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Labor Market Discrimination

>
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Title VII of the Civil Rights of 1964 prohibits employment discrimination
on the basis of race, sex, and other protected characteristics

Empirical literature focuses on measuring market-level averages of
discrimination (Altonji and Blank, 1999; Guryan and Charles, 2013)

» Observational studies of “unexplained” gaps (Oaxaca, 1978)

» Audit/correspondence experiments (Bertrand and Mullainathan,
2004)

Understanding variation in discrimination across employers is essential

» For enforcing the law — e.g. targeting of EEOC investigations
> For assessing effects on minority workers (Becker, 1957; Charles and
Guryan, 2008)

We develop tools for using correspondence experiments to detect illegal
discrimination by individual employers



Agenda: Ensembles and Decisionmaking

» Correspondence studies send multiple applications to each job opening
P We view this as an ensemble of many small experiments
P Use the ensemble in service of two goals

P Learn about the distribution of discrimination across employers

P Interpret the evidence against particular employers (“indirect
evidence,” Efron, 2010)

P Take the perspective of hypothetical auditor (e.g. the EEOC) who must
make decisions about which employers to investigate

P Treat auditor’s problem as an exercise in large scale testing (Efron, 2012)

P We develop methods and apply them to 3 experimental data sets



Setup and Notation

» Sample of J jobs, each receiving L,, white and Lj black applications
(total L=Lp+ Ly)

> R;; € {b, w} indicates race of application ¢ to job j (randomly
assigned)

> Y, € {0,1} indicates a callback from job j to applicant ¢
» (Cjw, Cjp) count callbacks for each race:
L L

Cw = Zl{f_\’je =w}Yj, Cp = Zl{'r\’je =b}Yj .
(=1 =1



Potential Outcomes

P Potential callback to application £ to job j as a function of race r:
Yje(r) : {b,w} — {0,1}
P Observed callback outcome is Yje = Yje(Rje)

Represent potential outcomes as job-specific function of race and other
factors Uje:

Yie(r) = Y;(r, Uye)

P Assumption 1: Stable job-specific callback rule:
Uje|Riv.... R % Uniform(0,1)

» Distribution of U, does not depend on {Ry}5_; by virtue of random
assignment

P Key restriction is that the Uj are independent — rules out e.g. firms
calling back first qualifed app and ignoring subsequent apps (test later)



Defining Discrimination

» Under Assumption 1, we have stable race-by-job callback probabilities in
repeat experiments:

1
ijE/ Yj(r,u)du,re{b,w}
0
P Define discrimination as D; = 1{p; # pjw}

P Distinguish idiosyncratic/ex-post (Yje(b) # Yje(w)) vs.
systematic/ex-ante (pj» 7# pjw) discrimination

P Systematic definition is relevant for prospective enforcement



Binomial Mixtures

P Under Assumption 1, callback counts C; = (Cjw, Cj») at employer j are
generated by binomial trials:

Ly

LW w Ly—cw Lp—
e ) e @t () pe)

Pr(G = clpjw, pp) = <
= f(clpjw, pjp)

» Assumption 2: Random sampling

(ij7 ij) E G (‘a )

P Observed callback probabilities are a mixture of binomials:

Pr(G = ¢) = [ F(clpu: p)dG(pu: 1) = (0

P “Mixing distribution” G(-,-) governs heterogeneity in callback rates
across employers



Importance of G(-, )

P One reason for interest in G(-,) is that it characterizes prevalence and
severity of discrimination in the population

P Fraction of jobs that are not discriminating:
1

0 = / dG(p, p)
0

P Second reason: tool for deciding which jobs are discriminating
» By Bayes' rule, fraction discriminating among jobs with callback

configuration G; is:

(1-7%
Pw#Pb J



Indirect Evidence

(1-7°)
Pr(D; = 1/G) = F(CilPw, P6)AG(Pus pi) X )
Pw#Pb £(G)
direct indirect
P “Posterior’ blends direct evidence from an employer's own behavior with
indirect evidence from the population from which it was drawn

P Key parameter: 7° serves the role of “prior” probability of innocence

P How best to use indirect evidence in decisionmaking?



