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Abstract

We present a dynamic model featuring risk-averse investors with

heterogeneous beliefs. Individual investors have stable beliefs and risk

aversion, but agents who were correct in hindsight become relatively

wealthy; their beliefs are overrepresented in market sentiment, so “the

market” is bullish following good news and bearish following bad news.

Extreme states are far more important than in a homogeneous economy.

Investors understand that sentiment drives volatility up, and demand

high risk premia in compensation. Moderate investors supply liquidity:

they trade against market sentiment in the hope of capturing a variance

risk premium created by the presence of extremists.
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In the short run, the market is a voting machine but in the long

run it is a weighing machine.

—Attributed to Benjamin Graham by Warren Buffett.

In this paper, we study the effect of heterogeneity in beliefs on asset prices.

We work with a frictionless dynamically complete market in which uncertainty

evolves along a binomial tree. The model is populated by a continuum of risk-

averse agents who differ in their beliefs about the probability of good news.

As a result, agents position themselves differently in the market. Opti-

mistic investors make leveraged bets on the market; pessimists go short. If the

market rallies, the wealth distribution shifts in favor of the optimists, whose

beliefs become overrepresented in prices. If there is bad news, money flows to

pessimists and prices more strongly reflect their pessimism going forward. At

any point in time, one can define a representative agent who chooses to invest

fully in the risky asset, with no borrowing or lending—our analog of Benjamin

Graham’s “Mr. Market”—but the identity of the representative agent changes

every period, with his or her beliefs becoming more optimistic following good

news and more pessimistic following bad news. Thus market sentiment shifts

constantly despite the stability of individual beliefs.

All agents understand the importance of sentiment and take it into account

in pricing, so even moderate agents demand higher risk premia than they would

in a homogeneous economy, as they correctly foresee that either good or bad

news will be amplified by a shift in sentiment. The presence of sentiment

induces speculation: agents take temporary positions, at prices they believe to

be fundamentally incorrect, in anticipation of adjusting their positions in the

future. In our model, speculation can act in either direction, driving prices up

in some states and down in others. (In fact we show that for a broad class of

assets, including the “lognormal” case in which asset payoffs are exponential

in the number of up-moves, heterogeneity drives prices down and risk premia

up.) This feature is emphasized by Keynes (1936, Chapter 12); in Harrison and

Kreps (1978), by contrast, speculation only drives prices above fundamental

value. In our setting it can also happen that an agent—even the representative

agent—trades in one direction this period, in certain anticipation of reversing

his or her position next period.

2



Extreme states are much more important than they are in a homogeneous-

belief economy. Consider a stylized example. The riskless rate is 0%. A risky

bond matures in 50 days, and will default (paying $30 rather than the par value

of $100) only in the “bottom” state of the world, that is, only if there are 50

consecutive pieces of bad news. Investors’ beliefs about the probability, h, of

an up-move are uniformly distributed between 0 and 1. Optimists therefore

think default is almost impossible; a pessimistic agent with h = 0.25 thinks

the default probability is less than 10−6. Even an agent in the 95th percentile

of pessimism, h = 0.05, thinks the default probability is less than 8%. Initially,

the representative investor is the median agent, h = 0.5, who thinks the default

probability is less than 10−15. And yet we show that the bond trades at what

might seem a remarkably low price: $95.63. Moreover, almost half the agents—

all agents with beliefs h below 0.478—initially go short at this price, though

most will reverse their position within two periods.1 The low price arises

because all agents understand that if there is bad news next period, pessimists’

trades will have been profitable: their views will become overrepresented in

the market, so the bond’s price will decline sharply in the short run. Only

agents with h < 0.006 plan to stay short to the bitter end.

We start by solving the model in discrete time. Terminal payoffs are ex-

ogenously specified, and can be arbitrary, subject to being positive at every

node so that expected utility is finite. We find the wealth distribution, prices,

all agents’ investment decisions, and gross leverage at every node. We also

characterize the cross-section of subjective perceptions of expected returns,

volatilities, and Sharpe ratios. In general we do not take a stance on what

the objectively correct beliefs are, nor even on whether there are objectively

correct beliefs. But we can relate the equity premium perceived by the rep-

resentative agent to an objectively measurable quantity, risk-neutral variance,

that was proposed as a measure of the equity premium by Martin (2017).

After providing a formula for pricing in the general discrete-time case, we

solve the model in a natural continuous-time limit in which the risky asset’s

terminal payoffs are lognormally distributed. In this limit, the underlying

asset price agrees with the corresponding price in the continuous-time model

1Assuming there are two periods of bad news; if at any stage there is good news, the
bond becomes riskless and disagreement vanishes.
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of Atmaz and Basak (2018). As our framework is more tractable, we are able

to study various issues that they do not (though, unlike us, they also price

the underlying asset in the more general power utility case). We solve for

agents’ subjective beliefs about expected returns and true (“P”) volatility at

all horizons; and for option prices at all maturities. Implied (“Q”) volatility

is higher at short horizons, due to the effect of sentiment; and lower at long

horizons, due to the moderating influence of the terminal date at which pricing

is dictated entirely by fundamentals. “In the short run, the market is a voting

machine but in the long run it is a weighing machine.”

High implied volatility in the short run is also reflected in high physi-

cal measures of volatility (on which, in this continuous-time limit, all agents

agree): there is no short-run variance risk premium. But physical measures

of volatility decline more rapidly with horizon, so that there is a long-run

variance risk premium.

As different investors have different beliefs but agree on asset prices, they

have different stochastic discount factors (SDFs) whose properties help to re-

veal the interplay of beliefs, expected returns, and volatility. The volatility

of any investor’s SDF equals the maximum Sharpe ratio that the investor

perceives as achievable by trading dynamically in the market (Hansen and

Jagannathan, 1991). By comparing this to the Sharpe ratio the investor per-

ceives on the asset if it is statically held—or shorted—to maturity, we can

measure the perceived benefit of dynamic trade (i.e., of speculation, as in our

setting the only reason to trade dynamically is to exploit differences in beliefs:

without belief heterogeneity, agents would hold a static position). We also

solve for the entropies of investors’ SDFs (Alvarez and Jermann, 2005), which

in our setting reveal the dollar value that different agents attach to being able

to speculate.

All agents in our economy, particularly those with extreme beliefs, find

speculation attractive. Extremists undertake conditional strategies that are

increasingly aggressive as the market moves in their direction; in this sense,

they are “long volatility.” We show that each investor can be thought of as

having an investor-specific target price—the ideal outcome for the investor,

given his or her beliefs and hence trading strategy—that can usefully be com-

pared to what the investor expects to happen. The best possible outcome for
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an extremist is that the market moves by even more than he or she expected.

Conversely, investors with more moderate beliefs are short volatility. Among

moderates, there is a particularly interesting gloomy investor who perceives the

lowest maximum attainable Sharpe ratio of all investors. The gloomy investor

is slightly more pessimistic than the median investor and believes that the

risky asset earns zero instantaneous risk premium. Nonetheless, he perceives

that a sizeable Sharpe ratio can be attained via a short volatility position

or, equivalently, via a contrarian market-timing strategy that exploits what

he views as irrational exuberance on the up side and irrational pessimism on

the down side. The gloomy investor can therefore be thought of as supplying

liquidity to the extremists. He hopes to be proved right: in a sense that we

make precise, the best outcome for him is the one that he expects.

As empirical researchers in finance often use high historical Sharpe ratios

as a metric of success, we go on to study the properties of maximum-Sharpe-

ratio strategies, and show that they feature short positions in out-of-the-money

options. We view our exercise as a cautionary tale: while it is possible to

earn very high Sharpe ratios via short option positions, these strategies are

not remotely attractive to investors in our economy. Indeed, our investors

would prefer to invest fully in cash than to rebalance, even slightly, toward a

maximum-Sharpe-ratio strategy.

We make four key modelling choices. The first three are adopted from

the model of Geanakoplos (2010) which inspired this paper. First, we assume

that agents are dogmatic in their beliefs so that individuals do not experience

changes in sentiment as time passes. The assumption is broadly consistent with

one of the findings of Giglio et al. (2019), namely, that a substantial fraction

of the variation in individual beliefs about expected returns, as reported in

surveys of Vanguard clients, can be captured by individual fixed effects. If

we allowed investors to learn over time, we believe that our mechanism would

be amplified: that following good news, for example, optimistic agents would

become relatively wealthier, as in our model, but all agents would also update

their beliefs in an optimistic direction. (We formally prove that this intuition

holds in a variant of the “risky bond” example described above. We assume

that investors have heterogeneous priors about the true up-probability that

they update fully rationally via Bayes’ rule, and show that the price of the
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risky bond is even lower in the presence of learning.)

Second, we model uncertainty as evolving on a binomial tree so that the

market is complete and agents can fully express their disagreement through

trading. With an incomplete market, by contrast, agents may have strong

differences in beliefs that are not revealed in prices. Market completeness also

permits a clean interpretation of some of our results, as it generates a per-

fect correspondence between the cross-section and the time series. We exploit

this fact to interpret our investors’ trading behavior both in terms of condi-

tional market-timing strategies and in terms of static positions in derivative

securities.

Third, we allow for a continuum of beliefs, unlike papers including Harrison

and Kreps (1978), Scheinkman and Xiong (2003), Basak (2005), Banerjee and

Kremer (2010), and Bhamra and Uppal (2014). Aside from being realistic, this

implies that the identities of the representative investor, and of the investor

who chooses to sit out of the market entirely, are smoothly varying equilibrium

objects that are determined endogenously in an intuitive and tractable way.

Fourth, and finally, our agents are risk-averse. In this respect we depart

from several papers in the heterogeneous beliefs literature—including Harrison

and Kreps (1978), Scheinkman and Xiong (2003) and Geanakoplos (2010)—

that assume that agents are risk-neutral. Risk-neutrality simplifies matters

in some respects, but complicates it in others. For example, short sales must

be ruled out for equilibrium to exist. This is natural in some settings, but

not if one thinks of the risky asset as representing, say, a broad stock market

index. Moreover, the aggressive behavior of risk-neutral investors leads to

extreme predictions: every time there is a down-move in the Geanakoplos

model, all agents who are invested in the risky asset go bankrupt. From a

technical point of view, short-sales constraints and risk-neutrality combine to

give agents kinked indirect utility functions. Our agents have smooth indirect

utility functions, and ultimately this is responsible for the tractability of our

model and for our ability to study the dynamics described above.
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1 Setup

We work in discrete time, with periods running from 0 to time T . Uncertainty

evolves on a binomial tree, so that whatever the current state of the world,

there are two possible successor states next period: “up” and “down.” There

is a risky asset, whose payoffs at the terminal date T are specified exogenously.

We normalize the net interest rate to 0%.

There is a unit mass of agents indexed by h ∈ (0, 1). All agents have

log utility over terminal wealth, zero time-preference rate, and are initially

endowed with one unit of the risky asset, which we will think of as representing

“the market.” Agent h believes that the probability of an up-move is h; we

often refer to h as the agent’s belief, for short. By working with the open

interval (0, 1), as opposed to the closed interval [0, 1], we ensure that the

investors’ beliefs are all absolutely continuous with respect to each other: that

is, they all agree on what events can possibly happen. This means in particular

that no investor will allow his or her wealth to go to zero in any state of the

world.

The mass of agents with belief h follows a beta distribution governed by

two parameters, α and β, such that the PDF is2

f(h) =
hα−1(1− h)β−1

B(α, β)
.

2The beta function B(·, ·) is defined by

B(x, y) =

∫ 1

h=0

hx−1(1− h)y−1 dh .

If x and y are integers, then

B(x, y) =
(x− 1)!(y − 1)!

