Automating Labor: Evidence from Firm-level Patent Data

Antoine Dechezleprêtre OECD David Hémous University of Zürich & CEPR Morten Olsen University of Copenhagen

Carlo Zanella University of Zürich

NBER SI, July 2019

Do Higher Wages Lead to More Innovation in Automation?

- Large body of work on the negative impact of automation technologies on employment and wages for low/middle-skill workers.
- But very little is known about the impact of wages on automation innovations.

This paper

- Goal assessing by how much do (low-skill) wages affect automation innovations?
- Two challenges:
- Identifying *automation innovation:* Use patent data and classify patents as automation / non-automation using text-analysis.
 - Provide a new measure of automation in machinery, broader than what is typically used.
 - Our measure strongly predicts declines in routine occupations in manufacturing
- Establishing *causal effect* of wages on innovation: Exploit firm-level variations in exposure to markets.
 - Use the method of Aghion, Dechezleprêtre, Hémous, Martin and Van Reenen (ADHMV, 2016).
 - Large positive effect of low-skill wages on automation.
 - Event study: Hartz reforms.

Literature Review (1)

- Very large empirical literature on the impact of automation technologies on wages/employment:
 - Autor, Levy and Murnane (2003), Autor and Dorn (2013), Acemoglu and Restrepo (2017), many more....
- Some on how wages affect the adoption of automation technology:
 - Acemoglu and Finkelstein (2008), Lewis (2011), Hornbeck and Naidu (2014)
 - Lordan and Neumark (2017): minimum wage hikes displace workers in automatable jobs.
 - Acemoglu and Restrepo (2018): demographics and robot adoption
- Clear theoretical argument that higher wages should lead to more labor-saving innovation:
 - Habakkuk (1962), Zeira (1998), Acemoglu (2010), Hémous and Olsen (2016), Acemoglu and Restrepo (2018).

Literature Review (2)

- Essentially nothing on wages ⇒ innovation of automation technology:
 - Bena and Simintzi (2017): firms with a better access to the Chinese labor market decrease their share of process innovations after the 1999 U.S.-China trade agreement.
- Plenty of evidence on the endogeneity of the direction of technical change from other contexts:
 - Acemoglu and Linn (2004), Hanlon (2015), Newell, Jaffe and Stavins (1999), Popp (2002), Hassler, Krussell and Olovsson (2016), Calel and Dechezleprêtre (2016).
 - ADHMV: use firm-level variations in gas prices to show that higher gas prices lead firms in the auto industry to engage in more clean and less dirty innovations. Adapt the methodology to wages and automation innovations.
 - Method used by Noailly and Smeets (2015), Coelli, Moxnes and Ulltveit-Moe (2017), Aghion, Bénabou, Martin and Roulet (2019).

Outline

Identifying automation patents

Validation of automation measure

A (verbal) toy model, Methodology and Data

Results

Event study: the Hartz reform

Conclusion and Ongoing work

Appendix

Global patent data and text for a subset of patents

- European Patent Office (EPO) provides:
- The World Patent Statistical Database (PATSTAT) contains *bibliographical* information for the universe of patents, including:
 - Patent family (same innovation different geographical offices)
 - Technological codes (IPC/CPC);
 - Year of first filing;
 - Location of inventors;
 - Firm link from Orbis (for regressions)
 - $\circ \ \rightarrow$ Will be used for regression analysis.
- EP full-text database contains the *full text* of patent applications at the EPO.
 - $\circ \ \rightarrow$ Used to classify patents.

Procedure

- 1) Choose keywords concerning automation from the literature;
- 2) Select IPC/CPC codes in "machinery";
- 3) Compute the share of patents with at least one keyword for each IPC/CPC code;
- 4) Identify automation patent codes as those with a share above a cut-off measure;
- 5) Consider all patents with an automation code as automation patents.

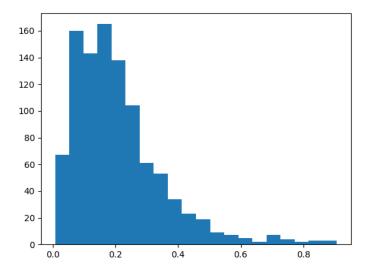
Advantages of classifying IPC/CPC codes

- Advantages of classifying IPC/CPC codes (and not directly patents)
 - IPC/CPC codes are informative and used for other classifications (e.g. green technologies)
 - If particular wording is only a signal of underlying characteristic (of IPC code), i.e. an automation patent can be written w/o "automation" words.
 - Allows for the classification of all patents (also those w/o text, non-EPO patents).

Choosing automation keywords based on SMT

- Identify automation technologies from the Survey of Manufacturing Technology used by Doms, Dunne, Troske (1997):
 - **Computer Numerical Control**: (CNC or numeric* controlled) or (NC with key terms).
 - **CAD/CAM:** (computer aided (or similar) with keywords) or (CAD/CAM with key terms).
 - Flexible manufacturing. Flexible manufacturing
 - **Programmable logic controller**: *Programmable logic controller* or *PLC* (w/o power line),
 - Robot: Robot* (w/o surgical or medical)
- Plus a few:
 - Automation: (Automation or automatization) or (automat* at least 5 times or twice with key terms)
 - Labor: Laborious, labor, labour.
 - **3D printing**: (3D print or additive manufacturing)
- key terms: machine, apparatus, equipment, manufacturing, ...

IPC/CPC classification


- IPC/CPC classification is hierarchical:
 - classes 3 digit codes (B25: "hand tools; portable power-driven tools; handles for hand implements; workshop equipment and manipulators"),
 - subclasses have 4 digit codes (B25J: "manipulators; chambers provided with manipulation devices")
 - Main groups have 5 to 7 digit codes (for instance B25J 9: "programme-controlled manipulators")—referred to as 6 digit codes.

Computing an automation score

• Compute the frequency of patents with one keywords for:

- 6-digit IPC/CPC codes;
- pairs of 4-digit IPC/CPC codes;
- pairs of 4-digit IPC/CPC codes with G05 (controlling; regulating) or G06 (computing; calculating; counting).
- From 1980 for patent applications in English (1,538,370 patent applications).
- Restrict attention to IPC/CPC codes in machinery: technological fields of *machine tools*, *handling*, *textile and paper machines*, *other special machines* (with some adjustments). tech. fields

Histogram for IPC/CPC 6 digit codes

stats ipc

Defining automation patents

- Choose as thresholds the 90th (0.386) and 95th (0.477) percentiles of the 6 digit code distribution within machinery.
- IPC/CPC codes with a value above the threshold are "automation codes".
- All patents having one automation codes are automation patents (auto90 or auto95), also in PATSTAT.
- For main regression analysis, focus on biadic patents to exclude low quality patents.
 - biadic = patent families with patent applications in at least 2 countries (De Rassenfosse, Dernis, Guellec, Picci and van Pottelsberghe de la Potterie, 2013, and Dechezleprêtre, Ménière and Mohnen, 2017).

Automation patent with keyword in B65G 1

(19)	Furphickes Patenam Inseed Office office europeen des breets	(11) EP 2 604 550 B1	Description <u>OBJECT OF THE INVENTION</u> [0001] The present invention, as expressed in the
(12)	EUROPEAN PATE		wording of this specification, relates to an automatic plant for storing and dispensing goods, essentially applicable
. ,	Date of publication and mention of the grant of the patent: 01.10.2014 Bulletin 2014/40 Application number: 10855839.6	(51) Int CI: B65G 1137 (2006.01) B65G 907 (2006.01) B65G 1/08 (2006.01) A47B 96/02 (2006.01)	to the pharmaceutical sector, although it is also applica- ble to any other sector needing to store and dispense different small-sized goods. [0002] The products are stored in principle in modular shelves, which may be inclined or not, shelves that are
	Date of filing: 12.08.2010	(86) International application number: PCT/ES2010/070549	part of characteristic modular shelving units that also con- figure an elongated shelving structure in the longitudinal direction.
		(87) International publication number: WO 2012/020149 (16.02.2012 Gazette 2012/07)	[0003] Based on this premise, the essence of the in- vention is based on characteristic modular horizontal guides along which respective modular subsets (robots)
(54)	AUTOMATIC PLANT FOR STORING AND DIS AUTOMATISCHE ANLAGE ZUR AUFBEWAHR INSTALLATION AUTOMATIQUE POUR STOCI	PENSING GOODS UNG UND AUSGABE VON WAREN	move, for the loading and unloading of products with re- spect to the shelves of the modular shelving units, mod- ular horizontal guides that can easily adapt to the required length of the elongated structure of shelving units, so that both loading and unloading subsets have a horizontal
	Designated Contracting States: AL AT BE BG CH CY C2 DE DK EE ES FI FR GB GR HR HU IE ISIT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR Date of publication of application:	GONZÁLEZ LÓPEZ, Isabel E-47012 Valladolid (ES) (74) Representative: Ungria López, Javier c/o UNGRIA Patentes y Marcas, S.A., Avda, Ramon y Cajal, 78	translation movement parallel to said elongate structure of sheving units and a vertical movement to access the different levels of the shelves where the products are stored.
(10)	19.06.2013 Bulletin 2013/25	28043 Madrid (ES)	
(73)	Proprietor: Automatismos Y Montajes Industriales J. Martin, S.L. 47012 Valladolid (ES)	(56) References cited: EP-A1- 2 113 473 CH-A5- 680 434 DE-A1- 4 336 885 DE-A1- 4 339 055 DE-A1- 19 635 396 DE-A1- 19 724 378	
	Inventors: MARTÍN DE PABLO, Francisco Javier E-47012 Valladolid (ES)	DE-U1- 20 021 440 US-A- 3 782 565 US-A1- 2010 168 910	

Automation patent without keyword in B65G 1

Trends in Automation

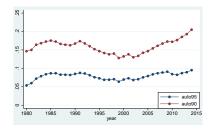


Figure: Share of automation patents in machinery worldwide.

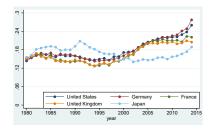


Figure: Share of automation patents (auto95) in machinery conditional on the patent being protected in the designated countries. Details

Outline

Identifying automation patents

Validation of automation measure

A (verbal) toy model, Methodology and Data

Results

Event study: the Hartz reform

Conclusion and Ongoing work

Appendix

Correlation between our measure and robot intensity (IFR)

	(1) Across Countries	(2) Across US Industries	(3) Across German Industries
Share of automation patents in machinery (auto95)	0.383	0.602	0.560
Share of automation patents in machinery (auto90)	0.377	0.483	0.426
Share of robot patents in machinery (robot90)	0.365	0.682	0.546
Share of robot patents in machinery (robot80)	0.461	0.740	0.780
Number of observations	27	17	17

Note: This table reports correlations across countries or industries between shares of automation patents in machinery, robots patents in machinery and robot intensity. Robot intensity is measured as the difference between the stock of robots in 2011 and the stock of robots in 1997 (columns 1 and 3) or 2004 (column 2) over employment in each country (column 1) or each sector (columns 2 and 3) in 1997 (columns 1 and 3) or 2004 (column 2). Shares of automation and robot patents are computed over the time period 1997-2011 for columns (1) and (3) and over 2004-2011 for column (2).

Validation of automation measure

- Reproduce Autor, Levy and Murnane (ALM, 2003).
- Cross-section analysis on U.S. data from 1960 to 1998 of

$$\Delta T_{jk\theta} = \beta_0 + \beta_C \Delta C_j + \beta_{aut} aut_{jk\theta},$$

- $\Delta T_{jk\theta}$: change in tasks k in industry j during period θ
 - 5 types of tasks: non-routine analytic, non-routine interactive, routine cognitive, routine manual and non-routine manual.
 - $\Delta T_{jk\theta}$: 10x the annual within industry change in task input measured in percentile of the 1960 task distribution.
- C_j : computerization in sector *j* (computed in 1984-1997).
- *aut_{jθ}*: share of automation patents in machinery for industry *j* during period *θ*.
 - Allocate patents to sectors according to their IPC/CPC codes (Lybbert and Zolas, 2014)
- Very low correlation between $aut_{j\theta}$ and C_j : 0.05 or 0.016.