Auditor’'s Problem
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Consider an auditor (e.g. the EEOC) who knows G(-,-) and must decide which
employers to investigate

Decision rule §(c) : {0...Lw} x {0...Lp} — {0,1} maps callbacks to a binary
inquiry decision

Loss function depends on number of type | and type Il errors:

£5(8) = %54 {9(G) (1=D)) k+[1-6(G)] D;y

Type | Type Il

The Dj are unknown, so the auditor minimizes expected loss (i.e. risk),
R,(G,6) = E[L,(3)]

Reasonable doubt: investigate when P(Cj, G) > £/(x + )

N.B.: Posterior threshold rule controls False Discovery Rate (FDR), while
classical hypothesis test does not (Benjamini and Hochberg, 1995; Storey, 2003)



Moments



Moments of G(-, )

P It turns out that some features of G(-,-) are nonparametrically identified

P Observed callback frequencies are given by

= I—w q w—Cw L c —q
f(cw,cb)=E[( )pjx(l—pjw)L ( ")pj;(l—pjb)Lb ]

Cw Cb
Ly—cw Lp—cp
_ LW Lb X+ LW — Cw Lb — Cp
_(CW)(%)ZOZO(—DS - -
x=! s=
< E [pjfw+xpj%,+s] )
P Collect into system relating f's to moments p(m, n) = Elpjwpjp):
f=Bu — pu=B"1f

P Implies identification of all moments u(m, n) with m < Ly, n < L.

» Example: Var(pyw — pjp) identified as long as min{L,, Ly} > 2.



Data

P Apply methods to data from three resume correspondence studies:

» Bertrand and Mullainathan (2004): Racial discrimination in
Boston/Chicago

» Nunley et al. (2015): Racial discrimination among recent college
graduates in the US

P Arceo-Gomez and Campos-Vasquez (2014): Gender discrimination

in Mexico

P Estimation: GMM, and “shape-constrained” GMM requiring moments to
be consistent with a coherent probability distribution

P Standard errors based on “numerical bootstrap” of Hong and Li
(2017)

» Test model restrictions using bootstrap method of Chernozhukov,
Newey, and Santos (2015)



Table I: Descriptive statistics for resume correspondence studies

Bertrand & Arceo-Gomez &
Mullainathan Nunley et al. Campos-Vasquez
@) 2) 3)
Number of jobs 1,112 2,305 802
Applications per job 4 4 8
Treatment/control Black/white Black/white Male/female
Design Stratified 2x2 Sample 4 names Stratified 4x4
w/out replacement
Callback rates: Total 0.079 0.167 0.123
Treatment 0.063 0.154 0.108
Control 0.094 0.180 0.138
Difference -0.031 -0.026 -0.030
(0.007) (0.007) (0.008)




First Two Moments of G(-,-) Are ldentified in BM

Table III: Moments of callback rate distribution, BM data

Moment Estimate

Elpy] 0.094

(0.006)

E[py] 0.063

(0.006)

El(p,, — E[pw])?] 0.040
(0.005)

El(py — Elpy] )?] 0.023
(0.004)

El(pyw — Elpw] )0~ Elpp] )] 0.028
(0.004)

E[(py— Elpy) )*(p — Elpp])] 0.015
(0.003)

El(p,, — E[pw] )0y — E[ps] )] 0.012
(0.003)

El(p,, — E[pw] )4(p), — Elpy] )] 0.010
(0.003)

Sample size 1,112




Shape Constraints Do Not Bind

Table I11: Moments of callback rate distribution, BM data

No Shape
constraints constraints
Moment (1) 2)

Elpw] 0.094 0.094
(0.006) (0.007)

Elpy] 0.063 0.063
(0.006) (0.006)

El(py, — Elpw])?] 0.040 0.040
(0.005) (0.004)

El(p, — Elpy] )] 0.023 0.023
(0.004) (0.003)

El(pw = Elpw] )Py~ Elpy] )] 0.028 0.028
(0.004) (0.003)

El(py— Elpw] )2 (s — Elpp])] 0.015 0.014
(0.003) (0.002)

El(py — Elpu] )y — E[pp] )] 0.012 0.012
(0.003) (0.002)

El(p,, — Elpw] )*(, — E[pp] )?] 0.010 0.010
(0.003) (0.002)

J -statistic: 0.00

P-value: 1.000
Sample size 1,112




Substantial Variation in Discrimination

Table VI.A: Treatment effect variation in BM (2004)