(x+ y − 1)!
,

and more generally the beta function is related to the gamma function as follows:

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

We will repeatedly use basic facts about the beta function, such as that B(x, y) = B(y, x),
and that B(x+ 1, y) = B(x, y) · x

x+y .
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Figure 1: The distribution of beliefs for various choices of α and β.

The parameters α and β must be positive, but can otherwise be set arbitrarily.

If α = β then the distribution of beliefs is symmetric with mean 1/2. If

α = β = 1 then f(h) = 1, so that beliefs are uniformly distributed over (0, 1);

this is a useful case to keep in mind as one works through the algebra. The

case α 6= β allows for asymmetric distributions with mean α/(α + β) and

variance αβ/[(α + β)2(α + β + 1)]. Thus the distribution shifts toward 1 if

α > β and toward 0 if α < β, and beliefs are highly concentrated around the

mean when α and β are large: if, say, α = 90 and β = 10 then beliefs are

concentrated around a mean of 0.9, with standard deviation 0.030. Figure 1

plots the distribution of beliefs, h, for a range of choices of α and β.

2 Equilibrium

The payoffs at terminal nodes of the binomial tree are specified exogenously.

All agents have log utility over terminal wealth, so behave myopically; we can

therefore consider each period in isolation. We start by taking next-period

prices at the up- and down-nodes as given, and use these prices to determine

the equilibrium price at the current node. This logic will ultimately allow us

to solve the model by backward induction, and to express the price at time 0

in terms of the exogenous terminal payoffs. (See Result 2.)

Suppose, then, that the price of the risky asset will be either pd or pu next
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period. Our problem, for now, is to determine the equilibrium price, p, at the

current node; we assume that pd 6= pu so that this pricing problem is nontrivial.

Suppose also that agent h has wealth wh at the current node. If he chooses to

hold xh units of the asset, then his wealth next period is wh − xhp + xhpu in

the up-state and wh− xhp+ xhpd in the down-state. So the portfolio problem

is to solve

max
xh

h log [wh − xhp+ xhpu] + (1− h) log [wh − xhp+ xhpd] .

The agent’s first-order condition is therefore

xh = wh

(
h

p− pd
− 1− h
pu − p

)
. (1)

The sign of xh is that of p − pu for h = 0 and that of p − pd for h = 1.

These must have opposite signs to avoid an arbitrage opportunity, so at every

node there are some agents who are short and others who are long. The most

optimistic agent3 levers up as much as possible without risking default, and

correspondingly the most pessimistic agent takes on the largest short position

possible that does not risk default if the good state occurs. For, the first-order

condition (1) implies that as h→ 1, agent h holds wh/(p− pd) units of stock.

This is the largest possible position that does not risk default: to acquire it,

the agent must borrow whp/(p− pd)−wh = whpd/(p− pd). If the unthinkable

(to this most optimistic agent!) occurs and the down state materialises, the

agent’s holdings are worth whpd/(p − pd), which is precisely what the agent

owes to his creditors.

It will often be convenient to think in terms of the risk-neutral probability

of an up-move, p∗, defined by the property that the price can be interpreted as

a risk-neutral expected payoff, p = p∗pu+(1−p∗)pd. (There is no discounting,

3This is an abuse of terminology: there is no ‘most optimistic agent’ since h lies in the
open set (0, 1). More formally, this discussion relates to the behavior of agents in the limit
as h → 1. An agent for whom h = 1 would want to take arbitrarily large levered positions
in the risky asset, so there is a behavioral discontinuity at h = 1 (and similarly at h = 0).
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as the riskless rate is zero.) Hence

p∗ =
p− pd
pu − pd

.

In these terms, the first-order condition (1) becomes

xh =
wh

pu − pd
h− p∗

p∗(1− p∗)
,

for example. An agent whose h equals p∗ will have zero position in the risky

asset: by the defining property of the risk-neutral probability, such an agent

perceives that the risky asset has zero expected excess return.

Agent h’s wealth next period is therefore

wh + xh(pu − p) = wh(pu − pd)
h

p− pd
= wh

h

p∗
(2)

in the up-state, and

wh − xh(p− pd) = wh(pu − pd)
1− h
pu − p

= wh
1− h
1− p∗

(3)

in the down-state. In either case, all agents’ returns on wealth are linear in

their beliefs. Moreover, this relationship (which is critical for the tractability

of our model) applies at every node. It follows that person h’s wealth at the

current node must equal

λpathh
m(1− h)n

where λpath is a constant that is independent of h but which can depend on

the path travelled to get to the current node, which we have assumed has m

up and n down steps.

As aggregate wealth is equal to the value of the risky asset—which is in

unit supply—we must have∫ 1

0

λpathh
m(1− h)nf(h) dh = p.
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This enables us to solve for the value of λpath:

λpath =
B(α, β)

B(α +m,β + n)
p.

(This expression can be written in terms of factorials if α and β are integers:

for example, if α = β = 1 then λpath = (m+n+1)!
m!n!

p. See footnote 2.)

Substituting back, agent h’s wealth equals

wh =
B(α, β)

B(α +m,β + n)
hm(1− h)np. (4)

This is maximized by h ≡ m/(m + n): the agent whose beliefs turned out to

be most accurate ex post ends up richest.

The wealth distribution—that is, the fraction of aggregate wealth held by

type-h agents—is a probability distribution over h. Specifically, it is the beta

distribution with parameters α +m and β + n,

whf(h)

p
=
hα+m−1(1− h)β+n−1

B(α +m,β + n)
. (5)

We can now revisit Figure 1 in light of this fact. For the sake of argument,

suppose that α = β = 1 so that wealth is initially distributed uniformly across

investors of all types h ∈ (0, 1). If, by time 4, there have been m = 1 up- and

n = 3 down-moves, then equation (5) implies that the new wealth distribution

follows the line denoted α = 2, β = 4. (Investors with h close to 0 or to 1

have been almost wiped out by their aggressive trades; the best performers

are moderate pessimists with h = 1/4, whose beliefs happen to have been

vindicated ex post.) At time 8, following three more up-moves and one down-

move, the new wealth distribution is marked by α = β = 5. And if by time 12

there have been a further four up-moves then the wealth distribution is marked

by α = 9, β = 5. The changing wealth distribution in this example illustrates

a key feature of our model: at any point in time, wealth is concentrated in the

hands of investors whose beliefs appear correct in hindsight.
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Now we solve for the equilibrium price using the first-order condition

xh =
B(α, β)

B(α +m,β + n)
hm(1− h)np︸ ︷︷ ︸

wh

(
h

p− pd
− 1− h
pu − p

)
.

The price p adjusts to clear the market, so that in aggregate the agents hold

one unit of the asset:∫ 1

0

xhf(h) dh =
p [(m+ α)(pu − p)− (n+ β)(p− pd)]

(m+ n+ α + β)(pu − p)(p− pd)
= 1.

It follows that

p =
(m+ α)pdpu + (n+ β)pupd

(m+ α)pd + (n+ β)pu
. (6)

Equivalently, the risk-neutral probability of an up-move must satisfy

p∗ =
(m+ α)pd

(m+ α)pd + (n+ β)pu

in equilibrium.

These results can usefully be interpreted in terms of wealth-weighted beliefs.

For example, at time t, after m up-moves and n = t − m down-moves, the

wealth-weighted cross-sectional average belief, Hm,t, can be computed with

reference to the wealth distribution (5):

Hm,t =

∫ 1

0

h
whf(h)

p
dh =

m+ α

t+ α + β
. (7)

In these terms we can write

p∗ =
Hm,tpd

Hm,tpd + (1−Hm,t)pu
. (8)

It follows that
pu
p

=
Hm,t

p∗
and

pd
p

=
1−Hm,t

1− p∗
. (9)

Hence p∗ is smaller than Hm,t if pu > pd and larger than Hm,t if pu < pd: in

12



h=1h=0 h=Hm,th=p*

shorts balanced levered optimists

representative agentall cash

Figure 2: The range of beliefs in the investor population.

either case, risk-neutral beliefs are more pessimistic than the wealth-weighted

average belief.

The share of wealth an agent of type h invests in the risky asset is

xhp

wh
= p

(
h

p− pd
− 1− h
pu − p

)
=

h

1− pd
p

− 1− h
pu
p
− 1

.

This can be rewritten in a more compact form using (9):

xhp

wh

(9)
=

h

1− 1−Hm,t
1−p∗

− 1− h
Hm,t
p∗
− 1

=
h− p∗

Hm,t − p∗
. (10)

So the agent with h = Hm,t can be thought of as the representative agent : by

equation (10), this is the agent who chooses to invest her wealth fully in the

market, with no borrowing or lending.

The identity of the representative investor therefore moves around over

time, as does the identity of the investor with h = p∗ who chooses to hold his

or her wealth fully in the bond. Figure 2 illustrates in the case pu > pd, so

that p∗ < Hm,t. Pessimistic investors with h < p∗ choose to short the risky

asset; moderate investors with p∗ < h < Hm,t hold a balanced portfolio with

long positions in both the bond and the risky asset; and optimistic investors

with h > Hm,t take on leverage, shorting the bond to go long the risky asset.

In a homogeneous economy in which all agents agree on the up-probability,
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h = H, it is easy to check that

p∗ =
Hpd

Hpd + (1−H)pu
. (11)

Comparing equations (8) and (11), we see that for short-run pricing purposes

our heterogeneous economy looks the same as a homogeneous economy fea-

turing a representative agent with belief Hm,t. But as the identity of the

representative agent changes over time, the similarity will disappear when we

study the pricing of multi-period claims.

For future reference, the risk-neutral variance of the asset is

p∗
(
pu
p

)2

+ (1− p∗)
(
pd
p

)2

− 1 =
(Hm,t − p∗)2

p∗ (1− p∗)
. (12)

(The risk-neutral expectation of the asset’s return is uninteresting: it must, by

definition, equal the gross riskless rate.) Below, we will compare this quantity

with subjective expected returns, motivated by the results of Martin (2017).

We can also use equation (10) to calculate the leverage ratio of investor h,

which we define as the ratio of funds borrowed, xhp− wh, to wealth, wh:

xhp− wh
wh

=
h−Hm,t

Hm,t − p∗
. (13)

If pu > pd then p∗ < Hm,t, by (9); in this case equation (13) shows that

people who are optimistic relative to the representative investor borrow from

pessimists. We can define gross leverage as the total dollar amount these
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optimists borrow,4 scaled by aggregate wealth:∫ 1

Hm,t
(xhp− wh) f(h) dh

p
=

∫ 1

Hm,t

whf(h)

p

xhp− wh
wh

dh

=

∫ 1

Hm,t

whf(h)

p

h−Hm,t

Hm,t − p∗
dh

=
Hm+α
m,t (1−Hm,t)

n+β

(m+ α + n+ β)B(α +m,β + n)(Hm,t − p∗)
.

Conversely, if pu < pd then optimists are lenders and pessimists borrowers. In

either case, we can define gross leverage as the absolute value of the above

expression,
Hm+α
m,t (1−Hm,t)

n+β

(m+ α + n+ β)B(α +m,β + n) |Hm,t − p∗|
. (14)

Alternatively, scaling by the wealth of the borrowers and assuming that pu > pd

for simplicity, we define borrower fragility∫ 1

Hm,t
(xhp− wh) f(h) dh∫ 1

Hm,t
whf(h) dh

=

∫ 1

Hm,t

whf(h)
p

xhp−wh
wh

dh∫ 1

Hm,t

whf(h)
p

dh
, (15)

which equals gross leverage divided by the fraction of wealth held by borrowers.

