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Motivation

Our goal

We investigate how, in a HA-model with financial frictions, idiosyncratic individual

shocks interact with exogenous aggregate shocks to generate:

1. highly nonlinear behavior,

2. endogenously time-varying volatility and levels of leverage, and

3. endogenous aggregate risk.

• To do so, we postulate, compute, and estimate a continuous-time model à la

Basak and Cuoco (1998) and Brunnermeier and Sannikov (2014) with a

financial expert and a non-trivial distribution of wealth among households.
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Four main results

• Multiple stochastic steady states or SSS(s):

• Depending on the the volatility of the idiosyncratic and aggregate shocks, we can

have one high-leverage SSS, one low-leverage SSS, or both.

• Why? Interaction of precautionary behavior by households with desire to issue

debt by the financial expert.

• Higher micro turbulence leads to higher macro volatility, more inequality, and

more leverage.

• Strong state-dependence on the responses of endogenous variables (GIRFs and

DIRFs) to aggregate shocks.

• Long spells at different basins of attraction.

• Multimodal and skewed ergodic distributions of endogenous variables, with

endogenous time-varying volatility and aggregate risk.

• Thus, key importance of heterogeneity and breakdown of “quasi-aggregation.”
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Methodological contribution

• New approach to (globally) compute and estimate with the likelihood approach

HA models:

1. Computation: we use tools from machine learning.

2. Estimation: we use tools from inference with diffusions.

• Strong theoretical foundations and many practical advantages.

1. Deal with a large class of arbitrary operators efficiently.

2. Algorithm that is easy to code, stable, and massively parallel.
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The firm

• Representative firm with technology:

Yt = Kα
t L

1−α
t

• Competitive input markets:

wt = (1− α)Kα
t L
−α
t

rct = αKα−1
t L1−α

t

• Aggregate capital evolves:

dKt

Kt
= (ιt − δ) dt + σdZt

• Instantaneous return rate on capital drkt :

drkt = (rct − δ) dt + σdZt
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The expert I

• Representative expert holds capital K̂t and issues risk-free debt B̂t at rate rt to

households.

• Expert can be interpreted as a financial intermediary.

• Financial friction: expert cannot issue state-contingent claims (i.e., outside

equity) and must absorb all risk from capital.

• Expert’s net wealth (i.e., inside equity): N̂t = K̂t − B̂t .

• Together with market clearing, our assumptions imply that economy has a risky

asset in positive net supply and a risk-free asset in zero net supply.
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The expert II

• The law of motion for expert’s net wealth N̂t :

dN̂t = K̂tdr
k
t − rtB̂tdt − Ĉtdt

=
[
(rt + ω̂t (rct − δ − rt)) N̂t − Ĉt

]
dt + σω̂tN̂tdZt

where ω̂t ≡ K̂t

N̂t
is the leverage ratio.

• The law of motion for expert’s capital K̂t :

dK̂t = dN̂t + dB̂t

• The expert decides her consumption levels and capital holdings to solve:

max
{Ĉt ,ω̂t}

t≥0

E0

[∫ ∞
0

e−ρ̂t log(Ĉt)dt

]
given initial conditions and a NPG condition.
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Households I

• Continuum of infinitely-lived households with unit mass.

• Heterogeneous in wealth am and labor supply zm for m ∈ [0, 1].

• Gt (a, z): distribution of households conditional on realization of aggregate

variables.

• Preferences:

E0

[∫ ∞
0

e−ρt
c1−γ
t − 1

1− γ
dt

]

• We could have more general Duffie and Epstein (1992) recursive preferences.

• ρ > ρ̂. Intuition from Aiyagari (1994) (and different from BGG class of

models!).
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Households II

• zt units of labor valued at wage wt .

• Labor productivity evolves stochastically following a Markov chain:

1. zt ∈ {z1, z2} , with z1 < z2.

2. Ergodic mean of zt is 1.

3. Jump intensity from state 1 to state 2: λ1 (reverse intensity is λ2).

• Households save at ≥ 0 in the riskless debt issued by experts with an interest

rate rt . Thus, their wealth follows:

dat = (wtzt + rtat − ct) dt = s (at , zt ,Kt ,Gt) dt

• Optimal choice: ct = c (at , zt ,Kt ,Gt).

• Total consumption by households:

Ct ≡
∫

c (at , zt ,Kt ,Gt) dGt (da, dz)
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Market clearing

1. Total amount of labor rented by the firm is equal to labor supplied:

Lt =

∫
zdGt = 1

Then, total payments to labor are given by wt .

2. Total amount of debt of the expert equals the total households’ savings:

Bt ≡
∫

adGt (da, dz) = B̂t

with law of motion dB̂t = dBt = (wt + rtBt − Ct) dt.

3. The total amount of capital in this economy is owned by the expert:

Kt = K̂t

Thus, dK̂t = dKt =
(
Yt − δKt − Ct − Ĉt

)
dt + σKtdZt and ω̂t = Kt

Nt
, where

N̂t = Nt = Kt − Bt .