Changes in tasks intensity and automation (auto95) Details

	(1) ∆ Nonroutine analytic	(2) ∆ Nonroutine interactive	(3) ∆ Routine cognitive	(4) ∆ Routine manual	(5) ∆ Nonroutine manual	(6) ∆ H/L
Panel A: 1970 - 80, n=67						
Share of automation	-1.29	5.42	-17.27***	-11.43**	-1.15	0.27***
patents in machinery	(5.10)	(6.27)	(6.59)	(5.59)	(7.46)	(0.07)
∆ Computer use	-6.86	-3.13	-19.51***	-3.46	14.87*	0.07
1984 - 1997	(5.72)	(7.04)	(7.41)	(6.28)	(8.38)	(0.08)
Intercept	1.06	2.31**	3.07**	2.69***	-1.75	0.05***
	(0.95)	(1.17)	(1.23)	(1.04)	(1.39)	(0.01)
R^2	0.02	0.01	0.20	0.07	0.05	0.21
Weighted mean Δ	-0.05	2.17	-0.90	1.49	0.42	0.07
Panel B: 1980 - 90, n=67						
Share of automation	10.09	19.05**	-30.00***	-21.61***	16.78***	1.33***
patents in machinery	(7.14)	(8.12)	(6.76)	(5.42)	(6.04)	(0.23)
∆ Computer use	24.80**	22.21*	-13.24	-0.42	-6.49	0.29
1984 - 1997	(10.43)	(11.85)	(9.87)	(7.91)	(8.82)	(0.33)
Intercept	-2.62	-0.65	2.15	1.20	-2.13	-0.04
	(1.70)	(1.93)	(1.61)	(1.29)	(1.44)	(0.05)
R^2	0.12	0.14	0.27	0.20	0.11	0.37
Weighted mean Δ	1.86	4.17	-2.22	-0.59	-1.74	0.11
Panel C: 1990 - 98, n=67						
Share of automation	11.06*	16.02*	-22.81***	-12.53**	6.66	0.77***
patents in machinery	(6.08)	(8.18)	(6.54)	(5.42)	(6.28)	(0.15)
∆ Computer use	26.77***	27.00**	-23.15**	-24.87***	7.48	0.66***
1984 - 1997	(8.35)	(11.23)	(8.98)	(7.44)	(8.62)	(0.20)
Intercept	-2.36*	-1.43	1.72	2.27*	-2.40*	-0.06*
	(1.37)	(1.84)	(1.47)	(1.22)	(1.41)	(0.03)
R ²	0.19	0.15	0.25	0.23	0.03	0.41
Weighted mean ∆	2.45	3.79	-3.44	-2.36	-0.79	0.09

Slandard errors are in parentheses. Colume 1(1) to (5) of Paneta A to C each presents a separate OLS regression of ten times the annual change in industry-avel task input between the endpoints of the indicated time interval (measured in certilise of the 1960 task, distribution) on the share of automation patterns in machinery (defined with the 95th percentile threshold) and the annual percentage point change in industry-very task curves using 1997 as well as a constant. In Column (6), the dependent variable is the ratio of high-skill (college graduates) to low-skill (high-school graduates and dropouts) workers. Estimates ν = 0.01 \times 0.05 \times 0.05

Outline

Identifying automation patents

Validation of automation measure

A (verbal) toy model, Methodology and Data

Results

Event study: the Hartz reform

Conclusion and Ongoing work

Appendix

A (verbal) toy model

- Suppose a firm (Siemens) can invent new automation technology/machines and sell to customers who are other firms
- These firms can substitute between low-skill labor and a composite of high-skill labor and machines.
- They will be more willing buyers of new machines if
 - low-skill wages are high
 - high-skill wages are low.
- → the incentive of the firm (Siemens) to develop new automation technology depends on the wages their customers face. Formal model

Methodology (1)

• We want to carry a regression of the type:

$$\ln Aut_{i,t} = \beta_w \ln w_{i,t-2} + \beta_X X_{i,t-2} + \epsilon_{i,t}$$

- with *Aut_{i,t}*: automation innovations by equipment manufacturers,
- $w_{i,t-1}$ low-skill wages of the customers of equipment manufacturers.
- $X_{i,t-1}$ other factors including high-skill wages.
- Huge concerns of endogeneity (including reverse causality) if
 - *i* is a country,
 - or *i* is a firm and $w_{i,t-1}$ is the actual wage paid by the firm's customers.

Methodology (2)

- Our solution is to adapt the methodology of ADHMV:
 - Equipment manufacturers are exporting firms which sell to different countries;
 - Build a weighted average of country-level low-skill wages representative of each firm's market.
- For firm *i* : Build firm-specific measure of the low-skill wage paid by their potential customers: *w*_{*i*,*t*}

$$w_{i,t} = \sum_{c} \omega_{i,c} w_{c,t}$$

- $\circ \ w_{c,t}$ is the low-skill wage in country c
- $\omega_{i,c}$ is a fixed measure of the importance of market c for firm i, computed pre-sample.
- Identify the effect of wages on automation by exploiting how country-level trends in wages affect firms differently depending on their history (in the spirit of a shift-share instrument).

Implied Regression

• Firm's innovation in automation is described by Poisson:

 $PAT_{Aut,i,t} = \exp\left(\beta_{w_L} \ln w_{L,i,t-2} + \beta_X X_{i,t-2} + \delta_i + \delta_t\right) + \epsilon_{i,t}.$

- *PAT_{Aut,i,t}*: number of automation innovations by firm *i* at time *t*.
- $w_{Li,t-2}$ low-skill wage faced by the **customers of firm** *i* at t-2, expect $\beta_{w_L} > 0$.
- δ_i firm fixed effects and δ_t year fixed effects.
- X_{*i*,*t*-2} vector of controls include:
 - other macro variables: high-skill wages (in log), GDP per capita, labor productivity in manufacturing, GDP gap.
 - o firm's knowledge stocks in automation and other tech
 - o firm's exposure to spillovers in automation and other tech.
- Time period 1995-2009 for RHS (because of wage data).

Macroeconomic Data

- Use macro data (low-skill wages, high-skill wages, GDP, etc...) from WIOD + Switzerland (Swiss statistics)
 - Focus on wages in the manufacturing sector.
 - Deflate by local manuf PPI and conv. to 1995 USD by exchange rate.
 - For 1995-2009 consistent data for 41 countries: all EU (except Croatia) + US, Canada, Japan, India, China, Korea, etc...

Country		ill wages 195\$)	Skill-premium (HS wages/LS wages)				
	1995	2009	1995	2009			
India	0.19	0.28	4.79	4.98			
Mexico	0.89	0.61	3.90	4.21			
Bulgaria	1.29	0.71	3.32	2.25			
USA	11.57	13.67	2.46	3.02			
Belgium	29.50	41.89	1.56	1.46			
Sweden	19.92	42.16	1.73	1.33			
Finland	23.41	43.63	1.20	1.46			

Note: Wages data, taken from the World Input Output Database. Table shows manufacturing low-skill wages deflated by (manufacturing) producer price index and converted to US dollars using average 1995 exchange rates. Skill-premium is the ratio of high-skill to low-skill wages. Table shows the three countries with the lowest low-skill wages in 2009, the three with the highest and the United States.

Weights calculated using patent history and GDP

- $\omega_{i,c}$ is computed using a firm's patent history pre-sample (proxy for firm's market shares)
 - Firms only pay to patent where they intend to sell
 - We compute pre-sample from 1970- the share of patents protected in country *i*: $\Omega_{i,c}$.
 - Include market size effect (Eaton, Kortum and Kramarz, 2011):

$$\omega_{i,c} = \frac{\Omega_{i,c} GDP_c^{0.35}}{\sum_{c'} \Omega_{i,c'} GDP_{c'}^{0.35}}.$$

- Similar approach for controls: (high-skill wages, GDP gap, GDP, etc...)
- Approach validated on a sample of car companies in ADHMV, on bilateral trade flows in Coelli, Moxnes and Ulltveit-Moe (2017).

Controlling for knowledge stocks

- Potential Spillovers from other innovations (Jaffe, 1986, ADHMV)
- Build $\Lambda_{i,t}$ is exposure-weighted stock of automation patents

$$\Lambda_{i,t} = \sum_{c} \widetilde{\omega}_{i,c} \Lambda_{c,t},$$

Λ_{c,t} is stock of automation patents in country c,
 ω̃_{i,c} share of inventors of firm *i* located in country c, computed pre-sample.

Descriptive Statistics

Variable	Auto95		Au	ito90		Auto95	Auto90
Automation pantents	per year	1997-2011	per year	1997-2011	Weights		
Mean	0.7	11.22	0.84	13.24	Largest country	0.47	0.46
Standard deviation	3.46	48.71	4.04	56.76	Second largest	0.17	0.18
p50	0	2	0	3	US	0.21	0.21
p75	0.27	6	0.33	7	Japan	0.17	0.15
p90	1.4	19	1.6	22	Germany	0.2	0.21
p95	3	41	3.27	50	France	0.09	0.09
p99	12	173	13.73	194	UK	0.09	0.09
Number of firms	3341		4903				

Note: Summary statistics for the firms used in our baseline regression.

• Exclude purely domestic firms.

Outline

Identifying automation patents

Validation of automation measure

A (verbal) toy model, Methodology and Data

Results

Event study: the Hartz reform

Conclusion and Ongoing work

Appendix

Baseline results for auto95 (95th pct cutoff) country cluster

Dependent variable					Auto95				
Dependent variable									
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Low-skill wage	2.2000^{***}	2.8254^{***}	1.8160**	1.9058^{**}	1.9992^{**}	2.2954^{***}	2.4627^{***}	2.4266^{***}	3.7365^{***}
	(0.5123)	(0.7332)	(0.7421)	(0.7729)	(0.8223)	(0.8198)	(0.8351)	(0.8658)	(0.9116)
High-skill wage		-0.9210	-0.9009	-0.9695	-0.8698	-0.2971	- 1.6180**	- 1.6700*	- 0.4838
		(0.7082)	(0.6715)	(0.6913)	(0.7511)	(0.6802)	(0.8033)	(0.8634)	(0.7650)
Stock automation			- 0.1275***	- 0.1269**	-0.1270**	- 0.1239**	-0.1441***	- 0.1443***	- 0.1504***
			(0.0495)	(0.0496)	(0.0495)	(0.0495)	(0.0509)	(0.0510)	(0.0510)
Stock other			0.6311^{***}	0.6296^{***}	0.6309^{***}	0.6260^{***}	0.6408^{***}	0.6407^{***}	0.6489^{***}
			(0.0579)	(0.0581)	(0.0581)	(0.0574)	(0.0600)	(0.0600)	(0.0595)
GDP gap				0.0210	0.0214	0.0179	0.0279*	0.0278*	0.0265*
T 1 1 1 1 1				(0.0159)	(0.0157)	(0.0157)	(0.0158)	(0.0157)	(0.0156)
Labor productivity					-0.2551 (0.8644)			0.1285	
GDP per capita					(0.8644)	-1.5635*		(0.9199)	- 3.3618***
GDT per capita						(0.8765)			-3.3018 (0.8917)
Spillovers automation						(0.0100)	0.5442^{*}	0.5478^{*}	0.8587***
opinovers automation							(0.3135)	(0.3151)	(0.3213)
Spillovers other							-0.3014	-0.3089	-0.5853**
							(0.2248)	(0.2315)	(0.2303)
Fixed effects	$\mathbf{F} + \mathbf{Y}$	F + Y	$\mathbf{F} + \mathbf{Y}$	$\mathbf{F} + \mathbf{Y}$	F + Y	$\mathbf{F} + \mathbf{Y}$	$\mathbf{F} + \mathbf{Y}$	$\mathbf{F} + \mathbf{Y}$	F + Y
Observations	50115	50115	50115	50115	50115	50115	50115	50115	50115
Firms	3341	3341	3341	3341	3341	3341	3341	3341	3341

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson regressions fixed-effects (HHG). All regressions include firm fixed effects and year dummies. All regressions with stock variables (resp. spillover variables) include a dummy for no stock (resp. no spillover). Standard errors are clustered at the firm-level. * p < 0.1; ** p < 0.05; *** p < 0.01

• Slightly weaker results for auto90: [auto9

Regression Challenges

- Are we doing better than country-level regressions?
 - Yes, if firms are sufficiently multinational (i.e. Siemens doesn't just sell to Germany)
 - Check: "Remove" largest country by country-year fixed effects
 - Provided that initial weights are exogenous to future trends, we capture the effect of different country trends on firms' innovations.
- Do we capture the effect of wages or other omitted variables?
 Use controls and effect on other (placebo) innovations.
- But wages are still an equilibrium outcome in labor markets:
 - Interpretation: average effect of an increase in wages given the controls (for whatever reasons).
 - Later: effect of Hartz labor market reforms.

