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Abstract

Recent empirical work has revived the Minsky hypothesis of boom-bust credit cycles
driven by fluctuations in investor optimism. To quantitatively assess this hypothesis, we
incorporate diagnostic expectations into an otherwise standard business cycle model with
heterogeneous firms and risky debt. Diagnostic expectations are a psychologically founded,
forward-looking model of belief formation that captures over-reaction to news. We calibrate
the diagnosticity parameter using micro data on the forecast errors of managers of listed
firms in the US. The model generates countercyclical credit spreads and default rates, while
the rational expectations version generates the opposite pattern. Diagnostic expectations
also offer a good fit of three patterns that have been empirically documented: systematic
reversals of credit spreads, systematic reversals of aggregate investment, and predictability
of future bond returns. Crucially, diagnostic expectations also generate a strong fragility or
sensitivity to small bad news after steady expansions. The rational expectations version of
the model can account for the first pattern but not the others. Diagnostic expectations offer
a parsimonious account of major credit cycles facts, underscoring the promise of realistic
expectation formation for applied business cycle modeling.
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Before the summer of 2007, the spread between risky corporate bonds and safe interest rates

was unusually low. Within one year, after the tremors of August 2007 and especially after the

Lehman collapse on September 2008, the spread reversed to historical highs (see Figure 1). The

earliers booms in corporate credit and investment also reversed as the economy moved into the

Great Recession. These boom bust dynamics in credit spreads, leverage, and economic activity

are generally observed around financial crises (Schularick and Taylor, 2012; Jordà et al., 2013;

Krishnamurthy and Muir, 2016), but also, in a less dramatic form, during normal times in the US

and other economies (Mian et al., 2017; López-Salido et al., 2017).

Figure 1: Interest Rate Spreads Fell before the Financial Crisis
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Note: The figure plots the average spread of the Moody’s BAA corporate bond yield relative to the 10-Year Treasury
yield, both in annualized terms, from 2000 through 2017 at quarterly frequency.

Two patterns in the data suggest that non-rational expectations may play a role in these

events. First, there is systematic return predictability: After credit booms, the realized excess

returns of corporate bonds and bank stocks are systematically disappointing and even negative

(Baron and Xiong, 2017; Greenwood and Hanson, 2013). Second, there is direct evidence from

expectations data. When spreads are low, credit analysts’ forecasts of future spreads are too low

as well (Bordalo et al., 2018b), and stock analysts’ forecasts about the future profitability of risky

firms are too optimistic (Gulen et al., 2019). These facts suggest that during good times market

participants may neglect the buildup of risk, causing credit spreads to be low, and leverage and

investment to be high. These belief errors are subsequently corrected, causing systematic reversals
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of spreads, investment, and economic activity, in line with the early analysis of Minsky (1977).

This evidence raises two questions. First, can realistic departures from rational expectations

improve the ability of standard business cycle models to account for these facts? Second, how far

can non-rational expectations go in accounting quantitatively for instability in credit markets and

the macroeconomy? To address these questions, we incorporate diagnostic expectations into an

otherwise standard model of total factor productivity (TFP) driven business cycles.

We study a heterogeneous firms model (Bachmann et al., 2013; Khan and Thomas, 2008) in

which the productivity of each firm is subject to an idiosyncratic and a common component,

both of which follow AR(1) processes. Each firm optimally decides whether or not to default

on debt, how much labor to hire, how much to invest with adjustment costs, and how many

one-period bonds to issue. Our main formulation is partial equilibrium: funds are provided by

deep pocketed risk neutral lenders, and labor is infinitely elastic at an exogenous fixed wage. The

key non-standard ingredient is that both firms and lenders hold diagnostic rather than rational

expectations.

Diagnostic expectations (Bordalo et al., 2018b) are a model of belief formation built on the rep-

resentativeness heuristic of probabilistic judgments introduced by Kahneman and Tversky (1972),

and ultimately based on the psychology of human memory (Kahana, 2012; Bordalo et al., 2019a).

They have been shown capable of accounting for survey evidence on the expectations of financial

analysts (Bordalo et al., Forthcoming) and macroeconomic forecasters (Bordalo et al., 2018a), and

have been used to shed light on financial fragility (Bordalo et al., 2018b; Gennaioli and Shleifer,

2018). Diagnostic expectations are formed through a selective recall process that captures a form

of over-reaction to current news, so that individuals become too optimistic after good news and

too pessimistic after bad news. In forecasting future macro TFP At+1, this process yields the

following representation of beliefs that we derive in Section 1:

Eθt (At+1) = Et (At+1) + θ [Et (At+1)− Et−1 (At+1)] (1)

where Et (·) is the rational expectation at time t and θ ≥ 0 is the diagnosticity parameter

measuring the extent of over-reaction to news. The model nests rational expectations for θ = 0.

Equation (1) illustrates the so called “kernel of truth property,” whereby diagnostic expectations

exaggerate true patterns in the data. This feature yields two important properties. First, de-

viations from rationality are disciplined by the data generating process, which pins down Et (·),
and are summarized by the single parameter θ. Second, deviations from rationality are forward

looking and react to regime changes, so they are robust to the Lucas (1976) critique of adaptive

expectations.

We calibrate the model by relying on conventional estimates for some parameters and matching

moments from microdata on firm level profitability, leverage and investment. To quantify the

degree of diagnosticity θ we use the model to match the predictability of managerial errors in

forecasting their firm’s profits, which are computed using microdata obtained from the Compustat

and Institutional Brokers’ Estimate System (IBES) databases. As shown in Gennaioli et al. (2016),

managers are too optimistic about future profits when current profits are high and too pessimistic

3



when current profits are low. To match this fact, the calibration sets θ ∼ 1, which is in the ballpark

of estimates obtained using different data and in different domains (Bordalo et al., Forthcoming,

2018a). The calibrated diagnostic expectations (DE) model significantly improves the fit relative

to the associated rational expectations (RE) model with θ = 0. Sizable departures from rational

expectations are needed to account for firm level behavior.

When we simulate the model, we show that diagnosticity has significant macroeconomic effects.

Consistent with the evidence, the DE model features countercyclical credit spreads. This is due

to the large shifts in credit supply by diagnostic investors, who underestimate default risk in good

times, leading to low spreads. In fact, in the RE model spreads are procyclical, mostly moved by

demand for capital. Because diagnostic expectations on average revert back to rationality, our DE

model generates the following four patterns:

1. More macroeconomic volatility than RE for the same fundamental shocks.

2. Financial crises – defined as periods with large increases in credit spreads – are preceded by

low spreads as in Figure 1, and are triggered by the slowdown of TFP growth, not by bad

shocks.

3. Systematic reversals of spreads and investment: a reduction in the current spread predicts

a hike in the spread and a reduction in investment in the future, as documented by López-

Salido et al. (2017).

4. Predictability of future bond returns: a reduction in the current spread predicts disappoint-

ing realized bond returns, as documented by Greenwood and Hanson (2013).

The RE model can partly account for reversals in spread growth (both during large crises and

during normal fluctuations) due to fundamental mean reversion in productivity, but it cannot

account for the other facts. In particular, the RE model does not generate large declines in credit

spreads before the crisis (Krishnamurthy and Muir, 2016). In the DE model this phenomenon is

natural due to: i) large pre-crisis expansion of the supply of capital by over-optimistic lenders,

and ii) over-leveraging by diagnostic firms that enhances fragility when over-optimism wanes. The

same mechanism explains why in the DE model crises occur at the end of booms, and not after

bad times.

The RE model also cannot account for the association between low spreads today, and low

investment and low realized bond returns in the future. In the RE model, realized returns are on

average equal to lenders’ required return, which is constant. In the DE model, return predictably

is due to under-pricing of credit risk in good times and over-pricing of credit risk in bad times.

Likewise, the DE model predicts systematic reversal in investment due to the systematic disap-

pointment of expectations after good times and the systematic improvement of expectations after

bad times.

To assess the relative role of expectations errors by lenders and borrowers, we also simulate a

model in which only firms are diagnostic. In this model, crisis dynamics are qualitatively similar

but more muted, suggesting that credit supply shifts are an important part of the mechanism.
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We conclude the analysis by studying the extent to which our model can quantitatively account

for the 2008 US crisis. We fit an aggregate TFP sequence that allows our model to match the

actual dynamics of US investment growth during 2007-2012. We then consider the implication

of this TFP sequence for leverage and spreads both in the DE and RE models. We find that

diagnosticity generates the 2008 crisis and Great Recession with a fairly mild negative TFP shock

of -1.5%. The RE model can neither match the collapse in investment in 2008 nor its subsequent

fast recovery, which the DE model sees as a reversal of excess pessimism in 2008. Furthermore,

only the DE model accounts for the dynamics of spreads and leverage.

In sum, our analysis conveys three messages. First, diagnostic expectations naturally generate

boom-bust credit cycles that transmit to the real economy. Second, these dynamics are quanti-

tatively sizable, helping account for real world phenomena such as predictable changes in credit

and real markets. More generally, we show that psychologically founded models of non-rational

expectation formation can be used in conventional business cycle models, can be disciplined with

micro data, and can improve the ability of workhorse macroeconomic models to account for impor-

tant phenomena such as credit cycles. They can be used to quantitatively assess macroeconomic

outcomes in the same manner as the rich mechanisms studied in the heterogeneous firms litera-

tures on adjustment costs (Khan and Thomas, 2013; Bachmann et al., 2013), uncertainty (Bloom,

2009; Christiano et al., 2014), firm-level financial frictions (Gilchrist and Zakraǰsek, 2012; Gilchrist

et al., 2014; Alfaro et al., 2018; Khan and Thomas, 2013), financial intermediation (He and Tian,

2013), and financial dynamics more generally (Brunnermeier and Sannikov, 2014). Barrero (2018)

provides an interesting analysis of behavioral belief in a heterogeneous firms model as well, al-

though our study on business cycles and credit dynamics differs from his focus on steady-state

misallocation.

Our paper is related to several literatures. First, a classic literature studies financial frictions,

in the form of collateral constraints, as mechanisms that amplify economic shocks (Bernanke and

Gertler, 1989; Bernanke et al., 1999; Kiyotaki and Moore, 1997). This work sometimes features

“financial shocks” to collateral constraints as a way to capture non-fundamental disruption in

financial markets. Gu et al. (2013) study a model of credit in which collateral constraints are

endogenized via the threat of exclusion from financial markets in case of default. They show

that in this setting, depending on investors’ beliefs, there may be equilibria featuring endogenous

credit cycles. Relative to these papers, we emphasize the importance of departures from rational

expectations, particularly in creating shifts in the supply of capital, and endogenize “financial

shocks” through the predictable correction or reversal of expectations errors.

Another growing literature studies financial crises and credit cycles. Arellano et al. (Forth-

coming) analyze the 2008 from the vantage point of financial frictions, and introduce uncertainty

shocks to account for a range of features of the crisis, including the decline in debt purchases,

output and labor during the Great Recession, despite the relative stability of total factor pro-

ductivity. However, the uncertainty shocks remain as a primitive. Here we focus on non rational

expectations, which helps explain predictability of forecast errors and of credit market conditions,

and to generate substantial credit cycles and leverage dynamics even in the absence of uncertainty
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shocks.