4. Also, we get:

ιt =
Yt − Ct − Ĉt

Kt 10



Density

• The households distribution Gt (a, z) has density (i.e., the Radon-Nikodym

derivative) gt(a, z).

• The dynamics of this density conditional on the realization of aggregate

variables are given by the Kolmogorov forward (KF; aka Fokker–Planck)

equation:

∂git
∂t

= − ∂

∂a
(s (at , zt ,Kt ,Gt) git(a))− λigit(a) + λjgjt(a), i 6= j = 1, 2

where git(a) ≡ gt(a, zi ), i = 1, 2.

• The density satisfies the normalization:

2∑
i=1

∫ ∞
0

git(a)da = 1
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Equilibrium

An equilibrium in this economy is composed by a set of prices
{
wt , rct , rt , r

k
t

}
t≥0
,

quantities
{
Kt ,Nt ,Bt , Ĉt , cmt

}
t≥0

, and a density {gt (·)}
t≥0

such that:

1. Given wt , rt , and gt , the solution of the household m’s problem is

ct = c (at , zt ,Kt ,Gt).

2. Given rkt , rt , and Nt , the solution of the expert’s problem is Ĉt , Kt , and Bt .

3. Given Kt , firms maximize their profits and input prices are given by wt and rct .

4. Given wt , rt , and ct , gt is the solution of the KF equation.

5. Given gt and Bt , the debt market clears.
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Characterizing the equilibrium I

• First, we proceed with the expert’s problem. Because of log-utility:

Ĉt = ρ̂Nt

ωt = ω̂t =
rct − δ − rt

σ2

• We can use the equilibrium values of rct , Lt , and ωt to get the wage:

wt = (1− α)Kα
t

the rental rate of capital:

rct = αKα−1
t

and the risk-free interest rate:

rt = αKα−1
t − δ − σ2 Kt

Nt

13



Characterizing the equilibrium II

• Expert’s net wealth evolves as:

dNt =

(
αKα−1

t − δ − ρ̂− σ2

(
1− Kt

Nt

)
Kt

Nt

)
Nt︸ ︷︷ ︸

µN
t (Bt ,Nt)

dt + σKt︸︷︷︸
σN
t (Bt ,Nt)

dZt

• And debt as:

dBt =

(
(1− α)Kα

t +

(
αKα−1

t − δ − σ2 Kt

Nt

)
Bt − Ct

)
dt

• Nonlinear structure of law of motion for dNt and dBt .

• We need to find:

Ct ≡
∫

c (at , zt ,Kt ,Gt) gt (a, z) dadz

∂git
∂t

= − ∂

∂a
(s (at , zt ,Kt ,Gt) git(a))− λigit(a) + λjgjt(a), i 6= j = 1, 2
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The DSS

• No aggregate shocks (σ = 0), but we still have idiosyncratic household shocks.

• Then:

r = rkt = rct − δ = αKα−1
t − δ

and

dNt = [(rct − δ)Kt − rtBt − ρ̂Nt ] dt

=
(
αKα−1

t − δ − ρ̂
)
Ntdt

• Since in a steady state the drift of expert’s wealth must be zero, we get the

steady state capital

K =

(
ρ̂+ δ

α

) 1
α−1

and the risk-free rate

r = ρ̂ < ρ

• The value of N is given by the dispersion of the idiosyncratic shocks (no

analytic expression). 15



How do we find aggregate consumption?

• As in Krusell and Smith (1998), households only track a finite set of n

moments of gt(a, z) to form their expectations.

• No exogenous state variable (shocks to capital encoded in K ). Instead, two

endogenous states.

• For ease of exposition, we set n = 1. The solution can be trivially extended to

the case with n > 1.

• More concretely, households consider a perceived law of motion (PLM) of

aggregate debt:

dBt = h (Bt ,Nt) dt

where

h (Bt ,Nt) =
E [dBt |Bt ,Nt ]

dt
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A new HJB equation

• Given the PLM, the household’s Hamilton-Jacobi-Bellman (HJB) equation

becomes:

ρVi (a,B,N) = max
c

c1−γ − 1

1− γ
+ s

∂Vi

∂a
+ λi [Vj(a,B,N)− Vi (a,B,N)]

+h (B,N)
∂Vi

∂B
+ µN (B,N)

∂Vi

∂N
+

[
σN (B,N)

]2
2

∂2Vi

∂N2

i 6= j = 1, 2, and where

s = s (a, z ,N + B,G )

• We solve the HJB with a first-order, implicit upwind scheme in a finite

difference stencil.

• Sparse system. Why?

• Alternatives for solving the HJB? Finite volumes, fem, meshfree methods, ....
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An algorithm to find the PLM

1) Start with h0, an initial guess for h.

2) Using current guess hn, solve for the household consumption, cm, in the HJB

equation.

3) Construct a time series for Bt by simulating by J periods the cross-sectional

distribution of households with a constant time step ∆t (starting at DSS and

with a burn-in).