Country-year fixed effects

Dependent variable					Auto95						
	Domestic + Foreign				Foreign						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)		
Low-skill wage	1.8852^{*}	2.1429^{*}	3.0411**	3.4891^{***}	4.3023***	3.7989**	3.6420^{***}	4.3362***	3.8663**		
	(1.0367)	(1.1505)	(1.2232)	(1.2958)	(1.4482)	(1.6370)	(1.3146)	(1.4473)	(1.6288)		
High-skill wage	-2.4820^{**}	-1.9117^{*}	-1.7526	-3.5161^{***}	-2.4740^{*}	-3.3526^{**}	-3.7549^{***}	-2.8325**	-3.6398^{***}		
	(1.0115)	(1.0157)	(1.1046)	(1.2515)	(1.4209)	(1.3633)	(1.2805)	(1.4364)	(1.3692)		
GDP gap	0.0623^{*}	0.0620^{*}	0.0646*	0.0044	0.0016	0.0044	0.0031	0.0001	0.0031		
	(0.0343)	(0.0342)	(0.0343)	(0.0492)	(0.0492)	(0.0492)	(0.0494)	(0.0494)	(0.0494)		
Labor productivity		-1.2851			-1.7494			-1.5475			
		(1.6381)			(1.4131)			(1.3896)			
GDP per capita			-2.8260			-0.5289			-0.3829		
			(2.0242)			(1.9347)			(1.8713)		
Stock automation	-0.1511^{***}	-0.1506^{***}	-0.1541^{***}	-0.1522^{***}	-0.1523^{***}	-0.1526^{***}	-0.1530^{***}	-0.1532^{***}	-0.1533^{***}		
	(0.0528)	(0.0527)	(0.0523)	(0.0525)	(0.0523)	(0.0525)	(0.0524)	(0.0521)	(0.0524)		
Stock other	0.6549^{***}	0.6556^{***}	0.6555^{***}	0.6494^{***}	0.6471^{***}	0.6490^{***}	0.6496^{***}	0.6475^{***}	0.6493^{***}		
	(0.0602)	(0.0602)	(0.0598)	(0.0602)	(0.0601)	(0.0600)	(0.0601)	(0.0601)	(0.0599)		
Spillovers automation	1.4782***	1.4762***	1.4715^{***}	1.4396***	1.4128***	1.4355***	1.4380***	1.4161***	1.4357***		
	(0.4992)	(0.5000)	(0.4998)	(0.4872)	(0.4895)	(0.4899)	(0.4866)	(0.4896)	(0.4887)		
Spillovers other	-1.2259^{***}	-1.2020***	-1.2436^{***}	-1.2377***	-1.2268***	-1.2436^{***}	-1.2252^{***}	-1.2141***	-1.2300***		
	(0.3805)	(0.3820)	(0.3789)	(0.3748)	(0.3730)	(0.3716)	(0.3731)	(0.3725)	(0.3697)		
Fixed effects	F + CY	F + CY	$\mathbf{F} + \mathbf{C}\mathbf{Y}$	F + CY							
Observations	50070	50070	50070	50070	50070	50070	50070	50070	50070		
Firms	3338	3338	3338	3338	3338	3338	3338	3338	3338		

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson regressions fixed-effects (HHG). All regressions include firm and country-year fixed effects. All regressions with stock variables include a dummy for no stock and no spillover. In columns (4)-(6) domestic (resp. foreign) low-skill wages are interacted with the share of domestic (resp. foreign) low-skill wages in total low-skill wages computed at the beginning of the sample, and similarly for high-skill wages, GDP per capita and VA per employee. In columns (7)-(9), they are interacted with the average shares over the sample period instead. In columns (4)-(9), domestic (resp. foreign) GDP gap is interacted with the domestic (resp. foreign) weight. In columns (1)-(3), there is no such interactions. Standard errors are clustered at the firm-level * p < 0.1; ** p < 0.05; *** p < 0.05

Define "Placebo" patents in machinery

- Low-automation codes = codes with a frequency of keywords below the 60th percentile of the distribution of IPC/CPC 6 digit codes in machinery (0.209).
- Low-automation patents whose machinery codes are all low-automation.

Effect on placebo patents

Dependent Variable		Placebo Machinery									
			Domestic -	+ Foreign				Foreign			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)		
Low-skill wage	0.2962	0.5837	1.6587**	-0.0486	0.0964	0.6381	-0.7470	-1.0568	-0.9430		
High-skill wage	(0.6209) -0.1907	(0.7013) 0.3251	(0.6573) 0.8911	(0.8089) -0.3499	(0.9245) -0.0648	(0.9903) 0.0238	(1.2590) 0.4969	(1.4477) 0.1238	(1.3045) 0.4016		
GDP gap	(0.6953) -0.0307***	(0.6428) -0.0292***	(0.7506) -0.0292***	(0.9539) -0.0072	(0.9122) -0.0071	(1.0053) -0.0062	(1.3193) 0.0117	(1.3073) 0.0120	(1.4470) 0.0114		
Labor productivity	(0.0105)	(0.0103) -1.1140 (0.7467)	(0.0104)	(0.0188)	(0.0187) -0.6087 (1.1021)	(0.0188)	(0.0319)	(0.0319) 0.6174 (1.1450)	(0.0319)		
GDP per capita		(0.7467)	-3.4367***		(1.1021)	-1.5038		(1.1452)	0.3079		
Stock own	0.0866**	0.0879**	(0.8242) 0.0892**	0.0952**	0.0956**	(1.3776) 0.0957**	0.0958**	0.0954**	(1.3051) 0.0956^{**}		
Stock other	(0.0408) 0.4797***	(0.0411) 0.4811^{***}	(0.0405) 0.4758^{***}	(0.0405) 0.4854***	(0.0406) 0.4861***	(0.0404) 0.4847^{***}	(0.0405) 0.4862^{***}	(0.0406) 0.4871***	(0.0406) 0.4866***		
Spillovers own	(0.0464) 2.6849***	(0.0464) 2.7419^{***}	(0.0463) 1.9983^{***}	(0.0460) 1.1394^{***}	(0.0459) 1.1505^{***}	(0.0459) 1.0777^{**}	(0.0448) 1.1398^{***}	(0.0449) 1.1215^{**}	(0.0449) 1.1469^{***}		
Spillovers other	(0.4153) -2.4198*** (0.5298)	(0.4163) -2.4342*** (0.5348)	(0.4423) -1.8132*** (0.5386)	(0.4410) -1.2443** (0.5052)	(0.4435) -1.2469** (0.5056)	(0.4411) -1.1918** (0.5047)	(0.4393) -1.2694** (0.4965)	(0.4428) -1.2450** (0.5008)	(0.4418) -1.2706** (0.4965)		
Fixed effects	F + Y	(6.65 15) F + Y	F + Y	F + CY							
Observations Firms	115575 7705	115575 7705	115575 7705	115515 7701	115515 7701	115515 7701	115515 7701	115515 7701	115515 7701		

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson regressions fixed-effects (HHG). Columns (1)-(3) include firm and year fixed effects, while (4)-(9) include firm and country-year fixed effects. Stock variables are calculated with respect to the dependent variable. In columns (7)-(9) domestic (resp. foreign) low-skill wages are interacted with the share of domestic (resp. foreign) low-skill wages in total low-skill wages computed at the beginning of the sample, and similarly for high-skill wages, GDP per capita and VA per employee. Domestic (resp. foreign) GDP gap is interacted with the domestic (resp. foreign) weight. In columns (1)-(6), there is no such interactions. Standard errors are clustered at the firm-level * p < 0.01 ** p < 0.01

1/skill premium Correlations Placebo sp Monte Carlo 1

Dependent variable			A	uto95		
		Domestic	+ Foreign		For	eign
	(1)	(2)	(3)	(4)	(5)	(6)
Low-skill / High-skill wage	1.9423**	1.9008**	2.1995**	2.2870**	3.5089***	3.5012***
	(0.7552)	(0.7478)	(0.9170)	(0.9166)	(1.2083)	(1.2021)
GDP gap	0.0263^{*}	0.0251	0.0627^{*}	0.0632^{*}	0.0049	0.0030
	(0.0157)	(0.0156)	(0.0343)	(0.0344)	(0.0526)	(0.0502)
GDP per capita		-0.6817		-1.5302		-0.1073
		(0.6943)		(1.2805)		(0.9038)
Stock automation	-0.1448^{***}	-0.1466^{***}	-0.1505***	-0.1531***	-0.1522***	-0.1523***
	(0.0509)	(0.0511)	(0.0530)	(0.0524)	(0.0526)	(0.0525)
Stock other	0.6407^{***}	0.6424^{***}	0.6546^{***}	0.6555^{***}	0.6495^{***}	0.6491^{***}
	(0.0599)	(0.0597)	(0.0603)	(0.0600)	(0.0602)	(0.0600)
Spillovers automation	0.5783^{*}	0.6625^{**}	1.4755^{***}	1.4766^{***}	1.4397^{***}	1.4386^{***}
	(0.3153)	(0.3340)	(0.4968)	(0.5013)	(0.4868)	(0.4888)
Spillovers other	-0.2349	-0.2543	-1.2535^{***}	-1.2160^{***}	-1.2387^{***}	-1.2362^{***}
	(0.2129)	(0.2112)	(0.3717)	(0.3807)	(0.3669)	(0.3720)
Fixed effects	F + Y	$\mathbf{F} + \mathbf{Y}$	F + CY	F + CY	F + CY	F + CY
Observations	50115	50115	50070	50070	50070	50070
Firms	3341	3341	3338	3338	3338	3338

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson regressions fixed-effects (HHG). Columns (1)-(2) include firm fixed effects and year dummies. Columns (3)-(6) include firm and country-year fixed effects. All regressions with stock variables (resp. spillover variables) include a dummy for no stock (resp. no spillover). Columns (5)-(6) use the log difference between foreign low-skill wages interacted with the share of foreign low-skill wages in total low-skill wages at the beginning of the sample and foreign high-skill wages similarly interacted; GDP gap and GDP per capita are also their interacted foreign components. Standard errors are clustered at the firm-level. * p < 0.1; ** p < 0.01

Other regressions

- Alternative timing: Go
- Subcomponents: Go
- Other indicators of quality of innovations: Go
- Middle-skill wages: 💿

Robustness checks

- Nickell's bias: Go
- Other wages and deflators: Go
- Other weights: Go
- Recent literature on Bartik instruments: Go

Outline

Identifying automation patents

Validation of automation measure

A (verbal) toy model, Methodology and Data

Results

Event study: the Hartz reform

Conclusion and Ongoing work

Appendix

Case Study: German Hartz Reforms

- German labor market reforms Hartz I-IV came into effect between 2003 and 2005. Attempt to address "Sick man of Europe" syndrome of high unemployment
 - Hartz I-II: A number of changes: job centers, vocational training, mini - and minijobs (low wage and hours): 2003.
- Prediction: more flexible labor markets: less need to automate from 2003 onward.
- Focus on firms from the country with the largest exposure to Germany: Austria, France, Italy, Japan, the Netherlands, Spain, Switzerland, the United Kingdom and the United States.
- First Poisson regression:

$$PAT_{Aut,i,t+2} = \exp\left(\begin{array}{c} \beta_{DE,t} \cdot \delta_t \omega_{i,DE} + \delta_i + \delta_{c,t} \\ + \beta_{Ka} \cdot \delta_k \ln K_{Aut,i,t} + \beta_{Ko} \cdot \delta_k \ln K_{other,i,t} \end{array}\right) + \epsilon_{k,i,t}.$$

German exposure

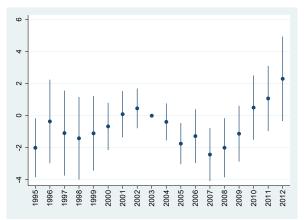


Figure: Coefficients on the interaction between the German weight and a set of year fixed effects.

-2 in 2008: a firm with a German weight of 0.1 (mean is 0.11) did 20% less automation innovations in 2010 than in 2005 compared to a firm with no German exposure.

