.2)

αAtK
η
t−1H

α−1
t V 1−α−η

t = φWt

(
rt +

λt
µt

(1 + rt)

)
+Hω−1

t (A.3)

µt = λt + β (1 + rt)Etµt+1 (A.4)

Etµt+1β

(
1− δ +

ι

2

(
kt+1

Kt

)2

− ι

2
+ ηAt+1K

η−1
t Hα

t+1V
1−α−η
t+1

)
= µt

(
1− ι+ ι

(
Kt

Kt−1

))
− λtκqt

(A.5)

Yt = AtK
η
t−1H

α
t V

1−α−η
t − PtVt (A.6)

market price equations

qt = 1 + ι

(
Kt −Kt−1

Kt−1

)
Wt = Hω−1

t (A.7)

market clearing conditions

Ct + It = AtK
η
t−1H

α
t V

1−α−η
t − PtVt − φrt (WtHt + PtVt)− Et −

1

(1 + rt)
Bt +Bt−1 (A.8)

It = δKt−1 + (Kt −Kt−1)

(
1 +

ι

2

(
Kt −Kt−1

Kt−1

))
(A.9)

the debt cushion and borrowing limit constraints

B∗t =
1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) + κqtKt (A.10)

ϕ (st)B
∗
ss + ν (st) (B∗t −B∗ss) = (1− ϕ (st))λss + (1− ν (st)) (λt − λss) (A.11)

an equation for the interest rate

rt = r∗t + ψr

(
eB̄−Bt − 1

)
+ σrεr,t (A.12)
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where the laws of motion for the exogenous variables are given by

logAt = ρA logAt−1 + σAεA,t (A.13)

logEt = (1− ρE) logE∗ + ρE logEt−1 + σEεE,t (A.14)

logPt = (1− ρP ) logP ∗ + ρP logPt−1 + σP εP,t (A.15)

log dt = ρd log dt−1 + σdεd,t (A.16)

r∗t = (1− ρw) r̄∗ + ρwr
∗
t−1 + σwεw,t (A.17)

Appendix B Endogenous Switching and Stochastic Monitoring:

A Possible Interpretation

On possible interpretation of our specification of the occasionally binding constraint is in terms

of a stochastic monitoring technology. Specifically, one can model the transition from the non-

binding regime at time t to the binding regime at time t + 1 by considering a monitoring (or

enforcement) shock in period t + 1, εMt+1. Accordingly, the realized regime in period t + 1 can

be seen as a function of the current period borrowing cushion B∗t and a next period enforcement

shock, according to

st+1 = Γ(εMt+1|st = 0, B∗t ). (B.1)

Given that the economy is in a non-binding regime in period t, the Γ function maps the borrowing

cushion B∗t and the monitoring shock εMt+1 into a realization of the regime in the next period,

st+1 ∈ {0, 1}. The monitoring shock reflects the notion that financial contracts are subject to

random monitoring and enforcement, consistent with the evidence we referred to in the paper.

This makes the dependence on the borrowing cushion a probabilistic, rather than deterministic,

function. The enforcement shock, in other words, introduces an element of uncertainty in the

mapping, that reflects the empirical evidence discussed above.

While the formulation of equation (B.1) is very general, we assume a logistic functional form

for the probability of changing regimes. This permits us to drop εMt+1 from (B.1) and write the

following probabilistic statement that depends only on the borrowing cushion:

Pr (st+1 = 1|st = 0, B∗t ) =
exp (−γ0B

∗
t )

1 + exp (−γ0B∗t )
. (B.2)

Similarly, when the constraint is binding, the Lagrange multiplier λt associated with the con-

straint is non-zero. We again could introduce a monitoring shock such that the next period regime

depends on the multiplier and the monitoring shock,

st+1 = Γ(εMt+1|st = 1, λt). (B.3)
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Appendix C Overview of the Solution Method

This Appendix provides details about two aspects of the solution method: (1) the definition

of, and solution for, the steady state of the endogenous regime-switching economy; and (2) the

perturbation method that generates second order Taylor expansions to the solution of the economy

around the steady state.

