Sentiment and speculation in a market with heterogeneous beliefs

Ian Martin Dimitris Papadimitriou

July, 2019

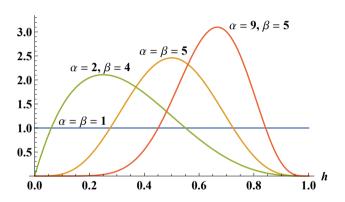
Introduction

- Agents disagree about the probabilities of good/bad news
- Optimists go long; pessimists go short
- If the market rallies, optimists get rich; if the market sells off, pessimists get rich
- In either case, ex post winners' beliefs become overrepresented in prices
- This sentiment effect boosts volatility, and hence risk premia
- Sentiment induces speculation: agents trade at prices that they think are not warranted by fundamentals, in anticipation of adjusting their positions in future

Setup

- Agents indexed by $h \in (0,1)$ are initially endowed with one unit of a risky asset
- The asset evolves on a binomial tree with exogenous terminal payoffs
- The interest rate is normalized to zero
- Agent *h* thinks the probability of an up-move is *h*
- Agents have log utility over terminal wealth

Setup



• The mass of agents with belief h follows a beta distribution, pdf

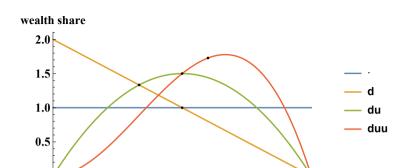
$$f(h) \propto h^{\alpha-1} (1-h)^{\beta-1}$$
 where $\alpha, \beta > 0$

Equilibrium (1): individual optimization

- With log utility, agents behave myopically
- Solve backwards: the price of the risky asset is p_d or p_u next period
- Agent *h* chooses number of units of risky asset held:

$$x_h = w_h \left(\frac{h}{p - p_d} - \frac{1 - h}{p_u - p} \right)$$

• If $p_d < p_u$ then pessimistic agents, $h \approx 0$, are short, and optimists, $h \approx 1$, are long



0.6

0.8

1.0

• After m up and n down steps, agent h's share of aggregate wealth is

0.4

0.2

$$\frac{w_h}{p} = \frac{B(\alpha, \beta)}{B(\alpha + m, \beta + n)} h^m (1 - h)^n$$

• The richest agent is h = m/(m+n); this agent looks right in hindsight

Equilibrium (2): market clearing

• Price *p* clears the market. At time t = m + n,

$$p = \frac{p_{u}p_{d}}{H_{m,t}p_{d} + (1 - H_{m,t})p_{u}}$$

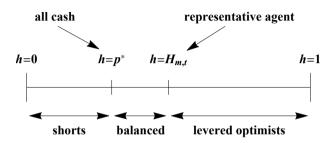
where

$$H_{m,t} = \frac{m+\alpha}{t+\alpha+\beta} = \int_0^1 h \frac{w_h f(h)}{p} dh$$

is wealth-weighted average belief

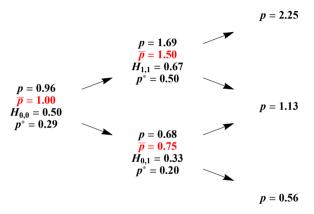
• Write p^* for risk-neutral probability of an up-move, defined via $p = p^*p_u + (1 - p^*)p_d$

Two special investors

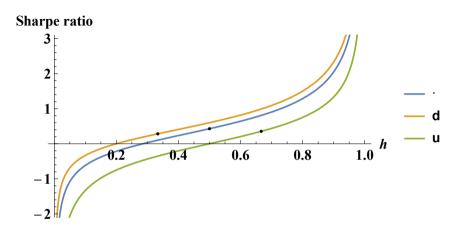


- Share of wealth agent h invests in the risky asset is $\frac{h-p^*}{H_{m,t}-p^*}$
- Representative agent—"Mr. Market"—with $h = H_{m,t}$ invests fully in the risky asset
- The agent with $h = p^*$ invests fully in the bond

Example 1: Geometric payoffs, uniform belief distribution



p: price in homog. economy. $H_{m,t}$: identity of rep agent. p^* : risk-neutral prob.



- Mr. Market perceives a higher Sharpe ratio in the up state than the down state
- This is the opposite of what any individual thinks

- T = 50 periods to go. Uniform beliefs
- Bond defaults (recover 30) in the bottom state. Else pays 100
- In order of increasing pessimism:
 - h = 0.50 thinks default prob is less than 10^{-15}
 - h = 0.25 thinks default prob is less than 10^{-6}
 - h = 0.10 thinks default prob is less than 0.6%
 - ▶ h = 0.05 thinks default prob is less than 8%
 - h = 0.01 thinks default prob is just over 60%
- Initially, h = 0.50 is the representative agent
- What price does the bond trade at?

