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Abstract

This paper investigates how, in a standard heterogeneous agents model with financial

frictions, idiosyncratic individual shocks interact with exogenous aggregate shocks to gen-

erate endogenously time-varying levels of leverage and endogenous aggregate risk. To do

so, we show how such a model can be efficiently computed, despite its substantial non-

linearities, using tools from machine learning. We also illustrate how the model can be

structurally estimated with a likelihood function, using tools from inference with diffusions.

We document, first, the strong non-linearities created by financial frictions. Second, we

report the existence of multiple stochastic steady-states with properties that differ from

the deterministic steady state along important dimensions. Third, we illustrate how the

generalized impulse-response functions of the model are highly state-dependent. In partic-

ular, we find that the recovery after a negative aggregate shock is more sluggish when the

financial expert is more leveraged. Fourth, we prove that wealth heterogeneity matters in

this economy because of the asymmetric responses of household consumption decisions to

aggregate shocks.
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1 Introduction

This paper investigates how, in a standard heterogeneous agents model with financial fric-

tions, idiosyncratic individual shocks interact with exogenous aggregate shocks to generate en-

dogenously time-varying levels of leverage and endogenous aggregate risk. In particular, such an

economy displays highly nonlinear behavior, with i) multiple stochastic steady states; ii) multi-

modal and skewed ergodic distributions of endogenous variables; and iii) strong state-dependence

on the responses of endogenous variables to aggregate shocks.

To do so, we build, compute, and estimate using the likelihood approach a continuous-time

neoclassical growth model with heterogeneous households subject to labor productivity shocks

as in Aiyagari (1994) and Krusell and Smith (1998). We enrich the model with a financial expert

(a stand-in for banks or financial intermediaries), limited financial markets participations as in

Basak and Cuoco (1998) and Brunnermeier and Sannikov (2014), and an aggregate shock to

physical capital. Households save in a noncontingent bond to self-insure against their labor

productivity shocks and the variations in wages and interest rates induced by aggregate risk.

The financial expert cannot issue state-contingent assets (i.e., outside equity), but it can issue

bonds to leverage its equity and accumulate capital that is rented to a representative firm. Only

the expert can hold capital.

The interaction between the demand for bonds by the households and the supply of bonds by

the financial expert begets, for parameter values that match important aspects of the U.S. data

and maximize the likelihood function, multiple stochastic steady states (SSSs). This multiplicity

occurs even despite the model having a unique deterministic steady state (DSS).1 In particular,

we will have a high-leverage SSS (HL-SSS) and a low-leverage SSS (LL-SSS), each of them with

their basins of attraction and endogenous levels of aggregate risk (there is a third, unstable SSS

that we do not need to discuss).

The intuition for the existence of multiple stable SSSs is as follows. In the basin of attraction

of the HL-SSS, a negative aggregate shock to capital has dire effects. The financial expert’s

net wealth is greatly eroded since her relatively small equity must absorb all the losses to

capital. The economy suffers a deep and prolonged recession as the expert struggles to rebuild

its equity and accumulate capital. This recession translates into persistently low wages. Since

the households want to self-insure against the risk of low wages, their demand for bonds is

high: this SSS has a higher share of wealthy households and more wealth and income inequality

than the DSS. The high demand for bonds translates into a low risk-free interest rate for the

bond and a high expected excess return for capital, which, in turn, induce the financial expert

to lever aggressively. In other words, a high-leverage region of the economy is a region with

1A SSS, also known as the risky steady state, is a fixed-point of the equilibrium conditions of the model
when the realization of the aggregate shock is zero. A DSS is a fixed-point of the equilibrium conditions of the
model when the volatility of the aggregate shock (but not of idiosyncratic shocks) is zero.
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high aggregate volatility, even when the variance of the aggregate shock is the same as in the

low-leverage region.

To document the higher persistence of shocks when leverage is high, we compute the general-

ized impulse response functions and the distributional impulse response functions to a negative

capital shock in different points of the state space. The responses are very similar on impact, but

the ensuing recession is more persistent when leverage is high due to the dynamics of aggregate

household consumption and capital accumulation. In a high-leverage economy, the expected

path of interest rates is more persistent as the financial expert slowly restores her net wealth.

This persistence induces a less severe decline in consumption among wealthy households and

sluggish capital accumulation by the expert because the more persistent interest rates justify

less intertemporal substitution.

In comparison, when the financial expert is lowly levered, the recessions after a negative

aggregate shock are mild. Thus, the demand for bonds by the household is low, the risk-

free rate high, the expected excess return low, and these prices sustain the low leverage by

the expert. With low leverage, the endogenous aggregate risk of the economy is smaller: the

economy responds more mutedly to the same aggregate shock than when leverage is high.

For our baseline parameter values, the economy will spend more time, on average, around

the HL-SSS than around the LL-SSS. We will show, however, how this finding varies as we

change the volatility of idiosyncratic and aggregate shocks.

The multiplicity of SSSs does not imply a multiplicity of equilibria: in our model, we find a

unique stochastic equilibrium. Whether the economy has high or low leverage is a consequence of

the past aggregate shocks. Sometimes, while the economy is traveling in the basin of attraction

of the HL-SSS, a sequence of aggregate shocks will move it to the basin of attraction of the LL-

SSS (and vice versa). Thus, the interaction of financial frictions with the consumption-saving

decisions made by the agents generates endogenous time-variation in aggregate risk: after some

sequences of shocks, the economy will be fragile and prone to severe recessions due to high

leverage and, after other sequences, the economy will be more resilient and less volatile thanks

to low leverage.

The argument above also explains why heterogeneity at the household level is crucial for

our argument and why the “quasi-aggregation result” of Krusell and Smith (1998) breaks down

in our environment. As we reduce idiosyncratic labor productivity risk for a given volatility

of the aggregate shock, the model encounters a bifurcation and the HL-SSS disappears. The

reason is that the precautionary saving motive becomes smaller and the households do not

demand enough bonds to sustain the HL-SSS. That is, the limit version of the model with a

representative household behaves very differently from our baseline economy.

Conversely, when we increase the level of idiosyncratic labor productivity risk, the LL-SSS

disappears and only the HL-SSS survives. In this case, households are so concerned about
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their own idiosyncratic labor risk that they demand enough bonds as to push the risk-free

rate sufficiently low that only a high level of leverage can be a SSS (paradoxically, increasing

the aggregate risk they face). In practical terms, higher micro turbulence (e.g., more volatile

labor markets) translates into higher aggregate volatility even when the variance of aggregate

shocks is constant. This result suggests that the rise in wealth inequality among capital owners

documented by Alvaredo et al. (2017) before the financial crisis of 2007 is linked with i) the

increase in financial debt and leverage witnessed during the same period (Adrian and Shin, 2010,

and Nuño and Thomas, 2017); ii) low risk-free interest rates; and ii) the heightened fragility of

the economy to adverse shocks.

This mechanism is, as far as we know, new in the literature. It is different from the “paradox

of volatility” in Brunnermeier and Sannikov (2014). In their model, a low volatility of aggregate

shocks leads to higher leverage by the financial expert and, thus, deep recessions when a large

shock hits the economy. In our model, a high volatility of idiosyncratic shocks leads to higher

leverage and, thus, larger recessions on average, even when the aggregate shocks are not partic-

ularly large. The mechanism is also different from Kumhof et al. (2015) because, in our model,

the change in the wealth distribution is endogenous and not the consequence of an exogenous

shock to the income received by top earners.

The documentation of the importance of individual heterogeneity in models with financial

frictions is a novel contribution of our paper. The insight that, in the presence of financial fric-

tions, the wealth distribution is a state of the economy is not new. The idea is already discussed

by Bernanke et al. (1999) and Kiyotaki and Moore (1997). However, the previous literature has

focused on the case where there is between-agents heterogeneity, but no within-agents hetero-

geneity. Between-agents heterogeneity means that capital owners are different from experts. No

within-agents heterogeneity means there is just one capital owner (a representative household)

and a representative expert (or, perhaps, different capital owners and experts but where the

heterogeneity is collapsed into an economic-wide average of leverage). Our paragraphs above

describe why within-agents heterogeneity is crucial to understand the aggregate consequences

of financial frictions.

Researchers have largely avoided studying economies with within-agents heterogeneity and

financial frictions because characterizing this class of models is challenging: since the wealth dis-

tributions is an infinite-dimensional object, standard dynamic programming techniques cannot

be employed. To overcome this problem, our paper provides new methodological tools for the

global, nonlinear solution and estimation of heterogeneous agent models with aggregate shocks.

More concretely, we rely on the machine learning literature and employ a neural network

to obtain a flexible approximation of the perceived law of motion (PLM) of the cross-sectional

distributions of assets (the expert’s equity and households’ bonds) with a finite set of moments

in the spirit of Krusell and Smith (1998). Naturally, other machine learnings schemes may also
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be proposed (or, for the matter, other nonlinear universal approximators such as series expan-

sions or splines). However, our approach is particularly convenient, both regarding theoretical

properties and practical considerations.

First, the universal approximation theorem (Hornik et al., 1989; Cybenko, 1989) states that

a neural network can approximate any unknown Borel measurable function. Second, the neural

network breaks the curse of dimensionality for a large class of approximated functions, which

allows our method to be extended to much richer environments with many state variables (or

more moments). Third, the neural network can be efficiently trained using a combination of

the gradient descent and the back-propagation algorithms. Fourth, not only is our algorithm

efficient and easy to code, but also particularly amenable to massive parallelization in graphic

or tensor processing units. Finally, our approach reflects in a fairly transparent way the self-

justified equilibria nature of the “bounded rationality” solution of most heterogeneous agents

models (Kubler and Scheidegger, 2018). The PLM is computed based on the samples drawn in

the simulation of paths within the aggregate ergodic distribution. The agents employ the neural

network to extrapolate the dynamics outside of the equilibrium region.

In comparison, in Krusell and Smith (1998) and most of the subsequent literature, the

PLM of the aggregate variables is approximately linear in the endogenous state variables (but

nonlinear in the exogenous states, since the coefficients of the regression are allowed to vary

across shocks). This traditional PLM is a poor choice in our model, in which the nonlinearities

of the endogenous state variables play a central role and where, because of the use of continuous

time, exogenous states are incorporated into the endogenous states instantaneously. In fact,

we will document how a naive implementation of the Krusell and Smith (1998) algorithm in

our economy, and even of refinements such as Chebyshev polynomials, deliver a much worse

numerical performance. Neural networks allow us to be much more flexible and avoiding having

to specify, ex-ante, any concrete nonlinear structure of the PLM.

Continuous time helps us to characterize much of the equilibrium dynamics analytically and

to worry only about local derivatives (instead of the whole shape of equilibrium functions) even

when solving the model globally. However, nothing essential depends on this choice and we

could replicate our approach –with somewhat heavier computational costs– in discrete time.

Achdou et al. (2017) and Nuño and Thomas (2017) provide a more general presentation of the

advantages of continuous-time methods.

We also illustrate how a fully nonlinear model can be structurally estimated with a likeli-

hood function with aggregate and micro observations using tools from inference with diffusions

(Lo, 1988). Such likelihood is computationally straightforward once we have solved the model

with the approach outlined above: it just amounts to transposing a matrix. In particular, it

avoids having to resort to more computationally intensive algorithms such as the particle fil-

ter (Fernández-Villaverde and Rubio-Ramı́rez, 2007). Then, we take our model to the data
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by matching some features of the U.S. economy, such as the average leverage of the corporate

sector, and estimating the volatility of the aggregate shocks by maximum likelihood.

Our work relates to several important threads in macroeconomics. First, we follow the macro-

finance literature pioneered by Basak and Cuoco (1998), Adrian and Boyarchenko (2012), He

and Krishnamurthy (2012, 2013), and Brunnermeier and Sannikov (2014), among others. As

we mentioned before, most of these papers only consider between-agents heterogeneity, but

no within-agents heterogeneity. Instead, we deal with a non-trivial wealth distribution across

households and show why such heterogeneity matters.

Our paper also contributes to the literature on global solution methods for heterogeneous

agents models with aggregate shocks such as Den Haan (1996), Den Haan (1997), Algan et al.

(2008), Reiter (2009, 2010), Den Haan and Rendahl (2010), Maliar et al. (2010), Sager (2014),

and Pröhl (2015) (Algan et al. 2014 is a recent survey of the field). To the best of our knowledge,

ours is the first paper to generalize the celebrated algorithm of Krusell and Smith (1998) to

accommodate a universal nonlinear law of motion in the endogenous state variables.2

Finally, our paper builds on the nascent literature on the application of machine learning

techniques to compute dynamic equilibrium models. The proposed methods have so far been

concerned with the solution of high dimensional dynamic programming problems. Scheidegger

and Bilionis (2017) combine Gaussian process regression with an active subspace method to

solve discrete-time stochastic growth models of up to 500 dimensions. Duarte (2018) employs a

reinforcement learning algorithm together with a neural network to solve a two-sector model with

11 state variables. In contrast, our machine learning algorithm is used to provide a nonlinear

forecast of aggregate variables within the model. In this respect, our paper reconnects with

an early literature using neural networks to model bounded rationality and learning, such as

Barucci and Landi (1995), Cho (1995), Cho and Sargent (1996), and Salmon (1995).

Our methodology may also be useful to analyze other heterogeneous agents models with

aggregate shocks. An obvious candidate is the heterogeneous agent New Keynesian (HANK)

model with a zero lower bound (ZLB) on the nominal interest rates, such as Auclert (2016),

Auclert and Rognlie (2018), Gornemann et al. (2012), Kaplan et al. (2018), Luetticke (2015),

and McKay et al. (2016). The ZLB introduces a nonlinearity in the state space of aggregate

variables that cannot be addressed either with local methods or with global methods based

on linear laws of motion. Other potential candidates include any model in which the “quasi-

aggregation” result breaks down and, thus, we require higher-order moments to provide an

accurate characterization of the equilibrium dynamics of the agents’ distribution.

2Ahn et al. (2017) introduce a related method to compute the solution to heterogeneous agent models with
aggregate shocks in continuous time. However, theirs is a local solution, based on first-order perturbation around
the DSS and, thus, unable to analyze the class of nonlinearly-related questions posed by our paper.
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2 Model

We postulate a continuous-time, infinite-horizon model. Three types of agents populate our

economy: a representative firm, a representative financial expert, and a continuum of households.

There are two assets: a risky asset, which we identify as capital, and a risk-free one, which

we call bonds. Only the expert can hold the risky asset. In the interpretation implicit in our

terminology, this is because the expert is the only agent with knowledge in accumulating capital.