C.1 Steady State Definition and Solution

The model has two features that make it challenging to define a steady state. First, as it is common

in a regime-switching framework, some auxiliary or structural parameters may be switching. In

the case of our application, there is only one auxiliary switching parameters that affect the steady

state, ϕ (st). Nonetheless, in principle, one could allow for regime switching also for the parameters

of the exogenous processes, a∗ (st) and p∗ (st), or the structural parameter κ∗ (st), which affect

the level of the economy directly, and will thus matter for steady state calculations.15 Solution

methods such as those proposed by Foerster et al. (2016) define the steady state by using the

ergodic means of these parameters across regimes. However, in our case, the transition matrix

P is endogenous, making the use of the ergodic distribution problematic, since it depends on

economic variables that in turn depend on the ergodic means. The steady state solution method

that we propose proceeds in two steps.

Step 1: Solve by Using a Steady State Transition Matrix. First, assume that the steady

state transition matrix at iteration i, P
(i)
ss , is known. Next, let ξ = [ξ0, ξ1] denote the ergodic vector

of P
(i)
ss . Then, as explained in the paper, define the ergodic means of the switching parameters as

ϕ̄ = ξ0ϕ (0) + ξ1ϕ (1) .

Note here that this step provides us with ϕ (ss), ass, Ess, κss, and pss. Next, assuming rss is

known, the equilibrium conditions in Appendix A above can be solved for the steady state value of

all the other variables, (Kss, Bss, Css, Hss, Vss, Iss, Yss, λss, B
∗
ss, r

∗
ss, qss, wss, µss). Then, rss must

solve

ϕ̄B∗ss + (1− ϕ̄)λss = 0. (C.1)

Step 2: Update the Transition Matrix. Step 1 yields the variables B∗ss and λss, and hence

have a new value of the transition matrix for iteration i+ 1:

P (i+1)
ss =

[
p00,ss p01,ss

p10,ss p11,ss

]
=

[
1− exp(−γ0B∗ss)

1+exp(−γ0B∗ss)
exp(−γ0B∗ss)

1+exp(−γ0B∗ss)
exp(−γ1λss)

1+exp(−γ1λss) 1− exp(−γ1λss)
1+exp(−γ1λss)

]
, (C.2)

15As it is well known, over finite periods of time, is statistically difficult to distinguish between unit root processes
and processes with structural break of regime changes. Allowing for regime changes in the process for At, therefore,
would be a way to accommodate permanent productivity shocks as in Aguiar and Gopinath (2007).
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which can be checked against the guess in Step 1. Continue this iterative procedure until∥∥∥P (i+1)
ss − P (i)

ss

∥∥∥ < tolerance.

C.2 Second order Approximation

To compute a second order approximation to the endogenous regime-switching model solution,

we largely follow Foerster et al. (2016). The equilibrium conditions can be summarized as

Etf (yt+1,yt,xt,xt−1, χεt+1, εt, θt+1, θt) = 0, (C.3)

with variables grouped in predetermined, xt−1, and non-predetermined, yt, and shocks εt. Switch-

ing variables and parameters θt are partitioned into those that affect the steady state, in our case

only θ1,t = ϕ (st), and those that do not affect the steady state, θ2,t = ν (st).

Given the functional forms in (20) and

θ1,t = θ̄1 + χθ̂1 (st) , θ2,t = θ2 (st) (C.4)

for t and t+ 1, the transition probabilities satisfy

pst,st+1,t = πst,st+1 (yt) . (C.5)

Using the latter in the equilibrium conditions and writing expectations explicitly conditional

on (xt−1, εt, χ) and st, we have:

Fst (xt−1, εt, χ) =

∫ 1∑
s′=0

πst,s′ (gst (xt−1, εt, χ)) f



gst+1 (hst (xt−1, εt, χ) , χε′, χ) ,

gst (xt−1, εt, χ) ,

hst (xt−1, εt, χ) ,

xt−1, χε
′, εt,

θ̄ + χθ̂ (s′) , θ̄ + χθ̂ (st)


dµε′ = 0,

(C.6)

which, by stacking these conditions for each regime, produces

F (xt−1, εt, χ) =

[
Fst=1 (xt−1, εt, χ)

Fst=2 (xt−1, εt, χ)

]
. (C.7)

For perturbation, we finally take the stacked equilibrium conditions F (xt−1, εt, χ), and differentiate

with respect to (xt−1, εt, χ). Prior to that, we set εt = 0 and χ = 0, which implies a steady state

given by

f
(
yss,yss,xss,xss, 0, 0, θ̄1, θ2(s′), θ̄1, θ2(s)

)
= 0 (C.8)

for all s′, s.
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In a typical regime-switching model, the first-order derivative with respect to xt−1 produces a

complicated polynomial system denoted

Fx (xss,0, 0) = 0. (C.9)