Figure 3 gives a numerical example with uniformly distributed beliefs

(i.e., α = β = 1) and T = 2. Terminal payoffs are chosen so that (i) pu/pd = 2

at the penultimate nodes and (ii) the asset would initially trade at a price of

1 in a homogeneous economy with H = 1/2. Initially, sentiment in the het-

erogeneous belief economy is the same—H0,0 = 1/2—but the price is lower, at

0.96, because of the anticipated effect of future sentiment. If bad news arrives,

money flows to pessimists. The representative agent and risk-neutral beliefs

become more pessimistic and the price declines, accompanied by increases in

gross leverage and borrower fragility.

4The total dollar amount borrowed by all investors is zero, as the riskless asset is in zero
net supply.
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p = 0.96
p = 1.00
H0,0 = 0.50
p* = 0.29
GL = 0.58
BF = 1.17

p = 0.68
p = 0.75
H0,1 = 0.33
p* = 0.20
GL = 0.74
BF = 1.67

p = 1.69
p = 1.50
H1,1 = 0.67
p* = 0.50
GL = 0.59
BF = 1.07

p = 0.56

p = 1.13

p = 2.25

Figure 3: At each node, p denotes the price in a homogeneous economy with
H = 1/2; p is the price in a heterogeneous economy with α = β = 1; and p∗

and Hm,t indicate the risk-neutral probability of an up-move and the identity of
the representative agent in the heterogeneous economy. (In the homogeneous
economy, the risk-neutral probability of an up-move is 1/3 at every node.) GL
and BF denote gross leverage and borrower fragility, respectively.

2.1 Subjective beliefs

Investors disagree on the properties of the asset. Consider first moments.

Agent h’s subjectively perceived expected excess return on the market is

hpu + (1− h)pd
p

− 1 =
(h− p∗)(pu − pd)

p
=

(h− p∗)(Hm,t − p∗)
p∗(1− p∗)

. (16)

Hence the share of wealth invested by agent h in the market (10) equals the

ratio of the subjectively perceived expected excess return on the market (16)

to (objectively defined) risk-neutral variance (12). In particular, risk-neutral

variance reveals the expected excess return perceived by the representative

agent, which is given by equation (16) with h = Hm,t.

The cross-sectional average expected excess return is(
α

α+β
− p∗

)
(Hm,t − p∗)

p∗(1− p∗)
, (17)
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which may be positive or negative. But as the wealth-weighted average belief

equals the representative investor’s belief (by (7)), the wealth-weighted cross-

sectional average expected excess return must be positive: it equals∫ 1

0

wh
p

(h− p∗)(Hm,t − p∗)
p∗(1− p∗)

f(h) dh =
(Hm,t − p∗)2

p∗ (1− p∗)
. (18)

Note that this quantity can also be interpreted as the expected excess return

perceived by the representative agent h = Hm,t. The cross-sectional standard

deviation of return expectations is√
αβ

(α + β)2 (α + β + 1)

|Hm,t − p∗|
p∗(1− p∗)

, (19)

using the formula for the standard deviation of the beta distributed random

variable h in equation (16).

Next we consider second moments. Person h’s subjectively perceived vari-

ance of the asset’s return is

h

(
pu
p

)2

+ (1− h)

(
pd
p

)2

−
(
hpu + (1− h)pd

p

)2

=
h(1− h) (Hm,t − p∗)2

p∗2(1− p∗)2
,

and person h’s perceived Sharpe ratio is therefore

h− p∗√
h(1− h)

,

which is increasing in h for all p∗.

The left panel of Figure 4 shows the risk premium perceived by differ-

ent investors h in each of the possible states in the two-period example of

Figure 3. Within any period, optimists perceive higher risk premia than pes-

simists. Across periods, most agents think expected returns go up at the

down-node (“bad times”) and down at the up-node (“good times”), though

the picture is complicated by the fact that volatility declines sharply over time

in our two-period example, which exerts a downward influence on risk premia.

To correct for this fact, the right panel plots the corresponding Sharpe ratios.

All investors believe that Sharpe ratios are high in bad times and low in good
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Figure 4: Left: The risk premium perceived by different agents in the initial
state (·), down state (d), and up state (u). Right: The corresponding Sharpe
ratios.

times. But the representative investor (whose identity, in each state, is indi-

cated by dots in the right panel of Figure 4) is more optimistic—and perceives

a higher Sharpe ratio—in good times than in bad times. Thus “Mr. Market”

disagrees with every individual investor about the behavior of Sharpe ratios

in good and bad states.

The figure also shows that extremists perceive extreme Sharpe ratios, re-

flecting the fact that they are extremely confident in their beliefs and perceive

that true volatility is close to zero. This might seem surprising in view of the

general heuristic that second moments of returns are relatively easy to measure

empirically, which suggests that there should be less room for disagreement

about volatility. Indeed this is, to a large extent, an artefact of the simple

two-period setting of the present example. When we move to continuous time

in Section 4, the conventional view will reemerge in a particularly stark form:

in a diffusion example, we will see that there is no room at all for disagreement

about second moments. All agents will perceive the same volatility in returns,

but will disagree about expected returns.

The variance risk premium perceived by investor h (that is, subjective

minus risk-neutral variance) is equal to

(Hm,t − p∗)2

p∗(1− p∗)

[
h(1− h)

p∗(1− p∗)
− 1

]
.

This is maximized—and weakly positive—for investor h = 1/2, and negative

for agents with beliefs h that are further from 1/2 than p∗ is.
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The wealth return for agent h is h/p∗ in the up state and (1− h)/(1− p∗)
in the down state, as shown in equations (2) and (3). So agent h’s subjective

expected excess return on own wealth is

h2

p∗
+

(1− h)2

1− p∗
− 1 =

(h− p∗)2

p∗(1− p∗)
.

All agents expect to earn a nonnegative excess return on wealth, though they

have very different positions. Only agent h = p∗ chooses to take no risk, fully

invests in the bond, and so correctly anticipates zero excess return.

2.2 A risky bond

The dynamic that drives our model is particularly stark in the “risky bond”

example outlined in the introduction. Suppose that the terminal payoff is 1 in

all states apart from the very bottom one, in which the payoff is ε; the price of

the asset is therefore 1 as soon as an up-move occurs. Writing pt for the price

at time t following t consecutive down-moves we have, from equation (6),

pt =
αpt+1 + (t+ β)pt+1

αpt+1 + t+ β
.

Defining yt ≡ 1/pt − 1, this can be rearranged as

yt =
β + t

α + β + t
yt+1. (20)

We can interpret yt as the inducement to invest in the risky asset at time t,

following t consecutive down-moves: it is the realized excess return on the

asset if there is an up-move from t to t+ 1. Equation (20) determines the rate

at which this inducement must rise in equilibrium.

Solving equation (20) forward,

yt =
(β + t)(β + t+ 1) · · · (β + T − 1)

(α + β + t)(α + β + t+ 1) · · · (α + β + T − 1)
yT , (21)

19



10 20 30 40 50
t

0.4

0.5

0.6

0.7

0.8

0.9

1.0

price

heterogeneous

homogeneous

0 10 20 30 40 50
t

0.1

0.2

0.3

0.4

0.5
H0,t & pt*

leveraged long

short

Figure 5: Left: The risky bond’s price over time in the heterogeneous and ho-
mogeneous economies following consistently bad news. Right: H0,t reveals the
identity of the representative agent at time t following consistently bad news.
Investors who are more optimistic, h > H0,t, have leveraged long positions in
the risky bond. The risk-neutral probability reveals the identity of the investor
who is fully invested in the riskless bond at time t, with zero position in the
risky bond. Investors who are more pessimistic, h < p∗t , are short the risky
bond. Investors with p∗t < h < H0,t (shaded) are long both the risky and the
riskless bond.

and the terminal condition dictates that yT = (1− ε)/ε. Thus, finally,

pt =
1

1 + Γ(β+T )Γ(α+β+t)
Γ(β+t)Γ(α+β+T )

1−ε
ε

.

If α = β = 1, we can simplify further, to

pt =
1

1 + 1+t
1+T

1−ε
ε

. (22)

We can calculate the risk-neutral probability of an up-move at time t,

which we (temporarily) denote by p∗t , by applying (9) with p = pt, pu = 1, and

pd = pt+1 to find that

p∗t = H0,tpt =
αpt

α + β + t
. (23)

Figure 5 illustrates these calculations in the example described in the in-

troduction, with T = 50 periods to go, and a recovery value of ε = 0.30. The

panels show how the price and risk-neutral probability evolve if bad news ar-

rives each period. The bond initially trades at what might seem—given that
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the median investor is the representative agent—a remarkably low price of

0.9563.

By contrast, in a homogeneous economy with H = 1/2 the price, pt, and

risk-neutral probability, p∗t , following t down-moves would be

pt =
1

1 + 1−ε
ε

0.5T−t
and p∗t =

pt
2
,

respectively. Thus with homogeneous beliefs the bond price is approximately

1, and the risk-neutral probability of an up-move is approximately 1/2, until

shortly before the bond’s maturity.

From the perspective of time 0, the risk-neutral probability of default—call

it δ∗—satisfies

p0 = 1− δ∗ + δ∗ε, so δ∗ =
1− p0

1− ε
.

In the homogeneous case, therefore,

δ∗ =
1

1 + ε (2T − 1)
= O(2−T ) ;

and in the heterogeneous case with α = 1,

δ∗ =
1

1 + εT
= O(1/T ).

There is a qualitative difference between the homogeneous economy, in which

default is exponentially unlikely, and the heterogeneous economy, in which

default is only polynomially unlikely.5

To understand pricing in the heterogeneous economy, it is helpful to think

through the portfolio choices of individual investors. We use equations (5),

(7), and (10), together with the prices and risk-neutral probabilities given in

(22) and (23) above, to find investors’ holdings of the risky asset at each node.

The median investor, h = 0.5, thinks the probability that the bond will

default—i.e., that the price will follow the path shown in Figure 5 all the way

5This holds more generally for any α = β > 1: it is easy to show that δ∗ = O (T−α)
by Stirling’s formula. It is also true if ε > 1, i.e. in the ‘lottery ticket’ case. Then, δ∗ is
interpreted as the probability of the lottery ticket paying off, which is exponentially small in
the homogeneous economy but only polynomially small in the heterogeneous belief economy.
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Figure 6: Left: The number of units of the risky bond held by different agents,
xh,t, plotted against time. Right: The evolution of leverage for the median
investor under the optimal dynamic and static strategies. Both panels assume
bad news arrives each period.

to the end—is 2−50 < 10−15. Even so, he believes the price is right at time

zero (in the sense that he is the representative agent) because of the short-run

impact of sentiment. Meanwhile, a modestly pessimistic agent with h = 0.25

will choose to short the bond at the price of 0.9563—and will remain short

at time t = 1 before reversing her position at t = 2—despite believing that

the bond’s default probability is less than 10−6. (Recall from equation (10)

that p∗t is the belief of the agent who is neither long nor short the asset. More

optimistic agents, h > p∗, are long, and more pessimistic agents, h < p∗, are

short.) Following a few periods of bad news, almost all investors are long, but

the most pessimistic investors have become extraordinarily wealthy.

The left panel of Figure 6 shows the holdings of the risky asset for a range of

investors with different beliefs, along the trajectory in which bad news keeps on

coming. The optimistic investor h = 0.75 starts out highly leveraged so rapidly

loses almost all his money. The median investor, h = 0.5, initially invests

fully in the risky bond without taking on leverage. If bad news arrives, this

investor takes on leverage in order to be able to increase the size of her position

despite her losses; after about 10 periods, the investor is almost completely

wiped out. Moderately bearish investors start out short. For example, investor

h = 0.25 starts out short about 10 units of the bond, despite believing that the

probability it defaults is less than one in a million, but reverses her position

after two down-moves. Investor h = 0.01, who thinks that there is more than
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a 60% chance of default, is initially extremely short but eventually reverses

position as still more bearish investors come to dominate the market.