- T = 50 periods to go. Uniform beliefs
- Bond defaults (recover 30) in the bottom state. Else pays 100
- In order of increasing pessimism:
 - h = 0.50 thinks default prob is less than 10^{-15}
 - h = 0.25 thinks default prob is less than 10^{-6}
 - h = 0.10 thinks default prob is less than 0.6%
 - ▶ h = 0.05 thinks default prob is less than 8%
 - h = 0.01 thinks default prob is just over 60%
- Initially, h = 0.50 is the representative agent
- What price does the bond trade at? at \$95.63

- T = 50 periods to go. Uniform beliefs
- Bond defaults (recover 30) in the bottom state. Else pays 100
- In order of increasing pessimism:
 - h = 0.50 thinks default prob is less than 10^{-15}
 - h = 0.25 thinks default prob is less than 10^{-6}
 - h = 0.10 thinks default prob is less than 0.6%
 - ▶ h = 0.05 thinks default prob is less than 8%
 - h = 0.01 thinks default prob is just over 60%
- Initially, h = 0.50 is the representative agent
- What price does the bond trade at? at \$95.63
- Who would go short, at this price?

- T = 50 periods to go. Uniform beliefs
- Bond defaults (recover 30) in the bottom state. Else pays 100
- In order of increasing pessimism:
 - h = 0.50 thinks default prob is less than 10^{-15}
 - h = 0.25 thinks default prob is less than 10^{-6}
 - h = 0.10 thinks default prob is less than 0.6%
 - ▶ h = 0.05 thinks default prob is less than 8%
 - h = 0.01 thinks default prob is just over 60%
- Initially, h = 0.50 is the representative agent
- What price does the bond trade at? at \$95.63
- Who would go short, at this price? everyone below h = 0.48!

- T = 50 periods to go. Uniform beliefs
- Bond defaults (recover 30) in the bottom state. Else pays 100
- In order of increasing pessimism:
 - h = 0.50 thinks default prob is less than 10^{-15}
 - h = 0.25 thinks default prob is less than 10^{-6}
 - h = 0.10 thinks default prob is less than 0.6%
 - ▶ h = 0.05 thinks default prob is less than 8%
 - h = 0.01 thinks default prob is just over 60%
- Initially, h = 0.50 is the representative agent
- What price does the bond trade at? at \$95.63
- Who would go short, at this price? everyone below h = 0.48!
- Who will *stay* short?

- T = 50 periods to go. Uniform beliefs
- Bond defaults (recover 30) in the bottom state. Else pays 100
- In order of increasing pessimism:
 - h = 0.50 thinks default prob is less than 10^{-15}
 - h = 0.25 thinks default prob is less than 10^{-6}
 - ▶ h = 0.10 thinks default prob is less than 0.6%
 - h = 0.05 thinks default prob is less than 8%
 - h = 0.01 thinks default prob is just over 60%
- Initially, h = 0.50 is the representative agent
- What price does the bond trade at? at \$95.63
- Who would go short, at this price? everyone below h = 0.48!
- Who will stay short? marginal agent p^* at time 0, 1, 2, ... is h = 0.48, 0.31, 0.22, ...

- T = 50 periods to go. Uniform beliefs
- Bond defaults (recover 30) in the bottom state. Else pays 100
- In order of increasing pessimism:
 - h = 0.50 thinks default prob is less than 10^{-15}
 - h = 0.25 thinks default prob is less than 10^{-6}
 - ▶ h = 0.10 thinks default prob is less than 0.6%
 - h = 0.05 thinks default prob is less than 8%
 - h = 0.01 thinks default prob is just over 60%
- Initially, h = 0.50 is the representative agent
- What price does the bond trade at? at \$95.63
- Who would go short, at this price? everyone below h = 0.48!
- Who will *stay* short? marginal agent p^* at time 0, 1, 2, . . . is h = 0.48, 0.31, 0.22, . . . ; only <math>h < 0.006 stay short to the bitter end

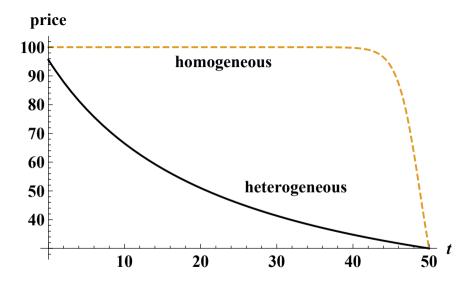


Figure: The risky bond's price over time following consistently bad news.