However, other interpretations, such as the expert standing in for banks or other financial

intermediaries, are possible. In contrast, households can lend to the expert at the riskless rate,

but cannot hold capital themselves, as they lack the required skill to handle it. The expert

cannot issue outside equity, but she can partially finance her holdings of the risky asset by

issuing bonds to households. Together with market clearing, our assumptions imply that the

economy has a risky asset in positive net supply, capital, and a risk-free asset in zero net supply,

bonds. As will become clear below, there is no need to separate between the representative firm

and expert, and we could write the model consolidating both agents in a single type. Keeping

both agents separate, though, clarifies the exposition. Also, we only introduce heterogeneity on

the side of the households (and not among the experts or the firms) because, in our environment,

it is the type of heterogeneity that generates the most interesting aggregate consequences.

2.1 The firm

A representative firm rents aggregate capital, Kt, and aggregate labor, Lt, to produce output

with a Cobb-Douglas technology:

Yt = F (Kt, Lt) = Kα
t L

1−α
t .

Since input markets are competitive, wages, wt, are equal to the marginal productivity of labor:

wt =
∂F (Kt, Lt)

∂Lt
= (1− α)

Yt
Lt

(1)

and the rental rate of capital, rct, is equal to the marginal productivity of capital:

rct =
∂F (Kt, Lt)

∂Kt

= α
Yt
Kt

. (2)

During production, capital depreciates at a constant rate δ and receives a growth rate shock

Zt that follows a Brownian motion with volatility σ. Thus, aggregate capital evolves as:

dKt

Kt

= (ιt − δ) dt+ σdZt, (3)
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where ιt is the reinvestment rate per unit of capital that we will characterize below. The capital

growth rate shock is the only aggregate shock to the economy. Following convention, the rental

rate of capital rct is defined over the capital contracted, Kt, and not over the capital returned

after depreciation and the growth rate shock. Thus, we define the instantaneous return rate on

capital drkt as:

drkt = (rct − δ) dt+ σdZt.

The coefficient of the time drift, rct − δ, is the profit rate of capital, equal to the rental rate of

capital less depreciation. The volatility σ is the capital gains rate.

2.2 The expert

The expert holds capital K̂t (we denote variables related to the expert with a caret). She

rents this capital to the representative firm. To finance her holding of K̂t, the expert issues

risk-free debt B̂t at rate rt to the households. The financial frictions in the model come from

the fact that the expert cannot issue state-contingent claims (i.e., outside equity) against K̂t.

In particular, the expert must absorb all the risk from holding capital.

The net wealth (i.e., inside equity) of the expert, N̂t, is the difference between her assets

(capital) and her liabilities (debt):

N̂t = K̂t − B̂t.

We allow N̂t to be negative, although this would not occur along the equilibrium path.

Let Ĉt be the consumption of the expert. Then, the dynamics of N̂t are given by:

dN̂t = K̂tdr
k
t − B̂trtdt− Ĉtdt

= ω̂tN̂tdr
k
t +

[
(1− ω̂t) N̂trt − Ĉt

]
dt

=
[
(rt + ω̂t (rct − δ − rt)) N̂t − Ĉt

]
dt+ σω̂tN̂tdZt, (4)

where ω̂t ≡ K̂t
N̂t

is the leverage ratio of the expert. The term rt + ω̂t (rct − δ − rt) is the deter-

ministic return on net wealth, equal to the return on bonds, rt, plus ω̂t times the excess return

on leverage, rct − δ − rt. The term σω̂tN̂t reflects the risk of holding capital induced by the

capital growth rate shock.

The previous expression allows us to derive the law of motion for K̂t:

dK̂t = dN̂t + dB̂t =
[
(rt + ω̂t (rct − δ − rt)) N̂t − Ĉt

]
dt+ σω̂tN̂tdZt + dB̂t.
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The expert’s preferences over Ĉt are representable by:

Ûj = Ej
[∫ ∞

j

e−ρ̂(t−j) log(Ĉt)dt

]
, (5)

where ρ̂ is her discount rate. Using a log utility function will make our derivations below easier,

but could be easily generalized to the class of recursive preferences introduced by Duffie and

Epstein (1992).

The expert decides her consumption levels and leverage ratio to solve the problem:

max
{Ĉt,ω̂t}

t≥0

Û0, (6)

subject to evolution of her net wealth (4), an initial level of net wealth N0, and the No-Ponzi-

game condition:

lim
T→∞

e−
∫ T
0 rτdτBT = 0. (7)

2.3 Households

There is a continuum of infinitely-lived households with unit mass. Households are hetero-

geneous in their wealth am and labor supply zm for m ∈ [0, 1]. The distribution of households

at time t over these two individual states is Gt (a, z). To save on notation, we will drop the

subindex m when no ambiguity occurs.

Each household supplies zt units of labor valued at wage wt. Idiosyncratic labor productivity

evolves stochastically following a two-state Markov chain: zt ∈ {z1, z2} , with 0 < z1 < z2. The

process jumps from state 1 to state 2 with intensity λ1 and vice versa with intensity λ2. The

ergodic mean of z is 1. As in Huggett (1993), we identify state 1 with unemployment (where

z1 is the value of leisure and home production) and state 2 with working. We will follow this

assumption when the model faces the data, but nothing essential depends on it. Also, increasing

the number of states of the chain is trivial, but two points will suffice for our purposes.

Households can save an amount at in the riskless debt issued by the expert at interest rate

rt. Hence, a household’s wealth follows:

dat = (wtzt + rtat − ct) dt = s (at, zt, Kt, Gt) dt, (8)

where the short-hand notation s (at, zt, Kt, Gt) denotes the drift of the wealth process. The

first two variables, at and zt, are the household individual states, the next two, Kt and Gt,

are the aggregate state variables that determine the returns on its income sources (labor and

bonds). All four variables pin down the optimal choice, ct = c (at, zt, Kt, Gt), of the control.
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The households also faces a borrowing limit that prevents them from shorting bonds:

at ≥ 0. (9)

Households have a CRRA instantaneous felicity function over consumption flows c (·) :

u (ct) =
c1−γ
t − 1

1− γ

discounted at rate ρ > 0. As before, we could substitute the CRRA felicity function with a more

general class of recursive preferences.

Two points are worth discussing here. First, we have a CRRA felicity function to allow

different risk aversions in the households and the expert. Second, we make the households

less patient than the expert, ρ > ρ̂. We will show later how the risk-free rate in the DSS

(recall, the deterministic steady state) is pinned down by the discount factor of the expert,

i.e., r = ρ̂ (we drop the subindex when we denote a variable evaluated at the DSS). But, if

ρ ≤ r = ρ̂, the households would want to accumulate savings without bounds to self-insure

against idiosyncratic labor risk (Aiyagari, 1994). Hence, we can only have a DSS –and an

associated ergodic distribution of individual endogenous variables– if we increase the households’

discount rate above the expert’s.3

In summary, households maximize

max
{ct}t≥0

E0

[∫ ∞
0

e−ρt
c1−γ
t − 1

1− γ
dt

]
, (10)

subject to the budget constraint (8), initial wealth a0, and the borrowing limit (9).

2.4 Market clearing

There are three market clearing conditions. First, the total amount of debt issued by the

expert must equal the total amount of households’ savings:

Bt ≡
∫
adGt (da, dz) = B̂t, (11)

3This property of our economy stands in contrast with models à la Bernanke et al. (1999), where borrowers
are more impatient than lenders to prevent the former from accumulating enough wealth as to render the financial
friction inoperative. But in these models, borrowers are infinitesimal and subject to idiosyncratic risk, and the
lenders’ discount rate determines the DSS risk-free rate. In our model, the situation is reversed, with the lenders
being infinitesimal and subject to idiosyncratic risk and the borrower’s discount rate controlling the DSS risk-free
rate. We have framed our discussion for the case without aggregate shocks since we want to ensure the existence
of a DSS. The characterization of the admissible region for ρ in relation with ρ̂ when we only care about the
properties of the economy with aggregate shocks is beyond the scope of our paper.
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which also implies dBt = dB̂t.

Second, the total amount of labor rented by the firm is equal to labor supplied:

Lt =

∫
zdGt.

Due to the assumption about the ergodic mean of z, we have that Lt = 1. Then, total payments

to labor are given by wt. If we define total consumption by households as

Ct ≡
∫
c (at, zt, Kt, Gt) dGt (da, dz) ,

we get:

dB̂t = dBt = (wt + rtBt − Ct) dt, (12)

which tells us that the evolution of aggregate debt is the labor income of households (wt) plus

its debt income (rtBt) minus their aggregate consumption Ct.

Third, the total amount of capital in this economy is owned by the expert, Kt = K̂t, and,

therefore, dKt = dK̂t and ω̂t = Kt
Nt

, where Nt = N̂t = Kt −Bt. With these results, we derive

dKt =
(

(rt + ω̂t (rct − δ − rt)) N̂t − Ĉt
)
dt+ σω̂tN̂tdZt + dB̂t

=
(
Yt − δKt − Ct − Ĉt

)
dt+ σKtdZt, (13)

where the last line uses the fact that, from competitive input markets and constant-returns-to-

scale, Yt = rctKt + wt. Recall, from equation (3), that

dKt = (ιt − δ)Ktdt+ σKtdZt.

Then, equating (13) and (3) and cancelling terms, we get

ιt =
Yt − Ct − Ĉt

Kt

,

i.e., the reinvestment rate is output less aggregate consumption divided by aggregate capital.

2.5 Density

The households distribution Gt (a, z) has a density on assets a, git(a), conditional on the

labor productivity state i ∈ {1, 2}. The density satisfies the normalization

2∑
i=1

∫ ∞
0

git(a)da = 1.
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The dynamics of this density conditional on the realization of aggregate variables are given

by the Kolmogorov forward (KF) equation:

∂git
∂t

= − ∂

∂a
(s (at, zt, Kt, Gt) git(a))− λigit(a) + λjgjt(a), i 6= j = 1, 2. (14)

Reading equation (14) is straightforward: the density evolves according to the optimal consumption-

saving choices of each household plus two jumps corresponding to households that circulate out

of the labor state i (λigit(a)) and the households that move into state j (λjgjt(a)).

3 Equilibrium

An equilibrium in this economy is composed by a set of prices
{
wt, rct, rt, r

k
t

}
t≥0

, quantities{
Kt, Nt, Bt, Ĉt, cmt

}
t≥0

and a density {git (·)}
t≥0

for i ∈ {1, 2} such that:

1. Given wt, rt, and gt, the solution of household m’s problem (10) is cmt = c (at, zt, Kt, Gt) .

2. Given rkt , rt, and Nt, the solution of the expert’s problem (6) is Ĉt, Kt, and Bt.

3. Given Kt, the firm maximizes their profits and input prices are given by wt and rct and

the rate of return on capital by rkt .

4. Given wt, rt, and ct, git is the solution of the KF equation (14).

5. Given rt, git, and Bt, the debt market (11) clears and Nt = Kt −Bt.

3.1 Equilibrium characterization

Several properties of the equilibrium are characterized with ease. We proceed first with the

expert’s problem. The use of log-utility implies that the expert consumes a constant share ρ̂ of

her net wealth and chooses a leverage ratio proportional to the difference between the expected

return on capital and the risk-free rate:

Ĉt = ρ̂Nt (15)

ωt = ω̂t =
1

σ2
(rct − δ − rt) . (16)

Second, rewriting the latter result, we get that the excess return on leverage,

rct − δ − rt = σ2Kt

Nt

,
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depends positively on the variance of the aggregate shock, σ2, and the leverage of the economy
Kt
Nt

. The higher the volatility or the leverage ratio in the economy, the higher the excess return

that the expert requires to isolate households from dZt. A positive capital growth rate shock,

by increasing Nt relatively to Kt, lowers the excess return. Analogously, a higher volatility of

the aggregate shock increases the excess return.

Third, we can use the values of rct, Lt, and ωt in equilibrium to get the wage wt = (1− α)Kα
t ,

the rental rate of capital rct = αKα−1
t , and the risk-free interest rate:

rt = αKα−1
t − δ − σ2Kt

Nt

. (17)

This equation will play a key role, below, in explaining our quantitative results. Since Kt =

Nt +Bt, equations (15)-(17) depends only on the expert’s net wealth Nt and debt Bt.

Fourth, we can describe the evolution of Nt:

dNt =
[
(rt + ωt (rct − δ − rt))Nt − Ĉt

]
dt+ σωtNtdZt

=

(
αKα−1

t − δ − ρ̂− σ2

(
1− Kt

Nt

)
Kt

Nt

)
Ntdt+ σKtdZt (18)

as a function only of Nt, Bt, and dZt. Equation (18) shows the nonlinear dependence of dNt on

the leverage level Kt
Nt

. We will stress this point in the next pages repeatedly. For convenience,

some times we will write

dNt = µN(Bt, Nt)dt+ σN(Bt, Nt)dZt,

where µN(Bt, Nt) =
(
αKα−1

t − δ − ρ̂− σ2
(

1− Kt
Nt

)
Kt
Nt

)
Nt is the drift of Nt and σN(Bt, Nt) =

σKt its volatility.

Fifth, we have from equation (12):

dBt = (wt + rtBt − Ct) dt =

(
(1− α)Kα

t +

(
αKα−1

t − δ − σ2Kt

Nt

)
Bt − Ct

)
dt. (19)

Note how, if we know Ct, Nt, and Bt, we can use (19) to find dBt. Once we have dBt, we can

calculate dKt and all the other endogenous variables of the model follow directly (see Appendix

A for a list of all the equilibrium conditions to see this point in detail). Hence, computing the

equilibrium of this economy is equivalent to finding Ct and tracking the density {git (·)}
t≥0

for

i ∈ {1, 2} that determines it.
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3.2 The DSS of the model

In this subsection, we describe the DSS of the model where there are no capital growth rate

shocks, but we still have idiosyncratic household shocks. Thus, we set σ = 0 in the law of

motion for the expert net wealth (18) to find:

dNt =
(
αKα−1

t − δ − ρ̂
)
Ntdt. (20)

Since the drift of Nt, µ
N(B,N) = (αKα−1 − δ − ρ̂)N , must be zero in a DSS (remember that

we drop the t subindex to denote the DSS value of a variable), we get

K =

(
ρ̂+ δ

α

) 1
α−1

.

With this result, the DSS risk-free interest rate (17) equals the return on capital and the

rental rate of capital less depreciation:

r = rkt = rct − δ = αKα−1
t − δ = ρ̂. (21)

As mentioned above, this condition forces us to have ρ̂ < ρ. Otherwise, the households would

accumulate too many bonds and the DSS would not be well-defined.

Finally, the dispersion of the idiosyncratic shocks determines the DSS expert’s net wealth:

N = K −B = K −
∫
adG (da, dz) ,

a quantity that, unfortunately, we cannot compute analytically.

3.3 The SSS of the model

A SSS in our model is formally defined as a density gSSS(·) and equity NSSS that remain

invariant in the absence of aggregate shocks. Let Γσ(g(·), N,W ) be the law of motion of the

economy given an aggregate capital volatility σ and a realization of the Brownian motion W.

More precisely, Γσ(·, ·, ·) is an operator that maps income-wealth densities g(·) and equity levels

N into changes in these variables:

lim
∆t→0

1

∆t

[
gt+∆t(·)− gt(·)
Nt+∆t −Nt

]
= Γσ(gt(·), Nt,Wt).