The right panel of Figure 6 shows how the median investor’s leverage

changes over time if he follows the optimal dynamic and static strategies.

If forced to trade statically, his leverage ratio is initially 0.457. This seem-

ingly modest number is dictated by the requirement that the investor avoid

bankruptcy at the bottom node (and in fact the leverage of all investors with

h ≥ 0.2 is visually indistinguishable at the scale of the figure). If the median

investor can trade dynamically, by contrast, the optimal strategy is, initially,

to invest fully in the risky bond without leverage. Subsequently, however, op-

timal leverage rises fast. Thus the dynamic investor keeps his powder dry by

investing cautiously at first but then aggressively exploiting further selloffs.

All investors perceive themselves as better off if able to trade dynamically,

of course. In Appendix A we analytically characterize the perceived advantage

of dynamic versus static trade as a function of each investor’s belief h.

The volume of trade (in terms of the number of units of the risky asset

transacted) in the transition from time t to time t+ 1 is6

1

2

∫ 1

0

∣∣∣∣∣(1− h)t

1
1+t

h− p∗t
H0,t − p∗t

− (1− h)t+1

1
2+t

h− p∗t+1

H0,t+1 − p∗t+1

∣∣∣∣∣ dh =
4(1 + t)1+t

(3 + t)3+t

(
1 + t+

1 + εT

1− ε

)
,

while gross leverage and borrower fragility, calculated from (14) and (15), equal(
1 + t

2 + t

)2+t(
1 +

1 + T

1 + t

ε

1− ε

)
and

(
1 + t

2 + t

)(
1 +

1 + T

1 + t

ε

1− ε

)
respectively.

The left panel of Figure 7 shows the time series of volume, gross leverage,

and borrower fragility, assuming bad news arrives each period. (If good news

arrives at any stage, volume drops permanently to zero.) In this stylized

example there is a burst of trade at first: volume substantially exceeds the

total supply of the asset initially, as agents with extreme views undertake

highly leveraged trades, but declines rapidly over time as wealth becomes

concentrated in the hands of investors with similar beliefs. The right panel

6We include the factor of 1/2 to avoid double-counting.
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Figure 7: Volume (solid), gross leverage (dashed), and borrower fragility (dot-
ted) over time, with ε = 0.3 (left) or ε = 0.9 (right). Heterogeneous case only:
volume is zero in the homogeneous economy.

shows the corresponding series if ε = 0.9. In this case disagreement generates

more aggressive trading, and more volume, because the relative safety of the

asset permits agents to take on more leverage: extremists on both sides of the

market are “picking up nickels in front of a steamroller.”

2.2.1 Bayesian learning in the risky bond example

We briefly generalize our previous analysis to allow investors to update their

beliefs over time using Bayes’ rule. We continue to index investors by h ∈
(0, 1), and we continue to assume that the distribution of h follows a beta

distribution with parameters α and β. Now, however, investor h’s prior belief

is that the probability of an up-move is h̃ ∼ Beta (ζh, ζ(1− h)). We have

E h̃ = h, so that agent h’s mean belief is h; and var h̃ = h(1−h)/(1+ζ), where

ζ > 0 is a constant that controls the uncertainty of investors about the true

probability of an up-move. For large ζ, investor h’s prior is sharply peaked

around h, and the setting nests the dogmatic case we consider elsewhere,

because as ζ →∞ agent h becomes certain that the up-probability is h.

The following result formally confirms—for the risky bond example—our

intuition that learning amplifies the effect of heterogeneity in beliefs.

Result 1. For any α and β, and for any ζ > 0, the initial price of the bond

is lower with learning than without.

Proof. See Appendix A.
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Figure 8: An example with late resolution of uncertainty. Heterogeneous-
economy price (p), homogeneous-economy price (p), and the cross-sectional
average perceived excess return in the heterogeneous economy (ER).

2.3 An example with late resolution of uncertainty

Consider an example with an odd number of periods, T , and α = β = 1; and

let 0 < ε < 1. If there have been an even number of up-moves at time T , the

asset pays off 1
1+ε

; if there have been an odd number of up-moves, the asset

pays 1
1−ε .

In the homogeneous economy with H = 1/2, the asset trades at a price of

1 in every node, and at every period, until the terminal payoff: it is therefore

riskless until the final period.

In the heterogeneous economy it follows immediately from Result 2, below,

that the asset also trades at 1 initially. But the asset is now volatile: although

the payoff of the asset is up in the air until the very last period, the effect of

sentiment ripples back so that the asset is volatile throughout its lifetime, and

its price therefore embeds a risk premium.7

Figure 8 shows an example with T = 3 and ε = 1/2. In a homogeneous

7There is also an equilibrium in which the asset’s price is 1 until time T − 1, as in the
homogeneous economy. Then the market is incomplete, and agents have no means of betting
against one another. But this equilibrium is not robust to vanishingly small perturbations
of the terminal payoffs, which would restore market completeness.
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economy, the asset’s price is completely stable until immediately before the

terminal date. In the heterogeneous economy, the asset’s price is volatile, and

it embeds a time-varying risk premium.

3 The general case

Write zm,t = 1/pm,t, where m is the number of up moves that have taken place

by time t. Equation (6) implies that the following recurrence relation holds at

each node:

zm,t = Hm,tzm+1,t+1 + (1−Hm,t)zm,t+1. (24)

That is, the price at each node is the weighted average harmonic mean of the

next-period prices, with weights given by the beliefs of the currently repre-

sentative agent. By backward induction, z0,0 is a linear combination of the

reciprocals of the terminal payoffs z0,T , z1,T , . . . , zT,T :

z0,0 =
T∑

m=0

cmzm,T . (25)

Pricing is not path-dependent in our economy. Indeed, as

m+ α

t+ α + β︸ ︷︷ ︸
Hm,t

t−m+ β

t+ 1 + α + β︸ ︷︷ ︸
1−Hm+1,t+1

=
t−m+ β

t+ α + β︸ ︷︷ ︸
1−Hm,t

m+ α

t+ 1 + α + β︸ ︷︷ ︸
Hm,t+1

,

the risk-neutral probability of going up and then down (from any starting

node) equals the risk-neutral probability of going down and then up. That is,

from (9),

p∗m,t(1− p∗m+1,t+1) = (1− p∗m,t)p∗m,t+1.

These observations allow us to find a general pricing formula that applies

for arbitrary terminal payoffs pm,T . (The payoffs must be positive so that the

expected utility of any agent is well defined.) The proof of the result, and all

subsequent results, is in the Appendix.

Result 2. If the risky asset has terminal payoffs pm,T at time T (for m =
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0, . . . , T ), then its initial price is

p0 =
1

T∑
m=0

cm
pm,T

, (26)

where

cm =

(
T

m

)
B(α +m,β + T −m)

B(α, β)
. (27)

The time 0 price of the Arrow–Debreu security that pays off if there have

been m up-moves by time T is

q∗m = cm
p0

pm,T
.

The coefficients cm have a so-called beta-binomial distribution, BB(T, α, β).

This is a binomial distribution with a random probability of success in each

trial given by a Beta(α, β) distribution.8 In the Appendix, we generalize equa-

tion (25) and Result 2 to price the risky asset at any node.

As a corollary of Result 2, we can find the effect of belief heterogeneity on

prices for a broad class of assets.

Result 3. If beliefs are symmetric, and the risky asset has terminal payoffs

such that 1
pm,T

is convex if viewed as a function of m, then the asset’s time

0 price is decreasing in the degree of belief heterogeneity. In particular, it is

sufficient (though not necessary) that log pm,T be weakly concave for the asset’s

price to be decreasing in the degree of belief heterogeneity.

Result 3 applies if the terminal payoff is concave in m. But it also applies

for some convex payoffs. If, for example, the asset’s payoffs increase or decrease

geometrically in m, then the log payoffs are linear in m, so that the concavity

condition (just) holds. We provide a more extensive analysis of this case in

the next section.

8In fact, cm can be interpreted as the cross-sectional average (among investors) perceived
probability of reaching node (m,T ).
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4 A diffusion limit

We consider a natural continuous time limit by allowing the number of periods

to tend to infinity and specifying geometrically increasing terminal payoffs.

This is the setting of Cox, Ross and Rubinstein (1979), in which the Black–

Scholes formula emerges in the corresponding limit with homogeneous beliefs.

We are able to solve for the asset price, risk-neutral probabilities, the volatility

term structure, individuals’ trading strategies, and other quantities of interest.

Denote by 2N the total number of periods (corresponding to time T ).9 We

assume that

pm,T = e2σ
√

T
2N

(m−N). (28)

As we will see, σ can be interpreted as the volatility of terminal payoffs (on

which all agents will turn out to agree). If we set λ = eσ
√

T
2N , then we see

that pm,2N = λm( 1
λ
)2N−m, where λ = u = d−1 and u, d are the up and down

percentage movements of the stock price in the Cox–Ross–Rubinstein model.

If we now set ψ = m−N√
N

then pm,T = eσ
√

2Tψ. From the perspective of each

agent, m has a binomial distribution; we show, in the Appendix, that in the

limit as N →∞, ψ has an asymptotic normal distribution from the perspective

of each investor.

We use Result 2 to price the asset at each node of the tree, then take the

limit as N tends to infinity. As the number of up/down steps increases with N ,

the extent of disagreement over any individual step must decline to generate

sensible limiting results—that is, we allow the parameters α, β, which control

the belief dispersion in the market, to tend to infinity with N . In particular we

will write α = θN + η
√
N and β = θN − η

√
N . Small values of θ correspond

to a high belief heterogeneity, while the limit θ → ∞ corresponds to the

homogeneous case; we will refer to 1
θ

as capturing the degree of heterogeneity

in the market. The level of optimism in the market is captured by η.

To be more precise, we will introduce a cross-sectional expectation operator

Ẽ[·]. So, for example, the cross-sectional mean of h satisfies Ẽ[h] = α
α+β

=

1
2

+ η

2θ
√
N

and ṽar[h] = αβ
(α+β)2(α+β+1)

= 1
8θN+1

+ O( 1
N2 ). As Ẽ

[
E(h)[ψ]

]
= η

θ
,

9The choice of an even number of periods is unimportant, but it simplifies the notation
in some of our proofs.
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we can interpret η as controlling the cross-sectional mean expected terminal

payoff.

In the work of Cox, Ross, and Rubinstein, the central limit theorem is

used to approximate a binomial distribution with a normal random variable.

A similar, though slightly more convoluted, situation arises in our setting. The

argument starts by rewriting equation (25) as10

p−1
0 = Em

[
e
−σ
√

2T m−N√
N

]
= Mψ

(
−σ
√

2Tψ
)
.

where we write Em to indicate that that the expectation is taken over m which,

by Result 2, can be viewed as a random variable following the beta-binomial

distribution with parameters 2N , α, and β; and Mψ(·) denotes the moment

generating function (MGF) of ψ = m−N√
N

. As ψ is asymptotically normal by a

result of Paul and Plackett (1978), Mψ(·) converges to the MGF of a Normal

distribution—a known, and simple, function. We provide full details in the

Appendix.

Result 4. The price of the asset at time 0 is given by:

p0 = exp

(
η

θ
σ
√

2T − θ + 1

2θ
σ2T

)
. (29)

If η = 0, so that the cross-sectional distribution of beliefs is symmetric

around h = 1/2, then the price at time 0 is decreasing in the degree of hetero-

geneity, θ−1, consistent with Result 3. But if the cross-sectional average belief

is sufficiently optimistic—that is, if η is sufficiently positive—then the price

may be increasing in the heterogeneity of beliefs.