German exposure: auto95 versus other machinery time trend

$$PAT_{k,i,t+2} = \exp\left(\begin{array}{c}\beta_{DE,t} \cdot \delta_t \omega_{i,DE} + \beta_{DE,t}^{aut} \cdot \delta_t \omega_{i,DE} \mathbf{1}_{k=aut} + \delta_{k,i} + \delta_{k,c,t} \\ + \beta_{Ka} \cdot \delta_k \ln K_{Aut,i,t} + \beta_{Ko} \cdot \delta_k \ln K_{other,i,t}\end{array}\right) + \epsilon_{k,i}$$

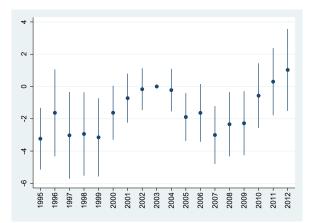


Figure: Coefficients on the triple interaction between the German weight, a dummy for auto95 innovations and a set of year fixed effects.

Outline

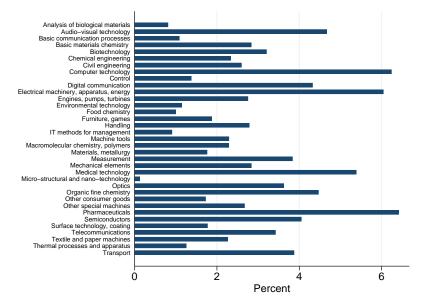
Identifying automation patents

Validation of automation measure

A (verbal) toy model, Methodology and Data

Results

Event study: the Hartz reform

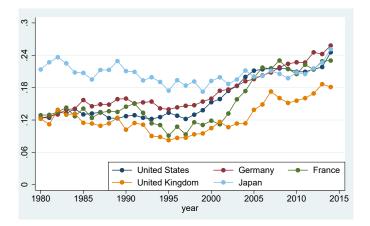

Conclusion and Ongoing work

Appendix

Conclusion

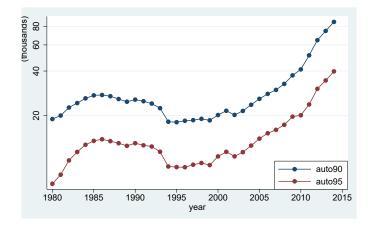
- We identify and classify patents according as relating to automation or not
 - Upward trend since late 90s. Varies across countries and strong predictive power on occupational distribution
- Use wages in countries where firms sell to estimate elasticity
 - o positive elasticity of 2-4 for low-skill wages
 - negative elasticity for controls: high-skill wages, gdp per capita or labor productivity.
- Hartz reforms discouraged automation innovation by making labor market more flexible.
- Measure can be used to study effect of automation on labor share (Sulaja and Zanella, 2019), or on wages (future work).

Technological fields Back


Statistics on the classification

	IPC/CPC 6 digit				IPC4 + (G05 or G06)				IPC 4 pairs			
Share	all	robot	automat*	CNC	all	robot	$automat^*$	CNC	all	robot	$automat^*$	CNC
Mean	20.9	4.3	11.2	2.4	53.2	15.4	32.4	11.2	18.5	4.5	8.8	1.8
S. d.	14.4	8.4	9.5	5.8	19.3	17.7	11	16.5	16.3	10	9.9	4.7
p25	10.5	0.8	4.2	0	40	6.7	26.6	0.8	7.7	0.6	2.5	0
p50	18	2	8.7	0.4	54.3	10	31.9	3	13.6	1.8	5.2	0.4
p75	26.6	4.5	15.3	1.8	63.8	16	40.3	15.5	23	4.2	10.7	1.4
p90	38.7	9.1	24.3	6.1	77.9	36.4	43.3	38.2	36.8	8.9	21.7	4.4
p95	47.7	13.7	29.4	12.7	85.6	44.3	45.2	55.3	51.8	14.5	31	7.7
p99	75	35.8	43.8	33.1	90.1	82.9	59.9	56.6	84.5	60	45.3	23.1

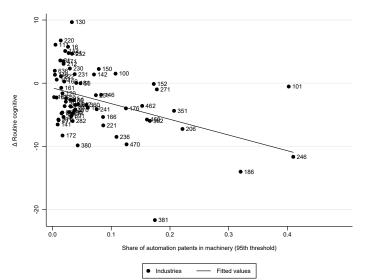
Note: This table computes summary statistics on the share of patents with any automation keywords, robot keywords, automat* keywords or CNC keywords for each type of technological categories (6 digit codes, pairs of 4 digit codes and combinations of ipc4 codes with G05 or G06) within machinery with at least 100 patents.



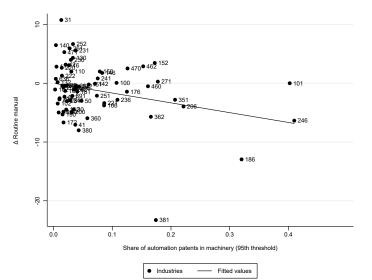
Share of automation (auto95) in machinery by applicant

Back

Raw number of biadic patent applications



Back


Automation by sectors (Back)

ISIC Rev. 4	Title		Share of autom	ation patents in	machinery 1997	- 2011 (in %)	
		Gerr	many	United	States	All Co	untries
		auto95	auto90	auto95	auto90	auto95	auto90
A	Agriculture, forestry and fishing	5.7	12.4	6.4	14.8	6.8	13.8
В	Mining and quarrying	10.0	17.6	9.9	18.2	9.8	17.2
10-12	Food, beverages and tobacco products	4.6	12.9	5.6	15.2	5.0	12.6
13-15	Textiles, wearing apparel, leather and related products	3.9	9.0	4.7	11.4	4.2	10.3
16	Wood and products of wood and cork	4.3	9.3	4.7	11.9	4.9	10.9
17-18	Paper, paper products and printing	2.6	6.8	2.8	7.5	2.8	7.6
19-22	Coke, chemicals, pharmaceuticals, rubber and plastic products	2.9	6.9	3.8	8.2	3.0	7.0
23	Other non-metallic mineral products	6.1	11.7	6.7	13.9	5.9	12.0
24	Basic metals	10.8	26.0	12.4	29.4	11.1	27.0
25	Fabricated metal products	7.7	22.3	8.8	24.3	8.4	23.7
26-27	Computer, electronic, optical and electrical products	30.7	39.4	30.1	40.1	29.4	39.1
28	Machinery and equipment n.e.c.	17.4	30.5	18.1	30.7	18.8	31.5
29	Motor vehicles, trailers and semi-trailers	32.6	36.8	30.0	35.7	31.9	36.8
30	Other transport equipment	24.5	29.3	22.8	29.1	26.1	31.9
91	All other manufacturing branches	15.7	23.2	18.7	27.9	18.9	27.7
E	Water supply; sewerage, waste management and remediation activities	6.6	13.2	8.2	16.5	7.9	14.7
F	Construction	7.7	11.7	9.4	15.5	8.4	13.3

Change in routine cognitive tasks and automation intensity (1980-1998) (Back)

Change in routine manual tasks and automation intensity (1980-1998) (Back)

List of sectors for ALM regressions (Back)

ind6090	Title	ind6090	Title
16	Ag production crops & livestock;	201	Misc. petroleum and coal products
	Ag services; Horticultural services	206	Household appliances; Radio, TV &
30	Forestry		communications equipment; Electric
31	Fishing, hunting and trapping		machinery, equipment & supplies, n.e.c., not
40	Metal mining		specified electrical machinery, equipment &
41	Coal mining		supplies
42	Crude petroleum and natural gas extraction	211	Other rubber products, and plastics
50	Nonmetallic mining & quarrying, except fuel		footwear and belting + tires & inner tubes
66	Construction	212	Misc. plastic products
100	Meat products	220	Leather tanning and finishing
101	Dairy products	221	Footwear, except rubber and plastic
102	Canned and preserved fuits and vegetables	222	Leather products, except footwear
110	Gain mill products	230	Logging
111	Bakery products	231	Sawmills, planning mills, and millwork
112	Sugar and confectionary products	236	Railroad locomotives & equipment; Cycles
120	Beverage industries		& misc transporation equipment; Wood
121	Misc. food preparations, kindred products		buildings & mobile homes
130	Tobacco manufactures	241	Misc. wood products
132	Knitting mills	242	Furniture and fixtures
140	Dyeing and finishing textiles, except wool	246	Scientific and controlling instruments;
	and knit goods		Optical and health service supplies
141	Floor coverings, except hard surfaces	250	Glass products
142	Yarn, thread, and fabric mills	251	Cement, concrete, gypsum & plaster
146	Primary aluminum and other primary metal	252	Structural clay products
	industries	261	Pottery and related products
150	Misc. textile mill products	262	Misc. nonmetallic mineral & stone products
151	Apparel and accessories, except knit	270	Blast furnaces, steelworks, rolling and
152	Misc. fabricated textile products	271	Iron and stell foundaries
160	Pulp, paper, and paperboard mills	281	Cutlery, handtools, and other hardware
161	Misc. paper and pulp products	282	Fabricated structural metal products
162	Paperboard containers and boxes	346	Plastics, synthetics & resins; Soaps &
166	Screw machine products; Metal forgings &		cosmetics; Agricultural chemicals; Industrial
	stampings; Misc. fabricated metal products		& miscellaneous chemicals
172	Printing, publishing, and allied industries	351	Transportation equipment
	except newspapers	360	Ship and boat building and repairing
176	Engine and turbines; Construction & material		Guided missiles, space vehicles, and parts,
	handling machines; Metalworking machinery;	380	Photographic equipment and supplies
	Machinery, except electrical, n.e.c.; Not	381	Watches, clocks, and clockwork operated
	specified machinery	391	Misc. manufacturing industries and toys,
181	Drugs	460	Electric light and power
186	Electronic computing equipment; Office and	462	Eletric and gas, and other combinations
	accounting machines	470	Water supply and irrigation
190	Paints, varnishes, and related products	471	Sanitary services
200	Petroleum refining	636	Grocery stores: Retail bakeries: Food

	(1)	(2)	(3)	(4)	(5)
	∆ Nonroutine	∆ Nonroutine	∆ Routine	∆ Routine	∆ Nonroutine
	analytic	interactive	cognitive	manual	manual
Panel A: Aggregated with	hin-industry chang	le			
Share of automation	9.53**	17.97***	-26.66***	-17.09***	12.57***
patents in machinery	(4.53)	(5.39)	(4.83)	(3.90)	(4.30)
∆ Computer use	24.91***	23.81***	-17.75***	-11.53**	0.47
1984 - 1997	(6.36)	(7.56)	(6.79)	(5.48)	(6.03)
Intercept	-2.36**	-1.01	2.05*	1.73*	-2.37**
	(1.03)	(1.22)	(1.10)	(0.89)	(0.98)
R ²	0.26	0.27	0.39	0.29	0.12
Weighted mean ∆	2.05	3.88	-2.62	-1.29	-1.34
Panel B: Within industry:	High school drop	outs			
Share of automation	2.41	13.61	-26.19***	-5.80	4.56
patents in machinery	(7.89)	(10.85)	(6.94)	(6.22)	(6.35)
∆ Computer use	11.70	18.08	15.84	8.68	-9.95
1984 - 1997	(11.08)	(15.24)	(9.74)	(8.73)	(8.91)
Intercept	-4.47**	-8.45***	0.87	0.55	1.16
	(1.79)	(2.47)	(1.58)	(1.41)	(1.44)
R ²	0.02	0.05	0.19	0.02	0.02
Weighted mean ∆		-4.73	1.20	1.39	0.04
Panel C: Within industry:	High school grad	uates			
Share of automation	-7.08	6.50	-26.09***	-13.43***	9.62*
patents in machinery	(5.47)	(7.05)	(5.64)	(4.25)	(5.37)
∆ Computer use	9.30	-0.76	-14.39*	-2.86	6.71
1984 - 1997	(7.69)	(9.90)	(7.92)	(5.96)	(7.54)
Intercept	-2.86**	2.19	2.25*	0.00	-1.43
	(1.24)	(1.60)	(1.28)	(0.97)	(1.22)
R ² Weighted mean ∆	0.04	0.01 2.57	0.30 -1.88	0.14 -1.45	0.06
Panel D: Within industry:	Some College				
Share of automation	-11.94	-7.49	-4.92	-5.92	12.48*
patents in machinery	(8.04)	(7.31)	(6.01)	(5.72)	(6.56)
∆ Computer use	7.05	13.85	-14.68*	-14.11*	9.14
1984 - 1997	(11.29)	(10.26)	(8.44)	(8.03)	(9.20)
Intercept	-1.10	0.31	0.38	2.21*	-2.74*
	(1.83)	(1.66)	(1.37)	(1.30)	(1.49)
R ² Weighted mean ∆	0.04	0.04	0.06 -2.17	0.07 -0.33	0.07 -0.43
Panel E: Within industry:	College graduate	\$			
Share of automation	-6.54	-7.28**	-11.58*	-7.70	17.00***
patents in machinery	(4.25)	(3.59)	(6.48)	(7.74)	(6.03)
Δ Computer use	14.44**	9.29*	-5.55	-7.69	11.14
1984 - 1997	(6.00)	(5.06)	(9.14)	(10.91)	(8.50)
Intercept	-0.94	0.17	-1.22	-0.14	-5.35***
	(0.97)	(0.82)	(1.48)	(1.77)	(1.38)
R^2 Weighted mean Δ	0.01 0.69	0.09	0.06 -2.93	0.03 -1.86	0.14 -2.40
Panel F: Decomposition	of automation effe	cts into within a	ind between ed	lucation group	
Explained task A	0.73	1.38	-2.04	-1.31	0.96
Within educ groups (%)	-63.96	15.80	72.32	54.61	81.96