Third, several studies of financial fragility consider intermediary leverage and bank runs (Brun-

nermeier et al., 2012; He and Krishnamurthy, Forthcoming; Eggertsson and Krugman, 2012; Guer-

rieri and Lorenzoni, 2017). Here we abstract from intermediary leverage, but as we argue in Section

5 this factor clearly plays a key role in crises. Relative to this work, our approach helps explain

why crises often come as sudden reversals after booms and in this sense are predictable (Baron

and Xiong, 2017; López-Salido et al., 2017). Maxted (2019) introduces diagnostic expectations

into He and Krishnamurthy (Forthcoming)’s model, and shows that such expectations can further

exacerbate the instability arising from intermediary leverage.

Another approach to crises and financial fragility is more behavioral, and emphasizes the

importance of beliefs. Bordalo et al. (2018b) offer a stylized model of credit cycles with diagnostic

expectations. Greenwood et al. (2019) build a model in which credit markets extrapolate from

recent default history, so that crises are slow moving. Fostel and Geanakoplos (2014) and Simsek

(2013) emphasize belief heterogeneity. Relative to these papers, our main contribution is to

introduce diagnostic expectations into a workhorse, quantifiable macro model. Finally, a different

approach to financial instability views reversals after booms as the result of slow reallocation of

excess-capital toward more productive sectors Rognlie et al. (2018), fire sales (Shleifer and Vishny,

1992; Lorenzoni, 2008; Stein, 2012; Dávila and Korinek, 2017), or demand externalities (Farhi and

Werning, 2016; Korinek and Simsek, 2016). This work adopts rational expectations, so it cannot

account for return predictability and predictable expectations errors.

Section 1 introduces our notion of diagnostic beliefs and sketches a two-period model for

intuition. Section 2 introduces our quantitative real business cycle model with diagnosticity.

Section 3 describes our data and calibration approach. Section 4 evaluates the consequences

of diagnosticity relative to the rational expectations model. Section 5 performs a model-based

decomposition of the 2008 US financial crisis. Section 6 shows that the DE model entails state-

dependent or nonlinear responses of investment. Section 7 concludes. Appendix A details our

computational approach. Appendix B discusses the details of the microdata.

1 Diagnostic Expectations, Investment and Neglected Risk

We now introduce our model of Diagnostic Expectations and illustrate its key implications in a

stylized two-period model of firm investment and borrowing.

1.1 Diagnostic Expectations

Starting from the 1970s, psychologists Kahneman and Tversky (KT) assembled extensive labo-

ratory evidence that human judgments depart in systematic ways from Bayesian updating. For

instance, individuals tend to neglect base rates, leading them to over-react to noisy signals. KT

accounted for this and other biases by proposing that beliefs are often formed using “representa-
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tive” information that easily comes to mind.1 To give one example, Casscells et al. (1978) showed

that physicians tend to exaggerate the probability that a patient is sick after a positive medical

test. In KT’s logic, this mistake is due to the fact that after a positive test the ”sick” patient type

easily comes to mind, interfering with recall of healthy types. Thus, the physician neglects the

fact that the disease is rare, causing an inflated assessment of sickness.

Tversky and Kahnemann offer the following definition of representativeness (Tversky and Kah-

neman, 1983): “an attribute is representative of a class if it is very diagnostic; that is, if the relative

frequency of this attribute is much higher in that class than in the relevant reference class.”

Here a class could be a social group we seek to judge, a set of firms we seek to assess, or the

current state of the economy on the basis of which we predict the future. Its representative traits

are then those that are relatively more frequent in this class than in other classes. For instance,

when thinking about the Irish, red hair is representative because it is relatively more frequent in

this class than in the other national groups.

Building on this definition, Gennaioli and Shleifer (2010) and Bordalo et al. (2016) offer a model

of beliefs in which representative traits are more easily recalled and thus overweighed in judgments.

In this case, beliefs overreact in the direction of events that have become relatively more likely,

even if they are rare in absolute terms. For instance, we inflate the probability of sickness because

the positive medical test increases its objective probability relative to not observing any test

outcome. Critically, in this approach belief distortions depend on the true statistical features of

the data generating process. This property, which psychologists call “the kernel of truth”, allows

for disciplined applications of the model. Indeed, in previous work we showed that this organizing

principle offers a parsimonious account of measured belief distortions in diverse domains such as

social stereotypes (Bordalo et al., 2016, 2019b), long-term earnings growth estimates (Bordalo

et al., 2018b, Forthcoming), and macroeconomic forecasts (Bordalo et al., 2018a).

When applied to dynamic contexts, the model works as follows. Suppose that a variable follows

an AR(1) process Xt+1 = ρX+εt+1 where εt+1 is Gaussian with mean zero and standard deviation

σ. At time t the agent seeks to forecast Xt+1. The representativeness of a realization Xt+1 is

assumed to be measured by the likelihood ratio:

Rt (Xt+1) =
f (Xt+1 |Xt )

f (Xt+1 |ρXt−1 )
, (2)

where f (Xt+1 |.) denotes the density of Xt+1 conditional on a value at t . As in the KT definition, the

future realization Xt+1 is highly representative when its probability increases a lot on the basis

of recent news εt = Xt − ρXt−1.
2

1Kahneman and Tversky also discuss other heuristics that can lead to distorted judgments, such as “availability”
and “anchoring”. See Gennaioli and Shleifer (2018) for a systematic discussion of this work.

2 In Equation (2) the reference distribution in the denominator conditions on the absence of the recent shock
εt. As we discuss in Bordalo et al. (2018b), the reference distribution could be formalized as the density of
Xt+h conditional on yesterday’s observation Xt−1, or it could be defined in terms of a weighted average
of past realizations, reflecting the influence of more remote memories. Notwithstanding the differences,
the intuition is the same: good recent news increase the extent to which good future outcomes are
representative. The current specification is very tractable and displays some convenient formal properties,
which is why we use it here. We leave the exploration of alternative specifications to future work.
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The diagnostic distribution of Xt+1 is then defined as:

f θ (Xt+1 |Xt ) ∝ f (Xt+1 |Xt )

[
f (Xt+1 |Xt )

f (Xt+1 |ρXt−1 )

]θ
, (3)

where θ ≥ 0 parameterizes the extent of belief distortions. The model nests rational expectations

as the special case in which θ = 0 . For θ > 0 agents inflate the probability of future outcomes

that have become more likely in light of recent data.

Equation (3) should be interpreted as the product of selective memory. The agent’s database

contains in principle all necessary information to make a correct judgment, summarized by the

true conditional distribution f (Xt+1 |Xt ) . However, more representative information more easily

comes to mind, causing the agent to inflate its weight in judgments. This effect is captured by the

likelihood ratio in (3). Because the database contains objectively useful information, the beliefs

in Equation (3) are forward looking: they depend entirely on the true data generating process.

As a result, expectations react to regime changes, circumventing the Lucas (1976) critique of

adaptive expectations. As we will see, this also implies that belief updating depends on intrinsic

characteristics of the series, such as its persistence ρ.

When the true conditional distribution is Gaussian, as assumed above, it can be shown (Bordalo

et al., 2018b) that the diagnostic distribution f θ (Xt+1 |Xt ) is also Gaussian, with the same

standard deviation σ of the true distribution, and the distorted mean:

Eθt (Xt+1) = Et (Xt+1) + θ [Et (Xt+1)− Et−1 (Xt+1)] , (4)

where Et (.) denotes the rational expectation. The diagnostic expectation of Xt+1 can be

interpreted as a distortion of the rational expectation Et (Xt+1), which corresponds to an unbiased

usage of the memory database, toward states that have become more likely in light of news. When

news are positive, the agent is excessively optimistic. When news are negative, he is excessively

pessimistic. On average, news are zero, so expectations fluctuate around the rational benchmark.

In the current AR(1) setting, this implies that at time t the diagnostic distribution of Xt+1

is normal with variance σ2 and mean ρXt + ρθεt, as if at time t the agent believes that the state

follows the ARMA (1,1) process:

Xt+1 = ρXt + ρθεt + εt+1. (5)

In this sense, Diagnostic Expectations generate a form of model misspecification. This misspeci-

fication is not mechanical. By the kernel of truth logic, the believed model depends on the true

process, which here is an AR(1), and in particular on its true persistence ρ and volatility σ2.

By linking beliefs to measurable features of reality, diagnostic expectations offer a disciplined

approach to analyzing departures from rational expectations.

Finally, although diagnostic expectations introduce misspecification, our focus on the dynamics

of beliefs themselves separates our approach from the distinct but complementary literature in

macroeconomics on model misspecification and robust decisionmaking in such contexts. See, for

example, the survey in Hansen and Sargent (2001).
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1.2 A two period model of risky borrowing and investment

To see how diagnosticity intuitively affects borrowing and investment, consider a stylized two

period model. A risk neutral and patient entrepreneur transforms capital into output using tech-

nology y =Akα , with α < 1 . Capital is installed one period in advance, and future productivity

A is lognormally distributed, lnA = ρ lnA0 + ε , where A0 is current productivity. To invest,

the entrepreneur issues one period bonds, each promising a unit face value and fetching a market

price q . The entrepreneur borrows just enough to finance investment, k = qb , where b is the

amount of bonds issued and the future repayment.

Debt can default. If the entrepreneur does not repay, output is lost in deadweight bankruptcy

costs and all parties recover zero. If the entrepreneur repays, he keeps the firm’s profit. It is

then optimal for the entrepreneur to default if output is less than debt b plus any added default

penalty.3 We consider two extreme cases: one in which default penalties are infinite, so that debt

is riskless, and another in which they are absent.

Lenders are deep pocketed and risk neutral: they are willing to supply any amount of funds

provided their perceived expected return is equal to the riskless interest rate, which we assume to

be zero. Thus the price of debt is q = π , where π is the probability of future repayment.

1.2.1 Riskless Debt

With infinite default penalties repayment is certain, π = 1 , so the price of debt is one, q = 1 . The

entrepreneur chooses how much to borrow and invest (recall that k = b ) to maximize expected

output minus investment costs:

max
b
−b+Eθ (A) bα.

Exploiting the lognromality of TFP and Equation (5), we can show that the log deviation of

optimal investment and borrowing from to the rational benchmark b∗ is given by:

ln

(
b

b∗

)
=

(
1

1− α

)
θρε. (6)

After good news, ε > 0 , the entrepreneur is too optimistic, particularly if productivity is very

persistent (high ρ). He borrows and invests more than in the rational expectations case. After

bad news, ε < 0 , the reverse occurs. Diagnosticity amplifies booms and busts. Because borrowing

and investment are shaped not only by current productivity but also by the recent productivity

path, the contemporaneous correlation between productivity and macro outcomes is also reduced

relative to the RE case.