14



The SSS, therefore, solves:

Γσ(gSSS(·), NSSS, 0) =

[
0

0

]
.

In general, we will have multiple SSSs that solve the previous functional equation. Indeed,

several of them will appear in our quantitative exercise.

The difference between the SSS and the DSS is that the former is the steady state of an

economy where individual agents make their decisions taking into account aggregate risks (σ > 0)

−using equation (23)− but no shock arrives along the equilibrium path, whereas in the latter

agents live in an economy without aggregate risks (σ = 0) and arrange their consumption paths

accordingly. The DSS is then formally defined as:

Γ0(gDSS(·), NDSS) =

[
0

0

]
.

4 Solution

Our previous discussion highlighted the role of finding, in the general version of the model,

the households aggregate consumption, Ct, to compute the equilibrium of the economy given

some structural parameter values Ψ = {α, δ, σ, ρ̂, ρ, γ, z1, z2, λ1, λ2}.
To do so, we follow Krusell and Smith (1998) and assume that, when forming their expecta-

tions, households only use a finite set of n moments of the cross-sectional distribution of assets

instead of the complete distribution. In contrast to Krusell and Smith (1998), in which the

income-wealth distribution is the only endogenous state variable, here the expert’s net wealth

Nt is also a state variable. At the same time, we do not have any exogenous state variable, as

Kt = Nt + Bt instantaneously incorporates the capital growth rate shocks. For ease of exposi-

tion, we discuss the case with n = 1. All the techniques can be trivially extended to the case

with n > 1 at the cost of heavier notation.

More concretely, households consider a perceived law of motion (PLM) of aggregate debt:

dBt = h (Bt, Nt) dt, (22)

where h (B,N) is the conditional expectation of dBt given available information (Bt, Nt):

h (Bt, Nt) =
E [dBt|Bt, Nt]

dt
,

instead of the exact law of motion (19). We borrow the term PLM from the learning literature

(Evans and Honkapohja, 2001). Our choice of words accentuates that we allow h (·, ·) be a

general function, and not just a linear or polynomial function of its arguments, perhaps with
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state-dependent coefficients, as in Krusell and Smith (1998). In fact, our methodology will

let the PLM approximate, arbitrarily well, equation (19). More precisely, and as explained in

Subsection 4.3, we propose a methodology in which the functional form h (·, ·) is obtained by

employing machine learning techniques on simulated data. This extra flexibility is key given the

complex nonlinearities present in laws of motion of Nt, equation (18), and Bt, equation (19).

Given the PLM, the household’s problem has an associated Hamilton-Jacobi-Bellman (HJB)

equation:

ρVi (a,B,N) = max
c

c1−γ − 1

1− γ
+ s

∂Vi
∂a

+ λi [Vj(a,B,N)− Vi(a,B,N)]

+h (B,N)
∂Vi
∂B

+ µN (B,N)
∂Vi
∂N

+

[
σN (B,N)

]2
2

∂2Vi
∂N2

, (23)

i 6= j = 1, 2, and where we use the shorthand notation s = s (a, z,N +B,G) from (8). Notice

how the HJB incorporates h (B,N). Equation (23) complements the equilibrium conditions

(30)-(38) by making the problem of the household explicit.

4.1 An overview of the algorithm

Our algorithm to find h(B,N) in (22) proceeds according to the following iteration:

1) Start with h0, an initial guess for h.

2) Using current guess for h, solve for the household consumption, cm, in the HJB equation

(23). This solution can be obtained by using an upwind finite differences scheme described

in Appendix A (although other numerical algorithms such as a meshfree method can be

applied).

3) Construct a time series for Bt by simulating the cross-sectional distribution over time.

Given Bt, we can find Nt and Kt using equations (18) and (37).

4) Use a universal nonlinear approximator to obtain h1, a new guess for h.

5) Iterate steps 2)-4) until hn is sufficiently close to hn−1 given some pre-specified norm and

tolerance level.

Steps 1)-5) show that our solution has two main differences with respect to the original

Krusell-Smith algorithm: the use of continuous time and our employment of a universal nonlinear

approximator to update the guess of the PLM. Both differences deserve some explanation.
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4.2 Continuous time

Krusell and Smith (1998) wrote their model in discrete time. Our continuous-time for-

mulation, while not changing any fundamental feature of the model, enjoys several numerical

advantages (Achdou et al., 2017). First, continuous time naturally generates sparsity in the

matrices characterizing the transition probabilities of the discretized stochastic processes. Intu-

itively, continuously moving state variables such as wealth only drift an infinitesimal amount in

an infinitesimal unit of time. Therefore, in an approximation that discretizes the state space,

households reach only states that directly neighbor the current state. Second, the optimality

characterizing consumption has a simpler structure than in discrete time:

c−γi =
∂Vi
∂a

. (24)

Third, it is easier to capture occasionally binding constraints such as equation (9) in continuous

time than in discrete time as the optimality condition (24) for consumption holds with equality

everywhere in the interior of the state space. Fourth, the dynamics of the cross-sectional wealth

distribution are characterized by the KF equation (14). The discretization of this equation

yields an efficient way to simulate a time series of the cross-sectional distribution (although this

can also be performed in discrete time, as in Rı́os-Rull 1997, Reiter 2009, and Young 2010, at

some additional cost).

Regarding the generation of data, we simulate T periods of the economy with a constant

time step ∆t. We start from the initial income-wealth distribution at the DSS (although we

could pick other values). A number of initial samples is discarded as a burn-in. If the time step

is small enough, we have

Btj+∆t = Btj +

∫ tj+∆t

tj

dBs = Btj +

∫ tj+∆t

tj

h (Bs, Ns) ds ≈ Btj + h
(
Btj , Ntj

)
∆t.

Our simulation
(
S, ĥ

)
is composed by a vector of inputs S = {s1, s2, ..., sJ}, where sj ={

s1
j , s

2
j

}
=
{
Btj , Ntj

}
are samples of aggregate debt and expert’s net wealth at J random

times tj ∈ [0, T ], and a vector of outputs ĥ =
{
ĥ1, ĥ2..., ĥJ

}
, where

ĥj ≡
Btj+∆t −Btj

∆t

are samples of the growth rate of Bt. The evaluation times tj should be random and uniformly

distributed over [0, T ] as, ideally, samples should be independent.
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4.3 Neural networks: A universal nonlinear approximator

In the original Krusell-Smith algorithm, the law of motion linking the mean of capital tomor-

row and the mean of capital today is log-linear, with the coefficients in that function depending

on the aggregate shock. This approximation is highly accurate due to the near log-linearity

of their models in the vicinity of the DSS. Indeed, in such a model, the DSS and SSS almost

coincide. But, as shown in equations (18) and (19), this linearity of the law of motion of the

endogenous variables with respect to other endogenous variables does not carry out to our model.

This nonlinear structure causes two problems. First, we face the approximation problem:

we need an algorithm that searches for an unknown nonlinear functional instead of a simple

linear regression with aggregate-state-dependent coefficients. Second, we need to tackle the

extrapolation problem. While the theoretical domain of Bt and Nt is unbounded, practical

computation requires to limit it to a compact subset of R2 large enough as to prevent boundary

conditions from altering the solution in the subregion where most of the ergodic distribution

accumulates. But precisely because we deal with such a large area, the simulation in step 3)

of the algorithm in Subsection 4.1 never visits an ample region of the state space. Thus, the

approximation algorithm should not only provide an accurate nonlinear approximation in the

visited region, but also a “reasonable” extrapolation to the rest of the state space. We will

return to what “reasonable” means in this context momentarily.

To address these two problems, we propose to employ a nonlinear approximation technique

based on neural networks. Our approach has four crucial advantages. First, the universal approx-

imation theorem (Hornik et al. 1989; Cybenko 1989) states that a neural network with at least

one hidden layer can approximate any Borel measurable function mapping finite-dimensional

spaces arbitrarily well. In particular, the theorem does not require that the approximated func-

tion be differentiable and can handle cases with kinks and occasionally binding constraints.4

Second, the neural network coefficients can be efficiently estimated using gradient descent

methods and back-propagation. This allows for an easier coding and shorter implementation

time than other approaches.

Third, neural networks are more economical, for middle and high dimensions, than other

approximators. More concretely, Barron (1993) shows that a one-layer neural network achieves,

for functions on the first moment of the magnitude distribution of the Fourier transform, inte-

grated square errors of order O(1/n), where n is the number of nodes. In comparison, for series

approximations (polynomials, spline, and trigonometric expansions), the integrated square er-

ror is of order O(1/(n2/d) where d is the dimensions of the function to be approximated. In

4Recall that Lusin’s theorem tells us that every measurable function is a continuous function almost every-
where. Thus, we can approximate jumps in a finite number of points, but not functions with extremely intricate
shapes. Those complex functions, however, are unlikely to be of much relevance in solving standard dynamic
equilibrium models.
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other words: the “curse of dimensionality” does not apply to neural networks that approximate

functions of the very wide class considered by Barron (1993).5 This advantage is not present in

our baseline model, with d = 2, but will appear in any extension with additional aggregate state

variables. Even going to d = 3 or d = 4 saturates alternatives such as Chebyshev polynomials.6

Fourth, neural networks extrapolate outstandingly. This is, in practice, key. Neural networks

have well-behaved shapes outside their training areas. In contrast, Chebyshev polynomials (or

other series) more often than not display explosive behaviors outside the fitted area that prevent

the algorithm from converging. Figures D.1 and D.2 in Appendix D show this disappointing

behavior of an approximation to the PLM in our model with Chebyshev polynomials. The two

figures document how, within the area of high density of the ergodic distribution, Chebyshev

polynomials approximate the law of motion for aggregate debt fairly (compare them with panel

c) in Figure 2, obtained with our neural network). But Chebyshev polynomials start oscillating

as soon as we abandoned the well-traveled area of the simulation.

We can now briefly describe our neural network approximator of the PLM. For excellent

introductory treatments of this material, see Bishop (2006) and Goodfellow et al. (2016).

A single hidden layer neural network h (s; θ) is a linear combination of Q fixed nonlinear

basis (i.e., activation) functions φ(·):

h (s; θ) = θ2
0 +

Q∑
q=1

θ2
qφ

(
θ1

0,q +
2∑
i=1

θ1
i,qs

i

)
, (25)

where s is an two-dimensional input and θ a vector of coefficients (i.e., weights):

θ =
(
θ2

0, θ
2
1, ..., θ

2
Q, θ

1
0,1, θ

1
1,1, θ

1
2,1, ..., θ

1
0,Q, θ

1
1,Q, θ

1
2,Q

)
.

We call θ “coefficients,” as they represent a numerical entity, in comparison with the structural

parameters, Ψ, that have a sharp economic interpretation.

The neural network provides a flexible parametric function h that determines the growth

rate of aggregate debt:

ĥj = h (sj; θ) , j = 1, .., J,

and that satisfies the properties of universal approximation, breaking of the curse of dimension-

ality, good extrapolative behavior, and easy implementation we discussed above.

Different alternatives are available for the activation function. For our model, we choose a

5In fact, we can rely on the more general theorems shown by Bach (2017) that cover non-decreasing positively
homogeneous activation functions like the rectified linear unit and that show, beyond the break of the curse
dimensionality, approximation and the estimation errors.

6Similarly, approaches, such as Smolyak interpolation, that alleviate the “curse of dimensionality” in standard
problems are harder to apply here because we deal with shapes of the ergodic distribution that are hard to
characterize ex-ante. Neural networks are more resilient to sparse initial information regarding such shapes.
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softplus function, φ(x) = log(1 + ex) for a given input x. The softplus function has a simple

sigmoid derivative, which avoids some of the problems caused by the presence of a kink in

rectified linear units, while keeping an excellent efficient computation and gradient propagation.

The neural network (25) can be generalized to include many hidden layers, stacked one after

the other. In that case, the network is called a deep neural network. However, for the particular

problem of approximation a two-dimensional function a single layer is enough. The size of the

hidden layer is determined by Q. This hypercoefficient can be set by regularization or simply

by trial-and-error in relatively simple problems, such as the one presented here. In our case, we

set Q = 16 because the cost of a larger hidden layer is small.

The vector of coefficients θ is selected to minimize the quadratic error function E
(
θ; S, ĥ

)
given a simulation

(
S, ĥ

)
:

θ∗ = arg max
θ
E
(
θ; S, ĥ

)
= arg max

θ

1

2

J∑
j=1

∥∥∥h (sj; θ)− ĥj
∥∥∥2

.

A standard approach to perform this minimization in neural networks is the batch gradient

descent algorithm. Appendix B describes the training of the network in detail in detail

One concern with neural networks is that the algorithm might converge to a local minimum.

A way of coping with it is to implement a Monte Carlo multi-start in the first iteration of the

algorithm. We select P initial vectors θp0, with p = 1, ..., P . For each of these vectors, we run

the batch gradient descent until convergence. Once we achieve convergence, we select the θpm

that yields the minimum error across all the trials. Since we are interested in approximating

an unknown function, not clearing a market or satisfying an optimality condition, local minima

that are close to a global minimum are often acceptable solutions to the approximation problem.

Finally, notice that the algorithm is massively parallel, either in CPUs or GPUs (and, in

the middle-run, in the new generation of Tensor Processing Units or TPUs), a most convenient

feature for scaling and estimation.

5 Estimation

Once we have solved the model given some structural parameter values Ψ, the next step is

to take the model to the data, to let observations determine the values of Ψ. We will proceed in

two stages. First, we will discuss the simple case where the econometrician has access to output

data and wants to build the likelihood associated with it. Second, we will show the results of

our estimation with real data.
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5.1 Building the likelihood function

Let us assume that the econometrician has access to D + 1 observations of output, Y D
0 =

{Y0, Y∆, Y2∆, ..., YD} at fixed time intervals [0,∆, 2∆, .., D∆]. The derivations below would be

very similar for observables other than output. More important, though, is that since we have

one aggregate shock in the model (to capital), we can only use one observable in our likelihood.

Otherwise, we would suffer from stochastic singularity. If we wanted to have more observables,

such other aggregate variables or the states of model, we would need to either enrich the model

with more shocks or to introduce measurement shocks in the observables. In those more complex

situations, we might need to resort to a sequential Monte Carlo approximation to the filtering

problem described by the associated Kushner-Stratonovich equation of our dynamic system (see,

for a related approach in discrete time, Fernández-Villaverde and Rubio-Ramı́rez, 2007).

The likelihood function LD
(
Y D

0 |Ψ
)

for our observations of output has the form:

LD
(
Y D

0 |Ψ
)

=
D∏
d=1

pY
(
Yd∆|Y(d−1)∆; Ψ

)
,

where pY
(
Yd∆|Y(d−1)∆; Ψ

)
, the conditional density function of Yd∆ given Y(d−1)∆, is equal to:

pY
(
Yd∆|Y(d−1)∆; Ψ

)
=

∫
fd∆(Yd∆, B)dB

given a density function for output and debt, fd∆(Yd∆, B), implied by the solution of the model.