Formal set-up

• Consider a manufacturing good produced with

$$Y = \exp\left(\int_0^1 \ln y(i) \, di\right).$$

• In each subsector *i*, production is competitive with technology:

$$y_{i} = h_{1,i}^{1-\beta} \left(\gamma(i) I_{i} + \alpha(i) \kappa x_{i}^{\nu} h_{2,i}^{1-\nu} \right)^{\beta},$$

- where $\kappa x_i^{\nu} h^{1-\nu}$ is a composite of high-skill workers and machines $(\kappa \equiv \nu^{\nu} (1-\nu)^{1-\nu})$
 - $\alpha(i) = 1$ for automated sectors, $\alpha(i) = 0$ for non-automated sectors.
 - Machines are produced with the manufacturing good (i.e. at cost 1), if they exist.
- Once a machine is invented, it is produced monopolistically by its inventor, who charges a price p_x(i) ≥ 1.

Production and profits

• In an automated sector, the intermediate producer is indifferent between using machines and low-skill labor if

$$w_H^{\nu} p_x^{1-\nu} = w_L / \gamma(i).$$

- Monopolist makes a take-it-or-leave-it offer, so for an automated sector:
 - If $w_L/\gamma(i) < w_H^{\nu}$: the producer uses low-skill labor.
 - If $w_L/\gamma(i) > w_H^{\nu}$: the producer uses machines and the monopolist charges $p_x(i) = \left(\frac{w}{\gamma(i)}\right)^{\frac{1}{1-\nu}} w_H^{-\frac{\nu}{1-\nu}} > 1.$
- Profits collected by a machine producer are:

$$\pi_i^{\mathcal{A}} = \max\left(1 - \left(\frac{w_L}{\gamma(i)}\right)^{-\frac{1}{1-\nu}} w_{\mathcal{H}}^{\frac{\nu}{1-\nu}}, 0\right) \nu \beta Y.$$

Innovation

- Automation technology are introduced by machines producers.
 - Machine producer innovate with probability λ if she spends $\theta \lambda^2 Y/2$.
 - Machine producer solves:

$$\max \lambda \pi_i^{\mathcal{A}} - \theta \frac{\lambda^2}{2} Y$$

$$\implies \lambda = \frac{\nu\beta}{\theta} \max\left(1 - \left(\frac{w_L}{\gamma(i)}\right)^{-\frac{1}{1-\nu}} w_H^{\frac{\nu}{1-\nu}}, 0\right)$$

• Therefore the number of automation innovations is equal to

$$Aut_{i,t} = \frac{\nu\beta}{\theta} \int_0^1 \left(1 - \alpha\left(i\right)\right) \max\left(\left(1 - \left(\frac{w_L}{\gamma(i)}\right)^{-\frac{1}{1-\nu}} w_H^{\frac{\nu}{1-\nu}}\right), 0\right) di$$

• which is increasing in w_L and decreasing in w_H . Back

Clustering at the country level

Dependent variable					Auto95				
Dependent variable									
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Low-skill wage	2.2000***	2.8254^{***}	1.8160***	1.9058^{***}	1.9992**	2.2954^{***}	2.4627^{***}	2.4266^{***}	3.7365^{***}
	(0.5464)	(0.7421)	(0.6310)	(0.6863)	(0.9001)	(0.5383)	(0.7170)	(0.8727)	(0.6582)
High-skill wage		-0.9210	-0.9009**	-0.9695^{***}	-0.8698	-0.2971	-1.6180^{***}	-1.6700 **	-0.4838*
		(0.6234)	(0.3519)	(0.3701)	(0.7025)	(0.2972)	(0.4701)	(0.7968)	(0.2831)
Stock automation			-0.1275^{***}	-0.1269^{***}	-0.1270^{***}	-0.1239^{***}	-0.1441***	-0.1443^{***}	-0.1504^{***}
			(0.0336)	(0.0339)	(0.0335)	(0.0355)	(0.0358)	(0.0365)	(0.0389)
Stock other			0.6311^{***}	0.6296^{***}	0.6309^{***}	0.6260***	0.6408^{***}	0.6407^{***}	0.6489^{***}
			(0.0495)	(0.0506)	(0.0483)	(0.0518)	(0.0493)	(0.0492)	(0.0501)
GDP gap				0.0210***	0.0214**	0.0179**	0.0279^{***}	0.0278***	0.0265***
				(0.0081)	(0.0088)	(0.0074)	(0.0091)	(0.0096)	(0.0076)
Labor productivity					-0.2551			0.1285	
CDD 1					(1.0309)	1 5005*		(0.9693)	0.0010***
GDP per capita						-1.5635* (0.8207)			-3.3618*** (0.8952)
Spillovers automation						(0.8207)	0.5442***	0.5478***	(0.8952) 0.8587***
spinovers automation							(0.1831)	(0.1931)	(0.1270)
Spillovers other							-0.3014	-0.3089	-0.5853***
Sphiovers other							(0.2573)	(0.2395)	(0.1790)
TH 1 (T -							()	(/	(/
Fixed effects	F + Y	F + Y	F + Y	F + Y	F + Y	F + Y	F + Y	F + Y	F + Y
Observations	50115	50115	50115	50115	50115	50115	50115	50115	50115
Firms	3341	3341	3341	3341	3341	3341	3341	3341	3341
Firms	3341	3341	3341	3341	3341	3341	3341	3341	3341

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson regressions fixed-effects (HHG). All regressions include firm fixed effects and year dummies. All regressions with stock variables (resp. spillover variables) include a dummy for no stock (resp. no spillover). Standard errors are clustered at the country-level. * p < 0.1; ** p < 0.05; *** p < 0.01

Baseline results (auto 90)

Dependent variable					Auto90				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Low-skill wage	1.7307***	2.4414^{***}	1.3357^{**}	1.3715^{**}	1.4738^{**}	1.8797***	1.9059^{***}	1.8309***	3.1623^{***}
	(0.4953)	(0.6610)	(0.6363)	(0.6610)	(0.6778)	(0.7051)	(0.6883)	(0.7008)	(0.7486)
High-skill wage		-1.0613*	-0.7746	-0.8019	-0.6844	0.0911	-1.4074^{**}	-1.5340^{**}	-0.0865
		(0.5844)	(0.5311)	(0.5480)	(0.6068)	(0.5491)	(0.6296)	(0.6850)	(0.6114)
Stock automation			-0.0347	-0.0345	-0.0348	-0.0328	-0.0475	-0.0479	-0.0538
			(0.0405)	(0.0405)	(0.0404)	(0.0406)	(0.0403)	(0.0403)	(0.0403)
Stock other			0.5682^{***}	0.5676^{***}	0.5690^{***}	0.5611^{***}	0.5773^{***}	0.5770^{***}	0.5814^{***}
			(0.0496)	(0.0497)	(0.0495)	(0.0495)	(0.0508)	(0.0508)	(0.0504)
GDP gap				0.0081	0.0085	0.0038	0.0152	0.0151	0.0127
				(0.0137)	(0.0134)	(0.0135)	(0.0133)	(0.0133)	(0.0132)
Labor productivity					-0.2904			0.2911	
					(0.7011)			(0.7224)	
GDP per capita						-2.0568***			-3.5341***
a						(0.7380)	0.0000	0.0102**	(0.7721)
Spillovers automation							0.8903**	0.9102**	1.2870***
a							(0.4162)	(0.4190)	(0.4170)
Spillovers other							-0.6079**	-0.6342**	-1.0159***
							(0.3050)	(0.3140)	(0.3174)
Fixed Effects	F + Y	F + Y	F + Y	F + Y	F + Y	$\mathbf{F} + \mathbf{Y}$	F + Y	F + Y	F + Y
Observations	73545	73545	73545	73545	73545	73545	73545	73545	73545
Firms	4903	4903	4903	4903	4903	4903	4903	4903	4903

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson regressions fixed-effects (HHG). All regressions include firm fixed effects and year dummies. All regressions with stock variables (resp. spillover variables) include a dummy for no stock (resp. no spillover). Standard errors are clustered at the firm-level. * p < 0.15; *** p < 0.05; *** p < 0.01

Multinational firms

back

Dependent Variable			Auto	095		
	(1)	(2)	(3)	(4)	(5)	(6)
Domestic weight	all (< 100%)	< 90%	< 80%	< 70%	< 60%	< 50%
Low-skill wage	3.7365***	2.9038***	3.3297***	2.7702***	1.9337	1.3778
	(0.9116)	(0.8996)	(0.9205)	(1.0572)	(1.3472)	(1.7334)
High-skill wage	-0.4838	0.2145	-0.0103	-0.2181	-0.6551	0.7987
	(0.7650)	(0.7540)	(0.7638)	(0.8887)	(1.0793)	(1.2537)
GDP gap	0.0265^{*}	0.0140	0.0088	0.0128	-0.0077	-0.0149
	(0.0156)	(0.0164)	(0.0190)	(0.0231)	(0.0297)	(0.0340)
GDP per capita	-3.3618^{***}	-2.7080^{***}	-2.8505^{***}	-2.2268^{**}	-1.5900	-2.0282
	(0.8917)	(0.8760)	(0.9555)	(1.0344)	(2.0772)	(2.8055)
Stock automation	-0.1504^{***}	-0.1855^{***}	-0.2384^{***}	-0.2264***	-0.1973^{***}	-0.2069***
	(0.0510)	(0.0541)	(0.0573)	(0.0625)	(0.0661)	(0.0659)
Stock other	0.6489^{***}	0.6832^{***}	0.7513^{***}	0.7276^{***}	0.7270^{***}	0.7597^{***}
	(0.0595)	(0.0633)	(0.0649)	(0.0671)	(0.0745)	(0.0821)
Spillovers automation	0.8587^{***}	0.7931^{**}	1.0109***	1.2503^{***}	1.0217***	1.1416^{***}
	(0.3213)	(0.3183)	(0.3309)	(0.3567)	(0.3540)	(0.3833)
Spillovers other	-0.5853^{**}	-0.6162^{***}	-0.8172^{***}	-0.9773^{***}	-0.8854^{***}	-1.0279^{***}
	(0.2303)	(0.2285)	(0.2393)	(0.2525)	(0.2638)	(0.2930)
Fixed effects	F + Y	$\mathbf{F} + \mathbf{Y}$	$\mathbf{F} + \mathbf{Y}$	$\mathbf{F} + \mathbf{Y}$	$\mathbf{F} + \mathbf{Y}$	F + Y
Observations	50115	47640	44190	40485	35865	30690
Firms	3341	3176	2946	2699	2391	2046

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson regressions fixed-effects (IHHG). All regressions include firm fixed effects and year dummies. All regressions include a dummy for no stock and no spillover. Column (1) contains all firms, (2) restricts attention to firm with a domestic weight below 90%, (3) below 80%, (4) below 70%, (5) below 60%, (6) below 50%. Standard errors are clustered at the firm-level * p < 0.1; ** p < 0.05; *** p < 0.01