A third, critical, implication of diagnosticity is that it creates systematic reversals that are

predictable to the (non diagnostic) econometrician. In the current two period framework, reversals

3 Debt repayment can be larger than output because at t+ 1 the entrepreneur receives a large abscondable
endowment.
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can be obtained by averaging Equation (6) over the true distribution of news:

E
[
ln

(
b

b∗

)]
= 0 .

Because on average there are no news, diagnostic expectations are on average rational. As a

consequence, periods in which borrowing and investment are excessively high are systematically

followed by downward corrections and vice versa.

Finally, due to initial over-reaction and systematic reversals, diagnostic expectations cause

leverage and investment to be excessively volatile, and the more so the higher is θ :

V ar

[
ln

(
b

b∗

)]
=

(
1

1− α

)2

θ2ρ2σ2,

where again the variance is computed using the true distribution of TFP shocks.

The magnitude of these effects depends on the economic environment. Diagnosticity exerts

stronger effects when: i) uncertainty σ2 is higher, ii) returns to scale are slowly diminishing

(α→ 1), and iii) TFP is more persistent (ρ is higher). When we later quantify the macroeconomic

effects of diagnosticity, these factors make a significant difference.

1.2.2 Risky Debt

Without default penalties, there are states in which the entrepreneur optimally defaults, so debt

is risky. Now diagnosticity has two additional implications. First, it affects lenders’ expectations

about repayment and thus the equilibrium price of debt. Second, it changes the entrepreneur’s

perception of default risk, further affecting borrowing and investment.

Consider lenders’ expectations about debt repayment. The entrepreneur repays when output is higher

than debt, y > b, which occurs when productivity is high enough, A > π−αb1−α. With the diagnostic

lognormal distribution of productivity entailed by (5), the perceived probability of repayment π and

hence the price of debt q = π is implicitly defined by the equation:

π = 1− Φ

(
−α ln π + (1− α) ln b− Eθ (lnA)

σ

)
, (7)

where Φ (.) is the Gaussian cdf.

As we show in the Appendix, if debt b is sufficiently low, there is a unique and interior perceived

probability of repayment π (b) that decreases in b . Intuitively, the higher the level of debt, the

lower the probability of repayment.4

The perceived probability of repayment in (7) depends also on beliefs about productivity

Eθ (lnA) . When news is good, lenders’ are too optimistic and the perceived probability of repay-

ment π is too high. Default risk is neglected at any level of debt b and the price of debt is then

too high. Conversely, during bad times risk perceptions are heightened and the price of debt is

4Equation (7) also allows for a “zero debt” equilibrium in which for any positive debt level default
occurs with probability one, π = 0. We rule out this equilibrium because it is unstable.

10



too low. In a cross section of firms that vary according to their idiosyncratic productivities and

hence their default risk, this mechanism pins down credit spreads.

The mispricing of debt in turn feeds into entrepreneurs’ borrowing and investment decisions.

With risky debt, the entrepreneur’s problem becomes:

max
b
−π (b) b+ π (b)α bα

∫ +∞

π(b)−αb1−α
Af θ (A |A0 ) dA. (8)

The first term captures investment costs, which are equal to the amount of funds raised. The

second term captures expected output, whose distribution is truncated in the event of default.

There are two noteworthy features. First, the entrepreneur himself internalizes default risk: he

wishes to reduce the probability that the firm is shut down. This is the standard bankruptcy

cost of debt, which induces the entrepreneur to restrain leverage and investment. Second, the

entrepreneur also internalizes the fact that by issuing more debt b he reduces the perceived

probability of repayment, thereby reducing the price of debt π (b) . Effectively, the entrepreneur

faces a debt Laffer curve π (b) b.

Diagnosticity shapes the market calculus in two ways. First, it distorts the entrepreneur’s

perception of future productivity, distorting his incentive to invest, and hence his demand for funds.

This effect is captured by the rightmost integral in (8). Second, it distorts lenders’ perception of

default and risk and hence the price schedule π (b) . For instance, when lenders are too optimistic,

the price of debt is too high, which induces the entrepreneur to issue and invest even more. In

this sense, diagnosticity affects debt and investment by shaping both the demand and the supply

side of capital. One important question here is which one contributes more. We investigate this

issue in our model.

2 An RBC Model with Diagnostic Firms and Lenders

We now introduce our quantitative business cycle model with TFP driven fluctuations. We begin

with a partial equilibrium setup. Firms with different and persistent productivities decide whether

to default, to hire labor, to borrow, and to invest subject to capital adjustment costs. Credit is

supplied by a continuum of risk neutral lenders. The riskless rate R and the wage rate W are

given. The only difference relative to a workhorse model with firm heterogeneity and risky debt

(Khan and Thomas, 2008; Arellano et al., Forthcoming; Gilchrist et al., 2014), is that firms and

lenders form expectations diagnostically.

Time is discrete. We use ′ to denote future values and −1 to indicate lagged values. Uppercase

letters refer to aggregate or common values, lowercase letters refer to idiosyncratic objects.

2.1 Firms

The generic firm has micro-level TFP z and is subject to macro level productivity A. It uses

capital k and labor n as inputs to produce output according to a decreasing returns technology

y = Azkαnν , α + ν < 1.
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The log of micro TFP follows the AR(1) process

log z′ = ρz log z + ε′z, ε′z ∼ N(0, σ2
z), 0 < ρz < 1 , (9)

while the log of macro TFP follows a similar process with

logA′ = ρA logA+ ε′A, ε′A ∼ N(0, σ2
A), 0 < ρA < 1 . (10)

Firms invest i in capital k with one-period time to build

k′ = i+ (1− δ)k, 0 < δ < 1.

Investment entails quadratic adjustment costs AC(i, k) = η
2

(
i
k

)2
k indexed by parameter η > 0.

Firms act competitively. In each period, the timing of events is as follows. First, each firm

decides whether to default on its debt. If a firm defaults, its assets are transferred to lenders. If a

firm repays, it hires labor at the wage W , and chooses how much to invest and how much new one

period debt to issue. It does so to maximize the discounted sum of current and future dividends,

where the discount rate (1 +R)−1 < 1 reflects the exogenous risk-free rate R.

The firm’s current dividend d must be non-negative (we rule out equity issuance) and is given

by:

d = (1− τ) [y −Wn− AC(i, k)− φ] + qθ(s, k′, b′)b′ − i− b+ τ(R + δk). (11)

The firm’s earnings are given by its output minus the wage bill, the adjustment cost, and a fixed

production cost φ > 0 , and it pays a corporate income tax rate τ ∈ (0, 1) on them. The firm

raises additional resources by issuing new debt b′, priced by the schedule qθ(s, k′, b′) , it incurs the

investment cost i , and repays its current debt b . Finally, the firm receives tax rebates for capital

depreciation and interest expenses on debt.5 This formulation of dividends and specification of

firm fundamentals is standard, e.g. Strebulaev and Whited (2012).

To decide whether to default and how much to borrow and invest, the firm forms beliefs

about its future productivity. To assess default risk and interest rates, lenders must do the same.

We assume that both firms and lenders form expectations diagnostically. Given the true AR(1)

processes (9) and (10), and given the diagnostic formula in (5), diagnostic beliefs over micro and

macro TFP are described by the normal processes:

log z′|(log z, εz) ∼ N
[
ρz(log z + θεz), σ

2
z

]
(12)

logA′|(logA, εA) ∼ N
[
ρA(logA+ θεA), σ2

A

]
. (13)

With diagnostic expectations, θ > 0, the agent forecasts future productivity by overweighting

current news, as if the true productivity process follows an ARMA (1,1).6

5For computational simplicity, we assume the rebate is on average equal to the cost of debt R.
6Another approach to capture extrapolation is Fuster et al. (2010)’s Natural Expectations, in which long lags

in the data generating process are neglected by agents. As a consequence, agents end up overestimating short-
term persistence in processes with long-term mean reversion. In the current AR(1) setting, such beliefs would be
indistinguishable from RE.
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In this case, when forming beliefs about a generic firm, diagnostic agents consider four state

variables: its current micro TFP z , aggregate macro TFP A , the micro shock εz and the macro

shock εA . We collect these exogenous states in the vector s = (z, εz, A, εA). A firm is also

identified by two endogenous states, its inherited capital stock k and debt b. Given an overall

state (s, k, b), the firm defaults if its diagnostically expected continuation value is negative, and

it repays otherwise. If the firm repays, it hires labor, invests, and borrows so as to maximize the

sum of the current and diagnostically expected discounted future earnings, taking into account

the possibility of default in the future.

This problem can be written in a recursive fashion. Upon entering the current period, the

value of the firm is given by:

V θ (s, k, b) = max
[
0, V θ

ND(s, k, b)
]

, (14)

where V θ
ND(s, k, b) is the continuation value from non defaulting. Condition V θ (s, k, b) = 0

identifies states in which the firm optimally defaults. The continuation value from non defaulting

is recursively determined as:

V θ
ND(s, k, b) = max

k′,b′,n, s.t. d≥0
d+

1

1 +R
Eθ
[
V θ(s′, k′, b′)|s

]
. (15)

If the firm does not default, it optimally hires labor n , sets future capital k′ and debt b′ so as to

maximize its current dividend plus its diagnostically expected discounted future value V θ(s′, k′, b′).

Relative to the rational expectations benchmark, diagnosticity introduces two modifications.

First, the debt price qθ(s, k′, b′) is determined by competitive lenders whose expectations are

diagnostic. Second, the firm considers a diagnostic expectation of its future value, captured by

the notation Eθ (.).7

The labor choice n is statically optimized out of a non-defaulting firm’s dynamic decision

problem, leaving only the intertemporal choices of k′ and b′. More generally, Equations (14) and

(15) determine both the optimal firm default policy by df θ(s, k, b) and the policies for endogenous

states k′θ(s, k, b), b′θ(s, k, b).

2.2 Lenders

Firms borrow from risk-neutral deep-pocket lenders who form expectations diagnostically and

require an expected return equal to the risk-free rate R. If a firm (s, k, b) defaults on its debt b,

the lender receives the recovery rate

R(s, k, b) = (1− τ) γ
max [y −Wn− φ, 0] + (1− δ)k

b
7We apply diagnostic expectations to the recursive formulation of the problem, Equation (15). The diagnostic

agent believes that productivity follows an ARMA (1,1) and correctly thinks that he will continue to believe the
same in the future. The recursive problem is equivalent to an optimal control problem in which the probability
distribution of At+s at time t is the product Πs

j=1f
θ(At+j |At+j−1, εt+j−1) of the conditional distributions between

times t and t+ s− 1. This distribution has the same mean as the time t diagnostic distribution fθ(At+s|At, εt) but
has larger variance. This is due to overreaction to news (which are zero on average) in the intermediate periods.
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which reflects, net of tax, an exogenous fraction γ of the firm’s cash flows and the liquidation value

γ (1− δ) k of its remaining capital stock. The remaining fraction 1 − γ is a deadweight loss. In

the event of default, a reorganized firm carries on into the next period with zero capital and debt,

in which case it is forced to again borrow to finance investment and future growth.