Our task is, therefore, to compute the sequences of conditional densities pY
(
Yd∆|Y(d−1)∆; Ψ

)
at

the fixed time intervals [0,∆, 2∆, .., D∆, ].

To do so, first, we obtain the diffusion of Yt = (Bt +Nt)
α. Applying Itô’s lemma, we get:

dYt =
∂ (B +N)α

∂B
dBt +

∂ (B +N)α

∂N
dNt +

1

2

∂2 (B +N)α

∂N2
σ2 (B +N)2 dt

= µY (Bt, Yt) dt+ σYt (Yt) dZt, (26)

where:

µY (Bt, Yt) = αY
α−1
α

t ∗

[
h(Bt, Y

1
α
t −Bt) + αYt +

[
(α− 1)σ2

2
− δ
]
Y

1
α
t

−

(
αY

α−1
α

t − δ − σ2 Y
1
α
t

Y
1
α
t −Bt

)
Bt − ρ̂

(
Y

1
α
t −Bt

)]
,

and σY (Yt) = ασYt.

With equation (26), the density fdt (Y,B) follows the KF equation in the interval [(d −
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1)∆, d∆]:

∂ft
∂t

= − ∂

∂Y

[
µY (Y,B)ft(Y,B)

]
− ∂

∂B

[
h(B, Y

1
α −B)fdt (Y,B)

]
+

1

2

∂2

∂Y 2

[(
σY (Y )

)2
ft(Y,B)

]
. (27)

The initial condition at the beginning of the interval is

f(d−1)∆(Y,B) = δ
(
Y − Y(d−1)∆

)
f(d−2)∆(B|Y(d−1)∆),

where f(d−1)∆(B|Y(d−1)∆) is the probability of B conditional on Y = Y(d−1)∆:

f(d−2)∆(B|Y(d−1)∆) =
f(d−2)∆(Y(d−1)∆, B)

f(d−2)∆(Y(d−1)∆)
=

f(d−2)∆(Y(d−1)∆, B)∫
f(d−2)∆(Y(d−1)∆, B)dB

,

if d ≥ 2, f−1(B) = f(B) is the ergodic distribution of B, and δ (·) is the Dirac delta function.

Lo (1988) pioneered the estimation of the likelihood of a continuous-time stochastic process

on discrete-time samples using the KF equation to characterize the transition density functions.

That paper provides a number of technical assumptions that has to be satisfied for the esti-

mation. In our model these conditions are met provided that h(B,N) is twice continuously

differentiable in B and N and three times continuously differentiable in Ψ, which is guaranteed

if it is computed using a neural network with activation functions that meet this requirements

–as it happens in our case– and that Ψ lies in the interior of a finite- dimensional closed and

compact parameter space.

A fundamental property of the operator in the KF equation (27) is that it is the adjoint of

the infinitesimal generator employed in the HJB. The intuition for that result is that one can

think about the dynamic choices of the agents implied by the HJB as a probability distribution

of their future choices, and, hence, a distribution on observables, such as output, induced by

the stochastic shocks of the model. There is, in other words, an intimate link between optimal

choices and likelihood functions.

This result is remarkable since it means that the solution of the KF equation amounts to

transposing an inverting a sparse matrix that has already been computed when we solved the

HJB. This provides a highly efficient way of evaluating the likelihood after the model is solved.7

In Appendix C, we show how to build the likelihood function of the model when, in addition,

we add add microeconomic observations from the cross-sectional distribution of assets.

7If the KF would become numerically cumbersome in more general models, we could construct Hermite
polynomials expansions of the (exact but unknown) likelihood as in Aı̈t-Sahalia (2002). We could also consider
methods of moments in continuous time such as those pioneered by Andersen and Lund (1997) and Chacko and
Viceira (2003).
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5.2 Maximizing the likelihood

Once we have evaluated the likelihood, we can either maximize it or perform Bayesian

inference relaying on a posterior sampler. In this paper, for simplicity, we follow the former

approach. Also, since we are dealing with a rather novel approach to solution and estimation of

models with heterogeneous agents, we want to keep the estimation relatively simple, and we fix

most of the structural parameters at conventional calibrated values for the U.S. economy and

use only aggregate data.

As our data, we will rely on U.S. quarterly output observations for 1984Q1-2017Q4, with

bandpass filter keeping frequencies between 20 and 60 quarters (between 5 and 15 years). We

start in 1984, as often done in the literature, to focus in capturing the dynamics that have

governed aggregate fluctuations in the U.S. after the arrival of the Great Moderation (Gaĺı

and Gambetti, 2009) (see also the updated evidence in Liu et al. (2018), who document how

the Great Moderation has clearly survived the 2007 financial crisis). We bandpass the data as

to eliminate long-run trends and to skip the business cycle frequencies caused by productivity

shocks and monetary policy shocks our model is not designed to account for. Note, however, that

our methodology does not depend on this filtering and that a richer model could be estimated

with raw data without theoretical problems.

Parameter Value Description Source/Target
α 0.35 capital share standard

δ 0.1 capital depreciation standard

γ 2 risk aversion standard

ρ 0.05 households’ discount rate standard

λ1 0.986 transition rate unemp.-to-employment monthly job finding rate of 0.3

λ2 0.052 transition rate employment-to-unemp. unemployment rate 5 percent

z1 0.72 income in unemployment state Hall and Milgrom (2008)

z2 1.015 income in employment state E (y) = 1
ρ̂ 0.0497 experts’ discount rate K/N = 2

Table 1: Baseline parametrization.

In terms of the fixed parameters, the capital share parameter, α, is taken to be 0.35 and the

depreciation rate of capital, δ, is 0.1 (all rates are annual). The discount rate ρ, is set to 0.05.

The risk aversion of the households γ is set to 2. These are standard values in the business cycle

literature to match the investment-output ratio and the rate of return on capital.

The idiosyncratic income process parameters are calibrated following our interpretation of

state 1 as unemployment and state 2 as employment. The transition rates between unemploy-

ment and employment (λ1, λ2) are chosen such that (i) the unemployment rate λ2/ (λ1 + λ2)

is 5 percent and (ii) the job finding rate is 0.3 at monthly frequency or λ1 = 0.986 at annual

frequency. These numbers describe the ‘US’ labor market calibration in Blanchard and Gaĺı
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(2010).8 We normalize average income z̄ = λ2

λ1+λ2
z1 + λ1

λ1+λ2
z2 to 1. We also set z1 equal to 71

percent of z2, as in Hall and Milgrom (2008). Both targets allow us to solve for z1 and z2. We

set the experts’ discount rate ρ̂ to ensure that the leverage ratio K/N in the DSS is nearly 2,

which is roughly the average leverage from a Compustat sample of non-financial corporations.

Table 1 summarizes our baseline calibration.

We solve the model according to the algorithm in Section 4. We use four Monte Carlo

simulation of 5,500 years each at a monthly frequency. We initialize the model at the DSS, and

we disregard the first 500 years as a burn-in.9

Then, we evaluate the likelihood of the observations on U.S. output for different values of

σ, the volatility of the aggregate shock and, therefore, the most interesting parameters in terms

of the properties of the model. While doing so, we keep all the other parameter values fixed at

their calibrated quantities. We maximize the likelihood function by searching on a grid between

0.013 and 0.015 with a step 0.0002 (we extensively played with σ values to determine the region

of high likelihood before starting the grid search).
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Figure 1: Log-likelihood for different values of σ and point estimate.

8Analogously to Blanchard and Gaĺı (2010, footnote 20), we compute the equivalent annual rate λ1 as

λ1 =
∑12

i=1 (1− λm1 )
i−1

λm1 , where λm1 is the monthly job finding rate.
9We compute the PLM based on simulations on a region of the state space. However, when forming expecta-

tions, households evaluate the PLM over the entire state space. Thus, the PLM is extrapolated over the regions
of the state space not included in the support of the ergodic distribution. There is no guarantee that the dynam-
ics of the model in the extrapolated region coincide with the ones expected in the PLM. Thus, as in Krusell and
Smith (1998), our approximation can be interpreted as a self-justified equilibrium in which households’ beliefs
about the PLM coincide with the actual law of motion only in the equilibrium paths. Off-equilibrium, the PLM
and the actual law of motion may diverge, but households never discover it, as this region is never visited.
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We plot the resulting log-likelihood in Figure 1. The point estimate, 0.0142, is drawn as

a vertical discontinuous red line, with a standard error of 0.00011342, computed by the local

derivative of the function. The smoothness of the plot confirms, also, that our algorithm has

successfully converged and that changes in one parameter value do not lead us into substantially

different numerical solutions.

6 Quantitative results

This section presents some quantitative results generated by our solution algorithm with the

parameter values from Section 5. We will report, first, the PLM for aggregate debt, h(B,N).

We will also assess the accuracy of our solution. Next, we will explore the phase diagram of the

model and explain, through the dynamic responses of the model to an aggregate shock, why

we find several SSS(s). After having discussed the convergence properties of the SSS(s), the

random fluctuations around those, and documented the presence of time-varying aggregate risk

in our economy, we will analyze the role of the value of σ in determining the multiplicity of

SSS(s). We will close by looking at the aggregate ergodic distribution of debt and equity.

6.1 The PLM

Figure 2 reports the resulting PLM for aggregate debt, h(B,N). Panel (a), at the top left,

displays three transversal cuts of h(B,N) along with a range of values of equity (N). The first

cut is fixes B at the high-leverage SSS (HL-SSS) value (BHL = 1.9641, NHL = 1.7470, with

KHL = 3.7111 and KHL

NHL = 2.1243), the second cut fixes B at an arbitrary high-leverage point

(B∗ = 2.15, N∗ = 1.5, with K∗ = 3.65 and K∗

N∗ = 2.4333), and the third cut fixes B at the low-

leverage SSS (LL-SSS; BLL = 1.0967, NLL = 2.6010, with KLL = 3.6977 and KLL

NLL = 1.4216).

The thicker part of the lines indicates the regions of the state space in which the ergodic

distribution of aggregates variables is nonzero. The white point indicates, in the first top cut,

the LL-SSS; in the second cut, the HL-SSS; in the third cut, the high-leverage point described

above. Panel (b), at the top right, follows the same pattern that panel (a), but switching the

roles of equity (N) and debt (B). Finally, panel (c), at the bottom, shows the complete three-

dimensional representation of the PLM. The shaded area in this bottom panels highlights the

region of the PLM visited in the ergodic distribution with (non-trivial) positive probability. The

thin red line is the “zero” level intersected by the PLM: to the right of the line, aggregate debt

falls, and to the left, it grows.

Figure 2 demonstrates the nonlinearity of h(B,N) even within the area of the ergodic dis-

tribution that has positive mass. The agents in our economy expect different growth rates of

Bt in each region of the state space, with the function switching from concave to convex along
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Figure 2: The PLM h(B,N) and transversal cuts.
Note: White points in panels (a) and (b) indicate the LL-SSS, the HL-SSS, and an arbitrary high-leverage point.

The thicker part of the lanes in panels (a) and (b) and the shaded area in panel (c) displays the region of the

PLM visited in the ergodic distribution. The thin red line is the “zero” level intersected by the PLM.

the way. While this argument is clear from the shape of panel (c), it encodes rich dynamics.

For instance, panel (b) shows how, as leverages increases, h(B,N) becomes stepper and, in the

ergodic distribution, more concave. Given the same level of debt, a higher level of leverage

induces larger changes in the level of aggregate debt as the financial expert is exposed to more

capital risk. This result will resurface several times in future paragraphs. Panel (c) also shows

that, as intuition suggests, h(B,N) is generally decreasing in debt and equity.

Figure 3 replicates Figure 2, except now for µN(B,N). Similar comments regarding the

nonlinear structure of the solution apply here. For example, now, µN(B,N) becomes higher as
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Figure 3: The law of motion µN(B,N) and transversal cuts.
Note: White points in panels (a) and (b) indicate the LL-SSS, the HL-SSS, and an arbitrary high-leverage

point. The thicker part of the lanes in panels (a) and (b) and the shaded area in panel (c) displays the region

of dh(B,N) in the ergodic distribution. The thin red line is the “zero” level intersected by µN (B,N).

a function of equity as the level of leverage falls.

The nonlinearity of the PLM confirms our conjecture that more traditional solution methods

that rely on linear structures (conditional on aggregate shocks) might not be appropriate for

solving this model. We illustrate this argument more formally by looking at the forecasting

capability of our PLM. The R2 associated with the PLM we compute using our neural network

is 0.9922, with an RMSE of 0.0004. The forecasting errors, furthermore, are nicely clustered

around zero, with a mode roughly equal to zero. To compare these errors with the standard

Krusell and Smith (1998) algorithm of finding an OLS over a linear regression on endogenous
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state variables, we have recomputed our model using the latter approach. The R2, in that case,

is 0.8275, considerably lower than typical values reported in the literature for more standard

heterogeneous agents models, and with an RMSE of 0.0021.
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Figure 4: Forecasting error distribution at a 1-month horizon, linear PLM (left) and neural
network (right).

Figure 4 plots the histogram of forecasting errors at a 1-month horizon (the time step selected

in the simulation step), with a continuous blue line representing the errors from our algorithm

and the discontinuous red line the errors from a linear-in-endogenous variables Krusell-Smith

algorithm. The latter approach produces more volatile forecasting errors, which are also skewed

to the right and without a mode at zero. These results back the importance of taking into

account the nonlinearities of the model when computing the PLM.

In Appendix D, we discuss other alternative solution methods, such as Chebyshev polynomi-

als, and argue that our method has advantages over them as well. Also, we checked that adding

additional moments to the OLS regression do not help much concerning accuracy.

6.2 The phase diagram

Figure 5 plots the phase diagram of our model along with the aggregate debt (B) on the

x-axis and equity (N) on the y-axis. The blue line in Figure 5 represents the loci of zero changes

in debt, h(B,N) = 0. The line inherits the nonlinear dependence on B and N of the right-hand

side of equation (19), the object h(B,N) approximates. There is a convex segment for low levels

of debt and a concave segment for high levels of debt. The discontinuous red line represents the

loci of zero changes in the equity of the expert, µN(B,N). These two lines are the intersections
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of zero with h(B,N) and dN(B,N) in Figures 2 and 3, which we represented with a thin red

line. The arrows in Figure 5 indicate the movement of debt, B, and equity, N , when we are

away from the blue and red lines.
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Figure 5: Phase diagram, DSS, and SSS(s).