P Pw Pb-Pw
) ®) 3)
Mean 0.063 0.094 -0.031
(0.006) (0.007) (0.006)
Standard deviation 0.152 0.199 0.082
(0.011) (0.011) (0.012)
Correlation with p ,, 0.927 1.000 -0.717
(0.055) - (0.089)




First Two Moments in Nunley et al. Data
Table IV: Moments of callback rate distribution, Nunley et al. data

(2,2)

Moment design

E[py] 0.174
(0.010)

Elpy] 0.148
(0.010)

El(py, — E[pw]?] 0.089
(0.007)

El(p, — E[py] ) 0.085
(0.007)

El(py — E[pwD (@b — Elpp] )] 0.083
(0.006)

El(py, — E[p])*(Pp — Elpp])] 0.044
(0.004)

El(py — Elpw)) (P — E[pp] )*] 0.047
(0.005)

El(py, — E[pwD*®p, — Elpp] )? 0.036
(0.004)

Sample size 1,146




Extra Designs ldentify Extra Moments

Table IV: M ts of callback rate distribution, Nunley et al. data
22) (3.1) (1,3)
design design design
Moment [6)) 2 3)
Elpy] 0.174 0.199 0.142
(0.010) (0.025) (0.015)
Elpp] 0.148 0.149 0.157
(0.010) (0.015) (0.013)
El(py — E[pu)?] 0.089 0.108 -
(0.007) (0.009)
El(p, —Elp,])? 0.085 - 0.083
(0.007) (0.008)
El(w = E[pwD @y — Elpp])] 0083 0.084 0.080
(0.006) (0.009) (0.009)
El(py — E[pu])’] - 0.051 -
(0.008)
El(py ~Elpp] )] - - 0.044
(0.007)
Elpy —Elpul)* (s — Elpp])]  0.044 0.043 -
(0.004) (0.007)
El(py — E[pu) (pp — Elpp] )21 0.047 - 0.045
(0.005) (0.007)
El(py — Elpu]* Py — Elpy])] - 0.034 -
(0.005)
El(py = ElpuD(pp — E[py])°] - - 0.037
(0.006)

El(py, ~ E[puD*(y — Elpp] )21 0.036 - -
(0.004)

Sample size 1,146 544 550




Joint Test of All Restrictions Does Not Reject

Table IV: M of callback rate distribution, Nunley et al. data
Design-specific estimates
2,2) (EN)) (1,3) Combined
design design design  P-value  estimates
Moment @) (€] 3) “ )

Elpy] 0.174 0.199 0.142 0.027 0.177

(0.010) (0.025) (0.015) (0.007)

Epp) 0.148 0.149 0.157 0.854 0.153

(0.010) (0.015) (0.013) (0.007)

El(py, — Elpy, D3 0.089 0.108 - 0.097 0.095
(0.007) (0.009) (0.004)

El(py — E[pp] )] 0.085 - 0.083 0.857 0.084
(0.007) (0.008) (0.004)

El(w —ElPuD @y — Elpp])]  0.083 0.084 0.080 0.926 0.084
(0.006) (0.009) (0.009) (0.004)

El(p, —E[p,)?] - 0.051 - 0.106
(0.008) (0.006)

El(py —E[py])°] - - 0.044 0.092
(0.007) (0.006)

El(py, —Elpw))?(p — Elpp] )] 0.044 0.043 - 0.875 0.040
(0.004) (0.007) (0.002)

El(py — ElpuD @y — E[pp))?] 0047 - 0.045 0.819 0.042
(0.005) (0.007) (0.002)

El(py — ElpuD* @y~ Elpy])] - 0.034 - - 0.035
(0.005) (0.002)

El(py — E[Pu)) @y — Elpy] )] - - 0.037 - 0.037
(0.006) (0.002)

El(p,, — E[puD*(py, — Elpp] )] 0.036 - - - 0.038
(0.004) (0.002)

Sample size 1,146 544 550 2,240




Treatment Effects Are Variable and Skewed

Table VI.B: Treatment effect variation in Nunley et al. (2015)

P Pw Pb-Pw
€9) 2 3
Mean 0.153 0.177 -0.023
(0.007) (0.007) (0.005)
Standard deviation 0.290 0.308 0.102
(0.008) (0.007) (0.009)
Correlation with p ,, 0.944 1.000 -0.336
(0.018) - (0.048)
Skewness 3.757 3.648 -4.450