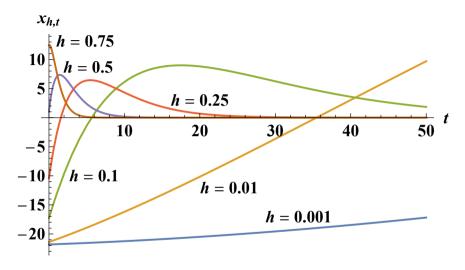


Figure: The number of units of the risky bond held by different agents, $x_{h,t}$, plotted against time.

Example 3: A diffusion limit

- Slice the period from 0 to *T* into 2*N* short periods
- Geometrically increasing terminal payoffs with volatility σ (Cox–Ross–Rubinstein)
- Tune down per-period disagreement by parametrizing $\alpha = \beta = \theta N$
- Low θ : lots of disagreement. $\theta \to \infty$: homogeneous economy
- ullet The belief distribution is very spiky, so we write $h=\widetilde{\mathbb{E}}[h]+z\sqrt{\widetilde{\mathrm{var}}[h]}$
- Now let $N \to \infty$. All agents perceive returns as lognormal and agree on (\mathbb{P}) volatility

annualized return
$$\operatorname{vol}_{0 o t} = \left(rac{ heta + 1}{ heta + rac{t}{T}}
ight) \sigma$$

• But they disagree on risk premia...

Result (Subjective expectations)

Agent z's annualized expected return is

$$\frac{1}{t}\log \mathbb{E}^{(z)}R_{0\to t} = \frac{\theta+1}{\theta+\frac{t}{T}}\left[\frac{z\sigma}{\sqrt{\theta T}} + \frac{\theta+1}{\theta}\frac{\theta+\frac{t}{2T}}{\theta+\frac{t}{T}}\sigma^2\right]$$

In particular, the cross-sectional average expected return is

$$\widetilde{\mathbb{E}} \frac{1}{t} \log \mathbb{E}^{(z)} R_{0 \to t} = \frac{(\theta + 1)^2 \left(\theta + \frac{t}{2T}\right)}{\theta \left(\theta + \frac{t}{T}\right)^2} \sigma^2$$

Disagreement is the cross-sectional standard deviation of expected returns:

$$disagreement = rac{ heta+1}{ heta+rac{t}{T}}rac{\sigma}{\sqrt{ heta T}}$$

Result (Option pricing and the volatility term structure)

The time-0 price of a call option with maturity t and strike price K is

$$p_0\Phi(d_1) - K\Phi(d_1 - \widetilde{\sigma}_t\sqrt{t})$$

where

$$d_1 = rac{\log{(p_0/K)} + rac{1}{2}\widetilde{\sigma}_t^2 t}{\widetilde{\sigma}_t \sqrt{t}}$$
 and $\widetilde{\sigma}_t = rac{ heta + 1}{\sqrt{ heta(heta + rac{t}{T})}}\,\sigma$

In particular, short-dated options have $\widetilde{\sigma}_0 = \frac{\theta+1}{\theta}\sigma$ and long-dated options have $\widetilde{\sigma}_T = \sqrt{\frac{\theta+1}{\theta}}\sigma$

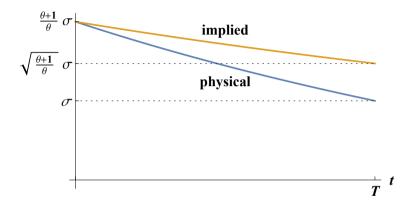


Figure: The term structures of implied and physical volatility.

• Variance risk premium $\frac{1}{T} \left(\text{var}^* \log R_{0 \to T} - \text{var} \log R_{0 \to T} \right) = \frac{\sigma^2}{\theta}$

An illustrative calibration

	Model	Data
1mo implied vol	18.6%	18.6%
1yr implied vol	18.2%	18.1%
2yr implied vol	17.7%	17.9%
1yr disagreement	4.4%	4.8%
10yr disagreement	2.9%	2.9%
1yr mean risk premium	3.3%	3.8%
10yr mean risk premium	1.9%	3.6%

- We set T = 10 and $\sigma = 12\%$
- We set belief heterogeneity parameter θ to 1.8

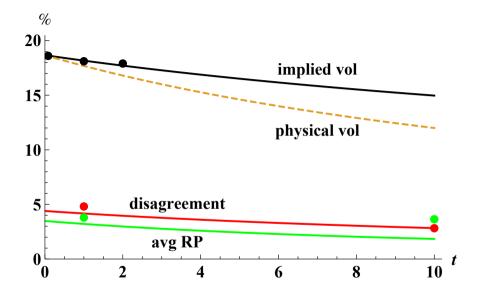


Figure: Volatility term structures in the baseline calibration with $\theta = 1.8$.