The two lines intersect three times, defining three SSS(s). From the bottom right, the first

intersection is the stable HL-SSS (recall, with BHL = 1.9641, NHL = 1.7470, and KHL =

3.7111). This SSS is the closest to the DSS (green square). In comparison with the DSS

(B = 1.8718, N = 1.8215, and K = 3.6933), the HL-SSS has 0.5% more capital, 4.9% more

debt, and 4.1% less equity. The second intersection is at a middle-leverage SSS with less debt

and more equity (BML = 1.3897, NML = 2.3108, and KML = 3.7005). This SSS is, however,

unstable, and the dynamics of the economy quickly move away from it. Thus, we will not discuss

it further. The final third intersection, at the top left, is the stable LL-SSS. Here, debt is much

smaller (BLL = 1.0967) and equity considerably higher (NLL = 2.6010) than in the HL-SSS,

yielding however a similar capital, KLL = 3.6977. We also plot the point of high leverage that

we use in Figures 2 and 3 to show, later, the behavior of the economy when leverage is high.

6.3 Why do we have two stable SSS(s)?

To understand why we have two stable SSS(s) in Figure 5, first, recall the diffusion for the

expert net wealth in equation (34) and rewrite it in rates as:

dNt

Nt

=
(
αKα−1

t − δ − ρ̂
)
dt+ σ2Bt

Kt

N2
t

dt+ σ
Kt

Nt

dZt. (28)
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The volatility term of (28), σKt
Nt
dZt, reflects how the proportional effect on the expert’s

equity of a shock to capital is higher when her leverage level is high. Given that the expert

must absorb all the gains or losses from a shock to capital, the smaller the base of her equity in

relation to total capital, the larger the proportional drop in Nt.

The two drift terms of (28) explain why the rate of recovery of Nt from a negative shock to

capital is roughly independent of leverage. The first drift term,
(
αKα−1

t − δ − ρ̂
)
dt, does not

depend directly on Nt. The second drift term, σ2Bt
Kt
N2
t
dt, indicates that the rate of accumulation

of equity will be higher when Nt is small relative to Kt. However, since the term is multiplied

by σ2, a small quantity, the total effect on dNt
Nt

is muted.

Next, let us inspect the law of motion for debt, (19), and rearrange it as:

dBt =

(
(1− α)Kα

t − σ2Kt

Nt

Bt

)
dt+ (αKα−1

t − δ)Btdt− Ctdt. (29)

The first drift term of (29),
(

(1− α)Kα
t − σ2Kt

Nt
Bt

)
dt, becomes smaller after a negative

capital shock: less capital lowers labor income, (1−α)Kα
t , and σ2Kt

Nt
Bt rises because the expert

must be compensated with a larger excess return for her higher leverage to be an equilibrium

choice. High leverage makes the reduction on this term larger. The second drift term of (29),

(αKα−1
t − δ)Btdt, is bigger after a negative capital shock because the marginal productivity of

capital goes up. However, higher leverage means that Bt is low relatively to Kt and, hence,

the whole term is smaller than it would be with low leverage. Finally, households reduce

their consumption, Ct, to compensate for lower wages and higher risk-free interest rates, which

increases dBt. However, Ct only depends weakly on leverage. High-leverage, through higher risk-

free real interest rates after a negative capital shock, induces more intertemporal substitution in

consumption, but this difference is quantitatively minor. We will see, when we report the time-

varying consumption decision rules in Figure 19, how wealthy households drive intertemporal

substitution and, when leverage is high, there are few of them.

In summary: equations (28) and (29) show that, when leverage is high, i) the financial

expert’s equity falls more; ii) the recovery of this equity is roughly at the same rate than when

leverage is low; iii) debt increases less; and iv) consequently, capital recovery is slow.

We can gauge the quantitative size of these four points in Figure 6, where we display the

generalized impulse response functions (GIRFs) to a two-standard-deviations negative capital

shock. The GIRF is defined as the difference between the transition path if an initial shock hits

the economy and that if no shock arrives.10

10The word “generalized” comes because, in comparison with linear models, impulse responses in nonlinear
models are i) state dependent, that is, they depend on the point where the economy is when the shock arrives;
ii) their shape is a nonlinear function of the size of the shock; iii) and they are not symmetric, i.e., the response
to a negative shock is not the mirror image of the response to a positive shock. Thus, we need to specify the
size and sign of the shock and when this shock occurs.
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We plot three GIRFs: to a two-standard-deviations negative capital shock that hits the

economy at the HL-SSS (continuous green lines); to a two-standard-deviations negative capital

shock that hits the economy at the LL-SSS (discontinuous red lines); and to a two-standard-

deviations negative capital shock that hits the economy at the arbitrary high-leverage point

defined in Figure 5 (discontinuous blue lines). Time units are years.
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Figure 6: GIRFs for different initial states.

In all three cases, the shock destroys the same amount of capital (left panel in the central

row) and output falls, at impact, by the same quantity (left panel in the top row). However,

the higher the leverage, the larger the reduction of equity at impact (right panel in the central

row). As time passes, the higher the leverage, the longer it takes for capital to recover as the

expert requires more time to rebuild her equity and accumulates less debt (central panel in

the central row). The lower debt is an equilibrium choice for households because of the more

persistent risk-free rate (central panel in the bottom row) induces a mild reduction in household
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consumption (central panel in the top row).

The state-dependence of the GIRFs demonstrate the critical nonlinearities of our model.

Furthermore, the two-standard-deviations shock is not large enough to send the economy away

from the basins of attraction of each SSS. An even larger shock or a shock closer to the frontier

between the two basins, by inducing a basins switch, will have even acuter nonlinear conse-

quences (we will return to this point below).

A central property of the GIRFs is their persistence. When leverage is high, even after

40 years, the economy is still around half a point percentage below its pre-shock level. The

dynamics of equity and debt accumulation propagate aggregate shocks in ways that are not

present in models without financial frictions.

The latter point is particularly salient for the next step of our argument explaining the

existence of multiple SSS: the evolution of wages (left panel in the bottom row). When leverage

is high, wages fall for a much longer period than when leverage is low. For instance, it takes

19.08 years until the initial effect of the shock in the wages has fallen to 25% of its size in the

HL-SSS (with as much as 30 years in the high-leverage point) and 13.33 years in the LL-SSS.

Similarly, the standard deviation of wages when the economy fluctuates around the basin of

attraction of the HL-SSS is 0.0125 while the same statistic around the basin of attraction of the

LL-SSS is 0.0108.

The persistent fall in wages induces a stronger precautionary behavior by the households.

Since they want to smooth their consumption, households demand for debt sifts to the right

when leverage is high. At the same time, the supply of debt is given by equation (16) after some

term rearrangement:

Bt =

(
1 +

1

σ2
(rct − δ − rt)

)
Nt,

Thus, the debt market will clear with a reduction in rt. At the HL-SSS, this reduction in rt will

need to compensate, also, for the fact that the higher excess returns induces a lower financial

expert’s equity, Nt, and a slightly higher capital, with a subsequent reduction in rct.

Hence, we have shown, why we have a fixed point at the HL-SSS. High leverage makes

wages persistently lower after a negative capital shock due to the large reduction in the expert’s

equity and the associated capital dynamics. Persistently lower wages create a precautionary

motive that lowers the risk-free interest rate and such low risk-free interest rate justifies the

high leverage of the financial expert.

We only need to reverse the argument to show why we also have a fixed point at the LL-SSS.

Low leverage makes wages recover quickly after a negative capital shock as the expert rebuilds

her equity briskly. The lower associated precautionary behavior means the risk-free interest rate

is relatively high and that sustains the low leverage of the financial expert.

Mechanically, note the high sensitivity of leverage to excess returns induced by 1
σ2 in equation
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(16). The excess return in basis points and our parameter values for the HL-SSS is:

rcHLt − δ − rHLt = 4.1636

and for the LL-SSS:

rcLLt − δ − rLLt = 2.7864.

This high sensitivity accounts for the large quantitative differences between the two SSS(s)

in terms of how a roughly equal total wealth (KHL = 3.7111 vs. KLL = 3.6977) is allocated

between experts (NHL = 1.7470 vs. NLL = 2.6010) and households (BHL = 1.9641 vs. BLL =

1.0967). The impossibility of issuing state-contingent debt by the expert and the high sensitivity

of leverage to excess returns eliminates the “concavity” forces that lead to a unique SSS in a

setup without financial frictions.

6.4 Convergence to the SSS(s) and random fluctuations around them

How do we know that the two SSS(S) described above are stable? The state space (g(·), N) is

infinite dimensional and, hence, we cannot check convergence numerically for all possible initial

states. Instead, we analyze convergence for densities visited in the ergodic distribution.
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Figure 7: Convergence paths.

Figure 7 considers an array of different initial income-wealth densities and equity levels

(g0(·), N0), selected from the simulations used to compute the aggregate ergodic distribution

and analyze the transitional dynamics in the absence of aggregate shocks (agents continue
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forming their expectations assuming σ > 0). We plot, in red, the paths converging toward

the LL-SSS and, in green, the paths converging toward the HL-SSS. In all cases, the economy

converges to the SSS(s), denoted by small circles (which one depending on the basin of attraction

of the initial condition). The convergence path is plodding: for initial values in the high- or

low-leverage regions convergence may take several centuries.

Notwithstanding, we cannot rule out that, for other initial conditions, the model would

not converge to a SSS. This limitation is related to the self-justified nature of the solution.

The PLM is computed based on the income-wealth distributions visited along the paths of the

ergodic distribution. One could potentially find a distribution that would lead to alternative

dynamics. Similarly, one could also find other equilibria beyond the one we compute (although,

despite our efforts, we failed to do so). Recall, too, that multiplicity of SSS(s) is different from

multiplicity of equilibria: in our model, we are in one basin of attraction or another depending

on the sequence of shocks that the economy has experienced, but the equilibrium we compute

is unique given the initial condition and sequence of shocks.

An interesting feature of the transitional dynamics is the curvature of the paths that lie

in regions with relatively low levels of capital. These paths are bent because debt adjusts

faster than equity. If equity and aggregate capital are below their long-run values, households

accumulate wealth, increasing the financial expert’s leverage. Once the economy reaches a point

with low equity, but a capital level closer to that in the SSS, there is a progressive redistribution

of wealth from households to the expert as the latter accumulate excess returns undisturbed, in

the absence of aggregate shocks, by capital losses. The converse phenomenon occurs in the case

of initial high equity and capital.

Figure 8 documents how the economy evolves around each SSS by plotting several random

equilibrium paths corresponding to different sequences of shocks. In red, we plot the paths when

they are in the basin of attraction of the LL-SSS. In green, we plot the paths when they are in

the basin of attraction of the HL-SSS. A path in the basin of attraction of the LL-SSS can be

pushed the basin of attraction of the HL-SSS by a sequence of shocks that reduce equity and

increase debt. Conversely, a series of shocks that increase equity and reduce debt can push the

equilibrium path from the basin of attraction of the HL-SSS toward the basin of attraction of

the LL-SSS. These shocks will induce a sharp nonlinearity, as the GIRFs do not return to their

origin, but to the new SSS.

6.5 Time-varying endogenous aggregate risk

Table 2 reports the moments of the economy conditional on the basin of attraction at which

the variables fluctuate (note that the ergodic distribution of the economy over time is the

combination of the distributions at both basins; see Subsection 6.7 below).
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Figure 8: Simulation of equilibrium paths.

Mean Standard deviation Skewness Kurtosis
Y basin HL 1.5807 0.0193 -0.0831 2.8750
Y basin LL 1.5835 0.0166 0.16417 3.1228
rbasin HL 4.92 0.3360 0.1725 2.8967
rbasin LL 4.88 0.2896 -0.0730 3.0905
wbasin HL 1.0274 0.0125 -0.0831 2.875
wbasin LL 1.0293 0.0108 0.1642 3.1228

Table 2: Moments conditional on basin of attraction.

The main takeaways from Table 2 are as follows. First, the mean of output is higher at

the LL-SSS basin than at the HL-SSS. This is despite output being higher at the HL-SSS itself

than at the LL-SSS (Y HL = 1.5824 > Y LL = 1.5804). The reversal is due to a distribution of

output at the LW-SSS basin that is more skewed to the right. Second, the standard deviation

of output is higher in the basin of the HL-SSS. This observation is the sense in which financial

frictions create time-varying endogenous aggregate risk: when leverage is high, the economy

fluctuates more even when the variance, σ, of aggregate shocks is the same. The mechanism,

outlined a few paragraphs back, is the higher persistence of capital in the HL-SSS basin after

a shock. This higher volatility will be even bigger when leverage is higher than at the HL-SSS

(something that often occurs, as seen in Figure 8). Third, there is a mild excess kurtosis of

output at the HL-SSS. Similar statements can be made about the risk-free rate and the wage,

the latter being nearly 16% more volatile in the basin of attraction of the HL-SSS. Figure 9
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plots the distributions behind the moments in Table 2.
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Figure 9: Ergodic distributions conditional on basin of attraction.

Figure 10 plots the histogram of the duration of spells of the economy around each SSS. The

figure shows how the interaction of financial frictions and heterogeneity can lead to complex

middle- and long-run dynamics that are not present in more conventional business cycle models.

The average duration of a spell of the economy around the HL-SSS is 55.40 years, a long period

of high leverage. On the other hand, the average duration of a spell of the economy around the

LL-SSS is 9.60 years, a much shorter length. Consequently, the economy spends 91.40% of its

time in the basin of attraction of the HL-SSS. However, the distribution of spells has long tails:

some spells around the LS-SSS can last a century.

Thus, Figures 6 and 10 suggest that an economy that has suffered a significant loss of capital,

for example, during a war, will pass through a prolonged period of capital accumulation, possibly

lasting several decades, with little debt and low volatility (even if the economy remains in the

basin of attraction of the HL-SSS, a lower le. In the absence of new shocks, this era will end

with the economy moving endogenously to a period of higher leverage and larger responses to

capital shocks. As we will see in Section 7, this transition will also be accompanied by a sharp

increase in the Gini coefficient of wealth inequality. As a rough first approximation, this process

resembles the experience of many Western European countries after 1945.
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Figure 10: Spell durations at each SSS.

Why does the economy stay longer, on average, around the HL-SSS? For our parameter

values, i) the state variables values where the financial expert wants to lever aggressively cover

a large region; and ii) the level of exogenous aggregate and idiosyncratic risk sufficiently high

as to induce the households to demand enough debt.

6.6 The role σ in determining the different SSS(s)

Our previous discussion highlighted how the equilibrium excess return sends the economy

toward a high or a low-leverage region. Figure 11 pushes this argument further by exploring the

role of σ in determining the different SSS(s). Each panel plots, for a different value of σ, the

phase diagram of the economy following the same convention than Figure 5.11

For low values of σ, the precautionary motive of households is mild and, therefore, we can

sustain the LL-SSS (in addition to the HL-SSS). However, as we increase σ, the precautionary

motive becomes stronger and h(B,N) = 0 curvier, until we get to a bifurcation and the LL-SSS

disappears. Even with high risk-free interest rates, households do not demand enough bonds.