We now study what this price implies for different agents’ expectations

about returns. We parametrize an agent by the number of standard deviations,

z, by which his or her belief deviates from the mean: h = Ẽ[h] + z
√

ṽar[h] ≈
1
2

+ η

2θ
√
N

+ z√
8θN

.11 Thus an agent with z = 2 is two standard deviations more

optimistic than the mean agent. When we use this parametrization, we write

10From now on we suppress the explicit dependence of price on state in our notation and
write, for example, p0 rather than p0,0.

11Note that Ẽ[h] = α
α+β = 1

2 + η

2θ
√
N

and ṽar[h] = αβ
(α+β)2(α+β+1) = 1

8θN+1 +O( 1
N2 ). The

lower order terms, O(1/N2), will not play any role as N approaches infinity.
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superscripts z rather than h (for example, E(z) rather than E(h)).

Result 5. The return of the asset from time 0 to time t, from the perspective

of agent h = Ẽ[h] + z
√

ṽar[h] has a lognormal distribution with

E(z) logR0→t =
θ + 1

θ + t
T

(
zσ√
θT

+
θ + 1

2θ
σ2

)
t

var(z) logR0→t =

(
θ + 1

θ + t
T

)2

σ2t .

The expected return on the asset follows immediately.

Result 6. The (annualized) expected return of the asset from 0 to t is

1

t
logE(z) R0→t =

θ + 1

θ + t
T

[
zσ√
θT

+
θ + 1

2θ

2θ + t
T

θ + t
T

σ2

]
.

In particular, the instantaneous expected return is

lim
t→0

1

t
logE(z) R0→t =

θ + 1

θ

zσ√
θT

+

(
θ + 1

θ

)2

σ2

and the expected return to maturity is

1

T
logE(z) R0→T =

zσ√
θT

+
2θ + 1

2θ
σ2. (30)

Thus, although different agents perceive different expected returns, all

agents agree on the volatility of log returns (though not on the volatility of

simple returns).

We note in passing that if dynamic trade were shut down entirely, so that

all agents had to trade once at time 0 and then hold their positions statically

to time T , then equilibrium would not exist in the limit.12

12To see this, write ψz for the share of wealth invested by agent z in the risky asset. Given
any positive time 0 price, R0→T is lognormal from every agent’s perspective by Result 5
(which applies even in the static case at horizon T , because the terminal payoff is specified
exogenously). Hence we must have ψz ∈ [0, 1] for all z to avoid the possibility of terminal
wealth becoming negative if R0→T is sufficiently close to zero or is sufficiently large. Market
clearing requires that ψz = 1 on average across agents, so we must in fact have ψz = 1 for
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Result 7. Recall that Ẽ is the cross-sectional expectation operator. The cross-

sectional mean (or median) expected return is

Ẽ
[

1

t
logE(z) R0→t

]
=

(θ + 1)2
(
θ + t

2T

)
θ
(
θ + t

T

)2 σ2.

Disagreement is the standard deviation of expected returns 1
t

logE(z) R0→t:√
ṽar

[
1

t
logE(z) R0→t

]
=
θ + 1

θ + t
T

σ√
θT

.

Our next result characterizes option prices at all maturities t ≤ T and all

strikes K. As always, options can be quoted in terms of the Black–Scholes

formula. What is unusual is that, in our setting, implied volatilities σ̃t can be

expressed in a simple but non-trivial closed form at all maturities t.

Result 8. The time 0 price of an option with maturity t and strike price K is

C(t,K) = p0Φ(d1)−KΦ(d1 − σ̃t
√
t) , (31)

where

d1 =
log (p0/K) + 1

2
σ̃2
t t

σ̃t
√
t

and σ̃t =
θ + 1√
θ(θ + t

T
)
σ .

In particular, short-dated options (with t→ 0) have σ̃0 = θ+1
θ
σ, and long-dated

options (with t = T ) have σ̃T =
√

θ+1
θ
σ.

Implied volatility is increasing in the degree of heterogeneity, θ−1, and

the term structure of implied volatility is downward-sloping. As θ−1 tends to

0, we recover the conventional Black–Scholes formula with constant implied

volatility σ. For comparison, recall from Result 5 that all agents agree on

physical volatility, which is

1√
t
σ(z) (logR0→t) =

θ + 1

θ + t
T

σ =

√
θ

θ + t
T

σ̃t.

all z. But there is no positive price for which all agents will choose to invest their wealth
fully in the risky asset.
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Figure 9: The term structures of implied volatility and of annualized physical
volatility.

In a homogeneous belief economy, both implied and physical volatilities would

be constant, at σ, at all maturities. The sentiment and speculation induced

by heterogeneous beliefs boosts implied and physical volatility in the short

run, and also generates a variance risk premium, as shown in Figure 9. For

example, the annualized variance risk premium to horizon T takes the simple

form
1

T
(var∗ logRT − var logRT ) = σ̃2

T − σ2 =
σ2

θ
.

Two illustrative calibrations.—In the figures below, we set the horizon over

which disagreement plays out to T = 10 years, and we set σ, which equals the

volatility of log fundamentals (i.e. payoffs), to 12%. The belief heterogene-

ity parameter θ dictates the amount of disagreement, the level of short-run

volatility, and the size of the long-run variance risk premium. In our baseline

calibration, we set θ = 1.8, which implies that one-month, one-year, and two-

year implied volatilities are 18.6%, 18.2%, and 17.7%, respectively, as shown in

Table 1. These numbers are close to their empirically observed counterparts,

which are indicated with solid dots in Figure 10a: in the data of Martin and

Wagner (2019), implied volatility averages 18.6%, 18.1%, and 17.9% at the

one-month, one-year, and two-year horizons.

With this value of θ, the model-implied cross-sectional mean expected re-

turns are 3.3% and 1.9% at the one- and 10-year horizons. For comparison,
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Model Data

1mo implied vol 18.6% 18.6%

1yr implied vol 18.2% 18.1%

2yr implied vol 17.7% 17.9%

1yr disagreement 4.4% 4.8%

10yr disagreement 2.9% 2.9%

1yr mean risk premium 3.3% 3.8%

10yr mean risk premium 1.9% 3.6%

Table 1: Observables in the baseline calibration, and the corresponding time-
averaged moments in the data.

in the survey data of Ben-David, Graham and Harvey (2013), the time-series

average levels of cross-sectional average expected returns are 3.8% and 3.6%

at these two horizons, as indicated with green dots in Figure 10a. The cross-

sectional standard deviations of expected returns (“disagreement”) at the one-

and 10-year horizons are 4.4% and 2.9% in the model and 4.8% and 2.8%, on

average, in the data of Ben-David, Graham and Harvey (2013), as indicated

with red dots in Figure 10a.

We also consider a calibration in which θ = 0.2 to explore the behavior

of asset prices under conditions with substantial disagreement, and to dis-

cuss some interesting qualitative features of equilibrium that arise once θ is

less than one. The resulting term structures of physical implied volatility,

and of average perceived risk premia and disagreement, are shown in Figure

10b. Heightened belief heterogeneity generates steeply downward-sloping term

structures of physical and implied volatility and of risk premia.

4.1 The perceived value of speculation

An agent’s stochastic discount factor (SDF) links his or her perceived true

probabilities of events to the associated risk-neutral probabilities. As indi-

viduals disagree on true probabilities but agree on risk-neutral probabilities—

equivalently, on asset prices, which are directly observable—they have differ-
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Figure 10: Term structures of implied and physical volatility, mean expected
returns and disagreement in the baseline (left) and crisis (right) calibrations.

ent stochastic discount factors. We now analyze the properties of individuals’

SDFs, and hence explore agents’ attitudes to speculation.

Result 9. The variance of the SDF of investor z is finite for θ > 1 and is

equal to

var(z) M
(z)
0→t =

θ√
θ2 − ( t

T
)2

exp


[
z
√

θt
T

+ (θ + 1)σ
√
t
]2

θ
(
θ − t

T

)
− 1 . (32)

By the Hansen and Jagannathan (1991) bound, this result supplies the

maximum Sharpe ratio as perceived by agent z, MSR
(z)
0→t:

MSR
(z)
0→t ≡ max

R̃0→t

E(z) R̃0→t −Rf,0→t

σ(z)
(
R̃0→t

) = σ(z)
(
M

(z)
0→t

)
,

where R̃0→t is an arbitrary gross return and we write σ(z) (·) =
√

var(z) (·) for

the standard deviation perceived by investor z, and we have used the fact that

the net interest rate is zero. As the market is complete, there is a strategy that

attains the maximal Sharpe ratio (MSR) implied by the Hansen–Jagannathan

bound for any agent—and of course different agents will perceive different

maximal Sharpe ratios, and different associated trading strategies.
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It follows from (32) that the annualized maximum Sharpe ratio perceived

by agent z over very short horizons is

lim
t→0

1√
t
MSR

(z)
0→t =

∣∣∣∣θ + 1

θ
σ +

z√
θT

∣∣∣∣ . (33)

(We annualize, here and in the figures below, by scaling the Sharpe ratio by
1√
t
.) This equals the annualized instantaneous Sharpe ratio of the risky asset;

setting z = 0 it implies that the median investor perceives a maximal Sharpe

ratio equal to short-dated implied volatility σ̃0. Over longer horizons, however,

all agents believe that there are dynamic strategies with Sharpe ratios strictly

exceeding that of the risky asset.

Minimizing (32) with respect to z, we find that the investor who perceives

the smallest MSR (at all horizons t) has z = zg, where

zg = −θ + 1√
θ
σ
√
T . (34)

Definition 1. We refer to investor z = zg as the gloomy investor. The gloomy

investor perceives that the instantaneous Sharpe ratio on the risky asset is

exactly zero, by Result 6 or equation (33).

The maximum Sharpe ratio to maturity perceived by the gloomy investor

satisfies

MSR
(zg)
0→T =

√
θ√

θ2 − 1
− 1 .

There are, of course, more pessimistic investors (z < zg), but we think of them

as being less gloomy in the sense they perceive attractive trading opportunities

associated with shorting the risky asset.

The dashed lines in the panels of Figure 11 plot the subjective Sharpe ratio

of a static position in the risky asset (calculated from Results 5 and 6) against

investor type, z. The solid lines plot the maximum attainable Sharpe ratio

against investor type, z. The top panels use the baseline calibration, θ = 1.8,

and the bottom panels use the high-disagreement calibration, θ = 0.2. The

left panels show perceived Sharpe ratios over the next year; the right panels

show annualized Sharpe ratios over the entire 10-year horizon.
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The solid lines lie strictly above the dashed lines, indicating that all in-

vestors must trade dynamically to achieve their perceived MSR. In the base-

line calibration, the annualized MSR perceived by the gloomy investor zg, is

0.04 at the one-year horizon and 0.14 at the 10-year horizon. All investors per-

ceive attainable Sharpe ratios at least as large as this. Recall that the gloomy

investor believes that the risky asset is priced to earn precisely zero risk pre-

mium. Loosely speaking, the gloomy investor’s maximal-Sharpe-ratio strategy

is to go long if the market sells off, and short if the market rallies, thereby

exploiting what he views as irrational exuberance on the upside and irrational

pessimism on the downside. This is a contrarian, “short vol” strategy. We will

expand on this interpretation shortly.

If there is substantial disagreement, as in our calibration with θ = 0.2, then

agents perceive substantially higher attainable Sharpe ratios. At the one-year

horizon depicted in Figure 11c, even the gloomy investor perceives an MSR

of 0.39, while the median investor perceives an MSR of 1.50. Sharpe ratios

increase very rapidly for investors with extreme beliefs, and especially so for

optimists with extreme beliefs: an investor who is only moderately optimistic,

with beliefs one standard deviation above the mean (z = 1), perceives an MSR

of 8.2.