The price of debt qθ(s, k′, b′) adjusts endogenously so that the diagnostically expected bond

return is equal to the risk free rate R . Formally this means that:

qθ(s, k′, b′) =
1

1 +R
Eθ
[
1 + df θ(s′, k′, b′) (R(s′, k′, b′)− 1) |s

]
. (16)

To equalize expected bond return across firms, riskier firms must promise a higher interest

rate. By this logic, the firm’s interest rate spread relative to the risk-free rate is given by:

Sθ(s, k′, b′) =
1

qθ(s, k′, b′)
− (1 +R).

These equations illustrate how diagnosticity affects debt prices and spreads. On the demand

side for capital, it affects the firm’s default df θ(s, k, b), debt b′θ(s, k, b) and investment kθ(s, k, b)

policies. On the supply side, it affects the probability of default perceived by lenders, as captured

by the operator Eθ in (16). We later analyze how these demand and supply forces contribute to

the credit cycle.

2.3 Solving the Model

A solution to the model reflects a set of firm level policies and values b′θ, k′θ, df θ, V θ
ND, V

θ together

with a set of debt price schedules qθ. These objects must jointly satisfy optimization by firms,

Equations (14) and (15), as well as the lenders’ zero-profit condition in Equation (16).

We solve the model numerically. In addition to standard Bellman equations V θ and V θ
ND, the

model features a fixed point between firm default policies df θ and credit prices qθ. To solve it,

we employ an iterative approach detailed in Appendix A. First, we guess a firm default rule df θ,

computing the implied debt price schedule qθ according to the lenders’ zero-profit condition above.

Then, we compute the solution to a firm’s dynamic problem by solving the Bellman equations V θ

and V θ
ND using discretization and policy iteration. If the implied default states, i.e., those states

with negative value V θ < 0, match the set of initial guesses, the iteration is complete. Otherwise,

we compute the newly implied default states and repeat the process. The algorithm we employ is

standard within the literature solving quantitative dynamic corporate finance models and follows

the implementation in Strebulaev and Whited (2012).8

To illustrate how diagnosticity affects firm level choices, Figure 2 plots the value function V θ

in our baseline calibration (which we discuss below), as a function of capital k. Each line in the

figure plots the perceived value for a firm with different realizations of idiosyncratic news εz but

otherwise identical states (z, A, εA, k, b).

8Our numerical approach here is highly computationally intensive, given the presence of four exogenous states,
two endogenous states/policies, and endogenous default rule, and a pricing fixed point. However, judicious appli-
cation of parallelization and an economical approach to storage of micro-level outcomes following Young (2010)
and Terry (2017a) allow for solution of the model in several minutes in a standard university cluster computing
environment using Fortran.
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Figure 2: Firm Value Exhibits Diagnosticity
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Note: The figure plots the perceived diagnostic value function V θ for firms as a function of capital k for the
calibrated DE model. The three lines correspond to identical current productivity levels z but distinct values of
news (green line after good news, blue line after moderate news, and red line after negative news).

The message echoes the two period model of Section 1. After good news, diagnostic firms

are too optimistic, so they value capital more than an otherwise identical firm with ratinoal

expectations. These overoptimistic firms invest and borrow more than their rational counterparts.

This mechanism proves crucial for generating macro level effects: after good aggregate news,

overinvestment and over-borrowing by diagnostic firms render the economy vulnerable to crises.

The reverse is true for bad aggregate shocks, which create excess pessimism, deep crises, but also

predictable recoveries.

3 Model Calibration

We set model parameters in two steps. First, we match eight parameters to conventional values

for a model like ours solved at an annual frequency. Table 1 reports the eight externally fixed

parameters. Given the similarity of the production structure and macro TFP fluctuations, we

draw on Bloom et al. (2018) for a range of firm-level and macro TFP parameters. Information on

effective corporate income taxes is obtained from the Congressional Budget Office (CBO, 2017).

Second, we calibrate the remaining six parameters by matching moments computed from micro-
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Table 1: Externally Fixed Parameters

Parameter Value Explanation Source

1 δ 0.1 Depreciation rate Annual solution
2 R 0.04 Risk-free rate Annual solution
3 α 0.25 Capital revenue elasticity Bloom et al. (2018)
4 ν 0.50 Labor revenue elasticity Bloom et al. (2018)
5 ρA 0.9 Macro TFP persistence Bloom et al. (2018)
6 σA 0.015 Macro TFP shock standard deviation Bloom et al. (2018)
7 W 0.5 Wage Normalization
8 τ 0.20 Corporate income tax Effective corporate tax rates, CBO (2017)

Note: The table reports the parameter symbol, numerical value, a description, and source information for each of
the externally fixed parameters. Outside of the unit-free persistence or normalized parameters, all reported values
are in proportional units, e.g. 0.01 = 1%.

data. These parameters govern the micro-level TFP process ρz and σz, adjustment and operating

costs η and φ, lender recovery rates γ, and the diagnosticity parameter θ. We set these param-

eters to best match thirteen moments on firm level investment rates, profits, leverage, default

rates, credit spreads, and crucially on the predictability of errors in firm forecasts of their own

earnings. We note at the outset that this is a highly overidentified moment-matching exercise with

a nonlinear model. It allows us to exploit information on many moments, but of course we are

not in general able to deliver an exact fit.

We also note that while many of these parameters and moments are familiar in the corporate

finance and macroeconomics literatures, the moments involving forecast errors and their link to the

belief parameter θ deserve further discussion. In the RE model with θ = 0, future forecast errors

should be unpredictable using any currently available information. By contrast, in the DE model

with θ > 0, overreaction of expectations towards the direction of recent news leads to systematic

reversals. When times are good today, managers are likely to be disappointed tomorrow, and

vice-versa, driving a negative correlation between future forecast errors and the level of today’s

profits. This makes data on the sign and magnitude of forecast errors a good way to pin down the

value of θ.

Table 2 reports the values of the thirteen targeted moments. We obtain annual financial

statements for listed US firms from Compustat, extracting information on earnings, investment,

debt, and capital. The exact definitions, variables used, and details of sample construction are

available in Appendix B.

With this standard data in hand, we construct a dataset of profit forecasts made by the

managers of the same firms from the IBES database. This database includes managers’ profit

forecasts one year ahead, also known as earnings guidance. These forecasts are widely followed

by markets as a measure of firm expectations. With these forecasts in hand, we can construct

measures of profit forecast errors equal to realized profits minus the manager’s forecast made

one period ago. Once again, further details on the construction of our dataset are available in

Appendix B, together with descriptive statistics of our sample of firms.
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After merging the Compustat and IBES samples, the resulting panel spans 2007-2016 for about

1000 firms and approximately 5000 observations, with a sample span reflecting a time period with

particularly large numbers of firms reporting manager expectations and a selection of mostly large

firms closely watched by financial markets and investors. We normalize firm profits π, investment

i, issued debt b′, and forecast errors in the next period fe′ by firm capital k, and we target the

covariance matrix of all of these series. The 11th moment is the autocorrelation of profit rates in

the same data. Finally, we draw average corporate default rates from Gourio (2013) and interest

rate spreads over risk-free debt from Moody’s BAA-treasury series. In line with the empirical

evidence in Hamilton and Cantor (2005), we define the BAA credit spread in the model as the

median firm’s credit spread. Data Appendix B contains an extensive discussion of the samples

and definitions used empirically and in the model simulations.

Table 2: Target Moments

Moment Value Explanation Source

1 σ
(
π
k

)
0.3406 Standard Deviation of Profit Compustat-IBES sample

2 ρ
(
π
k ,

i
k

)
0.3128 Correlation of Profit, Investment Compustat-IBES sample

3 ρ
(
π
k ,

b′

k

)
0.1518 Correlation of Profit, Leverage Compustat-IBES sample

4 ρ
(
π
k ,

fe′

k

)
-0.2141 Correlation of Profit, Forecast Error Compustat-IBES sample

5 σ
(
i
k

)
0.1124 Standard Deviation of Investment Compustat-IBES sample

6 ρ
(
i
k ,

b′

k

)
0.1791 Correlation of Investment, Leverage Compustat-IBES sample

7 ρ
(
i
k ,

fe′

k

)
-0.1237 Correlation of Investment, Forecast Error Compustat-IBES sample

8 σ
(
b′

k

)
0.5346 Standard Deviation of Leverage Compustat-IBES sample

9 ρ
(
b′

k ,
fe′

k

)
-0.0594 Correlation of Leverage, Forecast Error Compustat-IBES sample

10 σ
(
fe′

k

)
0.2347 Standard Deviation of Forecast Error Compustat-IBES sample

11 ρ
(
π
k ,

π−1

k−1

)
0.6637 Autocorrelation of Profit Compustat-IBES sample

12 EDefault 0.0050 Mean Default Rate Gourio (2013)
13 ESpread 0.0320 Mean Interest Rate Spread Moody’s

Note: The table reports the target moments used in the calibration of the model. The first 11 moments are drawn
from a sample of US listed firms combining data from Compustat and IBES at the firm-fiscal year level spanning
2007-2016 for 867 firms and 4457 observations. σ refers to standard deviations, while ρ refers to correlations. The
normalizer for all series k is tangible capital (the book value of plants, property, & equipment). The profit series
π is Street or pro forma earnings. The investment series i is capital expenditures. Debt b′ is total liabilities at the
end of period. The forecast error fe′ is the next-fiscal year value of pro-forma earnings minus manager forecasts of
earnings. The default moment is drawn from Gourio (2013). The mean spread is the average value of the Moody’s
BAA-Treasury annualized spread. Outside of the unit-free correlations, all reported values are in proportional
units, e.g. 0.01 = 1%.

We choose this set of moments for several reasons. Firm scaled earnings π
k

and their correlations

encode information about the productivity process at firms, helping to identify σz and ρz. Firm

investment rates i
k

not only reflect the productivity processes but also the various frictions such

as adjustment costs, helping to identify η. Leverage choices b′

k
reveal crucial information about
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the beliefs of firms and of investors, aiding in the identification of θ. Future forecast errors fe′

k

are especially revealing of systematic errors in beliefs at the micro level, mapping naturally to

the diagnosticity parameter θ as noted above. Finally, mean default and spread values encode

information about both the fixed costs of operation φ and recovery fractions γ conditional upon

default. To calibrate the six model parameters, we minimize the deviation between the empirical

moments in Table 2 and those computed from a comparable unconditional simulation of the model.

We weight the moments by one over their squared value, implying an objective function equal to

the sum of squared percentage deviations between model and data moments.