Similarly, as σ grows the HL-SSS moves to the left (i.e., less debt and more equity) as the

financial expert is exposed to additional capital risk. This effect becomes sufficiently strong

that the HL-SSS, instead of being to the right of the DSS (i.e., more debt and more equity than

the DSS because of the higher excess return induced by precautionary savings), crosses to the

11Here, as in all the other exercises of the paper where we perform comparisons across different values of a
parameter, we keep all the other parameter values constant. In that way, we can understand the mechanisms at
work better than if we re-parameterized the model.
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Figure 11: Phase diagram as a function of σ.

left of the DSS.

Figure E.3 in Appendix E plots the values of the LL-SSS, the unstable SSS, and the HL-SSS

(plus, for reference, the DSS) as a function of σ. We can see how the leverage in the HL-SSS

is a negative function of σ, a roughly constant function in the unstable SSS, and an increasing

function in the LL-SSS (until the additional SSS(s) disappear). The mechanism for these three

slopes is the same than the one discussed above. In the HL-SSS, as σ grows, the expert wants

to unload some of the capital risk by reducing its leverage. In comparison, in the LL-SSS, the

households demand more debt as σ increases.

6.7 The aggregate ergodic distribution of debt and equity

Panel (a) of Figure 12 displays the aggregate ergodic joint distribution of debt and equity

F (B,N). This distribution is defined, for any subset Ω of the state space, as:

P {(B,N) ∈ Ω} =

∫
Ω

dF.

The ergodic distribution is not obtained directly from the PLM, but from the simulation of
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the paths of the income-wealth distribution and equity. Naturally, the PLM is employed in the

HJB equation (23) to obtain the optimal consumption policies of individual households.

Panels (b) and (c) of Figure 12 plot the marginal ergodic distributions for debt and equity.

These two panels show how the economy spends most of the time in a region with debt levels

between 1.5 and 2.2 and equity between 1 and 2.2. Those values of debt and equity correspond

to the neighborhood of the HL-SSS. In comparison, the neighborhood of the LL-SSS appears

much less often. As we explained above, the desire of households of accumulating more debt

lowers the height of this second peak as there is a strong force for reversion toward higher levels

of leverage. We will see momentarily how this result changes as we vary, for example, the degree

of heterogeneity among households.
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Figure 12: Ergodic distribution F (B,N). Lighter colors indicate higher probability.

Note, as well, how the marginal distribution of debt is much more concentrated than the

marginal distribution of equity. The ergodic distribution has a substantial tail in areas of high

equity and low debt, creating an intriguing asymmetry in aggregate dynamics.
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7 The role of heterogeneity

This section explores how heterogeneity among households drive our results. To do so, we

start by comparing, in the top row of Figure 13, the wealth distribution in the DSS (discontinuous

blue line), the HL-SSS (continuous green line), and the LL-SSS (discontinuous red line). In the

left panel, we plot the distributions for low-z households (with circles denoting the mass at zero

assets). In the right panel, we plot the distributions for high-z households.
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Figure 13: Wealth distribution in the DSS and SSS.

The wealth distribution slightly shifts to the left as we move from the DSS to the HL-SSS,

but shifts rather dramatically, also to the left, as we travel from the HL-SSS to the LL-SSS. The

higher volatility and persistence of wages in the HL-SSS pushes the assets of the households

to the left, in particular, the richer ones, with a thicker right tail. This leads to substantial

differences in the Gini coefficient of wealth: 0.28977 in the DSS, 0.24398 in the DSS, and

0.31968 in the HL-SSS.

Having more wealth also means that the average welfare of the households at the HL-SSS

is higher. In terms of consumption equivalence, we need to compensate, on average, -0.033633

for households to (instantaneously) move from the DSS to the HL-SSS, while the average com-

pensation to go to the LL-SSS is 0.33983. These numbers must be read carefully, though. The

value functions of the households at the LL-HSS are above the value functions at the HL-SSS

for all asset values because the economy is less volatile and the utility function is concave (see

the plot of the value functions in Figure F.7 in Appendix F). However, we have more households

with larger assets at the HL-SSS. That means that a full welfare analysis would require taking
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account of all the transitional dynamics. Since this is not the main thrust of the paper, we skip

that analysis.

Next, we show how the results of Section 6 change as we modify the forces driving the

wealth distributions in Figure 13. We will answer this question in four steps. First, we will

vary the level of idiosyncratic labor risk among households. Second, we will change aggregate

and idiosyncratic labor risk simultaneously. Third, we will show how the GIRFs of the economy

depends on the degree of heterogeneity among households. Third, we will explore how the

differences in consumption decisions and the variation in distributions over time account for the

differences in the GIRFs.

7.1 Varying idiosyncratic labor risk

Figure 14 plots the phase diagram of the model for nine different values of z1 (still keeping

the ergodic mean of z equal to 1) from 0.67 to 0.92. Each panel follows the same convention

that in Figure 5. In particular, we only plot the segments of h(B,N) and µN(B,N) visited in

the ergodic distribution). Figure 14 is different from Figure 11 because now we keep σ constant.

Instead, Figure 14 shows the consequences of having more or less idiosyncratic labor risk.
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Figure 14: Phase diagram as a function of z1.
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For low levels of z1, the only SSS is the HL-SSS (see, for instance, the left and center panels

at the top row). Idiosyncratic labor risk is so high that households demand enough debt to

sustain only one SSS, which, besides, has more debt than the DSS. As z1 increases and we cross

a threshold around 0.69, and we find three SSS(s), with the same interpretation than in our

baseline case of Figure 14. As z1 continues rising, the HL-LLL moves to the left of the DSS since

households demand less debt to self-insure against idiosyncratic labor risk. See, for instance,

the three panels of the center row. By the time z1 reaches 0.9, the HL-SSS has disappeared: the

precautionary demand for debt by household is now so weak that only the LL-SSS survives.
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Figure 15: Ergodic distribution F (B,N) as a function of z1. Lighter colors indicate higher
probability.

Figure 15 draws the ergodic distributions of equity and debt as z1 varies. For low levels

of z1, most of the ergodic distribution accumulates in the region of high debt and low equity.

As z1 increases, the ergodic distribution spreads toward the upper left corner; first slowly,

but gathering steam by the time we reach z1 = 0.85. At this level, there is a bifurcation

and the region around the LL-SSS becoming the predominant one and the higher leverage

region eventually disappearing. This change in the ergodic distribution is crucial for aggregate

fluctuations since, as we saw in Figure 6, the responses of the economy to a capital shock is very

different with low leverage than with leverage and with them, the moments of the economy.
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A different view of the same results appears in Figure 16, where we plot the marginal

distributions of debt, equity, and capital as we change z1. In this figure it is easier to appreciate

the very low debt for high z1. In this situation, not only there is very little precautionary saving

by the households, but their higher discount rate leads them to low overall saving.
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Figure 16: Ergodic distribution debt, equity, and capital as a function of z1.

Finally, Figure E.4 in Appendix E plots the leverage at the LL-SSS, the unstable SSS, the

HL-SSS, and the DSS as a function of z1. Levels of leverage are decreasing as we rise z1, reflecting

the lower level of precautionary saving.

7.2 The interaction of aggregate and idiosyncratic risk

Figures 11 and 14 documented how the behavior of the model changed as we moved either

aggregate or idiosyncratic risk. Figure 17 shows the consequences of moving both aggregate and

idiosyncratic risk simultaneously and, as such, it is a good summary of most of our quantitative

results. Each point in the figure represents a different combination of values of z1 and σ, with

the associated colors of intermediate values computed with a nearest-neighbors algorithm.

There are three regions in the figure. For high levels of idiosyncratic risk (i.e., low z1), and

due to the subsequent high precautionary behavior of households, there is only one HL-SSS.

The region becomes larger (i.e., for higher z1) as we increase σ.
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For intermediate values of z1 (between 0.7 and 0.9) and moderate levels of aggregate risk (σ

below 0.02; recall the maximum likelihood point estimate of 0.0142 using U.S. data), we have

an HL-SSS and an LL-SSS, exactly as discussed in previous pages. The region is decreasing on

σ: as aggregate risk increases, households have more precautionary behavior and the HL-SSS

disappears.

Finally, for high values of z1, the level of idiosyncratic risk is sufficiently low that only the

LL-SSS exists. One can think about the top row of points, when z1 = 0.97, as a version of

the model with very low household heterogeneity. While this is not strictly the representative

household version of the model, idiosyncratic risk is so small (low productivity is just 3% below

the ergodic mean, and only 5% of households are in such a situation), that we approximate well

the limit case of a representative household.12

Figure 17, thus, compellingly demonstrates the importance of household heterogeneity in

terms of the existence of different SSS(s). If we were going to look at a version of the model

with low or no household heterogeneity (the red region), we would only discover a unique SSS

and the model would have quite disparate properties (the next subsection will illustrate some

of them). Also, such a model would need different parameter values to match the U.S. data,

further biasing the usefulness of the model for counterfactual analysis and welfare evaluation.

12We do not compute the exact representative household version of the model because it would require a
different algorithm than the one we use for the heterogeneous version of the model. Thus, there would be some
numerical chatter between both solutions that might complicate the evaluation of differences. Therefore, we
prefer to set z1 = 0.97 (as high as our algorithm can go before breaking down).
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7.3 GIRFs: High vs. low household heterogeneity

Figure 18 reports the GIRFs of the baseline, high household heterogeneity version of the

model (continuous green line) to a two-standard-deviations negative capital shock when the

economy is at the HL-SSS. These GIRFs are, by construction, identical to the GIRFs (also in

continuous green lines) in Figure 6. Figure 18 also plots the GIRFs at its unique SSS when

z1 = 0.97, the value in the top row in Figure 17.

0 50 100
-1

-0.8

-0.6

-0.4

-0.2

0

0 50 100
-1.5

-1

-0.5

0

0.5

0 50 100
-6

-4

-2

0

0 50 100
-3

-2

-1

0

0 50 100
0

5

10

15

20

25

0 50 100
-6

-4

-2

0

0 50 100
-1

-0.8

-0.6

-0.4

-0.2

0

0 50 100
0

0.001

0.002

0.003

0 50 100
0

0.001

0.002

0.003

Figure 18: GIRFS, different levels of heterogeneity.

Both sets of GIRFs vary considerably. The fall in output (left panel in the top row) is

significantly more persistent when we have more heterogeneity. We will show below how this is

related to the dynamics of consumption and wealth accumulation by wealthy households. The

reduction of the total consumption of the households (central panel in the top row) is lower at

impact when heterogeneity is high. In comparison, the consumption of the expert drops much
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more (right panel in two rows). This is because the expert starts with higher leverage (right

panel of the central row the large decrease in equity) and it cannot issue much additional debt

for a long time (central panel of the central row).

Figures 14-18 also connect changes in microeconomic conditions with aggregate outcomes.

Imagine an economy that, due to technological change or structural transformation, starts having

a more turbulent labor market, with households rotating in and out of unemployment more

often (or suffering, in an equivalent interpretation of z, more changes to their wages while

employed). The increased precautionary saving lowers the risk-free interest rate and rises, on

average, leverage. Thus, the economy becomes, due to magnified idiosyncratic risks, more

volatile even when the volatility of the aggregate shocks remains constant.

This result suggests the existence of a link between more wealth inequality among capital

owners before the financial crisis of 2007 and more debt, lower risk-free interest rates, and

heightened fragility of the economy to negative capital shocks.13

7.4 Mechanism for heterogeneity: Differences across households

The key to understanding the differences in GIRFs from Figure 18 is to explore how the

reduction in households’ total consumption (see the central panel in the top row of Figure 18)

is distributed among households.

After a negative aggregate shock, wages decrease and the risk-free rate increases. Poorer

households, mainly dependent on labor earnings, loose much. In comparison, richer households,

which depend more on income from their assets, lose less or, if they are sufficiently wealthy, can

even gain (see, in the third row of Figure in the Appendix, how the value function improves

for households with high assets; in particular in the HL-SSS). Even more, these rich households

can take advantage of a higher risk-free rate to accumulate wealth fast. They reduce their

consumption not as much as a consequence of lower income (wealth effect), but as a consequence

of better rewards for savings (substitution effect). Moreover, the sluggish aggregate dynamics

of the model means that wealthy households expect a higher risk-free rate to last for a long

time. The integral of these consumption responses across households is different, because of

the marginal decreasing utility of consumption than the response of a household with average

wealth. Hence, the responses of total consumption and the evolution of total debt are also

different.

Figure 19 documents the heterogeneity of consumption effects. The figure plots the con-

sumption decision rules for high-productivity households (z = z2) along the asset axis (results

13Note that, in the data, the economy is buffeted by plenty of aggregate shocks. It is plausible to argue
that some of these shocks, such as monetary policy shocks, have become much less volatile during the last few
decades, thus lowering the overall volatility of the economy despite the increase in microeconomic turbulence.
Our statement in the main text is with respect to capital (or equivalent) shocks.
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Figure 19: Difference in consumption decision rules at different points in time after the shock.

for z = z1 are qualitatively similar) when a two-standard-deviations negative capital shock that

hits the economy at the HL-SSS (continuous green line). To facilitate interpretation, we plot the

difference in the consumption decision rules with respect to the case without the shock, instead

of the level. Also, we plot the difference in the consumption decision rules at different points in

time: at impact (left panel at the top row); after 5 years (right panel at the top row); after 10

years (left panel at the bottom row); and after 20 years (right panel at the bottom row).

At impact, all households reduce their consumption, but poorer households do so by a larger

amount, reflecting their lower income. For instance, richer households (level of assets of 4)

reduce their consumption around one-third less than poor households (level of assets of 0). The

difference in consumption reduction survives over time.

The asymmetry in the consumption response is much smaller when we have a two-standard-

deviations negative capital shock at the LL-SSS. Since in this case the risk-free interest rate

is less persistent, even relatively rich households reduce their consumption as to substitute

intertemporally and accumulate bonds. Consequently, the expert can issue additional debt and

the economy recovers fast.

The asymmetric consumption responses have a direct impact on how the wealth distribution

evolves. To illustrate this point, Figure 20 draws what we call the distributional impulse response

functions or DIRFs. A DIRF is the natural analog of a GIRF except that, instead of plotting

the evolution of an aggregate variable such as output or wages, we plot the evolution of the

wealth density gt(·). More concretely, Figure 20 plots the difference between the density before

and after the shock. Time, in years, is plotted in the y-axis, assets in the x-axis, and the DIFRs
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in the z-axis. A positive value of the DIRF at a given asset level and point of time should be

read as the density is higher at that asset level and point of time than it would have been in

the absence of a shock. A negative value has the opposite interpretation.
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Figure 20: DIRFs at the HL-SSS.

In the left panel of Figure 20, we plot the DIRF to a two-standard-deviations negative

capital shock when the economy is at the HL-SSS. In the right panel, we plot the DIRF to a

two-standard-deviations negative capital shock when the economy is at the LL-SSS.