Perhaps more surprisingly, at the 10-year horizon shown in Figure 11d,

all investors perceive that arbitrarily high Sharpe ratios are attainable. At

first sight, this might seem obviously unreasonable. Surely very high Sharpe

ratios should not be possible in equilibrium? But our investors are not mean-

variance optimizers, so Sharpe ratios do not adequately summarize investment

opportunities. (And indeed, Sharpe ratios are not considered sufficient mea-

sures of the attractiveness of a trading strategy in practice: investors appear

to monitor performance measures such as max drawdowns, value at risk, and

Sortino ratios, among other things.)

In order to measure the attractiveness of dynamic trading strategies in a

theoretically motivated way, we calculate the maximum fraction of wealth,

ξ(z), that an individual investor z would be prepared to sacrifice in order to

avoid being shut out of the market. (We assume that other investors continue

to trade, so that prices are unaffected by the absence of investor z.) When

the investor is shut out, he is forced to hold his original position in the risky
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(c) One-year horizon, θ = 0.2.
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(d) 10-year horizon, annualized, θ = 0.2.

Figure 11: Maximal Sharpe ratios attainable through dynamic (solid) or static
(dashed) trading, as perceived by investor z. All investors perceive that arbi-
trarily high Sharpe ratios are attainable dynamically in panel d.

asset, earning the return R0→t up to time t. Thus ξ(z) satisfies

max
R

(z)
0→t

E(z) log
[(

1− ξ(z)
)
W

(z)
0 R

(z)
0→t

]
= E(z) log

[
W

(z)
0 R0→t

]
. (35)

The Alvarez and Jermann (2005) bound states that

max
R

(z)
0→t

E(z) logR
(z)
0→t = L(z)

[
M

(z)
0→t

]
, (36)

where the entropy of the SDF, as perceived by investor z, is L(z)
[
M

(z)
0→t

]
=

logE(z)M
(z)
0→t − E(z) logM

(z)
0→t. The bound is attained because the market is
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complete; we are using the fact that logRf,0→t = 0 in equation (36). Combined

with equation (35), this implies that

log
(
1− ξ(z)

)
= E(z) logR0→t − L(z)

[
M

(z)
0→t

]
. (37)

Result 10. The subjective entropy of the SDF is

L(z)
[
M

(z)
0→t

]
=

[
z
√

θt
T

+ (θ + 1)σ
√
t
]2

2θ
(
θ + t

T

) +
1

2

(
log

θ + t
T

θ
−

t
T

θ + t
T

)
,

so that the gloomy investor perceives the minimal SDF entropy.

We can also write

L(z)
[
M

(z)
0→t

]
=
θ + 1

θ + t
T

(
zσ√
θT

+
θ + 1

2θ
σ2

)
t︸ ︷︷ ︸

E(h) logR0→t

+
z2 t

T

2
(
θ + t

T

)+
1

2

(
log

θ + t
T

θ
−

t
T

θ + t
T

)
︸ ︷︷ ︸

>0

.

It follows that

ξ(z) = 1− exp

{
−

z2 t
T

2
(
θ + t

T

) − 1

2

(
log

θ + t
T

θ
−

t
T

θ + t
T

)}
.

The median investor perceives the minimal ξ(z).

Figure 12 plots ξ(z) against z with parameters σ = 0.12, T = 10, and t = 1

or t = 10. The left panel shows the baseline calibration with θ = 1.8; the right

panel shows the high disagreement calibration with θ = 0.2.

4.2 Investor behavior and the wealth distribution

We now study how the distribution of terminal wealth varies across agents as

a function of the terminal payoff of the risky asset. To do so, it is convenient

to introduce the notion of an investor-specific target price K(z) defined via13

logK(z) = E(z) log pT + (z − zg)σ
√
θT . (38)

13If desired, the expected log price, E(z) log pT = log p0 + E(z) logR0→T , can be written
in terms of the fundamental parameters of the model using Results 4 and 5.
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Figure 12: The proportion of wealth investor z would sacrifice to avoid being
prevented from trading dynamically for one or 10 years.

For example, the median and gloomy investors’ target prices can be written

in terms of the fundamental parameters as

logK(0) =
η

θ
σ
√

2T + (θ + 1)σ2T and logK(zg) =
η

θ
σ
√

2T − θ + 1

θ
σ2T .

For comparison, log p0 = η
θ
σ
√

2T − 1
2
θ+1
θ
σ2T , so the median and gloomy in-

vestors’ target prices are, respectively, above and below the spot price.

As our next result shows, the target price represents the ideal outcome for

investor z: the value of pT that maximizes wealth, and hence utility, ex post.

Result 11. The time T wealth of agent z can be expressed as a function of pT

as W (z)(pT ) = p0 ×R(z)
0→T , where the wealth return R

(z)
0→T is given by

R
(z)
0→T =

√
θ + 1

θ
exp

{
1

2
(z − zg)2 − 1

2(1 + θ)σ2T

[
log
(
pT/K

(z)
)]2}

. (39)

Thus W (z)(pT ) is maximized when pT = K(z).

This can also be written as a quadratic relationship between an investor’s

log wealth return, r
(z)
0→T = logR

(z)
0→T , and the log return on the risky asset,
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r0→T = logR0→T :

r
(z)
0→T =

1

2
log

θ + 1

θ
+

1

2
(z − zg)2− 1

2(1 + θ)

[
r0→T − E(z) r0→T

σ
√
T

−
√
θ (z − zg)

]2

.

(40)

It follows that the expected elasticity of an investor’s wealth return with respect

to the risky asset return, E(z)(∂r
(z)
0→T/∂r0→T ), satisfies

E(z) ∂r
(z)
0→T

∂r0→T
= 1 +

z

|zg|
.

In particular, the median investor has an expected elasticity of one and the

gloomy investor has an expected elasticity of zero.

If the risky asset goes nowhere, in the sense of having zero realized excess

return (i.e., if R0→T = 1), then the median and gloomy investors have the

same return on wealth: R
(0)
0→T = R

(zg)
0→T .

In our model, there is a useful distinction between what investors expect

to happen and what they would like to happen. (The distinction also ex-

ists, but is uninteresting, in models in which a representative agent statically

holds the market, as the target price is infinity in such models.) The gloomy

investor would like to be proved right in logs: his log target price equals

his expected log price. But targets and expectations differ for all other in-

vestors. More optimistic investors have a (log) target price that exceeds their

expectations—i.e., they are best off if the risky asset modestly outperforms

their expectations—while more pessimistic investors are best off if the risky

asset modestly underperforms their expectations. (But any investor does very

poorly if the asset performs far better or worse than anticipated.)

Differentiating the expression (39) twice with respect to pT , we find

R
(z)′′

0→T =
R

(z)
0→T
p2
T


(

log
(
pT/K

(z)
)

(1 + θ)σ2T
+

1

2

)2

− 1

4
− 1

(1 + θ)σ2T

 . (41)

It immediately follows that any investor’s wealth is concave in pT near their

target price, and convex far from their target price. A moderate investor’s
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Figure 13: Return on wealth against return on the market for different agents.
Dots indicate the expected return on the risky asset perceived by each investor.

wealth is also concave near their expected log price. But an extreme investor’s

wealth is convex near their expected log price. These facts follow because if

log pT = E(z) log pT then we have, after some algebra,

sign
[
W (z)′′(pT )

]
= sign

[
z2 − zgz −

θ + 1

θ

]
,

which is negative for moderate investors (including all investors with z between

zg and zero), and positive if |z| is sufficiently large.

Figure 13 shows how different investors’ outcomes depend on the risky

asset’s realized return. Dots indicate the expected gross return on the risky

asset perceived by each of the investors. The median investor’s wealth is a

concave function of the risky asset return in the neighbourhood of the investor’s

expected outcome, while more extreme investors have wealth that is convex in

the risky asset return in the neighbourhood of their expected outcome.

Equation (39) can be rewritten as

R
(z)
0→T =

√
θ + 1

θ
exp

{
− 1

2

[
log pT − E(z) log pT√

var(z) log pT

]2

+

+
1

2(1 + θ)

[
√
θ

log pT − E(z) log pT√
var(z) log pT

+ z − zg

]2}
.
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This characterization shows that you get richer if you are an extremist (large

|z|) whose expectations are realized than you do if you have conventional beliefs

(z close to zero) that are realized: it is cheap to purchase claims to states of

the world that extremists consider likely, because few people are extremists.

As a result, there is substantially more wealth inequality in states in which

the asset has an extreme positive or negative realized return.

Informally, extreme investors are “long volatility” near the outcome that

they expect, while moderate investors are “short volatility” in their corre-

sponding region. To formalize this intuition, we introduce a general result

that holds in any frictionless arbitrage-free model in which options are traded.

It is in the spirit of the famous result of Breeden and Litzenberger (1978), but

the logic operates at the level of payoffs rather than of prices.

Result 12. Let W (·) be such that W (0) = 0. Then choosing terminal wealth

W (pT ) is equivalent to holding the following portfolio:

• Long W ′(K0) units of the underlying asset (whose price is pT at time T )

• Long bonds with face value W (K0)−K0W
′(K0)

• Long W ′′(K) dK put options with strike K, for every K < K0

• Long W ′′(K) dK call options with strike K, for every K > K0

The constant K0 > 0 can be chosen arbitrarily.

Proof. Start from W (pT ) =
∫ pT

0
W ′(K) dK =

∫∞
0
W ′(K)1{pT>K} dK and inte-

grate by parts.

We now specialize Result 12 to our setting to identify a static portfolio

whose payoffs replicate the investment strategy followed by an arbitrary in-

vestor h.

Result 13. Investor z’s investment strategy is equivalent to the following:

• a long position in bonds with face value W (z)(K(z)) = p0

√
θ+1
θ
e

1
2

(z−zg)2;

• short positions in options with strikes at and near her target level K(z);
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• long positions in options with strikes far from K(z).

More precisely, the investor holds W (z)′′(K) dK put options with strike K

for all K < K(z), and W (z)′′(K) dK call options with strike K, for all K ≥
K(z), where W (z)′′(K) is as defined in (41). (Note that W (z)′′(K(z)) < 0, and

that W (z)′′(K) > 0 if K is sufficiently far from K(z).)

The best possible payoff is W (z)(K(z)). This occurs if the asset hits its target

price, pT = K(z), in which case all the options expire worthless. Conversely,

the investor’s wealth approaches zero as pT → 0 or pT →∞.

Proof. It follows from the definition (38) of K(z), and a direct calculation,

that W (z)′(K(z)) = 0. The claims in the first paragraph then follow on setting

K0 = K(z) in Result 12. The fact that the best possible payoff is W (z)(K(z))

follows from equation (39). The payoff on the option portfolio must therefore

be nonpositive.

4.3 Maximum-Sharpe-ratio strategies

Result 9 characterized the maximum Sharpe ratios perceived by different in-

vestors. We now turn to the question of which strategies achieve these maximal

Sharpe ratios. We do so in two steps.

First, we know from the work of Hansen and Richard (1987) that the return

with minimal second (subjective, uncentered) moment, R∗, is proportional to

M
(z)
0→T , and, moreover, that this return achieves the minimal possible Sharpe

ratio. It follows that a portfolio that is long the riskless asset and short R∗ has

the maximal possible Sharpe ratio. A Sharpe-ratio-maximizing strategy for

investor z therefore must take the form a − bM (z)
0→T for some constants a > 0

and b > 0. For the strategy to be a gross return—that is, a payoff with price

1—we must have a = 1 + bE(z)
[
M

(z)2
0→T

]
. Second, the return on wealth chosen

by investor z, which we derived in Result 11, reveals the SDF perceived by

that investor: M
(z)
0→T = 1/R

(z)
0→T .