One key feature of the microdata is strong evidence of forecast error predictability, as reflected

in the negative correlation between current firm profits π
k

and future forecast errors fe′

k
in row 4 of

Table 2. Recall that these forecast errors fe′ are the difference between next year’s realized profits

and current forecasts of those profits. This means that good current conditions, as measured

by high profits π
k
, predict systematic future disappointment as measured by negative forecast

errors fe′

k
. This correlation is quite robust, with a t-statistic of -7.7. Intuitively, given their

positive correlation with today’s profits, higher investment and debt issuance today also predict

future disappointment or negative forecast errors in rows 7 and 9 of Table 2.9 Similar predictable

reversions relative to expectations are documented in Gennaioli et al. (2016) for firm level earnings

and in Bordalo et al. (2018a) for a range of macro forecasts.10 This evidence is at odds with rational

expectations, and we now use the model structure to determine whether the magnitude of these

predictable reversals imply meaningfully sized values of θ > 0.

3.1 Calibrated Parameters

Table 3 reports the calibrated parameters for the calibrated DE model. We later discuss how

these values fit the data moments. The diagnosticity parameter θ ≈ 1 matches closely the values

found by Bordalo et al. (2018b) using data on professional forecasts of credit spreads (θ = 0.9),

by Bordalo et al. (Forthcoming) using analyst expectations of US listed firms’ long term earnings

growth (θ = 0.9), and by Bordalo et al. (2018a) using professional forecasts of several macro series

(θ = 0.6 ). A value of θ close to 1 means that forecast errors are roughly equal to the size of

incoming news. The calibrated values of micro TFP persistence ρz and volatility σz are close

to those from other work calibrating or structurally estimating firm-level shock processes with

Compustat data, e.g., Hennessy and Whited (2007), Gourio and Rudanko (2014), Terry (2017b),

Khan and Thomas (2008), or Saporta-Eksten and Terry (2018).
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Table 3: Internally Calibrated Parameters

Parameter Value Explanation

1 θ 1.076 Diagnosticity parameter
2 ρz 0.882 Micro TFP persistence
3 σz 0.103 Micro TFP shock standard deviation
4 η 2.839 Capital adjustment cost
5 φ 0.130 Fixed operating cost
6 γ 0.164 Recovery rate

Note: The table reports the parameter symbol, calibrated value, and an intuitive explanation for each of the
internally calibrated parameters. These 6 parameters were fixed by targeting the values of the 13 empirical moments.
During the calibration process, the model equivalents of the empirical moments were drawn from a simulated sample
of 2500 firms over 10 years, approximately twice the size of the empirical sample. The simulation was performed
using a set of unconditional draws of shocks for the model held constant across parameter values, and moments were
computed after an initial 250-year simulation to reduce influence of initial conditions on the resulting moments.

Table 4: Model vs Data Moments

Moment Data Diagnostic (DE) Model Rational (RE) Model

1 σ
(
π
k

)
0.3406 0.0962 0.1080

2 ρ
(
π
k
, i
k

)
0.3128 0.1088 0.5759

3 ρ
(
π
k
, b
′

k

)
0.1518 0.4819 0.8235

4 ρ
(
π
k
, fe

′

k

)
-0.2141 -0.1820 -0.0014

5 σ
(
i
k

)
0.1124 0.1099 0.0873

6 ρ
(
i
k
, b
′

k

)
0.1791 0.6035 0.4267

7 ρ
(
i
k
, fe

′

k

)
-0.1237 -0.2459 -0.0061

8 σ
(
b′

k

)
0.5346 0.2196 0.2397

9 ρ
(
b′

k
, fe

′

k

)
-0.0594 -0.2483 -0.0068

10 σ
(
fe′

k

)
0.2347 0.0746 0.0564

11 ρ
(
π
k
, π
′

k′

)
0.6572 0.7215 0.8533

12 EDefault 0.0050 0.0046 0.0065
13 ESpread 0.0320 0.0568 0.0243

Note: The first column defines the moments. σ is standard deviation, ρ is correlation. The second column reports
empirical moments. The third column reports moments from the calibrated DE model. The fourth column reports
moments from the RE model with θ = 0. All reported values are in proportional units, e.g. 0.01 = 1%. The
first 11 moments are from the microdata Compustat-IBES sample spanning 2007-2016. The spread is the Moody’s
BAA-Treasury spread, and the default rate is from Gourio (2013). Simulated moments from 2500 firms over 50
years.
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3.2 Fit with Microdata

Table 4 reports the fit of the micro moments for both the calibrated DE model and an associated

RE model with θ = 0 but all other parameters unchanged. Comparison across the two models

isolates the impact of the diagnosticity parameter θ on simulated behavior. As usual in highly

overidentified exercises with nonlinear models such as this one, the calibrated DE model does not

fit perfectly. However, the fit is comparable to similar exercises in structural corporate finance

or quantitative macroeconomics (Hennessy and Whited, 2007; Terry, 2017b; Bloom et al., 2018).

Crucially, the DE model also improves upon the RE model along several dimensions.

Most intuitively, θ > 0 allows to match the predictability of errors. Diagnostic over-reaction

to news offers a good fit for the evident excess managerial optimism (pessimism) in good (bad)

times. The RE model cannot account for these predictable errors, and in fact when θ = 0 these

correlation are not meaningfully different from zero.

The DE model is also better able to capture the correlation of current profitability with in-

vestment and debt, and the autocorrelation of profitability. As we saw in Section 2, diagnostic

investment and borrowing (and thus future profits) are influenced not only by current productivity

but also by the current shock. A firm with low (high) current profits may choose to invest a lot

(a little) due to good (bad) recent news. This mechanism reduces the correlation between current

conditions and firm behavior, allowing the DE model to better match the microdata.

Despite risk neutrality the DE model yields meaningful credit spreads even though the average

default frequency is low. This occurs because, in the model, just like in Moody’s convention,

spreads are measured for firms with moderate (median) credit risk rather than for the mean

firm. Given lognormality of the driving productivity process and decreasing returns to scale in

the production technology, the mean risk level is lower than the median risk level. Diagnostic

expectations by lenders increase the perceived variance of productivity and hence amplify this

effect, so the spreads are on average higher with DE than for the RE model.

Overall, this calibration exercise tells us the DE model can better match the micro behavior

of firms with respect to investment, leverage, expectations, and spreads. We next assess the

ability of this model to account for macroeconomic phenomena, comparing again the DE and RE

specifications.

3.3 Diagnosticity and Business Cycle Comovements

Table 5 reports the correlations and volatilities of output growth, leverage growth, investment,

mean credit spreads, and default rates computed from an unconditional simulation of the DE

model. Table 6 provides the equivalent figures for the RE model, computed from an identical

9The t-statistic quoted above for row 4 reflects standard errors clustered by firm. The firm-clustered t-statistics
for rows 7 and 9 are -6.02 and -3.75, respectively.

10Given our focus on manager decision-making, we study manager beliefs using earnings guidance data from
IBES. Bouchaud et al. (2019) study equity analysts’ short-term earnings forecasts which, while correlated with the
former, display a form of underreaction. We note that both the variable forecasted and the incentives involved are
distinct in the latter sample.
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set of macro shocks. Table 7 reports the same aggregate moments in the data. These aggregate

business cycle patterns are entirely untargeted in our calibration procedure, with macro TFP

shock persistence and volatility set to round values from other papers in the literature to ensure

comparability. An examination of the patterns at the macro level still proves useful because it

provides insight into the mechanisms at work under diagnosticity. In particular, standard business

cycle moments shift considerably with the incorporation of diagnosticity, in a direction that helps

to reconcile the model with qualitative patterns in the aggregate data.

Table 5: Business Cycle Moments: Diagnostic (DE) Model

Correlation Output Leverage Investment Spread

Output 1.0000
Leverage 0.865 1.0000

Investment 0.590 0.826 1.0000
Avg Spread -0.085 -0.121 -0.153 1.0000

Standard Deviation 0.035 0.016 0.250 0.021

Note: The table reports the correlations and standard deviations of aggregate output growth, investment growth,
leverage growth, and the mean spread. The moments are computed over a 5000-year unconditional simulation in
the calibrated DE model with θ > 0.

Table 6: Business Cycle Moments: Rational (RE) Model

Correlation Output Leverage Investment Spread

Output 1.0000
Leverage 0.939 1.0000

Investment 0.749 0.783 1.0000
Avg Spread 0.121 0.184 0.044 1.0000

Standard Deviation 0.034 0.013 0.151 0.009

Note: The table reports the correlations and standard deviations of aggregate output growth, investment growth,
leverage growth, and the mean spread. The moments are computed over a 5000-year unconditional simulation in
the RE model with θ = 0.

Most importantly, the DE model captures the observed countercyclicality of spreads. Spreads

are countercyclical when the supply of credit expands more than its demand during good times.

This does not happen in the RE model because lenders’ rational expectations of default are just

too stable. As a result, when θ = 0 in the RE model, demand for credit plays a more important

role in shaping spreads and creates unrealistic procyclicality.

Another salient feature of the DE model is that it generates less comovement of output growth

with investment and debt. This is once more due to the fact that in the DE model firms’ behavior

depends on news, not only on current productivity as in the RE model. This extra source of

volatility tends to reduce business cycle comovements in an empirically plausible direction.
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Table 7: Business Cycle Moments: Data

Correlation Output Leverage Investment Spread

Output 1.0000
Leverage 0.384 1.0000

Investment 0.844 0.142 1.0000
Avg Spread -0.686 -0.310 -0.511 1.0000

Standard Deviation 0.015 0.036 0.074 0.007

Note: The table reports the empirical correlations and standard deviations of output growth, investment growth,
leverage growth, and the mean spread. Output is real GDP from NIPA, investment is private nonresidential
fixed investment from NIPA, leverage is the ratio of nonfinancial corporate debt to the net stock of private fixed
assets from the Flow of Funds, and the spread is the Moody’s BAA-Treasury spread, all at annual frequency from
1986-2017.

Finally, the DE model also produces, for an identical macro TFP shock process, more volatility

of most business cycle aggregates than the RE model. Given the values for the macro TFP shock

process parameters chosen here from the literature, the DE model in fact overpredicts macro

volatility relative to the untargeted macro data moments. The lesson here is that belief shifts

through diagnosticity provide a useful amplification device, and a calibration exercise which tar-

geted these macro moments directly would require smaller exogenous macro TFP shock volatility

to generate a given amount of observed business cycle variance.

Before moving further, a discussion of our partial equilibrium or small open economy structure

is in order. This structure embeds two maintained assumptions, which we examine in turn. First,

we assume a constant interest rate R without general equilibrium stochastic discount factor (SDF)

shifts. While the role of the SDF should be explored in future work, we note that the traditional

SDF cannot by itself account for our main motivating evidence, namely the predictability of

returns on debt and the tendency for crises to arise after credit booms. Furthermore, recent

work shows that conventional empirical proxies of the SDF are negatively correlated with survey

expectations of returns, raising questions about the validity of the SDF as the driver of expected

returns (Greenwood and Shleifer, 2014; Giglio et al., 2019). Assuming a constant interest rate also

allows us to avoid making strong assumptions about the nature and cyclicality of SDF movements

in practice. A lively debate within a literature in quantitative macroeconomics studying firm

heterogeneity (Khan and Thomas, 2008; Bachmann et al., 2013; Winberry, 2017) has recently

emphasized that general equilibrium SDF movements do not necessarily lead to a dampening

of business cycle nonlinearities or investment dynamics if they are structured to produce realistic

countercyclicality of real interest rates, while the traditional SDF does in fact dramatically dampen

investment dynamics through procyclical real interest rates. Our fixed real interest rate assumption

here strikes a middle ground between these alternatives, and is consistent with the evidence that

suggests that the real interest rate is only mildly countercyclical (Winberry, 2017).