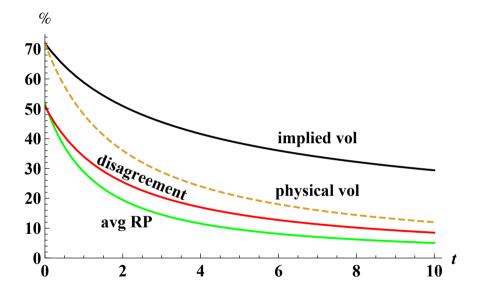


Figure: Volatility term structures in a "crisis" calibration with $\theta = 0.2$.

Speculation and Sharpe ratios

- As agents have different beliefs but agree on market prices, they have different SDFs
- Results so far supply the static Sharpe ratio of the risky asset
- But the max dynamic Sharpe ratio attains the Hansen-Jagannathan (1991) bound

Result

The maximum Sharpe ratio (as perceived by investor z) is finite for $\theta > 1$ and is equal to

$$\mathit{MSR}_{0
ightarrow T}^{(z)} = \sqrt{rac{ heta}{\sqrt{ heta^2 - 1}}} \exp \left\{ rac{\left[{f z} \sqrt{ heta} + (heta + 1)\, \sigma \sqrt{T}
ight]^2}{ heta\, (heta - 1)}
ight\} - 1$$

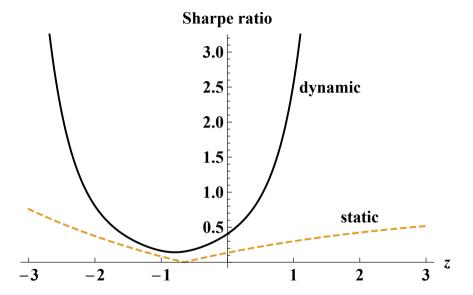


Figure: Max Sharpe ratio (annualized) as perceived by investor z. Baseline calibration.

The gloomy investor

• The gloomy investor who perceives the smallest MSR has $z=z_g$,

$$z_g = -rac{ heta+1}{\sqrt{ heta}}\sigma\sqrt{T}$$

• This investor perceives zero instantaneous Sharpe ratio, but a positive MSR associated with a contrarian strategy: buy if the market sells off, sell if the market rallies

$$ext{MSR}_{0 o T}^{(z_g)} = \sqrt{rac{ heta}{\sqrt{ heta^2-1}}-1}$$

Agents have target prices

• Terminal wealth of agent z is

$$W^{(z)}(p_T) = p_0 \sqrt{rac{ heta+1}{ heta}} \exp\left\{rac{1}{2} \left(z-z_g
ight)^2 - rac{1}{2(1+ heta)\sigma^2 T} \left[\log\left(p_T/K^{(z)}
ight)
ight]^2
ight\}$$

• Target price $K^{(z)}$ for investor z—their ideal outcome—satisfies

$$\log K^{(z)} = \mathbb{E}^{(z)} \log p_T + (z - z_g) \sigma \sqrt{\theta T}$$

- Gloomy investor $z=z_g$ wants to be proved right: ideal outcome equals expected outcome (in logs)
- But extremists are happiest if the market moves even more than they expect

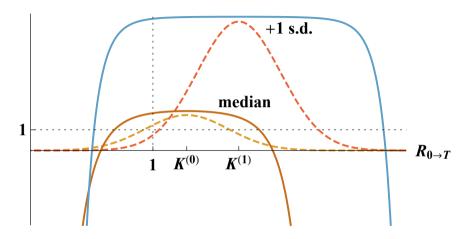


Figure: MSR strategies (solid) are far from optimal strategies (dashed). Log scale on x-axis.

Conclusions

- Sentiment generates volatility, speculation, and volume
- Sentiment can push prices either up or down
- Extreme outcomes are far more important than in a homogeneous economy
- Downward-sloping vol term structure in a diffusion limit, and a variance risk premium
- Agents have target prices
- Moderate investors are contrarian, "short vol", supply liquidity to extremists