(0.074) (0.087) (0.405)




Thick Tail of Extreme Discriminators in AGCV

Table VI.C: Treatment effect variation in AGCV

Pm Py Pm-DPr
€)) 2 3
Mean 0.114 0.140 -0.025
(0.009) (0.009) (0.008)
Standard deviation 0.231 0.257 0.179
(0.011) (0.010) (0.011)
Correlation with p 0.735 1.000 -0.483
(0.035) - (0.051)
Skewness 4.067 3.748 -1.403
(0.140) (1.161) (0.385)
Excess kurtosis 8.452 5.756 12.227
(1.458) (8.790) (2.291)




Posteriors



Bounds on Priors and Posteriors

P Moments of G(-,-) aren’t enough to compute posterior P(C;, G)
> Conservative approach: use what we know about G(,-) to bound prior 7°
and posterior P(C;, G)

» Upper bound on prior share innocent:

-0 __ 1 r_
= max Jo dG(p,p) s.t. f=Buc

P Following Tebaldi et al. (2019), search over space & of discretized
bivarate CDFs

P Objective and constraints are linear in p.m.f associated with G(-,-) —>
apply linear programming
P Same approach can be used to bound other notions of discrimination, e.g.

share not discriminating against blacks: / dG(ps, pw)-
Pb>Pw



In BM, At Most 87% of Jobs Are Innocent

Table VII: Upper bounds on shares not discriminating, BM data

Share not
discriminating:
Pr(p w = Pb )
@)

| 0.870

J -statistic: 29.26
P -value (bound = 1): 0.000




At Most 56% Making Two Total Calls Are Innocent

Table VII: Upper bounds on shares not discriminating, BM data

Share not
discriminating:
PI’(p w = Pb )
Callbacks (1)

All 0.870
0 0.962
1 0.576
2 0.558
3 0.492
4 0.788
J -statistic: 29.26

P -value (bound = 1): 0.000




Cannot Reject Zero Discrimination Against Whites

Table VII: Upper bounds on shares not discriminating, BM data

Share not Share not disc. Share not disc.

discriminating:  against whites: against blacks:

Pr(p. =p») Pr(pw 2p») Pr(p. <p»)

Callbacks (1) 2) 3)

All 0.870 1.000 0.870
0 0.962 1.000 0.962
1 0.576 1.000 0.576
2 0.558 1.000 0.558
3 0.492 1.000 0.492
4 0.788 1.000 0.788
J -statistic: 29.26 0.00 29.26

P -value (bound = 1): 0.000 1.000 0.000




In BM, At Least 72% With C; = (2,0) Discriminate

Figure I: Lower bounds on posterior probabilities of discrimination, BM data
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In Nunley et al., Cannot Reject Pr(pj, > pjp) =1

Table VIII: Upper bounds on shares not discriminating, Nunley et al. data

Share not Share not disc. ~ Share not disc.
discriminating: against whites:  against blacks:

Pr(pw :pb) Pr(pwzpb) Pr(pWSPb)

Design Callbacks (D) 2) 3)

All All 0.642 0.846 0.827
(2,2) 0 0.848 0.907 0.952
1 0.328 0.815 0.567

2 0.309 0.984 0.325

3 0.179 0.933 0.264

4 0.579 0.743 0.872

J -statistic: 62.64 23.46 62.64

P-value (bound = 1): 0.000 0.120 0.000




At Most 33% That Make Two Calls Have p;, < pj

Table VIII: Upper bounds on shares not discriminating, Nunley et al. data

Share not Share not disc. ~ Share not disc.
discriminating: against whites:  against blacks:
Pr(pw =Ph) Pr(pw 2pb) Pr(pw Spb)

Design Callbacks (1) (2) 3)

All All 0.642 0.846 0.827
(2,2) 0 0.848 0.907 0.952
1 0.328 0.815 0.567

2 0.309 0.984 | 0.325

3 0.179 0.933 0.264

4 0.579 0.743 0.872

J -statistic: 62.64 23.46 62.64

P-value (bound = 1): 0.000 0.120 0.000




Informative Bounds In Other Designs and Callback Strata

Table VIII: Upper bounds on shares not discriminating, Nunley et al. data
Share not Share not disc. ~ Share not disc.
discriminating: against whites:  against blacks:

Pr(py =ps)  Pr(p, 2py) Pr(py <ps)

Design Callbacks (2) (3) (4)
All All 0.642 0.846 0.827
(2,2) 0 0.848 0.907 0.952
1 0.328 0.815 0.567
2 0.309 0.984 0.325
3 0.179 0.933
4 0.579 0.743 0.872
3.1 0 0.853 0.898 0.964
1 0.337 0.894 0.549
2 0.332 0.998 0.336
3 0.151 0.922 0.251
4 0.566 0.767 0.837
(1,3) 0 0.839 0.916 0.936
1 0.323 0.754 0.594
2 0.326 0.958
3 0.204 0.955
4 0.581 0.723
J-statistic: 62.64 23.46

P-value (bound = 1): 0.000 0.120




Lower Bounds on Posteriors Above 85%

Figure II: Lower bounds on posterior probabilities of discrimination, Nunley et al. data
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In AGCV, Discrimination in Both Directions

Table IX: Upper bounds on shares not discriminating, AGCV data

Share not Share not disc. ~ Share not disc.
discriminating: against women: against men:
Prp;=pn) Prpy=pn)  Prps<p.)
Callbacks 1 2) 3)

All 0.723 0911 0.812
0 0.864 0.960 0.905
1 0.105 0.586 0.520
2 0.284 0.740 0.544
3 0.424 0.953 0.472
4 0.497 0.945 0.553
5 0.654 0.829 0.825
6 0.591 0.788 0.803
7 0.514 0.843 0.671
8 0.924 0.989 0.935
J -statistic: 369.66 33.88 359.95

P-value (bound = 1): 0.000 0.005 0.000




Lower Bounds on Posteriors Above 90%

Figure III: Lower bounds on posterior probabilities of discrimination, AGCV data
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Decisions



Decisions

» Consider auditor’s decision problem under a particular parametric model
for G(-,-)

P Detection/error tradeoff (DET) curve: Tradeoff between false accusation
and successful detection for a fixed number of apps

» Build DET curves for three versions of Nunley et al. experiment:
» Two black/two white, random covariates

> Five black/five white, random covariates

» Optimal 10-app combination of race/covariates



Parametric Model: Mixed Logit

P Logit model for callback to application £ at job j:

exp (o — Bi1{Rje = b} + Xji))
1+exp (aj — Bil{Rje = b} + X]ﬂ/})

Pr(Yje = 1‘0@'75]7 ij)gl) =

| 2 Rj¢ indicates race, Xj includes other randomly-assigned characteristics
(GPA, experience, etc.)

P Normal/discrete type mixing distribution:

Qj ~ N (a070—g¢) ’

exp(To+Ta )
/B. . {ﬁo7 Wlth prob m,
) =

1
0, with prob. Trep(roTraa)) "



Discrimination is Rare But Intense

Table X: Mixed logit estimates, Nunley et al. data

Types
Constant No selection Selection
0] ©) 3)
Distribution of logit(p,): ay -4.708 -4.931 -4.927
(0.223) (0.242) (0.280)
Oq 4.745 4.988 4.983
(0.223) (0.249) (0.294)
Discrimination intensity: S, 0.456 4.046 4.053
(0.108) (1.563) (1.576)
Discrimination logit: 7, - -1.586 -1.556
(0.416) (1.098)
Tq - - -0.005
(0.180)
Fraction with p,, #p, : 1.000 0.168 0.170
Log-likelihood -2,792.1 -2,788.2 -2,788.2
Parameters 15 16 17

Sample size 2,305 2,305 2,305




Discrimination is Not A “Luxury”

Table X: Mixed logit estimates, Nunley et al. data

Types
Constant No selection Selection
€)) (2 (3)
Distribution of logit(p,): ay -4.708 -4.931 -4.927
(0.223) (0.242) (0.280)
[ 4.745 4.988 4.983
(0.223) (0.249) (0.294)
Discrimination intensity: 0.456 4.046 4.053
(0.108) (1.563) (1.576)
Discrimination logit: 7 - -1.586 -1.556
(0.416) (1.098)
Tq - - -0.005
(0.180)
Fraction with p,, #p, : 1.000 0.168 0.170
Log-likelihood -2,792.1 -2,788.2 -2,788.2
Parameters 15 16 17
Sample size 2,305 2,305 2,305