4) Given Bt , find Nt , Kt , and:

ĥ =

{
ĥ1, ĥ2..., ĥj ≡

Btj+∆t − Btj

∆t
, ..., ĥJ

}

5 ) Define S = {s1, s2, ..., sJ}, where sj =
{
s1
j , s

2
j

}
=
{
Btj ,Ntj

}
.

6) Use
(

ĥ,S
)

and a universal nonlinear approximator to obtain hn+1, a new guess

for h.

7) Iterate steps 2)-6) until hn+1 is sufficiently close to hn. 18



A universal nonlinear approximator

• We approximate the PLM with a neural network (NN):

h (s; θ) = θ1
0 +

Q∑
q=1

θ1
qφ

(
θ2

0,q +
D∑
i=1

θ2
i,qs

i

)
where Q = 16, D = 2, and φ(x) = log(1 + ex).

• θ is selected as:

θ∗ = arg min
θ

1

2

J∑
j=1

∥∥∥h (sj ; θ)− ĥj

∥∥∥2

• Easy to code, stable, and good extrapolation properties.

• You can flush the algorithm to a graphics processing unit (GPU) or a tensor

processing unit (TPU) instead of a standard CPU.
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Two classic (yet remarkable) results

Universal approximation theorem: Hornik, Stinchcombe, and White (1989)

A neural network with at least one hidden layer can approximate any Borel

measurable function mapping finite-dimensional spaces to any desired degree of

accuracy.

• Assume, as well, that we are dealing with the class of functions for which the

Fourier transform of their gradient is integrable.

Breaking the curse of dimensionality: Barron (1993)

A one-layer NN achieves integrated square errors of order O(1/Q), where Q is the

number of nodes. In comparison, for series approximations, the integrated square

error is of order O(1/(Q2/D)) where D is the dimensions of the function to be

approximated.

• We actually rely on more general theorems by Leshno et al. (1993) and Bach

(2017).
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Estimation with aggregate variables I

• D + 1 observations of Yt at fixed time intervals [0,∆, 2∆, ..,D∆]:

Y D
0 = {Y0,Y∆,Y2∆, ...,YD} .

• More general case: sequential Monte Carlo approximation to the

Kushner-Stratonovich equation (Fernández-Villaverde and Rubio Raḿırez,

2007).

• We are interested in estimating a vector of structural parameters Ψ.

• Likelihood:

LD

(
Y D

0 |Ψ
)

=
D∏

d=1

pY
(
Yd∆|Y(d−1)∆; Ψ

)
,

where

pY
(
Yd∆|Y(d−1)∆; Ψ

)
=

∫
fd∆(Yd∆,B)dB.

given a density, fd∆(Yd∆,B), implied by the solution of the model.
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Estimation with aggregate variables II

• After finding the diffusion for Yt , f
d
t (Y ,B) follows the Kolmogorov forward

(KF) equation in the interval [(d − 1)∆, d∆]:

∂ft
∂t

= − ∂

∂Y

[
µY (Y ,B)ft(Y ,B)

]
− ∂

∂B

[
h(B,Y

1
α − B)f dt (Y ,B)

]
+

1

2

∂2

∂Y 2

[(
σY (Y )

)2
ft(Y ,B)

]
• The operator in the KF equation is the adjoint of the infinitesimal generator

generated by the HJB.

• Thus, the solution of the KF equation amounts to transposing and inverting a

sparse matrix that has already been computed.

• Our approach provides a highly efficient way of evaluating the likelihood once

the model is solved.

• Conveniently, retraining of the neural network is easy for new parameter values.
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Parametrization

Parameter Value Description Source/Target

α 0.35 capital share standard

δ 0.1 yearly capital depreciation standard

γ 2 risk aversion standard

ρ 0.05 households’ discount rate standard

λ1 0.986 transition rate u.-to-e. monthly job finding rate of 0.3

λ2 0.052 transition rate e.-to-u. unemployment rate 5 percent

y1 0.72 income in unemployment state Hall and Milgrom (2008)

y2 1.015 income in employment state E (y) = 1

ρ̂ 0.0497 experts’ discount rate K/N = 2
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Mean Standard deviation Skewness Kurtosis

Y basin HL 1.5807 0.0193 -0.0831 2.8750

Y basin LL 1.5835 0.0166 0.16417 3.1228

rbasin HL 4.92 0.3360 0.1725 2.8967

rbasin LL 4.88 0.2896 -0.0730 3.0905

wbasin HL 1.0274 0.0125 -0.0831 2.875

wbasin LL 1.0293 0.0108 0.1642 3.1228

Table 1: Moments conditional on basin of attraction.
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Concluding remarks

• We have shown how a continuous-time model with a non-trivial distribution of

wealth among households and financial frictions can be built, computed, and

estimated.

• Four important economic lessons:

1. Multiplicity of SSS(s).

2. State-dependence of GIRFs and DIRFs.

3. Long spells at different basins of attraction.

4. Importance of household heterogeneity.

• Many avenues for extension.
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