In the left panel, we can see how households with low assets must draw from their wealth

to smooth consumption (even if consumption still drops) to compensate for lower income. This

mechanism makes the DIRF negative in that region. In comparison, households with higher

assets are reducing their consumption to respond to a temporarily higher risk-free rate and

accumulate wealth. Thus, the DIRF is positive in the region of high assets. These effects are

more pronounced in the right panel. In the LL-SSS, poor households have too little debt to

smooth consumption, and wealthy households accumulate much additional debt as the risk-free

interest rate changes.

7.5 Taking stock

The previous four subsections summarize why household heterogeneity matters in this econ-

omy. The “quasi-aggregation result” of Krusell and Smith (1998) breaks down in our environ-

ment because, as we change idiosyncratic labor risk, precautionary savings and the leverage

levels vary and, with them, the responses of aggregate variables, even creating or destroying

SSS(s). The mechanism is through the heterogeneity in the consumption response of poor vs.
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wealthy households and the disparate impact of the wealth and substitution effect when wages

fall, and the risk-free interest rate increases. Depending on how many of those wealthy vs. poor

households we have (for instance, because of different degrees of idiosyncratic labor risk), and

thus depending on the mean levels of bond holdings, the economy will behave differently.
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Figure 21: Consumption and saving functions.

However, a final point deserves discussion. As in Krusell and Smith (1998), our solution

only considers the first set of moments of the wealth distribution to approximate the PLM. This

approximation holds well in our model due to the linearity of the consumption decision rule

of the households (see Figure 21). Only agents close to the borrowing limit face a nonlinear

consumption decision rule but, being close to zero assets, they contribute relatively little to the

aggregate dynamics of capital (and, as shown by Figure 13, there are not that many of them in

any case). However, and this point is vital to understand our results, the quasi-linearity of the

consumption decision rule is with respect to the household state variables, not with respect to

the aggregate state variables. This is why we can still have highly nonlinear behavior for the

economy as a whole while we can approximate well the PLM as a nonlinear function of only

first moments.
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8 Conclusion

In this paper, we have postulated, computed, and estimated a continuous-time model of

financial frictions with a non-trivial distribution of wealth among households. Such exercise

has allowed us to uncover critical non-linear features of the model, such as the presence of

multiple SSS(s) and the strong state-dependence of the GIRFs and to document the importance

of household heterogeneity in the presence of financial frictions.

While we stand by the importance per se of our quantitative results, this paper can also be

understood as a “proof of concept” of how to efficiently compute and estimate a continuous-

time model with heterogeneous agents. For the computation, we have exploited tools borrowed

from machine learning. For the estimation, we have built on contributions from inference with

diffusions. The importance of heterogeneity for many questions in macroeconomics suggests that

there are multiple potential applications for the methodological tools that we presented and we

hope to show, in the close future, how to extend our current results to richer environments.
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Appendix

This appendix compiles further details about the equilibrium conditions, the numerical as-

pects of our solution method and includes additional results not reported in the main text.

A Equilibrium conditions

We can stack all the equilibrium conditions of the model (except the optimality condition

for households) in two blocks. The first block includes all the variables that depend directly on

Nt, Bt, and dZt:

wt = (1− α)Kα
t (30)

rct = αKα−1
t (31)

rt = αKα−1
t − δ − σ2Kt

Nt

(32)

drkt = (rct − δ) dt+ σdZt (33)

dNt =

(
αKα−1

t − δ − ρ̂− σ2

(
1− Kt

Nt

)
Kt

Nt

)
Ntdt+ σKtdZt. (34)

The second block includes the equations determining the aggregate consumption of the house-

holds, dBt, dKt, and ∂git
∂t

:

Ct ≡
2∑
i=1

∫
c (at, zt, Kt, Gt) git (a) da (35)

dBt =

(
(1− α)Kα

t +

(
αKα−1

t − δ − σ2Kt

Nt

)
Bt − Ct

)
dt (36)

dKt = dNt + dBt (37)

∂git
∂t

= − ∂

∂a
(s (at, zt, Kt, Gt) git(a))− λigit(a) + λjgjt(a), i 6= j = 1, 2. (38)

The second block shows i) how the density {git (·)}
t≥0

for i ∈ {1, 2} matters to determine Ct, ii)

that Ct pins down dBt, and iii) that once we have dBt, we can calculate dKt. Hence, computing

the equilibrium of this economy is equivalent to finding Ct. Once Ct is known, all other aggregate

variables follow directly.
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B Numerical algorithm

We describe the numerical algorithm used to jointly solve for the equilibrium value function,

v (a, z, B,N), the density g(a, z, B,N) and the aggregate debt B and equity N . The algorithm

proceeds in 3 steps. We describe each step in turn.

Step 1: Solution to the Hamilton-Jacobi-Bellman equation

The HJB equation is solved using an upwind finite difference scheme similar to Candler

(1999) and Achdou et al. (2017). It approximates the value function vi(a,B,N), i = 1, 2 on

a finite grid with steps ∆a, ∆B, ∆N : a ∈ {a1, ..., aJ} , B ∈ {B1, ..., BL} , N ∈ {N1, ..., NM},
where:

aj = aj−1 + ∆a = a1 + (j − 1) ∆a, 2 ≤ j ≤ J,

Bl = Bl−1 + ∆B = B1 + (l − 1) ∆L, 2 ≤ l ≤ L,

Nm = Nm−1 + ∆N = N1 + (m− 1) ∆N, 2 ≤ m ≤M.

The lower bound in the wealth space is a1 = 0, such that ∆a = aJ/ (J − 1). We use the

notation vi,j,l,m ≡ vi(aj, Bl, Nm), and similarly for the policy function ci,j,l,m. The derivatives

are evaluated according to

∂iv(aj, Bl, Nm)

∂a
≈ ∂fvi,j,l,m ≡

vi,j+1,l,m − vi,j,l,m
∆a

,

∂iv(aj, Bl, Nm)

∂a
≈ ∂bvi,j,l,m ≡

vi,j,l,m − vi,j−1,l,m

∆a
.

∂iv(aj, Bl, Nm)

∂B
≈ ∂Bvi,j,l,m ≡

vi,j,l+1,m − vi,j,l,m
∆B

,

∂iv(aj, Bl, Nm)

∂Z
≈ ∂Nvi,j,l,m ≡

vi,j,l,m+1 − vi,j,l,m
∆N

,

∂2
i v(aj, Bl, Nm)

∂N2
≈ ∂2

NNvi,j,l,m ≡
vi,j,l,m+1 + vi,j,l,m−1 − 2vi,j,l,m

(∆N)2 .

At each point of the grid, the first derivative with respect to a can be approximated with a

forward (f) or a backward (b) approximation. In an upwind scheme, the choice of forward or

backward derivative depends on the sign of the drift function for the state variable, given by:

si,j,l,m ≡ wl,mzi + rl,maj − ci,j,l,m, (39)
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where:

ci,j,l,m =

[
∂vi,j,l,m
∂a

]−1/γ

, (40)

wl,m = (1− α)Z (Bl +Nm)α , (41)

rl,m = αZ (Bl +Nm)α−1 − δ − σ2 (Bl +Nm)

Nm

. (42)

Let superscript n denote the iteration counter. The HJB equation is approximated by the

following upwind scheme:

vn+1
i,j,l,m − vni,j,l,m

∆
+ ρvn+1

i,j,l,m =
(cni,j,l,m)1−γ − 1

1− γ
+ ∂fv

n+1
i,j,l,ms

n
i,j,l,m,f1sni,j,n,m,f>0 + ∂Bv

n+1
i,j,l,ms

n
i,j,l,m,b1sni,j,l,m,b<0

+λi
(
vn+1
−i,j,l,m − v

n+1
i,j,l,m

)
+ hl,m∂Bvi,j,l,m + µNl,m∂Nvi,j,l,m

+

[
σNl,m

]2
2

∂2
NNvi,j,l,m

for i = 1, 2, j = 1, ..., J , l = 1, .., L, m = 1, ...,M , where where 1 (·) is the indicator function and

hl,m ≡ h (Bl, Nm) ,

µNl,m ≡ µN (Bl, Nm) = αZ (Bl +Nm)α − δ (Bl +Nm)− rl,mBl − ρ̂Nm,

σNl,m ≡ σN (Bl, Nm) = σ (Bl +Nm) ,

sni,j,l,m,f = wl,mzi + rl,maj −

[
1

∂nf vi,j,l,m

]1/γ

,

sni,j,l,m,b = wl,mzi + rl,maj −
[

1

∂nb vi,j,l,m

]1/γ

.

Thus, when the drift is positive (sni,j,l,m,f > 0), we employ a forward approximation of the

derivative, ∂nf vi,j,l,m; when it is negative (sni,j,l,m,b < 0), we employ a backward approximation,

∂nb vi,j,l,m. The term
vn+1
i,j,l,m−v

n
i,j,l,m

∆
→ 0 as vn+1

i,j,l,m → vni,j,l,m.

Moving all terms involving vn+1 to the left hand side and the rest to the right hand side, we

obtain:

vn+1
i,j,l,m − vni,j,l,m

∆
+ ρvn+1

i,j,l,m =
(cni,j,n,m)1−γ − 1

1− γ
+ vn+1

i,j−1,l,mα
n
i,j,l,m + vn+1

i,j,l,mβ
n
i,j,l,m + vn+1

i,j+1,l,mξ
n
i,j,l,m

+λiv
n+1
−i,j,l,m + vn+1

i,j,l+1,m

hl,m
∆B

+ vn+1
i,j,l,m+1κl,m + vn+1

i,j,l,m−1%l,m (43)
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where:

αni,j ≡ −
sni,j,B1sni,j,B<0

∆a
,

βni,j,l,m ≡ −
sni,j,l,m,f1sni,j,n,mF>0

∆a
+
sni,j,l,m,b1sni,j,l,m,b<0

∆a
− λi −

hl,m
∆B
−
µNl,m
∆N

−
(
σNl,m

)2

(∆N)2 ,

ξni,j ≡
sni,j,F1sni,j,F>0

∆a
,

κl,m ≡
µNl,m
∆N

+

(
σNl,m

)2

2 (∆N)2 =
[αZ (Bl +Nm)α − δ (Bl +Nm)− rl,mBl − ρ̂Nm]

∆N
+
σ2 (Bl +Nm)2

2 (∆N)2 ,

%l,m ≡
(
σNl,m

)2

2 (∆N)2 =
σ2 (Bl +Nm)2

2 (∆N)2 .

for i = 1, 2, j = 1, ..., J , l = 1, .., L, m = 1, ...,M . We consider boundary state constraints in a

(sni,1,B = sni,J,F = 0). The boundary conditions in B and N are reflections.

In equation (43), the optimal consumption is set to:

cni,j,n,m =
(
∂vni,j,l,m

)−1/γ
. (44)

where:

∂vni,j,l,m = ∂fv
n
i,j,l,m1sni,j,n,mF>0 + ∂bv

n
i,j,l,m1sni,j,l,m,b<0 + ∂v̄ni,j,l,m1sni,j,n,mF≤01sni,j,l,m,b≥0.

In the above expression, ∂v̄ni,j,l,m = (c̄ni,j,n,m)−γ where c̄ni,j,n,m is the consumption level such that

the drift is zero:

c̄ni,j = wl,mzi + rl,maj.
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We define:

An
l.m =



βn1,1,l,m ξn1,1,l,m 0 0 · · · 0 λ1 0 · · · 0

αn1,2,l,m βn1,2,l,m ξn1,2,l,m 0 · · · 0 0 λ1
. . . 0

0 αn1,3,l,m βn1,3,l,m ξn1,3,l,m · · · 0 0 0
. . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . .
...

0 0 · · · αn1,J−1,l,m βn1,J−1,l,m ξn1,J−1,l,m 0 · · · λ1 0

0 0 · · · 0 αn1,J,l,m βn1,J,l,m 0 0 · · · λ1

λ2 0 · · · 0 0 0 βn2,1,l,m ξn2,1,l,m · · · 0
...

. . . . . . . . . . . . . . .
...

. . . . . .
...

0 0 · · · 0 0 λ2 0 · · · αn2,J,l,m βn2,J,l,m



,

vn+1
l,m =



vn+1
1,1,l,m

vn+1
1,2,l,m

...

vn+1
1,J,l,m

vn+1
2,1,l,m

...

vn+1
2,J,l,m


and

An
m =



An
1,m

h1,m

∆K
I2J 02J · · · 02J 02J

02J An
2,m

h2,m

∆K
I2J · · · 02J 02J

02J 02J An
3,m · · · 02J 02J

...
. . . . . . . . . . . .

...

02J An
L−1,m

hL−1,m

∆K
I2J

02J 02J · · · 02J 02J

(
An
L,m +

hL,m
∆K

I2J

)


, vn+1

m =


vn+1

1,m

vn+1
2,m
...

vn+1
L,m

 ,

where In and 0n are the identity matrix and the zero matrix of dimension n × n, respectively.
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We can also define

An =



(An
1 + P1) X1 02J×L · · · 02J×L 02J×L

P2 An
2 X2 · · · 02J×L 02J×L

02J×L P3 An
3 · · · 02J×L 02J×L

...
. . . . . . . . . . . .

...

PM−1 An
M−1 XM−1

02J×L 02J×L · · · 02J×L PM (An
M + XM)


, vn+1 =


vn+1

1

vn+1
2
...

vn+1
M

 ,

Xm =



κ1,mI2J 02J · · · 02J 02J

02J κ2,mI2J · · · 02J 02J

...
. . . . . . . . .

...

02J κL−1,mI2J 02J

02J 02J 02J 02J κL,mI2J


,

Pm =



%1,mI2J 02J · · · 02J 02J

02J %2,mI2J · · · 02J 02J

...
. . . . . . . . .

...

02J %L−1,mI2J 02J

02J 02J 02J 02J %L,mI2J


,un =



(cn1,1,1,1)1−γ−1

1−γ
(cn1,2,1,1)1−γ−1

1−γ
...
...

(cn2,J,L,M )1−γ−1

1−γ


.

Then, equation (43) is a system of 2 × J × L ×M linear equations which can be written in

matrix notation as:
1

∆

(
vn+1 − vn

)
+ ρvn+1 = un + Anvn+1.

The system in turn can be written as

Bnvn+1 = dn (45)

where ,Bn =
(

1
∆

+ ρ
)
I−An and dn = un + 1

∆
vn.

The algorithm to solve the HJB equation runs as follows. Begin with an initial guess v0
i,j,l,m.