Weighted CY fe Lack

Dependent variable					Auto95				
	Do	mestic + For	eign			For	eign		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Low-skill wage	1.8108	2.3860^{*}	2.2889^{*}	2.0881*	2.6237**	2.9819**	2.1664^{*}	2.6391**	2.9695**
	(1.1242)	(1.2486)	(1.3755)	(1.1178)	(1.2557)	(1.3805)	(1.1418)	(1.2624)	(1.3847)
High-skill wage	-2.7802^{**}	-2.0793^{*}	-2.5647^{**}	-2.7271**	-2.1941*	-2.3615^{**}	-2.9054^{**}	-2.4236^{*}	-2.5943^{**}
	(1.1391)	(1.2117)	(1.1867)	(1.1229)	(1.2359)	(1.1984)	(1.1471)	(1.2481)	(1.2101)
GDP gap	0.0053	-0.0020	0.0021	0.0086	0.0037	0.0046	0.0075	0.0028	0.0039
	(0.0436)	(0.0444)	(0.0445)	(0.0440)	(0.0448)	(0.0445)	(0.0441)	(0.0449)	(0.0447)
Labor productivity		-1.2255			-0.9968			-0.9151	
		(0.9351)			(0.9758)			(0.9585)	
GDP per capita			-0.7515			-1.3618			-1.2168
			(1.2918)			(1.3924)			(1.3560)
Stock automation	-0.1531^{***}	-0.1525^{***}	-0.1531^{***}	-0.1518^{***}	-0.1514^{***}	-0.1523^{***}	-0.1519^{***}	-0.1515^{***}	-0.1525^{***}
	(0.0523)	(0.0521)	(0.0522)	(0.0522)	(0.0520)	(0.0521)	(0.0522)	(0.0520)	(0.0520)
Stock other	0.6433^{***}	0.6417^{***}	0.6429^{***}	0.6420^{***}	0.6407^{***}	0.6412^{***}	0.6422^{***}	0.6409^{***}	0.6415^{***}
	(0.0605)	(0.0603)	(0.0603)	(0.0607)	(0.0606)	(0.0603)	(0.0607)	(0.0606)	(0.0603)
Spillovers automation	1.1705^{***}	1.2209^{***}	1.2079^{***}	1.0883^{**}	1.1219^{***}	1.1442^{***}	1.1121^{***}	1.1484^{***}	1.1663^{***}
	(0.4154)	(0.4139)	(0.4199)	(0.4241)	(0.4227)	(0.4283)	(0.4191)	(0.4183)	(0.4241)
Spillovers other	-0.9536^{***}	-0.9457^{***}	-0.9736^{***}	-0.9431^{***}	-0.9441^{***}	-0.9801^{***}	-0.9379^{***}	-0.9386^{***}	-0.9719^{***}
	(0.3302)	(0.3305)	(0.3319)	(0.3315)	(0.3310)	(0.3333)	(0.3315)	(0.3315)	(0.3335)
Fixed effects	F + CY	F + CY	F + CY	$\mathbf{F} + \mathbf{C}\mathbf{Y}$	F + CY				
Observations	50085	50085	50085	50085	50085	50085	50085	50085	50085
Firms	3339	3339	3339	3339	3339	3339	3339	3339	3339

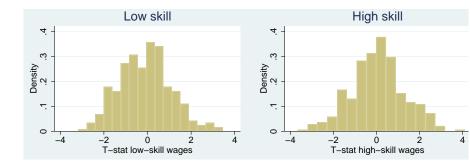
Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson regressions fixed-effects (HHG). All regressions include firm and country-year fixed effects. Country-year fixed effects are interacting with the countries' weights. All regressions with stock variables include a dummy for no stock and no spillover. In columns (4)-(6) domestic (resp. foreign) low-skill wages are interacted with the share of domestic (resp. foreign) low-skill wages in total low-skill wages computed at the beginning of the sample, and similarly for high-skill wages, GDP per capita and VA per employee. In columns (7)-(9), they are interacted with the average shares over the sample period instead. In columns (4)-(9), domestic (resp. foreign) GDP gap is interacted with the domestic (resp. foreign) weight. In columns (1)-(3), there is no such interactions. Standard errors are clustered at the firm-level * p < 0.1; ** p < 0.05; *** p < 0.01

Auto90 CY fe back

Dependent variable					Auto90				
	Do	mestic + For	eign			For	eign		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Low-skill wage	1.3896*	1.4107	2.2798**	2.6344**	3.1221**	3.2536**	2.7215**	3.1094**	3.2428**
	(0.8386)	(0.8937)	(1.0390)	(1.1574)	(1.3170)	(1.3955)	(1.1927)	(1.3384)	(1.4122)
High-skill wage	-1.5576*	-1.5109	-1.0014	-3.0164**	-2.3531*	-2.6864**	-3.1666**	-2.6147^{*}	-2.8915^{**}
	(0.8304)	(0.9212)	(0.8793)	(1.2101)	(1.3149)	(1.2787)	(1.2485)	(1.3342)	(1.2984)
GDP gap	0.0387	0.0387	0.0405	-0.0044	-0.0060	-0.0042	-0.0053	-0.0070	-0.0053
	(0.0270)	(0.0270)	(0.0269)	(0.0361)	(0.0361)	(0.0360)	(0.0361)	(0.0362)	(0.0361)
Labor productivity		-0.1045			-1.0847			-0.8988	
		(1.1919)			(1.2059)			(1.1768)	
GDP per capita			-2.1599			-1.0595			-0.8978
			(1.4800)			(1.4139)			(1.3541)
Stock automation	-0.0537	-0.0536	-0.0556	-0.0572	-0.0576	-0.0577	-0.0577	-0.0580	-0.0581
	(0.0405)	(0.0406)	(0.0404)	(0.0405)	(0.0405)	(0.0405)	(0.0405)	(0.0404)	(0.0405)
Stock other	0.5846^{***}	0.5847^{***}	0.5845^{***}	0.5802^{***}	0.5794^{***}	0.5792^{***}	0.5802^{***}	0.5796^{***}	0.5795^{***}
	(0.0510)	(0.0509)	(0.0508)	(0.0508)	(0.0507)	(0.0506)	(0.0508)	(0.0507)	(0.0506)
Spillovers automation	1.7794^{***}	1.7789^{***}	1.7682^{***}	1.7676^{***}	1.7438^{***}	1.7562^{***}	1.7652^{***}	1.7459^{***}	1.7563^{***}
	(0.5417)	(0.5421)	(0.5434)	(0.5367)	(0.5388)	(0.5381)	(0.5357)	(0.5388)	(0.5370)
Spillovers other	-1.5492^{***}	-1.5469^{***}	-1.5563^{***}	-1.5439***	-1.5316***	-1.5527^{***}	-1.5350***	-1.5238***	-1.5431***
	(0.4359)	(0.4375)	(0.4366)	(0.4321)	(0.4320)	(0.4315)	(0.4305)	(0.4314)	(0.4298)
Fixed effects	F + CY	F + CY	F + CY	F + CY	F + CY	F + CY	F + CY	F + CY	F + CY
Observations	73485	73485	73485	73485	73485	73485	73485	73485	73485
Firms	4899	4899	4899	4899	4899	4899	4899	4899	4899

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson regressions fixed-effects (HHG). All regressions include firm and country-year fixed effects. All regressions with stock variables include a dummy for no stock and no spillover. In columns (4)-(6) domestic (resp. foreign) low-skill wages are interacted with the share of domestic (resp. foreign) low-skill wages, GDP per capita and VA per employee. In columns (7)-(9), they are interacted with the average shares over the sample period instead. In columns (4)-(9), domestic (resp. foreign) weight. In columns (1)-(3), there is no such interactions. Standard errors are clustered at the firm-level * p < 0.1: ** p < 0.05: *** p < 0.05

Correlation matrix


	Low-skill wage	Middle-skill wage	High-skill wage	$GDP \ gap$	GDP per capita	Labor productivity
Low-skill wage	1					
Middle-skill wage	0.9401	1				
High-skill wage	0.6009	0.7469	1			
GDP gap	-0.0660	-0.0239	0.0482	1		
GDP per capita	0.6972	0.7974	0.7277	-0.0117	1	
Labor productivity	0.6678	0.7340	0.7724	0.1980	0.6519	1

Note: Correlation of residuals for the auto95 sample controlling for year and firm fixed effects.

back

Monte Carlo simulations for low-skill wages

• Run Monte Carlo simulations where we reallocate innovation across firms. Report t-stats on wage coefficients for baseline regression with GDP per capita. Back

1/skill premium and placebo

Dependent variable			Mac	hinery		
		Domestic -	+ Foreign		For	eign
	(1)	(2)	(3)	(4)	(5)	(6)
Low-skill / High-skill wage	0.2310	0.1733	0.1669	0.2370	-0.5869	-0.5817
	(0.6330)	(0.6275)	(0.8357)	(0.8471)	(1.2623)	(1.2637)
GDP gap	-0.0309^{***}	-0.0316^{***}	-0.0066	-0.0070	0.0170	0.0138
	(0.0105)	(0.0105)	(0.0187)	(0.0187)	(0.0348)	(0.0323)
GDP per capita		-1.3201**		-0.9322		-0.1680
		(0.5270)		(0.8127)		(0.6333)
Stock own	0.0865^{**}	0.0871**	0.0961^{**}	0.0950^{**}	0.0965^{**}	0.0962**
	(0.0408)	(0.0406)	(0.0405)	(0.0404)	(0.0408)	(0.0406)
Stock other	0.4796^{***}	0.4766^{***}	0.4852^{***}	0.4852^{***}	0.4875^{***}	0.4864^{***}
	(0.0464)	(0.0464)	(0.0459)	(0.0458)	(0.0450)	(0.0449)
Spillovers own	2.6743^{***}	2.3165^{***}	1.1452^{***}	1.0975^{**}	1.1430^{***}	1.1370^{***}
	(0.4073)	(0.4400)	(0.4423)	(0.4402)	(0.4405)	(0.4400)
Spillovers other	-2.3977^{***}	-1.9672^{***}	-1.2693^{**}	-1.1955^{**}	-1.2786^{**}	-1.2721^{**}
	(0.5072)	(0.5527)	(0.5058)	(0.5035)	(0.5002)	(0.4977)
Fixed effects	F + Y	F + Y	F + CY	F + CY	F + CY	F + CY
Observations	115575	115575	115515	115515	115515	115515
Firms	7705	7705	7701	7701	7701	7701

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson regressions fixed-effects (HHG). Columns (1)-(2) include firm fixed effects and year dummies. Columns (3)-(6) include firm and country-year fixed effects. All regressions with stock variables (resp. spillover variables) include a dummy for no stock (resp. no spillover). Columns (5)-(6) use the log difference between foreign low-skill wages interacted with the share of foreign low-skill wages in total low-skill wages at the beginning of the sample and foreign high-skill wages similarly interacted; GDP gap and GDP per capita are also their interacted foreign components. Standard errors are clustered at the firm-level. * p < 0.1; ** p < 0.05; *** p < 0.01