The Logit Model Fits Well

Figure IV: Mixed logit model fit
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Covariates Generate Variation in Posteriors

Figure V: Mixed logit estimates of posterior discrimination probabilities, Nunley et al. data
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With 2 Pairs, 80% Threshold Yields Few Accusations

Figure VI: Detection/error tradeoffs, Nunley et al. data
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Sending 5 Pairs Boosts Detection Substantially

Figure VI: Detection/error tradeoffs, Nunley et al. data
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Optimizing Portfolio Yields Further Gains

Figure VI: Detection/error tradeoffs, Nunley et al.

data
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Fixing Size at 0.01 Yields More (Mostly False) Accusations

Figure VI: Detection/error tradeoffs, Nunley et al. data
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Ambiguity



Auditing Under Ambiguity

>

>

How would decisions change if the auditor admits that G(-,-) might not
be logit?

Important (extreme) benchmark for decisionmaking under ambiguity:
minimax decision rule

Minimax risk function and decision rule when auditor knows G lies in
some identified set ©:

R7(0,6) = sup Ry(G,d), 6™ = arginf RT(O,6)
Geo g

Think of ™" as an estimator of unobserved D;'s that “shrinks” towards a
least favorable prior

Contrast risk and decisions based upon mixed logit prior with minimax
decisions



Logit Risk With Kk =4, v =1

Figure VII: Logit and minimax risk, Nunley et al. data
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Minimax Decision Rule Is More Aggressive!

Figure VII: Logit and minimax risk, Nunley et al. data
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Concluding Thoughts

P This paper develops and applies methods for detecting illegal
discrimination by specific employers

P> We find tremendous heterogeneity in discrimination — implies enforcement
is a difficult inferential problem

P Nevertheless, favorable detection rates are achievable with relatively
minor modifications to standard audit designs — suggests potential for
real-time enforcement

» Methodological lessons:

P Partial identification of response distribution does not preclude
“borrowing strength” from the ensemble

» Appropriate use of indirect evidence depends critically on
investigator's loss function

P Question for future work: how do policy conclusions in other “empirical
Bayes” evaluations of individual units (e.g. teachers, schools, hospitals,
neighborhoods) vary with alternative notions of loss?



Bonus



Posterior Threshold Rule

P Risk R,(G, ) can be rewritten
Lw Lp
J Z /{S(CW, c)(1 = Plcw, cb, G))k + [1 — 6(cw, c)]P(cw, ¢, G)7}

cw=0 cp=0

X f(Cw, Cb|Pw, Pb)dG (Pw, Pb)

P Integrand is minimized by setting §(c) = 0 when P(c, G) < 5 and
d(c) = 1 otherwise

P Risk-minimizing decision rule is therefore

§(c) = 1{7>(c, G) > %}



pFDR; Control

> Let N, = Zle 0(C;) denote the total number of investigations

P Positive False Discovery Rate of Storey (2003) is defined:

PFDRy = E [N} 33/, 8(G)(1 - D)IN; > 1]

P Storey (2003) showed pFDR; = Pr(D; = 0|6(C;) = 1), so

pFDR, = Pr (DJ =0|P(G, G) > L)

Y+K

< Pr (D,- — 0[P(C;, G) = L) _

Ytk Y+E"

» Pr(N, > 1) <1, so posterior threshold rule also controls
FDR, = pFDR; x Pr(N; > 1).



Discretization of G

P We approximate G(pw, p») with the discrete distribution:
K K
Gic (pwrps) = D> mal{pw < o(k 1), ps < o(l,k)}

k=1 I=1

> {mu} _ are probability masses

> {o(k,1),0(l, k)}f:’f,zl are a set of mass point coordinates generated by

min{x,y} —1 max{0,x — 2
o(x,y) = {x, ¥} { ¥}

K K1+K-y)
—_—
diagonal off-diagonal

P Gives a two-dimensional grid with K? elements, equally spaced along the
diagonal and quadratically spaced off the diagonal according to distance
from diagonal



Shape Constrained GMM

P Let f denote vector of empirical callback frequencies

P Shape constrained GMM estimator of 7 solves quadratic programming
problem:

# = arginf (f — BMz) W(f — BMx) s.t. 7 >0, 1'm = 1.

M is a dim(p) x K? matrix defined so that Mm = i for G
Shape constrained moment estimates: i = M#

W is weighting matrix — use two-step optimal weighting

vV v.v .Y

Set K = 150 for GMM estimation



Hong and Li (2017) Standard Errors

P Bootstrap p* solves QP problem replacing f with (f—i— J*1/4f*), where
elements of f* given by:

7Y W 1{ Gy=cw, Cip=cp}
— : )
J Zj w;

P Weights w; drawn iid from exponential distribution with mean 0 and
variance 1

P Standard errors for ¢(/i) computed as standard deviation of
J7Y4p(u*) — ¢(f2)] across bootstrap replications



Chernozhukov et al. (2015) Goodness of Fit Test

P> “J_test” goodness of fit statistic:
T, =inf (f — BMa)'S (f — BMn) s.t. 7 >0, I'r =1
P Letting F* denote (centered) bootstrap analogue of fand W* a
weighting matrix, bootstrap test statistic is

Ty =inf (F" — BMn)' W*(F" — BMn)
s.t. (f = BMx) W(f = BMn)=T,, >0, ' =1, h> —m, 1’"h=0.

» As in the full sample, conduct two-step GMM estimation in bootstrap
replications

P Calculate p-value as fraction of bootstrap samples with 7,7 > T,

P Solve via Second Order Cone Programming



No Evidence That Callbacks Are Rival

Table II: Tests for across trials
Nunley et al. data AGCV data
Main effect  Leave-out mean Main effect  Leave-out mean
Variable (1) 2) Variable (3) (@)
Black -0.028 -0.019 Married 0.001 0.002
(0.010) (0.027) (0.008) (0.033)
Female 0.010 0.009 Age 0.003 0.002
(0.010) (0.027) (0.003) (0.005)
High SES -0.233 -0.674 Scholarship -0.003 -0.060
(0.174) (0.522) (0.010) (0.050)
GPA -0.043 -0.153 Predicted callback rate -0.644 -0.136
(0.066) (0.198) (0.504) (0.888)
Business major 0.008 0.010
(0.008) (0.021)
Employment gap 0.011 0.034
(0.009) (0.023)
Current unemp.: 3+ 0.013 0.005
(0.012) (0.032)
6+ -0.008 -0.038
(0.012) (0.029)
12+ 0.001 0.021
(0.012) (0.032)
Pastunemp.: 3+ 0.029 0.065
(0.012) (0.031)
6+ 0011 0016
(0.012) (0.033)
12+ -0.004 0.019
(0.012) (0.031)
Predicted callback rate 0.476 -0.041
(0.248) (0.626)
Joint p -value [ 0.452 | Joint p -value 0.589

Sample size 9,220 Sample size 6,416




Linear Programming

P Optimization problem for computing upper bound on share innocent:

K K K K
?Jr%ZZM/Qk/)st ZZm/zl, T >0

1=0 k=0 k=1 I=1
P Additional moment constraints for all (cw, cp):
z Ly Ly K K
f(cw, ) = ( Cw ) ( & > Zk:l 21:1 Tkl
xo(k,)™ (1 — o (k, )™~ o(I,k)® (1 — o (1, k).

P> Set K = 900 for computing bounds



Computing Maximum Risk

P Letting H and L refer to high and low quality covariate values, we approximate
G(p, P, pf!, pp) with

K K K K
Gk (P, pL P PE) =D D3> muwn
k=1 I1=1 k’=11"=1
x1{pll <ok, 1),pk <o(K,I"),pfl <o(l,k),p5 <eo(l,K)}.

P Maximal risk function for posterior cutoff q:

RT(q) =J max Zwa

T ki 17 }ae ofy

x {Pr(6(Cj,a,q) =1,0;=0)k+Pr(5(Cj,a,q) =0,D; =1)~}

P o/ is list of possible quality configurations with corresponding probabilities w,

P Constraints: mys s positive and sum to 1, along with matching a list of
logit-smoothed callback frequencies

P Joint probabilities Pr (5 (Cj, a,q) = 1, D; = d) linear in mysy (see Appendix D)

P> Set K = 30 when computing maximal risk in practice
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