Set n = 0. Then:

1. Compute cni,j,l,m, i = 1, 2 using (44).

2. Find vn+1
i,j,l,m solving the linear system of equations (45).

3. If vn+1
i,j,l,m is close enough to vni,j,l,m, stop. If not, set n := n+ 1 and proceed to step 1.

Most programming languages, such as Julia or Matlab, include efficient routines to handle

sparse matrices such as An.
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Step 2: Solution to the KF equation

The income-wealth distribution conditional on the current realization of aggregate debt

B = Bl and equity N = Nm can be characterized by the KF equation:

∂g

∂t
= − ∂

∂a
[si (a,B,N) gi,t(a)]− λigi,t(a) + λ−ig−i,t(a), i = 1, 2. (46)

1 =

∫ ∞
0

g(a)da. (47)

If we define a time step ∆t, we also solve this equation using an finite difference scheme. We

use the notation gi,j ≡ gi(aj). The system can be now expressed as:

gi,j,t+1 − gi,j
∆t

= −
gi,j,tsi,j,l,m,b1si,j,l,m,b>0 − gi,j−1,tsi,j−1,l,m,f1si,j−1,l,m,f>0

∆a

−
gi,j+1,tsi,j+1,l,m,b1si,j+1,l,m,b<0 − gi,j,tsi,j,l,m,b1si,j,l,m,b<0

∆a
− λigi,j,t + λ−ig−i,j,t,

In this case, let us define

gt =



g1,1,t

g1,2,t

...

g1,J,t

g2,1,t

...

g2,J,t


,

as the density conditional on the current state of Bl and Nm. We assume that g0 is the density

in the DSS, the update in the next time period is given by the KF equation:

gt+1 =
(
I−∆tAT

l,m

)−1
gt,

where AT
l,m is the transpose matrix of Al,m = limn→∞An

l,m, defined above.

Step 3: Update of the PLM using a neural network

The vector θ is recursively updated according to θm+1 = θm − εm∇E
(
θ; sj, ĥj

)
, where:

∇E
(
θ; sj, ĥj

)
≡

∂E
(
θ; sj, ĥj

)
∂θ2

0

,
∂E
(
θ; sj, ĥj

)
∂θ2

1

, ...,
∂E
(
θ; sj, ĥj

)
∂θ1

2,Q

>
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is the gradient of the error function with respect to θ evaluated at
(
sj, ĥj

)
.

The step size εm > 0 is selected in each iteration according to a line-search algorithm in

order to minimize the error function in the direction of the gradient. The algorithm is run until

‖θm+1 − θm‖ < ε, for a small ε.

The error gradient can be efficiently evaluated using a back-propagation algorithm, originally

developed by Rumelhart et al. (1986), which builds on the chain rule of differential calculus. In

our case, the corresponding formulae are:

∂E
(
θ; sj, ĥj

)
∂θ2

0

= h (sj; θ)− ĥj

∂E
(
θ; sj, ĥj

)
∂θ2

q

=
(
h (sj; θ)− ĥj

)
φ

(
θ1

0,q +
2∑
i=1

θ1
i,qs

i
j

)
, for q = 1, ..., Q

∂E
(
θ; sj, ĥj

)
∂θ1

0,q

= θ2
q

(
h (sj; θ)− ĥj

)
φ′

(
θ1

0,q +
2∑
i=1

θ1
i,qs

i
j

)
, for q = 1, ..., Q

∂E
(
θ; sj, ĥj

)
∂θ1

i,q

= sijθ
2
q

(
h (sj; θ)− ĥj

)
φ′

(
θ1

0,q +
2∑
i=1

θ1
i,qs

i
j

)
, for i = 1, 2 and q = 1, ..., Q,

where φ′(x) = 1
(1+e−x)

.

We tune the training scheme of our neural network in several ways to meet the specific

demands of the problem at hand.

First, the training scheme needs to yield a consistently good approximation: a “not-good-

enough” approximation in any of the dozens of iterations of the algorithm can make it break

and not deliver a result. This is the reason we employ a line-search instead of using a constant

or adaptive learning rate: it prevents bad steps in the minimization algorithm.

Second, the training scheme cannot introduce big amounts of noise in the progressive ap-

proximation to the solution of the model. Otherwise, the noise can mask or prevent convergence

(strict convergence criteria can only be met by chance, if at all). This is the reason we use batch

gradient descent (i.e., all training points are used in every gradient calculation and line-search

step) instead of the more popular stochastic or mini-batch gradient descents: the random choice

of training points in each step, common in the machine learning literature, would make progress

stochastic and introduces noise.

Reducing stochastic elements in the solution method is also the reason we train the model

not with the noisy simulated points, but with a grid approximation to that that clears out noise:

we define a 101x101 grid over the (B,N) support, and assign each simulated point to one of the

knots in that grid. With all the points assigned to each knot, we run a linear regression, and

use that to estimate the height of the PLM at that knot. This grid could later be used to solve
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the model using interpolation (e.g. with splines, or with natural neighbor interpolation) and

linear extrapolation (and we do that as a robustness check, finding similar results to those of

the solution with the neural network), but on a 2D surface such as our PLM that extrapolation

tends to generate ridges (because of the amplification of sample noise in far extrapolations),

which could prevent convergence at the HJB step. Instead, we use those knots to train the

neural network, which provides a good-enough fit in the visited area and a much smoother

extrapolation to the non-visited area of the (B,N) support.

Finally, the need to avoid stochastic elements that introduce noise in the algorithm, plus a

desire for fast running times, made us change the usual Monte Carlo multi-start initialization

of the neural network parameters for all iterations except the first one. In the first iteration of

the algorithm, we do ten random initializations of the parameters of the neural network and ten

subsequent training sessions, later choosing the best-performing trained network across those

ten training sessions. From the second iteration onwards, the neural network is initialized using

weights that were found to be optimal in the previous iteration, and a single training session is

carried out. This avoids re-introducing a stochastic element on each step of the algorithm that

would greatly reduce its ability to meet a strict convergence criterion (or, more accurately, it

would require much longer training sessions to clear out that noise and guarantee convergence).

Using a small relaxation parameter in the PLM update step (it starts at 0.30 and exponentially

decays towards 0.05, reaching 0.20 after 5 iterations and 0.10 after 16) makes the convergence

of the full algorithm slower but smoother, with slow updates to the optimal neural network that

help this non-random initialization work well.

Complete algorithm

We can now summarize the complete algorithm. We begin a guess of the PLM h0 (B,N).

Set s := 1 :

Step 1: Household problem. Given hs−1 (B,N) , solve the HJB equation to obtain an esti-

mate of the value function v and of the matrix A.

Step 2: Distribution. Given A, simulate T periods of the economy using the KF equation

and obtain the aggregated ebt {Bt}Tt=0 and equity {Nt}Tt=0 . The law of motion of equity is

Nt = Nt−1 + [αZ (Bt +Nt)
α − δ (Bt +Nt)− rtBt − ρ̂Nt] ∆t+ σ (Bt +Nt)

√
∆tεt,

where εt
iid∼ N(0, 1).

Step 3: PLM. Update the PLM using a neural netwok: hs. If ‖hs − hs−1‖ < ε, where ε is a

small positive constant, then stop. if not return to Step 1.
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C Evaluating the likelihood function with micro obser-

vations

A promising avenue to improve the estimation in the main text is to add micro observations,

which bring much additional information and help integrating different levels of aggregation to

assess the empirical validity of the model. More concretely, let Xt ≡ [gt(a, z);Nt]
′, be a vector

of observations on the asset holdings of agents in this economy (households, gt(a, z), and the

expert, Nt). Imagine, as before, that we have D + 1 observations of Xt at fixed time intervals

[0,∆, 2∆, .., D∆, ]:

XD
0 = {X0, X∆, X2∆, ..., XD} .

At this moment, we need to assume –as it is typically done in models with heterogeneous

agents and aggregates shocks– that the conditional no aggregate uncertainty (CNAU) condition

holds. See, for instance, Miao (2006), following Bergin and Bernhardt (1992). This condition

implies that if households are distributed on the interval I = [0, 1] according to the Lebesgue

measure Φ, then

Gt(A× Z) = Φ
(
i ∈ I :

(
ait, z

i
t

)
∈ A× Z

)
,

for any subsets A ⊂ [0,∞), Z ⊂ {z1, z2}. That is, the probability under the conditional

distribution is the same as the probability according to the Lebesgue measure across I.

The likekihood that an individual agent i ∈ I at time t = d∆ is at state (aid∆, z
i
d∆, Bd∆, Nd∆)

is fdd∆(aid∆, z
i
d∆, Bd∆, Nd∆). The log-likelihood is then log

[
fdd∆(aid∆, z

i
d∆, Bd∆, Nd∆)

]
. Notice that

this log-likelihood is a function of i.

The conditional aggregate log-likelihood across all agents is:

log pX
(
Xd∆|X(d−1)∆; Ψ

)
=

∫
log
[
fdd∆(aid∆, z

i
d∆, Bd∆, Nd∆)

]
Φ(di),

and, taking into account the CNAU condition, we get:∫
log
[
fdd∆(aid∆, z

i
d∆, Bd∆, Nd∆)

]
Φ(di) =

∫
log
[
fdd∆(a, z, Bd∆, Nd∆)

]
Gd∆(da, dz)

=
2∑
i=1

∫ ∞
0

log
[
fdd∆(a, zi, Bd∆, Nd∆)

]
gd∆(a, z)da,

where, in the second line, we have applied the definition of the Radon-Nikodym derivative to

get the differential in a.
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The density fdt (a, z, B,N) follows the KF equation:

∂fdt
∂t

= − ∂

∂a

(
st (a, zi) f

d
t (a, zi, B,N)

)
− λifdt (a, zi, B,N) + λjf

d
t (a, zj, B,N)

− ∂

∂B

[
h(B,N)fdt (a, zi, B,N))

]
− ∂

∂N

[
µNt (B,N)fdt (a, zi, B,N)

]
+

1

2

∂2

∂N2

[(
σNt (B,N)

)2
fdt (B,N)

]
, (i 6= j = 1, 2) (48)

where

fd(d−1)∆ = g(d−1)∆(a, z)δ
(
B −B(d−1)∆

)
δ
(
N −N(d−1)∆

)
,

which, following the same reasoning than the one in the previous subsection, is easy to evaluate.

More concretely, we use the notation fdi,j,l,m ≡ fdi (aj, Bl, Nm) and define a time step ∆t = ∆
S
,

where 1 << S ∈ N is a constant. If we solve the KF equation (48) using a finite difference

scheme, we have, for t = (d− 1)∆ and s = 1, .., S − 1, where

fdt+s∆t =
(
I−∆tAT

)−1
fdt+(s−1)∆t,

fdt = gtδN(d−1)∆
δB(d−1)∆

,

where δ is the Kronecker delta and fdt is defined as

fdt =


f1,1,1,t

g1,1,1,2,t

...

g2,J,L,M,t

 .

The conditional density pX
(
Xd∆|X(d−1)∆; γ

)
can be approximated by:

pX
(
Xd∆|X(d−1)∆; γ

)
=

2∑
i=1

J∑
j=1

L∑
l=1

fdi,j,ld,mg
d
i,j∆a∆B,

where fd
i,j,ld,m

is the density evaluated at the observed equity point Nd∆, f
d
i (aj, Bl, N = Nd∆)

and gdi,j are the elements of the observed distribution gd∆.
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D Chebyshev polynomials

Here, we show that the approximation to the PLM computed with Chebyshev polynomials

is not satisfactory (even if we forget, for a second, the considerations about the curse of dimen-

sionality and coding complexity that we highlighted in the main text). In Figure D.1, we plot

the PLM obtained with an algorithm similar to ours but where we substitute the neural network

with a linear combination of Chebyshev polynomials (and we also select the coefficients of that

linear combination to fir the simulated data as well as possible).
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Figure D.1: PLM with Chebyshev polynomials.

While, at first inspection, the PLM seems sensible, a closer examination of the scale of the

y-axis in Figure D.1 reveals large and implausible movements in h(B,N). These variations can

be seen better in Figure D.2, where we zoom h(B,N) in a smaller range of debt and equity.

The PLM is well approximated in the ergodic distribution (shaded area in the center) but, as

soon as we move slightly outside that area, the oscillating features of polynomial approximations

reassert themselves. Using this PLM means, in practice, unstable simulations and unreliable

results.

Similar problems appear in solutions construed with splines or other popular series approx-

imations: extrapolation requires a well-behaved basis and neural networks do an excellent job
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Figure D.2: PLM with Chebyshev polynomials (zoom).

at such task.

E The values of the SSS(s)

In this section, we explore how the values of the SSS(s) change as we move some important

parameter values of the model. The exercises clarify some of the arguments in the main text

regarding the supply and demand of debt by the expert and the households.

Figure E.3 plots the values of the LL-SSS, the unstable SSS, and the HL-SSS (plus, for

reference, the DSS) as a function of σ. We can see how the leverage in the HL-SSS is a negative

function of σ, a roughly constant function in the unstable SSS, and an increasing function in

the LL-SSS (until the additional SSS(s) disappear). The mechanism for these three slopes is

the same than the one discussed above. In the HL-SSS, as σ grows, the expert wants to unload

some of the capital risk by reducing its leverage. In comparison, in the LL-SSS, the households

demand more debt as σ increases. This figure complements the results of Figure 11 in the main

text.

Figure E.4 repeats the same exercise but now plotting the levels of leverage for the LL-SSS,

the unstable SSS, the HL-SSS, and the DSS as a function of z1. All levels are falling as z1
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Figure E.3: SSS(S) as a function of σ.

increases, until we get to very little debt, consequence, for high z1 of small precautionary saving

and the higher discount factor of the households. This figure complements the results of Figure

14 in the main text.
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Figure E.4: SSS(s) as a function of z1.

Next, Figure E.5 plots the values of the SSS(s) as we simultaneously move aggregate and
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idiosyncratic risk. This figure complements the results of Figure 17 in the main text.
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Figure E.5: SSS(s) as a function of σ and z1.

Finally, Figure E.6 shows the value of the SSS(s) as we vary ρ̂, the discount factor of the

expert. As the expert becomes more impatient, the level of leverage in the HL-SSS and LL-SSS

increase slightly, while the level of leverage at the DSS rises much more strongly. The reason

is that as ρ̂ grows, the households are relatively more patient and, therefore, more willing to

accumulate bonds and increase leverage.
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Figure E.6: SSS(s) as a function of ρ̂.

F Value functions

The second row of Figure F.7 plots the value functions of the households as a function of

assets for low- and high-labor productivity at the HL-SSS and the LS-HHH. For easy reference,

in the first row of Figure F.7, we reproduce the distributions of households.

The comparison of value functions shows that, for all level of assets, households prefer to be

at the LL-SSS than at the HL-SSS. This fact is not a surprise since at the LL-SSS the economy

is less volatile and households have concave preferences only over consumption (not allowing,

therefore, substitution with leisure when productivity is low). However, precautionary behavior

also means that, at the HL-SSS, we will have more rich households.

Lastly, the bottom row of Figure F.7 shows how the value function changes after a two-

standard-deviations negative capital shock: poorer households are worse off (they have lower

wages), but wealthier households are better off, as their bonds pay a higher interest rate. The

effect is acuter at the HL-SSS, as the persistence of wages and the risk-free interest rate is

higher.

71



0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

1

2

3

4

5

6

7

0 2 4 6 8 10
0

1

2

3

4

5

6

7

0 2 4 6 8 10
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 2 4 6 8 10
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Figure F.7: Wealth distribution and value functions in the DSS and SSS.
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