We can therefore write a Sharpe-ratio-maximizing return as

R
(z)
MSR,0→T = 1 + b

(
var(z) M

(z)
0→T + 1

)
− b

R
(z)
0→T

, (42)
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Figure 14: Return on a max-Sharpe-ratio strategy (solid) and return on wealth
(dashed) against return on the market for agents z = 0 and 1. Log scale on
x-axis.

where b can be any positive constant (reflecting the fact that any strategy can

be combined with a position in the riskless asset without altering its Sharpe

ratio).

Result 11 showed that the optimally chosen wealth return R
(z)
0→T is maxi-

mized when pT equals investor z’s target return K(z). It follows from equation

(42) that the maximal-Sharpe-ratio return R
(z)
MSR,0→T is also maximized when

pT equals K(z). But the maximal-Sharpe ratio return becomes negative if pT is

far from K(z), whereas the wealth return remains positive. Figure 14 illustrates

using parameters from the baseline calibration.

We can also study the convexity of the MSR return, considered as a func-

tion of pT . It follows from equations (39), (41), and (42) that

R
(z)′′

MSR,0→T =
−b

p2
TR

(z)
0→T


(

log
(
pT/K

(z)
)

(1 + θ)σ2T
− 1

2

)2

− 1

4
+

1

(1 + θ)σ2T

 . (43)

This is negative, and arbitrarily large in magnitude, for pT far from K(z). Using

Result 12 in the same way as it was used to derive Result 13, we see that the

maximal-Sharpe-ratio strategy features extremely short positions in deep-out-

of-the-money call and put options.14 If beliefs are sufficiently heterogeneous

14Specifically, let g(K) denote the right-hand side of (43) with all occurrences of pT
(including the implicit dependence on pT via R

(z)
0→T , which we do not write out explicitly
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Figure 15: Dashed lines indicate the critical (annualized) log returns on the
risky asset at which investor z’s MSR strategy has zero realized excess return in
the baseline calibration. The unshaded area represents the range of returns on
the risky asset over which the investor’s MSR strategy outperforms the riskless
asset; the shaded areas indicate where the MSR strategy underperforms.

that (1 + θ)σ2T < 4, then the right-hand side of equation (43) is negative

everywhere, so that the strategy calls for short positions in options of all

strikes.

A given investor’s MSR strategy realizes a positive excess return over a

particular range of risky asset returns R0→T . We can characterize this range

by asking for which R0→T investor z’s MSR strategy has return exactly equal

to the riskless rate, that is, R
(z)
MSR,0→T = 1. (This question has an answer

that is independent of b, because combining with the riskless asset does not

affect the MSR return when it happens to earn the same as the riskless asset.)

Straightforward algebra shows, using (32), (40), and (42), that the critical log

returns for investor z satisfy

r0→T − E(z) r0→T

σ
√
T

=
√
θ (z − zg)±

√
(θ + 1)2

θ − 1
(z − zg)2 + (θ + 1) log

θ

θ − 1
.

(44)

for lack of space) replaced by K. Applying Result 12 with K0 = K(z), we find that the
maximum-Sharpe-ratio strategy from the perspective of agent z can be implemented by
holding g(K) dK calls at each strike K > K(z) and g(K) dK puts at each strike K < K(z),
plus a bond position. As g(K)� 0 for K far from K(z), this strategy is (extremely) short
out-of-the-money options.
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When the risky asset’s log return equals r0→T , as defined by the above equa-

tion, investor z’s MSR strategy has zero excess return.

Figure 15 illustrates in the baseline calibration. The dashed lines show the

log returns on the risky asset associated with zero excess return on investor z’s

MSR strategy. If the risky asset’s log return lies in the shaded region, the MSR

strategy has a negative realized excess return; if the risky asset’s log return

lies between the lines, the MSR strategy has a positive realized excess return.

The range is narrowest (as can be seen directly from equation (44)) for the

gloomy investor, who perceives that the Sharpe-ratio-maximizing strategy can

be implemented by shorting relatively near-the-money call and put options.

We note, however, that although it is possible to earn high Sharpe ratios

via short option positions, these strategies are not remotely attractive to in-

vestors in our economy. Indeed, as maximum-Sharpe-ratio strategies feature

the possibility of unboundedly negative gross returns, our investors would pre-

fer to invest fully in cash than to rebalance, even slightly, toward a maximum-

Sharpe-ratio strategy.

5 Conclusions

We have presented a frictionless model in which individuals have stable beliefs

and risk aversion. All investors are risk-averse; short sales are allowed; all

agents avoid bankruptcy; and all agents are on their first-order conditions at

all times.

Even so, the model generates a rich set of predictions. Heterogeneity in

beliefs gives rise to sentiment, which induces speculation and drives up real-

ized and implied volatility, particularly in the short run. All agents understand

these facts, so expected returns are higher than in an otherwise identical homo-

geneous economy, and securities with payoffs in extreme states of the world are

far more highly valued than in otherwise similar economies with homogeneous

beliefs. Moderate investors are suppliers of liquidity: they trade in a con-

trarian manner—they are “short vol”—and capture a variance risk premium

created by the presence of extremists.
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A The risky bond example

This section contains some further calculations in the risky bond example of

Section 2.2. Specifically, we ask what happens if agents are not allowed to

trade dynamically. Agent h perceives a probability 1− (1−h)T that the bond

pays 1, and (1− h)T that the bond pays ε, so solves

max
xh

(
1− (1− h)T

)
log (wh − xhp+ xh) + (1− h)T log (wh − xhp+ xhε) .

The first-order condition (after setting wh = p to account for the fact that all

agents are initially endowed with a unit of the risky asset) is

xh = p

(
1− (1− h)T

p− ε
− (1− h)T

1− p

)
.

If T is reasonably large, most agents will have (1−h)T ≈ 0, and so will choose

xh ≈ p
p−ε ; their wealth in the bad state of the world is then approximately

zero. Thus, if forced to trade statically most agents will lever up (almost) as

much as possible without risking bankruptcy.

For the market to clear, we require
∫ 1

0
xh dh = 1, which implies that p =

(1+T )ε
1+Tε

. This is the same as the time-0 price in the case with dynamic trade.

It follows that agent h’s demand for the asset is

xh = 1 +
(
1− (1 + T )(1− h)T

) 1 + Tε

T (1− ε)
.

If an individual investor is forced to trade statically (while everyone else is

trading dynamically, so that the price at time t is observed) then the investor’s

leverage at time t, defined as debt-to-wealth ratio, is

leveraget =
p0(xh − 1)

xhpt + p0 − p0xh,0
=

1− (1 + T )(1− h)T

T − t(1− (1 + T )(1− h)T )

1 + t− tε+ Tε

1− ε
.

For comparison, in the dynamic case investor h’s time-t demand will be

xh,t = (1− h)t +
(1− h)t

1− ε
[h(2 + t)(1 + t(1− ε) + Tε)− 1− Tε)]

49



and the investor’s leverage at time t, defined as in equation (13), is

leveraget =
xh,tpt − wh,t

wh,t
=

(h(2 + t)− 1)(1 + t(1− ε) + Tε)

(1 + t)(1− ε)
.

This strategy delivers the dynamic investor higher expected utility. An

investor who follows the static strategy has wealth

p0

(
1− (1− h)T

)
1− (1− p∗0) · · ·

(
1− p∗T−1

)
if the bond does not default—which, in the investor’s opinion, occurs with

probability 1− (1− h)T . If the bond does default, the investor ends up with

p0(1− h)T

(1− p∗0) · · ·
(
1− p∗T−1

) =
p0(1− h)T (1− ε)

1− p0

.

This occurs with probability (1 − h)T . The static investor therefore has ex-

pected utility

EUstatic =
[
1− (1− h)T

]
log

(
p0

(
1− (1− h)T

)
1− (1− p∗0) · · ·

(
1− p∗T−1

))+(1−h)T log

(
p0(1− h)T (1− ε)

1− p0

)
.

Conversely, a dynamic investor ends up with wealth

p0(1− h)th

(1− p∗0) · · ·
(
1− p∗t−1

)
p∗t

if the first up move occurs after t successive down-moves, where t ∈ {0, . . . , T − 1}.
This outcome has probability (1 − h)th. If the bond defaults, his terminal

wealth is
p0(1− h)T

(1− p∗0) · · ·
(
1− p∗T−1

) =
p0(1− h)T (1− ε)

1− p0

.

Thus his expected utility is

EUdynamic =
T−1∑
t=0

(1−h)th log

(
p0(1− h)th

(1− p∗0) · · ·
(
1− p∗t−1

)
p∗t

)
+(1−h)T log

(
p0(1− h)T (1− ε)

1− p0

)
.
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Figure 16: The attractiveness of dynamic strategies relative to static strategies,
for investors of differing levels of optimism h.

It follows that the utility gap is independent of ε for all h:

EUdynamic − EUstatic =
T−1∑
t=0

(1− h)th log

 h(1− h)t
[
1− (1− p∗0) · · ·

(
1− p∗T−1

)][
1− (1− h)T

]
(1− p∗0) · · ·

(
1− p∗t−1

)
p∗t


=

T−1∑
t=0

(1− h)th log

(
(1− h)th(1 + t)(2 + t)T

(1− (1− h)T ) (1 + T )

)
.

To convert this logic into dollar terms, suppose an investor is indiffer-

ent between wealth of ωhwh and being constrained to invest statically, and

wealth of wh and being allowed to invest dynamically. Then ωh must sat-

isfy Estatic log (ωhwhR) = Edynamic log (whR) which implies that ωh − 1 =

exp {EUdynamic − EUstatic} − 1. Figure 16 plots this quantity for T = 50,

as in the example in the main text. (As a curiosity, we note that as T →∞,

the utility gap tends to a function of h alone:

EUdynamic−EUstatic →
h log h+ (1− h) log(1− h)

h
+h

∞∑
t=0

(1−h)t log [(1 + t) (2 + t)] .

As h→ 1, the above approaches log 2, so ω1 = 2: the ability to trade dynam-

ically is equivalent to a doubling of wealth for the most optimistic investor.)
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Proof of Result 1:

Proof. The probability distribution that each investor assigns to the event of

m up moves at time t is a BetaBinomial(ζh, ζ(1−h), t) distribution. Therefore

P(m up moves at time t) =

(
t

m

)
B(ζh+m, ζ(1− h) + t−m)

B(ζh, ζ(1− h))

From this, we can see how each agent updates their beliefs after a down move.

Then, by using Bayesian updating, we find that after t down moves (at time t),

the updated belief of the investor satisfies

h̃ | t down moves ∼ Beta(ζh, ζ(1− h) + t) .

We will denote this posterior belief by h̃t, which has the property that

E h̃t = h
1+t/ζ

. We can now proceed by replicating the steps of the benchmark

model. The agent’s first-order condition at time t becomes

xh,t = wh,t

(
h

1+t/ζ

p− pd
−

1− h
1+t/ζ

pu − p

)
. (45)

It follows that the wealth of an investor after t down moves is

wh,t = λpath (1− h)(1− h

1 + 1/ζ
) . . . (1− h

1 + (t− 1)/ζ
)︸ ︷︷ ︸

It(h)

,

where we can set I0(h) = 1 since the initial wealth does not depend on h.

We can then find λpath by equating aggregate wealth to the value of the risky

asset, which is in unit supply:

λpath

∫ 1

0

It(h)f(h)dh = pt.

Finally, in order to clear the market we must have

1 = λpath

[∫ 1

0

It(h)

(
h

1+t/ζ

p− pd
−

1− h
1+t/ζ

pu − p

)
f(h)dh

]
. (46)
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We can now let

Gt =

∫ 1

0
It(h)hf(h)dh

(1 + t
ζ
)
∫ 1

0
It(h)f(h)dh

,

where G0 = 1
2
. Then equation (46) can be rewritten as 1

p
= Gt

p−pd
− 1−Gt

pu−p . As Gt

can easily be calculated via numerical integration, this allows us to compute

the price path of the risky bond for arbitrary values of ζ.