Timing Back

Dependent variable				Aut	095						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)			
Lags (Leads)	-5	-4	-3	-2	-1	0	1	2			
	Panel A: baseline										
Low-skill wage	2.4892***	3.1465^{***}	3.3830***	3.7365***	3.3440***	3.0233***	3.2320***	2.5366^{***}			
~	(0.9175)	(0.8858)	(0.8750)	(0.9116)	(0.8936)	(0.9104)	(0.9183)	(0.8982)			
High-skill wage	0.9347	0.1035	-0.2368	-0.4838	-0.8886	-1.7253^{**}	-1.6841^{**}	-1.6868*			
	(0.8260)	(0.7801)	(0.7565)	(0.7650)	(0.7645)	(0.8349)	(0.8300)	(0.8912)			
GDP per capita	-2.7077**	-2.6067^{***}	-2.9108^{***}	-3.3618^{***}	-3.2312^{***}	-2.5012^{**}	-2.7849^{**}	-2.5574^*			
	(1.0927)	(0.9184)	(0.8558)	(0.8917)	(0.9855)	(1.1452)	(1.2627)	(1.4724)			
Fixed effects	$\mathbf{F} + \mathbf{Y}$	F + Y	$\mathbf{F} + \mathbf{Y}$	F + Y	F + Y	F + Y	F + Y	$\mathbf{F} + \mathbf{Y}$			
Observations	47565	48240	49395	50115	50670	51315	52470	53940			
Firms	3171	3216	3293	3341	3378	3421	3498	3596			
		Pa	anel B: countr		effects						
Low-skill wage	1.0489	1.6500	2.1535^{*}	3.0411^{**}	2.8868^{**}	2.0860	1.8020	0.3302			
	(1.5051)	(1.3450)	(1.2019)	(1.2232)	(1.2274)	(1.2729)	(1.2749)	(1.2557)			
High-skill wage	0.0284	-1.0556	-1.4233	-1.7526	-1.5110	-2.0731^*	-1.8181*	-1.5345			
	(1.1186)	(1.1073)	(1.1018)	(1.1046)	(1.0873)	(1.1229)	(1.0894)	(1.0889)			
GDP per capita	-0.9674	-1.1475	-1.6233	-2.8260	-3.1942	-1.9300	-1.4501	-0.4721			
	(2.0060)	(1.8890)	(1.8120)	(2.0242)	(2.0544)	(2.0595)	(1.9272)	(1.8742)			
		n 10									
Low-skill wage	1.8642	2 9249*	ntry-year fixe 3.1771**	d effects and 3.7989**	toreign varial 3.3156**		1.00.10	0.0399			
Low-skiii wage			(1.5734)			1.9156	1.9842				
High-skill wage	(1.6482) 1.4684	(1.5679) -1.1048	(1.5734) -2.7589*	(1.6370) -3.3526**	(1.6605) -2.9976**	(1.6756) -3.0576**	(1.7913) -2.5558*	(1.8767) -2.1341			
High-skill wage											
GDP per capita	(1.7706) -2.4369	(1.4707) -1.4358	(1.4794) -0.5750	(1.3633) -0.5289	(1.3875) -0.1492	(1.4395) 1.0430	(1.3960) 0.7528	(1.4394) 1.8798			
GDr per capita	(1.7216)	(1.7172)	-0.5750 (1.8799)	-0.5289 (1.9347)	-0.1492 (1.9087)	(1.8682)	(1.8246)	(1.8961)			
	· /	· /	· · ·	(· · ·	· · · ·	· /	<u> </u>			
Fixed effects	F + CY	F + CY	F + CY	F + CY	F + CY	F + CY	F + CY	F + CY			
Observations	47565	48240	49365	50070	50595	51255	52410	53895			
Firms	3171	3216	3291	3338	3373	3417	3494	3593			

Note: Marginal effects, Standard errors in parentheses. Each panel represents a different regression. All regressions contain controls for GDP gap, stocks and spillovers, for which we do not report the coefficient. The independent variables (varges, GDP and GDP gap) are lagged by the number of periods indicated in lag, except for the stock variables which are always lagged by 2 periods. Estimation is by conditional Poisson regressions fixed-effects (HHG). Panel A regressions, contain firm and year fixed effects. Panel B and C regressions contain firm and country-year fixed effects. In Planel Ar C regressions, warges are replaced with foreign wages interacted with the share of foreign wages in total wages at the beginning of the sample, and similarly for the other macro variables. Standard errors are clustered at the firm-level p > 0.1; p > 0.05; m > 0.05, m > 0.

Subcomponents

Dependent Variable	AutoX95	Auto80	Automat [*] 90	Automat [*] 80	Robot 90	Robot 80	CNC 90	CNC 80
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Low-skill wage	3.3630***	2.6821***	3.5169***	2.7574***	1.8204	3.2420***	-2.2039	-1.1100
	(0.9754)	(0.6677)	(1.2207)	(1.0092)	(1.6276)	(1.2362)	(2.1666)	(1.7553)
High-skill wage	0.1429	0.4858	-0.1368	0.0721	1.1749	-0.7976	2.7072	1.5419
	(0.8206)	(0.5592)	(0.9414)	(0.7547)	(1.6237)	(1.2595)	(2.0778)	(1.4857)
GDP gap	0.0356*	0.0018	0.0037	-0.0087	0.0290	0.0382	0.0296	0.0208
	(0.0183)	(0.0121)	(0.0218)	(0.0176)	(0.0370)	(0.0270)	(0.0415)	(0.0305)
GDP per capita	-3.5802^{***}	-3.5251***	-3.2686***	-3.0322***	-3.8276*	-2.1214	0.8667	0.3249
	(1.0445)	(0.7236)	(0.9354)	(0.8876)	(1.9969)	(1.6989)	(2.9560)	(2.3555)
Stock own	-0.1449**	0.0234	-0.1228**	-0.0900*	-0.3156^{***}	-0.1349*	-0.3031**	-0.2883***
	(0.0571)	(0.0369)	(0.0606)	(0.0526)	(0.1000)	(0.0792)	(0.1527)	(0.1002)
Stock other	0.6507***	0.5240***	0.6757***	0.6341***	0.8272***	0.6349^{***}	0.5648^{***}	0.6129^{***}
	(0.0640)	(0.0455)	(0.0877)	(0.0737)	(0.1297)	(0.0983)	(0.1300)	(0.0952)
Spillovers own	1.0370***	1.1951**	0.6897	0.7882*	0.4072	0.2669	0.6402^{*}	0.4261
	(0.3992)	(0.5109)	(0.4362)	(0.4751)	(0.5038)	(0.3193)	(0.3645)	(0.2750)
Spillovers other	-0.9125***	-0.9592**	-0.6828***	-0.6597*	-0.2324	-0.2693	-1.3296**	-0.5943
*	(0.3007)	(0.4427)	(0.2642)	(0.3484)	(0.3267)	(0.2696)	(0.5171)	(0.3998)
Fixed effects	$\mathbf{F} + \mathbf{Y}$	F + Y	F + Y	F + Y	$\mathbf{F} + \mathbf{Y}$	$\mathbf{F} + \mathbf{Y}$	$\mathbf{F} + \mathbf{Y}$	$\mathbf{F} + \mathbf{Y}$
Observations	48600	97635	34170	50220	17670	24645	8970	15000
Firms	3240	6509	2278	3348	1178	1643	598	1000

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson regressions fixed-effects (HHG). Stocks and spillovers are calculated with respect to the dependent variable. All regressions include firm fixed effects and year dummies. All regressions include a dummy for no stock and no spillover. Standard errors are clustered at the firm-level. * p < 0.01; *** p < 0.05; *** p < 0.01

Alternatives to biadic as quality control

Dependent Variable	Auto95								
	Biadic (US, JP, EU)		Tria	adic					
	(1)	(2)	(3)	(4)					
Low-skill wage	2.2776**	3.6377***	3.1886**	4.8171***					
	(1.0383)	(1.1449)	(1.4150)	(1.5950)					
High-skill wage	-1.3409	-0.0925	-2.3417^{*}	-0.9527					
	(0.9663)	(0.9133)	(1.3640)	(1.3336)					
GDP gap	0.0397^{**}	0.0382^{**}	0.0178	0.0158					
	(0.0191)	(0.0192)	(0.0289)	(0.0290)					
GDP per capita		-3.5710^{***}		-4.0592^{**}					
		(1.0090)		(1.6804)					
Stock automation	-0.1683^{***}	-0.1740^{***}	-0.3665^{***}	-0.3722^{***}					
	(0.0597)	(0.0598)	(0.0772)	(0.0771)					
Stock other	0.6342^{***}	0.6433^{***}	0.6500^{***}	0.6560^{***}					
	(0.0662)	(0.0652)	(0.0875)	(0.0870)					
Spillovers automation	0.3839	0.7402^{*}	0.7925	0.9280^{*}					
	(0.4014)	(0.4057)	(0.5469)	(0.5550)					
Spillovers other	-0.5402^{**}	-0.8222^{***}	-0.3499	-0.7226					
	(0.2587)	(0.2685)	(0.4685)	(0.5312)					
Observations	40410	40410	26310	26310					
Firms	2694	2694	1754	1754					

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson regressions fixed-effects (HHG). All regressions include firm fixed effects and year dummies. All regressions include a dummy for no stock and no spillover. Columns (1)-(2) consider biadic patents in at least two countries among US, JP, EU. Columns (3)-(4) consider triadic patents. Standard errors are clustered at the firm-level. * p < 0.1; ** p < 0.05; *** p < 0.01

Middle-skill wages

Dependent Variable					Auto95				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Low-skill wage	4.7035***		3.8985***	5.1140***		4.2760***	4.4204***		4.1503***
	(1.4991)		(1.3667)	(1.5892)		(1.4222)	(1.5087)		(1.3903)
Middle-skill wage	-3.9194^{**}	2.3617^{**}	-2.2614	-4.2997^{**}	2.4746^{**}	-2.5516	-1.1345	4.2681^{***}	-0.6235
	(1.6096)	(1.0085)	(1.6773)	(1.6815)	(1.0411)	(1.6819)	(1.5678)	(1.1856)	(1.7027)
High-skill wage		-1.7189^{*}	-0.9608		-1.8154*	-1.0225		-1.1170	-0.3643
		(0.9218)	(0.8867)		(0.9485)	(0.8960)		(0.9053)	(0.8589)
GDP gap				0.0288^{*}	0.0216	0.0304^{*}	0.0265^{*}	0.0186	0.0271^{*}
				(0.0153)	(0.0151)	(0.0157)	(0.0151)	(0.0150)	(0.0156)
GDP per capita							-3.4017^{***}	-3.3267^{***}	-3.2856^{***}
							(0.9643)	(0.9865)	(0.9138)
Stock automation	-0.1454^{***}	-0.1404***	-0.1457^{***}	-0.1460***	-0.1405^{***}	-0.1464^{***}	-0.1509^{***}	-0.1448^{***}	-0.1509^{***}
	(0.0508)	(0.0508)	(0.0509)	(0.0509)	(0.0509)	(0.0510)	(0.0511)	(0.0510)	(0.0511)
Stock other	0.6458^{***}	0.6394^{***}	0.6436^{***}	0.6456^{***}	0.6389^{***}	0.6433^{***}	0.6503^{***}	0.6450^{***}	0.6494^{***}
	(0.0598)	(0.0598)	(0.0600)	(0.0599)	(0.0600)	(0.0601)	(0.0593)	(0.0594)	(0.0595)
Spillovers automation	0.4733	0.4518	0.5330^{*}	0.5007^{*}	0.4692	0.5657^{*}	0.8454^{***}	0.7663^{**}	0.8569^{***}
	(0.2891)	(0.3140)	(0.3097)	(0.2885)	(0.3143)	(0.3105)	(0.3114)	(0.3245)	(0.3220)
Spillovers other	-0.3173	-0.1874	-0.3100	-0.3478	-0.2013	-0.3416	-0.5992^{***}	-0.4552^{**}	-0.5887^{**}
	(0.2254)	(0.2208)	(0.2265)	(0.2247)	(0.2197)	(0.2257)	(0.2302)	(0.2264)	(0.2301)
Fixed effects	$\mathbf{F} + \mathbf{Y}$	$\mathbf{F} + \mathbf{Y}$	$\mathbf{F} + \mathbf{Y}$	F + Y	F + Y	F + Y	$\mathbf{F} + \mathbf{Y}$	F + Y	F + Y
Observations	50115	50115	50115	50115	50115	50115	50115	50115	50115
Firms	3341	3341	3341	3341	3341	3341	3341	3341	3341

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson regressions fixed-effects (HHG). All regressions include firm fixed effects and year dumed with stock variables include a dummy for no stock and no spillover. Standard errors are clustered at the firm-level $^* p < 0.01$; $^{**} p < 0.05$; $^{***} p < 0.05$