We also assume a constant wage W . This assumption does in fact map less ambiguously

to our results, suggesting that the macro volatilities in the DE and RE models above are likely
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upper bounds. With upward-sloping labor supply and general equilibrium including labor markets,

procyclical wage movements would quantitatively dampen the impact of productivity shocks on

output, and internalization of such shifts would feed through into dampened investment dynamics.

Of course, the exact quantitative impact of general equilibrium wage movements in unclear until

the completion of an ongoing computational exercise. Therefore, we leave the macro moments in

Table 7 untargeted for now.

The bottom line from our examination of macro moments is that diagnosticity helps account

for the countercyclicality of spreads, for their volatility, and for higher overall variability in the

macroeconomy. We next move to the central goal of our analysis, which is to assess whether

diagnosticity helps account for recurrent and predictable cycles in spreads, investment, and returns

on debt.

4 Credit and Investment Cycles under Diagnosticity

Recent empirical work describes a boom-bust predictability in credit markets and the economy.

Schularick and Taylor (2012), Jordà et al. (2013), Krishnamurthy and Muir (2016), and related

papers document - using cross country panels - that financial crises are preceeded by booming

credit and low spreads. Baron and Xiong (2017) and Baron et al. (2019) show that bank credit

expansions predict increased risk of financial crises. Beyond large crises, López-Salido et al. (2017)

document normal times predictability in credit cycles and real activity, whereby periods of low

spreads are on average followed by increases in spreads and reductions in investment, with negative

repercussions also on future GDP growth. Based on this evidence, we ask two questions. First,

can diagnostic expectations help account for financial crises coming after good rather than bad

times? Second, can the same mechanism help account for more regular but still predictable credit

and investment cycles? As we show, the answer of both questions is yes, because diagnosticity

entails both over-optimism in good times and its systematic subsequent reversal. As we show

below, these features also yield quantitatively reasonable credit cycle movements in the aggregate.

4.1 Financial Crises After Good Times

For the purpose of our model, we define a financial crisis as a period in which the spread grows 1.5

percentage points or more. This threshold corresponds to the 97.5th percentile of spread growth

in U.S. data from 1986-2017.11 We simulate the model for a large number of periods (T = 500),

identify crises corresponding to this definition, and examine the average dynamics of a variety of

aggregate indicators around such events using distributed lag regressions of crisis indicators.

Figure 3 plots the average path of spread growth around crises in the DE model and in the RE

model. By definition, crises are characterized by sharp increases in credit spreads. But there are

two important differences between the two models. First, in the DE model a crisis occurs after a

pronounced reduction in the spread. This regularity is consistent with the empirical findings of

11Others have used similar ranges in their characterization of financial crises, see Reinhart and Rogoff (2009) and
Baron et al. (2019).
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Figure 3: Financial Crisis Dynamics: Spread Growth
Note: The red line with circles is the DE model, the blue line with × is the RE model. The figure traces out average
dynamics around crisis events, defined as periods with greater than 1.5% growth in spreads within an unconditional
simulation of the model of 5000 period length.

Krishnamurthy and Muir (2016), but is not obtained when θ = 0. Second, the spread dynamics

are significantly more pronounced under diagnosticity: during the crisis the spread grows by about

six percentage points as opposed to roughly two percentage points in the RE model.

Why does diagnosticity cause crises to occur after a strong decline in the spread? The mech-

anism is illustrated by the TFP dynamics in the top left of Figure 4. In the DE model, the

TFP sequence leading to a crisis is “boom and stasis.” That is, crises do not come after bad

TFP shocks. They come when TFP stops growing after a large boom. This is intuitive: during

the boom, diagnostic investors are overly optimistic. As a result, they underestimate default risk,

charging low spreads. Diagnostic firms are also too optimistic, inducing them to borrow and invest

too much. When TFP growth stops, excess optimism wanes, which induces firms to appreciate the

risks created by prior over-leveraging. This fragility causes spreads to rise. In the RE model crises

are due to sharply different dynamics: they require a prolonged TFP decline. As TFP declines

for several periods in a row, the median firm’s debt structure becomes less and less sustainable,

entailing higher risk of default and higher spreads. This account, though, does not square with

the fact that, in reality, crises often come after good times, rather than bad times.

Figure 4 shows that, by creating these boom-bust dynamics, diagnostic expectations impor-

tantly affect the behavior of the macroeconomy.
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Figure 4: Financial Crisis Dynamics: Macro Aggregates
Note: In each panel, the red line with circles is the DE model, the blue line with × is the RE model. The top
left panel plots macro TFP growth, the top right panel plots the aggregate investment rate, the bottom left plots
output growth, and the bottom right plots debt growth. The figure traces out average dynamics around crisis
events, defined as periods with greater than 1.5% growth in spreads within an unconditional simulation of the
model of 5000 period length.

Due to the different TFP patterns, output growth, the investment rate, and leverage growth

exhibit strong boom-bust dynamics in the DE model, while they exhibit muted dynamics in the RE

model. Under diagnosticity, over-leveraging during the boom and de-leveraging during the bust

cause large fluctuations in investment. Under rationality, by contrast, firms start to deleverage as

the crisis approaches, giving rise to a gradual but small decline in real activity.

To summarize, the DE model creates endogenous financial crises as follows: good news ⇒
excess optimism⇒ over-leveraging⇒ systematic reversal in expectations⇒ financial fragility. The

ensuing predictability in financial crisis events helps account for the data. We now consider whether

the same mechanism can also create the regular and predictability financial cycles documented by

López-Salido et al. (2017).

4.2 Predictable Macroeconomic Reversals after Loose Credit Pricing

To assess the predictability of financial and real cycles, we simulate the model for a large number

of periods (T = 500) and then use the simulated data to run regressions similar to those run by

López-Salido et al. (2017)who document predictable macroeconomic reversals after credit spread
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declines. As a first step, we regress spread growth at t + 1 on spread growth at t. This analysis

detects any predictable reversal in credit market conditions. As a second step, we regress macro

outcomes of interest at t+ 1 on the contemporaneous spread change that could be predicted using

spread growth at t. More precisely, we first regress

∆Spreadt = α + β∆Spreadt−1 + εt.

We then use the predicted values from this regression ̂∆Spreadt in a second step to evaluate any

forecastable patterns in a given macro aggregate Xt by estimating

Xt = δ + γ ̂∆Spreadt + λ∆Yt−1 + ηt,

where following López-Salido et al. (2017) we include lagged output growth ∆Yt−1. Table 8 reports

β̂ from the first step (columns (1) and (4)) and γ̂ from the second step (columns (2)-(3) and (5)-

(6)), running such regressions for both the DE and RE models. We consider two outcomes Xt

here: aggregate investment growth and realized returns on debt. Greenwood and Hanson (2013)

document that realized (excess) bond returns are predictably lower, and sometimes even negative,

after periods of low credit spreads. We check whether our model can yield this empirical regularity.
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Table 8: Predictable Reversals in the DE Model

Dep. Var.: Spread Growtht Investment Growtht Bond Returnt Spread Growtht Investment Growtht Bond Returnt
Model: DE DE DE RE RE RE

(1) (2) (3) (4) (5) (6)

Predicted Spread Growtht -4.777*** -0.070*** 10.591*** -0.010
(1.747) (0.016) (3.059) (0.019)

Spread Growtht−1 -0.304*** -0.253***
(0.013) (0.014)

T 500 500 500 500 500 500

Note: The table reports a set of regressions run on unconditionally simulated data from the DE model in columns (1)-(3) and the RE model in columns
(4)-(6). The underlying macro TFP series is held constant across models. Predicted spread growth is the predicted value from the regression in column (1),
i.e., spread growth predicted with lagged spread growth. For the DE model, columns (2)-(3) regress the aggregate investment rate and the average bond
return on predicted spread growth. Columns (4)-(6) in the RE model are the analogs of Columns (1)-(3) for the DE model. The investment growth and bond
return regressions control for lagged output growth, and all models include constants. Standard errors, in parentheses, are computed from the iid formula.
The symbols ***, **, and * imply significance at the 10, 5, and 1% levels.
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In column (1) of Table 8, the DE model creates systematic reversals in spread growth, consistent

with intuition and with the data. As can be seen from column (4), the RE model also creates

some reversals, due to mean reversion in aggregate TFP. However, this effect is smaller than in

the DE model because θ > 0 create a reason for reversals even if mean reversion is absent in the

RE model: systematic correction of forecast errors.

The difference between the DE and RE models is however most pronounced when we consider

the predictability of macro outcomes. In column (2), the DE model generates - consistent with the

data - a pattern whereby a decline in spreads today is associated with a predictable contraction

in future investment. The mechanism is the same as that creating financial crises: excessive

optimism leads to over-leveraging, but also to subsequent disappointment and deleveraging. In

the RE model, see Column (5) predictability goes the wrong way. Here a reduction in current

spreads, due for instance to low TFP and thus stagnating credit demand, is associated with higher

future investment, due to mean reversion in productivity.

Diagnosticity is also critical in generating predictability in realized bond returns. Column (3)

shows that low current spreads predict low realized bond returns, as in Greenwood and Hanson

(2013). This is due to current excess optimism, which leads to neglect of default risk and thus

disappointing realized returns. In the RE model, see column (6), realized bond returns are unpre-

dictable. Rational investors will always demand the proper compensation for default risk, which

guarantees an average return equal to the constant riskless interest rate.

In sum, by creating excessive optimism in good times, excessive pessimism in bad times, and

systematic reversals, the DE model is capable of parsimoniously unifying a range of evidence on

financial and real instability.

4.3 Diagnosticity: Demand vs. Supply

Several papers have argued that credit cycles to some extent reflect shocks to supply of or to

demand for credit. Collin-Dufresn et al. (2001) suggest that the majority of monthly changes

in credit spreads are driven by supply or demand factors over and beyond estimates of default

risk. Similarly, the predictably low bond returns (Greenwood and Hanson, 2013) and of credit

crunches (López-Salido et al., 2017)’s suggests a role for (predictable) overoptimism by lenders.

Our model features demand and supply shocks in the form of predictable deviations from rational

expectations, and so it offers a setting in which to quantitatively examine this question.