Often this system needs to be solved via Gröbner bases, which finds all possible solutions in order to

check them for stability. In our case, with endogenous probabilities, the standard stability checks

fail, so we will focus on finding a single solution and ignore the possibility of indeterminacy, a

common simplification in the regime-switching literature with and without endogenous switching

(e.g. Farmer et al., 2011; Foerster, 2015; Maih, 2015; Lind, 2014). In the literature that computes

global solutions to non-regime switching occasionally binding constraint models (e.g. Benigno

et al. (2013), Mendoza (2010)) there are no proofs of uniqueness, and the focus typically is also on

computing a solution checking robustness to initial conditions. To find a solution to our model,

we guess at a set of policy functions for regime st = 1, which collapses the equilibrium conditions

Fx (xss,0, 0; st = 0) into a fixed-regime eigenvalue problem, and solve for the policy functions for

st = 0. Then, using this initial solution as guess, we solve for regime st = 0 under the fixed-regime

eigenvalue problem, and iterate on this procedure to convergence. After solving the iterative

eigenvalue problems, the other systems to solve are

Fε (xss,0, 0) = 0 (C.10)

Fχ (xss,0, 0) = 0 (C.11)

and second order systems of the form (can apply equality of cross-partials)

Fi,j (xss,0, 0) = 0, i, j ∈{x, ε,χ} . (C.12)

Appendix D Data Appendix

D.1 National Accounts

National accounts are from the National Statistic Office. The data series used in the analysis

merge two set of official statistics by updating the level of the accounts based on 1993 constant

prices with the quarterly rate of growth of the accounts based on 2008 constant prices (as the

deflators to splice the accounts in levels were not available). The two set of accounts overlaps from

1993:Q1 to 2006:Q4. Over this period, the difference in annual rate of growth is less than 0.01

percent in absolute value for GDP, less than 0.05 percent for consumption, less than 2 percent for

investment, and less than 1 and 3 percent for imports and exports, respectively. The correlations

between the series are more than .9 for all series except investment that is .84. The differences,

however are smaller the closer to the end of the sample. For this reason, we choose to update the
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1993 accounts rather than backdate the 2008 ones. The specific data sources are as follows.

2006:Q1-2016:Q4 (Labeled 2008 accounts)–Supply and demand of goods and services. Orig-

inal series (not seasonally adjusted). Constant prices, annual 2008 = 100 (Oferta y demanda

de bienes y servicios. Series originales. A precios constantes 2008). Available from http:

//www3.inegi.org.mx/sistemas/tabuladosbasicos/tabdirecto.aspx.

1980:Q1-2006:Q4 (Labeled 1993 accounts)–Supply and demand of goods and services. Orig-

inal Series (not seasonally adjusted). Constant prices, annual 1993 = 100. (We obtained these

from Guadra Gabriel (2008), Hechos Estilizados del Ciclo Economico en Mexico, Banco de Mexico

Working Papers No. 2008-14, Diciembre 2008).

The data are not seasonally adjusted and show a strong seasonal pattern. To seasonally adjust

all series (assumed to be I(1) processes), we adjust the log-difference using the X-12 procedure

with the additive option in Eviews. We then use the log of the first observation of the raw series

(not seasonally adjusted) and cumulate the seasonally adjusted log-difference.

D.2 Interest rates

The country interest rate is calculated following Uribe and Yue (2006) as

rt = r∗t + EMBIt (D.1)

where r∗ is the US real interest rate, and EMBI is Mexico sovereign spread.

We compute r∗ as 3-month Treasury Constant Maturity Rate adjusted for CPI (annualized)

quarterly inflation, using period average data. The source is FRED.

The EMBI spread is available only starting from 1993. In order to estimate the risk premium,

we estimate the relationship between Mexico’s nominal interest rates and the EMBI during the

period over which the EMBI is observable, and then invert it. Specifically, we specify the following

model:

it = α0 + α1πt + α2EMBIt (D.2)

We then construct ÊMBIt by inverting the this regression.

We have monthly data for it and we take monthly average in each quarter. For CPI, we first

convert monthly data into quarterly and then πt is given by 4CPIt
CPIt−1

. There are three missing data

points for the nominal interest rate: 1986 Aug, Sep and 1988 Nov. We take the average of the

monthly data.

The results of the regression above are (t-statistics in parentheses and R2 = 0.883):

it = −0.00346
(−0.42)

+ 0.397
(4.46)

πt + 2.770
(7.37)

EMBIt. (D.3)
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