Nickell's bias

Dependent Variable				А	uto95			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Low-skill wage	2.3903***	3.8111***	2.1515***	2.2756***	2.0925**	3.3064^{***}	2.3955**	2.5926**
	(0.8004)	(0.8733)	(0.7991)	(0.8300)	(0.9778)	(1.1699)	(0.9713)	(1.1376)
High-skill wage	-1.5544^{**}	-0.2518	-0.9069	-0.2523	-2.4648^{**}	-1.6999	-2.5627^{***}	-2.2586^{**}
	(0.7840)	(0.7392)	(0.6129)	(0.8284)	(0.9779)	(1.0525)	(0.9338)	(1.0549)
GDP gap	0.0276^{*}	0.0256	0.0266	0.0241	0.0653^{*}	0.0679^{**}	0.0752^{**}	0.0773^{**}
	(0.0159)	(0.0157)	(0.0191)	(0.0189)	(0.0343)	(0.0343)	(0.0353)	(0.0354)
GDP per capita		-3.8282***		-1.4329		-2.9746		-0.6334
		(0.8762)		(1.3087)		(1.9049)		(1.8229)
Stock automation		. ,	1.1938^{***}	1.1803***		. ,	1.1912^{***}	1.1861***
			(0.0244)	(0.0240)			(0.0243)	(0.0236)
Stock other	0.5101^{***}	0.5148^{***}	0.0895^{***}	0.0891^{***}	0.5230^{***}	0.5219^{***}	0.0869***	0.0873***
	(0.0454)	(0.0437)	(0.0120)	(0.0119)	(0.0439)	(0.0434)	(0.0120)	(0.0118)
Spillovers automation	0.3519	0.7057**	0.0098	-0.0228	1.3383***	1.3247***	-0.0667	-0.0442
	(0.2949)	(0.3032)	(0.0746)	(0.0724)	(0.4669)	(0.4699)	(0.0784)	(0.0776)
Spillovers other	-0.0735	-0.3940*	0.0219	0.0692	-1.0318***	-1.0459^{***}	0.1163	0.0930
	(0.2127)	(0.2153)	(0.0782)	(0.0779)	(0.3544)	(0.3541)	(0.0827)	(0.0824)
Fixed effects	$\mathbf{F} + \mathbf{Y}$	$\mathbf{F} + \mathbf{Y}$	BGVR + Y	$\mathrm{BGVR} + \mathrm{Y}$	F + CY	$\mathbf{F} + \mathbf{C}\mathbf{Y}$	$\mathrm{BGVR} + \mathrm{CY}$	BGVR + CY
Observations	50115	50115	50115	50115	50070	50070	50070	50070
Firms	3341	3341	3341	3341	3338	3338	3338	3338

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson regressions fixed-effects (HHG) in columns (1), (2), (5) and (6). In columns (3), (4), (7) and (8), estimation is done by Poisson regressions where the firm fixed effects are replaced by the pre-sample mean, following Blundell, Griffith and Van Reenen (1999, BGVR). Columns (1) to (4) include year fixed effects and columns (5) to (8) country-year fixed effects. All regressions with stock variables (resp. spillover variables) include a dummy for no stock (resp. no spillover). Standard errors are clustered at the firm-level. * p < 0.1; * p < 0.05; *** p < 0.01

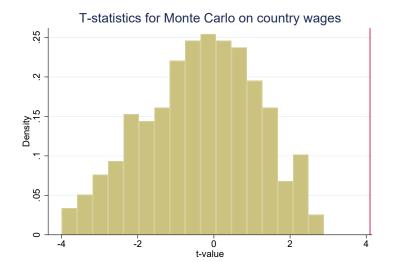
Deflators Back

Dependent Variable	Auto95								
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Low-skill wage	3.7365***	2.4627***	3.9223***	2.7140***	3.4104***	3.2654^{***}	3.7675**	2.5337***	
	(0.9116)	(0.8351)	(0.9351)	(0.8686)	(0.9896)	(0.8400)	(1.5237)	(0.8874)	
High-skill wage	-0.4838	-1.6180**	-0.6187	-1.7475^{**}	-0.8389	-1.5307*	-0.1621	-0.6657	
	(0.7650)	(0.8033)	(0.7646)	(0.7943)	(0.8541)	(0.8034)	(0.9158)	(0.8844)	
GDP gap	0.0265^{*}	0.0279^{*}	0.0271^{*}	0.0285^{*}	0.0304^{*}	0.0197	0.0448^{**}	0.0287^{*}	
	(0.0156)	(0.0158)	(0.0157)	(0.0158)	(0.0160)	(0.0144)	(0.0178)	(0.0152)	
GDP per capita	-3.3618^{***}		-3.3402^{***}		-4.2436^{***}	-2.1549^{***}	-3.0981^{***}	-2.2709^{**}	
	(0.8917)		(0.9144)		(1.0551)	(0.7233)	(1.2015)	(0.9264)	
Stock automation	-0.1504^{***}	-0.1441^{***}	-0.1510^{***}	-0.1439^{***}	-0.1522^{***}	-0.1524^{***}	-0.1470^{***}	-0.1477^{***}	
	(0.0510)	(0.0509)	(0.0511)	(0.0510)	(0.0514)	(0.0511)	(0.0514)	(0.0511)	
Stock other	0.6489^{***}	0.6408^{***}	0.6458^{***}	0.6392^{***}	0.6498^{***}	0.6448^{***}	0.6533^{***}	0.6503^{***}	
	(0.0595)	(0.0600)	(0.0595)	(0.0600)	(0.0593)	(0.0598)	(0.0595)	(0.0594)	
Spillovers automation	0.8587^{***}	0.5442^{*}	0.8775^{***}	0.5795^{*}	1.1422^{***}	0.9717^{***}	0.9116^{***}	0.8723^{**}	
	(0.3213)	(0.3135)	(0.3120)	(0.3073)	(0.3714)	(0.3421)	(0.3533)	(0.3498)	
Spillovers other	-0.5853^{**}	-0.3014	-0.5912^{***}	-0.3314	-0.7249^{***}	-0.6025^{**}	-0.5122^{**}	-0.4704^{*}	
	(0.2303)	(0.2248)	(0.2290)	(0.2259)	(0.2361)	(0.2407)	(0.2564)	(0.2602)	
Fixed effects	$\mathbf{F} + \mathbf{Y}$	F + Y	$\mathbf{F} + \mathbf{Y}$						
Observations	50115	50115	50115	50115	50115	50115	50115	50115	
Firms	3341	3341	3341	3341	3341	3341	3341	3341	

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson regressions fixed-effects (HHG). All regressions include firm fixed effects and year dummies. All regressions with stock variables include a dummy for no stock and no spillover. Columns (1) and (2) consider manifacturing wages and GDP per capita deflated by manifacturing PPI (USD 2005), (5) considers manifacturing wages and GDP per capita deflated by manifacturing PPI (USD 2005), (5) considers manifacturing wages and GDP per capita deflated by local GDP deflator (USD 1995), (6) considers manifacturing PPI (USD 1995), (6) considers manifacturing PPI (USD every year), (7) consider total wages and GDP per capita deflated by manifacturing PPI (USD 1995), (8) considers total wages and GDP per capita deflated by US manifacturing PPI (USD every year). Standard errors are clustered at the firm-level * p < 0.01; ** p < 0.05; *** p < 0.01

Weights Back

Dependent Variable	Auto95											
	1985	1985-1994		1970-1989		GDP^0		DP^1				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)				
Low-skill wage	2.4739***	3.7419***	1.8155*	3.0953***	1.8685**	3.1229***	2.8690***	3.8862***				
	(0.8691)	(0.9387)	(0.9480)	(0.9991)	(0.7776)	(0.8903)	(0.8855)	(0.8988)				
High-skill wage	-1.7055**	-0.2061	-0.8990	0.0754	-1.3791*	-0.5817	-1.6609**	-0.0664				
	(0.8288)	(0.8641)	(0.8354)	(0.7733)	(0.8226)	(0.7850)	(0.7114)	(0.7221)				
$GDP \ gap$	0.0226	0.0188	0.0140	0.0134	0.0276*	0.0288*	0.0265*	0.0214				
	(0.0163)	(0.0162)	(0.0164)	(0.0163)	(0.0154)	(0.0153)	(0.0158)	(0.0156)				
GDP per capita	(0.0100)	-3.9086*** (1.1661)	(0.0101)	-3.1164*** (0.9376)	(0.0101)	-2.8432*** (0.8687)	(0.0100)	-3.6086*** (0.8483)				
Stock automation	-0.1337**	-0.1426***	-0.1194**	-0.1256***	-0.1436***	-0.1486***	-0.1429***	-0.1489***				
Stock other	(0.0524)	(0.0527)	(0.0602)	(0.0606)	(0.0509)	(0.0511)	(0.0511)	(0.0509)				
	0.6539^{***}	0.6553^{***}	0.6900^{***}	0.6959^{***}	0.6414^{***}	0.6471^{***}	0.6385^{***}	0.6467^{***}				
Spillovers automation	(0.0639)	(0.0630)	(0.0769)	(0.0761)	(0.0600)	(0.0594)	(0.0598)	(0.0593)				
	0.5655^*	0.8970^{***}	0.2618	0.5929^*	0.4091	0.7351^{**}	0.8056^{**}	1.0189^{***}				
Spillovers other	(0.3154)	(0.3273)	(0.3206)	(0.3210)	(0.3093)	(0.3256)	(0.3340)	(0.3271)				
	-0.3401	-0.6299***	-0.3772	-0.6481***	-0.1913	-0.4962**	-0.4680**	-0.6526***				
	(0.2303)	(0.2376)	(0.2435)	(0.2379)	(0.2311)	(0.2397)	(0.2265)	(0.2267)				
Fixed effects	(0.2000)	(0.2010)	(0.2400)	(0.2010)	(0.2011)	(0.2001)	(0.2200)	(0.2201)				
	F + Y	F + Y	F + Y	F + Y	F + Y	F + Y	F + Y	F + Y				
Observations	45735	45735	35955	35955	50115	50115	50115	50115				
Firms	3049	3049	2397	2397	3341	3341	3341	3341				


Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson regressions fixed-effects (IHIG). All regressions include firm fixed effects and year dummies. All regressions with stock variables (resp. spillover variables) include a dummy for no stock (resp. no spillover). In columns (1) and (2) firms' country weights for the macroeconomic variables are computed over the period 1985-1994; and over the period 1970-1989 for columns (3) and (4). Columns (5) to (8) use the baseline pre-sample period of 1970-1994, but columns (5) and (6) do not adjust for *GDP* in the computation of the weights and columns (7) and (8) use *GDP* instead of *GDP*^{0.35} to adjust for countries' size in the computation of the weights. Standard errors are clustered at the firm-level. * p < 0.1; ** p < 0.05; *** p < 0.01

Recent literature on Bartik / shift-share

- Goldsmith Pinkham, Sorkin and Swift (2018) on consistency:
 - Bartik instrument is equal to (time-interacted) country-weights as instruments in firm-regression
 - Here plausible that firm's weights are uncorrelated with future country trends.
- Borusyak, Hull and Jaravel (2018)
 - Firm weights just need to be uncorrelated with wage growth in countries (though all countries x year must be small)
 - Country-year fixed effects help here
- Adão, Kolesár and Morales (2018) on standard errors
 - Very much about within labor-market area labor market clearing
 - Our setting: Concern that standard errors might be correlated within firms with exposure to same export markets.
 - Suggestions for corrected standard errors

Monte Carlo simulations for low-skill wages Back

• Run Monte Carlo simulations where we reallocate country macro variables. Report t-stat on low-skill wage coefficient for baseline regression with GDP per capita.

Time trend in automation Back

Dependent variables	Au	to 95 and oth	r + low au	ito	Auto95 and low auto	Auto95 and other and low auto
	(1)	(2)	(3)	(4)	(5)	(6)
time trend*dummy auto $95*$ German exposure	0.6309** (0.2502)	0.6245*** (0.2296)	0.7726* (0.3957)	0.0929** (0.0366)	0.6486*** (0.2464)	0.6523*** (0.2322)
time trend*dummy auto95*post_2003*German exposure	-1.2330^{***}	-1.2322^{***}	-1.3229^{**}	-0.1810**	-1.2500 ***	-1.2826***
	(0.4473)	(0.4291)	(0.5273)	(0.0766)	(0.4605)	(0.4300)
dummy auto95*post_2003*German exposure			-0.7289 (1.0856)			
time trend*dummy low auto*German exposure			(1.0000)			0.0081
•						(0.1278)
time trend*dummy low auto*post_2003*German exposure						-0.0386
						(0.1835)
vear dummy*German exposure	Y	Y	Y	Y	Y	Y
firm innovation stocks * innovation types	N	Y	Y	Y	Y	Y
firm *innovation types fixed effects	Y	Y	Y	Y	Y	Y
country * year * innovation types fixed effects	Y	Y	Y	Y	Y	Y

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson regressions fixed-effects (HHG). All regressions include firm innovation types fixed effects, country year innovation types fixed effects and controls for the year dummy times the measure of German exposure. German exposure is measured by the German weights in all regressions except for column (4) where it is replaced by a dummy signaling that the firm is in the top quartile of Germany exposed firms. Innovation types are auto95 and (other + low auto) in columns (1) to (4), auto 95 and low auto in column (5). All ergressions with stock variables include a dummy for no stock. Standard errors are clustered at the firm-level." P = 0.1, "P = 0.01," P = 0.01," P = 0.01