To do so, we explore how the over-leveraging dynamics that play a central role in the model

depend on the structure of the credit market. In particular, we assess to what extent these

dynamics arise in a world in which diagnostic firms are disciplined through rational debt pricing.12

Specifically, we run a simulation of the model in which we set θ = 0 for lenders while keeping

θ at the calibrated value for firms. This exercise offers a way to assess which portion of the total

variation due to diagnosticity is accounted for by the demand and supply sides. We consider the

12It is also interesting to examine the case in which firms hold rational expectations but diagnostic credit markets
create periods of excessively cheap credit, to which even rational firms may want to adjust. We will explore this
case in the future.
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robustness of the crisis dynamics of Section 4.1, to evaluate the extent to which diagnosticity in

credit pricing contributes to the effects we have described.

Figures 5 - 6 below present the crisis plots (still defined as periods in which spread growth

is at or above 1.5 percentage points) for the benchmark DE model in which all agents have the

same θ and the model in which only firms are diagnostic, while lenders hold rational expectations

(they have θ = 0 ). The message is intuitive: the crisis dynamics lie in between the full diagnostic

expectations case and the fully rational expectations case. Intuitively, efficent pricing of credit

risk tends to discourage excess leveraging in good times, and both investment and output are

smoothed relative to the case of diagnostic lenders (Figure 6). Similarly to the case with rational

expectations, crises result from negative TFP shocks.

Importantly, efficient pricing of credit risk does not drive away all excesses. Overly optimistic

diagnostic firms are too eager to borrow, even at the correct interest rate, and so they put them-

selves in a fragile position, enhancing the risk of spread reversals, deleveraging, and declines in

investment. Now the losses created by diagnostic beliefs fall entirely on firms, not on lenders.

This message may be relevant for economic policy: if borrowers’ beliefs are extrapolative, a more

accurate pricing of risks may not avoid over-borrowing in good times, and while it may reduce

total social losses, it may concentrate them on borrowers.
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Figure 5: Financial Crisis Dynamics: Spread Growth
Note: The red line with circles is the baseline DE model, the green line with diamonds is the diagnostic expectations
model with rational pricing. The figure traces out average dynamics around crisis events, defined as periods with
greater than 1.5% growth in spreads within an unconditional simulation of the model of 5000 period length.
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Figure 6: Financial Crisis Dynamics: Macro Aggregates
Note: In each panel, the red line with circles is the baseline DE model, the green line with diamonds is the diagnostic
expectations model with rational pricing. The top left panel plots macro TFP growth, the top right panel plots
the aggregate investment rate, the bottom left plots output growth, and the bottom right plots debt growth. The
figure traces out average dynamics around crisis events, defined as periods with greater than 1.5% growth in spreads
within an unconditional simulation of the model of 5000 period length.
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5 Diagnosticity in the 2008 US Crisis

The US financial crisis of 2008 shares several features of the financial instability analysed in

the previous section. First, it materialized after a period of sustained economic growth and of

unusually low credit spreads. Second, it witnessed a leverage and an investment cycle, with strong

expansions in the pre crisis periods followed by sharp contractions. A growing body of work,

both theoretical and empirical, places extrapolative beliefs center stage in explaining this episode

(Gennaioli and Shleifer, 2018). This section seeks to assess the extent to which diagnosticity can

shed light on the macroeconomic causes and consequences of this episode.
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Figure 7: Historical Decomposition: Matching the 2008 Crisis
Note: The figure plots the dynamics of macro TFP required in the DE model in order to exactly match empirical
macro investment growth over the period surrounding the 2008 US financial crisis, as described in the main text.
This process for macro TFP is computed according to the historical decomposition procedure described in Appendix
A.

The logic of our exercise goes as follows. We use our nonlinear calibrated DE model to deter-

mine an aggregate TFP sequence that exactly matches the dynamics of US aggregate investment

growth from 2007 to 2012. This is a computationally intensive procedure detailed in Appendix

A, and the resulting series is plotted in Figure 7. We then assess the implications of this aggre-

gate TFP series for output, investment, debt, and credit spreads, comparing them in each case

to empirical quantities in Figure 8. To tease out the effects of diagnosticity, we also assess the

implications of the same aggregate TFP sequence for the RE model.

To match the investment collapse of 2009, the DE model requires negative growth in aggregate
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Figure 8: Historical Decomposition: Macro Aggregates
Note: Throughout the figure, red lines with circles denote the DE model. The blue lines with × denote the RE
model. The green lines with diamonds denote the data. In all cases, the theoretical series are a function of the
same aggregate macro TFP series in Figure 7 chosen to exactly match the empirical investment dynamics (the
green line in the top left panel) when fed through the DE model.

TFP roughly equal to -1.5% in 2009 then gradually returning to zero in the following years, plotted

in Figure 7. This is a significant but not dramatic productivity decline. At this TFP path the

DE model is by construction capable of matching the actual investment growth dynamics, in the

top left panel of Figure 8. Yet, a comparison with the implied investment growth path in the

RE model already reveals the role of diagnosticity. As evident in the top left of Figure 8 the

RE model somewhat underpredicts the extent of the drop in investment in 2009 and dramatically

underpredicts the recovery of investment growth in 2010 and afterwards. The reason for this

failure is intuitive: diagnostic firms and investors over-react to the 2009 shock, which amplifies

the adverse impact on investment and deleveraging. After 2009, however, this excess pessimism

wanes, so diagnostic firms are significantly less leveraged than in the RE model. As a result,

recovery is faster.

Both the DE and RE models feature output growth which declines by similar magnitudes as

the data, although the larger drop in investment in the DE model naturally implies a lower path

for output growth during the later stages of the recovery. The fact that output differences between

DE and RE is small is expected, given that in both models the business cycle is driven by the

same TFP series. One interesting area for future work is to add demand side frictions or capital
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utilization mechanisms in the DE model.

Diagnosticity also helps explain the behavior of debt and spreads. The bottom left panel

of Figure 8 shows the dynamics of debt growth. Debt dynamics in the DE model track reality,

displaying leverage growth before the crisis, massive collapse in 2008, and swift recovery afterwards.

The RE model cannot account for these reversals, featuring a much smoother and slower decline

and recovery than reality. Similarly, diagnosticity can account for the swift hike of credit spreads

in 2009 and for their subsequent fast decline, while the RE model cannot: here the spread actually

declines during the crisis, due to reduced demand for capital by firms.

This exercise shows the potential of diagnostic expectations for accounting for some of the

salient features of the 2008 events, but also the limitations of our current setting. First of all, we

abstract from the housing bubble. As a result, to capture the events of 2008 we need a negative

TFP shock. A model accounting for the role of housing both as collateral in financial transactions

and as a means of financing household consumption might, perhaps more realistically, create

a crisis from the gradual deflation of the housing bubble itself, without requiring any negative

TFP shocks. Second, we abstract from intermediary leverage. The importance in reality of the

financial constraints of intermediaries – the lenders in our model – is also likely to severely limit

the explanatory power of our model, in which these constraints are absent. When lenders’ financial

fragility is taken into account, even a mild reversal in optimism may create a strong disruption in

the supply of capital for all firms, include the more productive ones, further reducing the drop in

TFP required to account for the crisis.

Diagnostic expectations can be combined with these richer mechanisms, and in fact Maxted

(2019) examines a model along these lines, incorporating diagnostic beliefs in a model of interme-

diary leverage. Developing more realistic models combining financial frictions and housing with

diagnostic beliefs is an important avenue for future work.

6 Heightened Sensitivity of the Economy during Booms

Recent work on investment dynamics over the business cycle (Bachmann et al., 2013; Winberry,

2017; Bloom et al., 2018) suggests that the business cycle - and investment in particular - exhibits

more sensitivity to shocks during booms than during normal times. This type of state-dependence

or non-linearity arises naturally in the DE model. The mechanism proves simple and related to

the financial crisis dynamics detailed above. Sharp overinvestment and high leveraging by firms

during booms generate sensitivity to even moderately small negative shocks. In contrast, the

RE model lacks the overinvestment or leveraging required to generate heightened fragility during

booms.

To illustrate the state-dependence of the DE model, we report impulse responses of the DE

and RE models to negative macro TFP shocks occurring after two alternative preceding histories:

neutral news and good news. Given the nonlinear nature of our model, we implement these

impulse responses using the Generalized Impulse Response concept outlined by Koop et al. (1996)

and detailed in Appendix A, simulating a large number of pairs of “shocked” vs “unshocked”
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economies, and taking the average difference across the two as our impulse response series.
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Figure 9: Impulse Response to a Negative TFP Shock: Normal Times
Note: The figure plots productivity and investment impulse responses in the DE model (red lines with circles) and
RE model (blue line with ×) to a negative shock to productivity. The impulse responses are nonlinear generalized
impulse responses computed according to the procedure laid out in Appendix A and yield a shock size equal to
one-standard deviation of the macro TFP process.

Figure 9 plots the path of productivity from a single negative macro TFP shock after neutral

times in the DE vs RE models, identical across the two environments and scaled to equal one

standard deviation of the macro TFP shock process in magnitude. After this single negative shock

occurring during normal times, investment declines in both models. Although the investment drop

is slightly sharper in the DE model with overreaction, the difference in magnitudes or shapes of

the impulse response across the DE vs RE models is not severe.
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Figure 10: Impulse Response to a Negative TFP Shock: After Good News
Note: The figure plots productivity and investment impulse responses in the DE model (red line with circles) and RE
model (blue line with ×) to a single negative shock to productivity following a single positive shock to productivity.
The impulse responses are nonlinear generalized impulse responses computed according to the procedure laid out
in Appendix A and yield a shock size in each direction equal to one-standard deviation of the macro TFP process.

In contrast, Figure 10 plots the impact of a negative TFP shock in both models coming directly

after a positive TFP shock. In this case, because extrapolating diagnostic firms have overinvested
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after the preceding positive shock, the reversal in investment in the DE model is large and severe.

Instead, the response of investment to the negative shock in the RE model exhibits little difference

from the negative shock in neutral times shown in Figure 9. In other words, the DE model’s

investment behavior is clearly more sensitive to shocks after good times than bad, but the RE

model shows little state-dependence.

To summarize, diagnosticity generates state-dependence or nonlinearity in the macroeconomy.

During booms, overoptimism on the part of firms and lenders generates more investment sensitivity

than during normal times. The DE model generates these patterns without the incorporation of

mechanisms such as lumpy capital adjustment costs or uncertainty shocks sometimes employed to

generate such business cycle nonlinearities. Instead, diagnostic expectations by themselves prove

to be a distinct and powerful source of state-dependence.

7 Conclusion

Macro fragility naturally arises in a canonical business cycle model as a result of micro-founded

deviations from rational expectations by individual firms and creditors. Business cycle dynamics in

our quantitative neoclassical business cycle model incorporating realistic micro-level expectations

and heterogeneity prove more volatile, less stable, and feature sharp crises with rapidly worsening

credit conditions, deleveraging, and sharp recessions. Such crises occur after good times with

expansion of credit and low spreads. Since a rational expectations model fails to capture such

realistic credit cycle dynamics, realistic modeling of expectations may provide a useful tool for

understanding macro-financial fluctuations.
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Appendices

A Model

A.1 Solving the Model

The computational algorithm involves iteration on an outer loop (related to debt pricing) and

an inner loop (related to firm policies). Before solving the model, we discretize the state space

(s, k, b) = (z, ηz, A, ηA, k, b) into nz×nz×nA×nA×nk×nb grid points, with log-linear spacing. We

then discretize the rational and perceived diagnostic transitions of the exogenous states according

to Tauchen (1986). The computational algorithm - following Strebulaev and Whited (2012) -

proceeds as follows:

Start outer loop.

1. Guess a default policy df θ(s, k, b), and compute the implied debt prices qθ(s, k, b) according

to the lenders diagnostic zero-profit condition.

Start inner loop.

(a) Given the debt prices qθ(s, k, b) and default policy df θ(s, k, b), solve the diagnostic firm’s

Bellman equations V θ(s, k, b), V θ
ND(s, k, b) for the implied optimal policies for invest-

ment and debt issuance k′θ(s, k, b), b′θ(s, k, b). Use standard discrete-state, discrete-

policy dynamic programming policy iteration to do so.

2. Compute updated default policies df θ(s, k, b) according to the limited liability default con-

dition defining V θ.

3. If the updated default states are identical to the initially guessed default states, exit. If not,

then go to top and restart.

We implement this computationally intensive algorithm in heavily parallelized Fortran. Table

1 reports the value of several dimensions used for the baseline solution of the model.

A.2 Simulating the Model

After the model is solved, we unconditionally simulate the model by drawing exogenous uniform

random shocks and combining this information with the transition matrix for macro TFP to

simulate the aggregate process for At for some periods t = 1, ..., T sim + T erg. At the micro level,
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Table 1: Computational Choices

Quantity Description Value

T sim Simulated periods 5000
T erg Initially discarded periods 250
N firm Number of firms 2500
N IRF Number of IRF economies 1000
T IRF Length of IRF economies 75
T IRF Length of historical decomposition 12
nz Micro productivity grid size 5
nA Macro productivity grid size 5
nk Capital grid size 35
nb Debt grid size 35

Note: The table reports various computational values used in discretizing and solving the model.

we simulate the model “non-stochastically” according to the method of Young (2010), i.e., we

store the dynamics of the weight of the cross-sectional distribution at each discretized point in the

state space (s, k, b) rather than simulating a large number of firms. Note that when simulating the

model, all aggregate shocks and distributional dynamics are determined according to the rational

or true representations of the driving process, even though debt pricing and firm polices may

involve diagnostic expectations.

With the simulated distribution in hand for each period, aggregate series of interest are simply

weighted sums of micro-level outcomes across this distribution, discarding the first T erg periods to

remove the influence of initial conditions. Note that we do in fact simulate a number of individual

firms N firm for the purpose of computing moments, but this is not a step required for the purpose

of solving the model or simulating within-period business cycle aggregates.

With the solution algorithm above in hand, we calibrate the model by changing only the tar-

geted parameters in each moment calculation iteration, keeping the aggregate shocks unchanged.

We minimize the sum of squared percentage deviation of simulated vs data targeted moments, by

employing a global stochastic optimization routine.
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A.3 Computing Impulse Responses

Our approach to impulse response calculation in this nonlinear context follows Koop et al. (1996),

i.e., we compute nonlinear generalized impulse responses. To understand the impact of a given

sequence of shocks, we perform the following:

1. For a large number N irf of economies of length T irf , simulate two different versions of the

simulation, the “shock” and “no shock” versions. For each economy and each version, we

simulate the macro TFP process by first drawing T irf uniform shocks for comparison with the

macro TFP transition matrix. Then, simulate both versions unconditionally using identical

macro TFP shocks until period T shock < T irf .

2. From period T shock and continuing as long as the desired sequence of exogenous innovations

you wish to impose lasts, impose a number of periods of certain pre-determined innovations

in productivity for the “shock” case, while continuing to simulate the “no shock” economy

unconditionally.

3. After the imposed shocks sequence is complete, simulate macro TFP in both economies as

normal.

4. After the macro TFP process is determined for each pair of economies, compute the business

cycles aggregates of interest in each economy, period, and version by using the simulation

approach outlined above.

5. If business cycle aggregate Xshock
i,t is series X in economy i in period t in the shock case, and

Xnoshock
i,t is series X in economy i in period t in the no shock case, then define the impulse

response to the predetermined sequence of innovations as

IRFX
t =

1

N irf

N irf∑
i=1

Xshock
i,t −Xnoshock

i,t

Xnoshock
i,t

.

The main text’s set of impulse response figures reports the series IRFX for the indicated macro-

financial aggregates. Note, however, that the impulse responses presented in the text are scaled to

equal an exact shock size, while the productivity grid in the model varies discretely. We achieve

this by imposing movements up or down by a single grid point, imposing Step 2 above only with

a certain probability chosen to deliver the correct average shock size.

A.4 Computing Historical Decompositions

In a classic linear setting, performing historical decompositions such as the one used in Section

5 is typically a trivial matter of inverting a data path using simple linear algebra. However, our

3



nonlinear model with heterogeneity and a discretized productivity process poses some additional

computational challenges. Given a path for investment growth to match ∆It, t = 1, ..., T decomp,

we proceed as follows.

First, we pick an initial period drawn from a representative location in the unconditional

simulation of the model with macro TFP equal to the steady-state level and the associated sim-

ulated cross-sectional distribution of firm-level states µ0 drawn from the simulation of the model.

Call this period t = 0, and note that at the end of period 0 a cross-sectional distribution µ1 is

pre-determined. Then for each period t = 1, ..., T decomp, do the following:

1. Guess a value for macro TFP At, and find the bracketing interval [Ai−1, Ai] together with

linear interpolation weights ω(At, i) = At−Ai−1

Ai−Ai−1
for the guessed value of productivity.

2. Compute the implied investment policies of all firms in the cross-sectional distribution µt

given a macro TFP level equal to Ai, together with the implied macro investment level I(Ai).

Repeat the process for macro TFP equal to Ai−1 to obtain I(Ai−1).

3. Assume that firms play a “mixed strategy” over the two macro TFP grid points, in which

case the resulting macro investment level is (1− ω(At, i))I(Ai−1) + ω(At, i)I(Ai).

4. If the implied macro investment levels does not yield the desired investment growth value

∆It to within some tolerance, then update your guess for macro TFP At and return to Step

1. Otherwise proceed.

5. Given a productivity guess which delivers exactly the correct interpolated value of macro pro-

ductivity in period t, compute the beginning-of-period distribution µt+1 of firm-level states

by pushing forward a fraction ω(At, i) of the distribution µt using firm policies associated

with Ai and a fraction 1− ω(At, i) of the distribution µt using firm policies associated with

Ai−1.

At the end of this process, you have determined a smooth value of productivity At which

gives you an implied macro investment value exactly consistent with the target value in period

t, and you have updated the cross-sectional distribution in an internally consistent fashion given

the smooth value of productivity between grid points. Repeating this process for each period

t = 1, ..., T decomp yields a productivity path At, as well as a set of cross-sectional distribution µt,

which exactly match the target data path for investment. All other macro aggregates of interest

can then be computed from the distributional and macro TFP path.
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B Data

B.1 Micro Data

We use a combination of the Compustat Fundamentals Annual and IBES manager guidance

databases. The combined sample spans 2007-2015 for 4457 firms, and descriptive statistics for

each of the relevant variables used in moment construction, as well as firm revenues and capital

book values, are reported in Table 2.

Table 2: Sample Descriptive Statistics

Quantity Mean Standard Deviation

Sales 6200.09 23057.7
Capital 3997.236 10417.77

π
k

0.1617237 0.3406408
i
k

0.1859243 0.1124182
b′

k
1.394405 0.5345713

fe′

k
-0.0248892 0.2347275

Note: The table reports descriptive statistics for the sample of 4457 firms from 2007-2015 in
the combined Compustat-IBES database used to compute target moments. The first two rows
represent revenues and the book value of the capital stock, in $ millions. The remaining rows reflect
the ratio of realized earnings to the book value of the capital stock π

k
, the capital expenditures

investment rate i
k
, the ratio of end of period total liabilities to the capital stock b′

k
, and the next-

period forecast error fe′

k
, defined as realized future profits minus manager guidance scaled by firm

capital. The sample was winsorized before computing the descriptive statistics above as well as
computing the target moments.

The variable definitions are given as follows, with both empirical and model information at-

tached:

• Earnings π are equal to GAAP net income, Compustat ib. The model equivalent is π =

(1− τ)(y −Wn− AC(i, k)) + τ(Rb+ δk)− δk.

• Capital k is equal to the book value of plants, property, and equipment, Compustat ppent.

The model equivalent is the state variable k.

• Investment i is equal to the total value of capital expenditures, Compustat capxv. The

model equivalent is the policy variable i = k′ − (1− δ)k.

• Debt b is equal to the total value of liabilities, Compustat lt. The model equivalent is the

state variable b.
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• Forecast error fe is equal to the realized value of earnings π minus the forecast level

of earnings πf made from the previous fiscal year, where realized earnings are Compustat

ib and forecast earnings are equal to manager guidance from the IBES database. The

model equivalent is the earnings value π above, minus the forecast level implied by firm-level

diagnostic expectations, the definition of π, and firm policies predetermined in the previous

period.

B.2 Macro Data

At the macro level, we use a combination of information from the NIPA accounts, the Flow of

Funds, and Moody’s. The following variables are relevant, all at annual frequency or converted to

annual frequency by averaging.

• Output Y is real GDP from the NIPA accounts in the data. In the model this is the total

value of the firm-level outcome y = Azkαnν aggregated from the cross-sectional distribution.

• Investment I is real nonresidential private investment from the NIPA accounts in the

data. In the model this is a choice variable for each firm, aggregated from the cross-sectional

distribution.

• Capital K is real total private fixed assets from the NIPA accounts in the data. In the model

this is the aggregated value of the state variable k from the cross-sectional distribution.

• Spreads are the Moody’s BAA spread relative to 10-year Treasury bonds, at an annualized

rate, in the data. In the model, the BAA spread is defined as the average of spreads in the

40-60th %-ile of spreads in the cross-sectional distribution of firms with positive spreads,

loosely corresponding to Moody’s definitions of the BAA spread.

• Debt B is total nonfinancial corporate debt from the Flow of Funds in the data. In the

model this is the aggregated value of the state variable b from the cross-sectional distribution.

• Macro Leverage B
K

is the ratio of total debt to total capital, with each series defined as

above.

• Macro Investment Rate I
K

is the ratio of total investment to total capital, with each

series defined as above.

We use the macro series in multiple places. In the motivating Figure 1, we plot the empirical

value of the Moody’s BAA spread at quarterly frequency in recent years. In the empirical business

cycle moments in Table 7, we reports moments from the growth rates (log differences of levels series

and differences of percent series) of the indicated macro series over the common sample period

1986-2017. In the historical decomposition plots, we plot the dynamics of HP-filtered values of

investment and debt, together with unadjusted spread growth or differences.
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