In order to prove analytically that learning drives the price of the risky

bond even further below the case previously analyzed, note that

ym,t = Gtym+1,t+1 + (1−Gt)ym,t+1

where, as in the benchmark model, we have defined ym,t = 1/pm,t − 1.

In the risky bond case ym+1,t+1 = 0, so we can drop subscripts m and

write yt for y0,t. Then yt = (1 − Gt)yt+1, from which it follows that y0 =

(1−G0)(1−G1) · · · (1−GT−1)yT . Now,

1−Gt =

∫ 1

0
It+1(h)f(h)dh∫ 1

0
It(h)f(h)dh

,

and so we have a telescoping product

(1−G0)(1−G1) · · · (1−GT−1) =

∫ 1

0

IT (h)f(h)dh

≥
∫ 1

0

(1− h)Tf(h)dh =
B(α, β + T )

B(α, β)
.

Comparing this result with equation (21) we see that the present model

gives a higher value for y0 and hence a lower value of the risky bond, p0,

confirming our original intuition.

B Proofs of results

Proof of Result 2:

Proof. Observe from the recurrence relation (24) that a pricing formula in
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the form (25) holds. Each constant cm is a sum of products of terms of the

form Hj,s and 1 − Hj,s over appropriate j and s. We noted in the text that

Hm,t(1−Hm+1,t+1) = (1−Hm,t)Hm,t+1: that is, pricing is path-independent.

Fix m between 0 and T . By path independence, all the possible ways of

getting from the initial node to node m at time T make an equal contribution

to cm. By considering the path that travels down for T −m periods and then

up for m periods, and then multiplying by the number of paths,
(
T
m

)
, we find

that

cm =

(
T

m

)
(1−H0,0) · · · (1−H0,T−m−1)H0,T−mH1,T−m+1 · · ·Hm−1,T−1

=

(
T

m

)
β

α + β
· β + 1

α + β + 1
· · · β + T −m− 1

α + β + T −m− 1
· α

α + β + T −m
· · · α +m− 1

α + β + T − 1

=

(
T

m

)
B(α +m,β + T −m)

B(α, β)
.

The risk-neutral probability q∗m can be determined using the facts that

p∗m,t = Hm,tpm,t/pm+1,t+1 and 1−p∗m,t = (1−Hm,t)pm,t/pm,t+1. (We are restating

(9) with subscripts to keep track of the current node.) Thus—using again

path-independence in the first line—

q∗m =

(
T

m

)
(1− p∗0,0) · · · (1− p∗0,T−m−1) · p∗0,T−mp∗1,T−m+1 · · · p∗m−1,T−1

=

(
T

m

)
(1−H0,0)

p0,0

p0,1

· · · (1−H0,T−m−1)
p0,T−m−1

p0,T−m
·H0,T−m

p0,T−m

p1,T−m+1

· · ·Hm−1,T−1
pm−1,T−1

pm,T

= cm
p0,0

pm,T
.

We also have the following generalization of Result 2. We omit the proof,

which is essentially identical to the above.

Lemma 1. For any node m, t:

zm,t =
T−t∑
j=0

cm,t,jzm+j,T
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where j represents the number of further up-moves after time t, and

cm,t,j =

(
T − t
j

)
B(m+ α + j, T −m+ β − j)

B(m+ α, t−m+ β)
.

Moreover, the risk neutral probability of ending up at j, T starting from

node m, t is given by

q∗m,t,j = cm,t,j
pm,t
pm+j,T

.

Proof of Result 3:

Proof. We will start by proving the following Lemma.

Lemma 2. If Y1 ∼ BB(α, α, T ) and Y2 ∼ BB(α, α, T ), for α > α then Y1

second order stochastically dominates Y2.

Proof. A sufficient condition for second order stochastic dominance, for vari-

ables with the same expectation, is the single crossing dominance. That is, it

is sufficient to prove that:

Fα(s) ≥ Fα(s)⇐⇒ s ≤ c∗ (47)

for some c∗, where Fα(s), Fα(s) are the cdfs of Y1, Y2 respectively.15 Because of

symmetry c∗ will be just T/2. To prove the above it is sufficient to prove that

fα(k)−fα(k) is decreasing in [0, T/2], where f(·) denotes the probability mass

function. Then Fα(s) − Fα(s) would be decreasing (as a sum of decreasing

functions) and the proof of the lemma would be completed, since this would

imply equation 47. Hence, we need to show that:(
T

k

)[
B(k + α, T − k + α)

B(α, α)
− B(k + α, T − k + α)

B(α, α)

]
is decreasing in k (in the interval [0, T/2]). Equivalently:

Γ(k+α)Γ(T−k+α)

[
1

Γ(T + 2α)B(α, α)
− Γ(k + α)Γ(T − k + α)

Γ(k + α)Γ(T − k + α)

1

Γ(T + 2α)B(α, α)

]
15See, for instance, Osband & Roy (2018) ”Gaussian-Dirichlet Posterior Dominance in

Sequential Learning”.
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is decreasing.

But the above holds because of the following 2 facts:

First, h(k) = Γ(k + α)Γ(T − k + α) is decreasing because

[log h(k)]′ = ψ(k + α)− ψ(T − k + α) < 0

where ψ(·) is the digamma function, which is an increasing function since Γ(·)
is log-convex (and k < T − k).

Second, Γ(k+α)Γ(T−k+α)
Γ(k+α)Γ(T−k+α)

is increasing. Indeed, assume k1 > k2. Then, we

want:
Γ(k1 + α)Γ(T − k1 + α)

Γ(k1 + α)Γ(T − k1 + α)
>

Γ(k2 + α)Γ(T − k2 + α)

Γ(k2 + α)Γ(T − k2 + α)

Equivalently:

Γ(k1 + α)Γ(T − k1 + α)

Γ(k2 + α)Γ(T − k2 + α)
>

Γ(k1 + α)Γ(T − k1 + α)

Γ(k2 + α)Γ(T − k2 + α)

Now using the property that Γ(z + 1) = zΓ(z) for any z and that k1, k2 ∈ Z,

we get:

(α + k2)(α + k2 + 1) . . . (α + k1 − 1)

(α + T − k1)(α + T − k1 + 1) . . . (α + T − k2 − 1)
>

(α + k2)(α + k2 + 1) . . . (α + k1 − 1)

(α + T − k1)(α + T − k1 + 1) . . . (α + T − k2 − 1)

which is true since for example (α+k2)
(α+T−k1+1)

> (α+k2)
(α+T−k1+1)

.

Therefore this proves that Y1 single-crossing dominates Y2 and hence it also

second order stochastically dominates Y2 and the lemma has been proved.

Having established the above Lemma, we can now go back to proving

Result 3. It is well known that if Y1 second order stochastically dominates Y2

then for any concave function u(·):

EY1 [u(m)] ≥ EY2 [u(m)].

Pick u(m) = − 1
pm,T

. Then we get: EY1 [ 1
pm,T

] ≤ EY2 [ 1
pm,T

] and therefore:

1

EY1 [ 1
pm,T

]
≥ 1

EY2 [ 1
pm,T

]
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That is if p1, p2 are the corresponding prices (where p1 corresponds to the case

with less heterogeneity, as α > α), we have that p1 > p2.

To show that log-concavity of p implies that 1/p is convex, note that log-

concavity is equivalent to (p′)2 ≥ pp′′.

Proof of Result 4:

Proof. As shown in equation (25),

p−1
0,0 =

2N∑
j=1

cjzj,T

From Result 2, cj equals the probability that a BB(2N,α, β) random vari-

able takes the value j. Therefore we can equivalently write

p−1
0,0 = Ej [zj,T ] = Ej

[
e
−σ
√

2T j−N√
N

]
(48)

where the random variable j has a beta-binomial distribution, BB(2N,α, β) ≡
BB(2N, θN + η

√
N, θN − η

√
N).

The Paul and Plackett theorem (see online Appendix for more details)

states that j, appropriately shifted and scaled, converges in distribution and

in moment generating function to a Normal distribution. More specifically,

ΨN ≡
j −N − η

θ

√
N√

1+θ
2θ
N

−→ N(0, 1)

where E[j] = N + η
θ

√
N and var[j] = 1+θ

2θ
N . As

j −N√
N

= ΨN

√
1 + θ

2θ
+
η

θ
,
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we have

p−1
0,0 = E

[
e
−σ
√

2T
(

ΨN
√

1+θ
2θ

+ η
θ

)]
→ E

[
e
−σ
√

2T
(
Z
√

1+θ
2θ

+ η
θ

)]
= exp

(
−η
θ
σ
√

2T +
θ + 1

2θ
σ2T

)
.

From the first to the second line, convergence of expectations follows from

the fact that the beta-binomial converges to Normal in moment generating

functions (for more details, see the Online Appendix).

Proof of Result 5:

Proof. We want to find the perceived expectation and variance of returns from

0 to t. In order to achieve that, we need to first compute pm,t, following the

lines of the proof of Result 4, and then find the limiting distribution that it

has from the perspective of any investor h. We outline the main steps here,

and present further details in the Online Appendix.

Define φ = t
T

and set m = φN + ψt
√
φN , so that ψt is a convenient

parametrization of m. Given that zm+j,2N = λ−2(m+j−N), we have, similarly to

equation (48)

p−1
m,t = Ej[e−σ

√
2T m+j−N√

N ] (49)

where we view j as a random variable with beta-binomial distribution

BB
(

2(1− φ)N, (φ+ θ)N + (ψt
√
φ+ η)

√
N, (φ+ θ)N − (ψt

√
φ+ η)

√
N
)
.

By the Paul and Plackett theorem, the standardized version of j converges

in distribution and in moment generating function to a standard Normal ran-

dom variable. Therefore we can find the (limiting) expectation on the right

hand side of (49), by just considering the expectation under a Normal distri-

bution, with the corresponding mean and variance (for detailed calculations

see the proof in the Online Appendix). As N tends to infinity, we will write

pψt :≡ pm,t (where, ψt = m−φN√
φN

), to emphasize that we are considering the

continuous time limit, in which ψt becomes the relevant state variable. We
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get:

pψt = bt · e
θ+1
φ+θσ

√
2φTψt (50)

where bt = e−
1−φ
2

θ+1
φ+θ

σ2T+ 1−φ
φ+θ

ησ
√

2T .

We then view pψt as a function of ψt, for which we care about each limiting

distribution. We know that m(= φN + ψt
√
φN) has a binomial distribution

with mean 2φNh and variance 2φNh(1 − h) from the perspective of agent

h. Indeed by the Central Limit Theorem (or by De Moivre’s theorem), a

standardized version of m converges to a standard Normal distribution:

m− 2φNh√
2φNh(1− h)

→ N(0, 1). (51)

Equivalently, we have:

ψt − (2h− 1)
√
φN√

2h(1− h)
→ N(0, 1), (52)

where (2h − 1)
√
N = η

θ
+ z√

2θ
and h(1 − h) = 1

4
+ O( 1

N
). Therefore, the

expectation and variance of log(pt) are

E(z) log pt =
t(θ + 1) z√

θ
σ
√
T − 1

2
(T − t)(θ + 1)σ2T

θT + t
+
η

θ
σ
√

2T

var(z) log pt = σ2t

(
θ + 1

θ + t
T

)2

.

Proof of Result 6:

Proof. We are interested in finding

E(z) [R0→t] = E(z)

[
pψt
p0,0

]
,

where as in the proof of Result 5 we use the notation pψt :≡ pm,t, which we

have already computed in equation (50)

p−1
0,0 · bt · E(z)

[
e
θ+1
φ+θ

σ
√
T
√

2φψt
]

;
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and we have established, in equation (52), that ψt converges in distribution and

in moment generating function to a Normal (as m does too). Hence asymp-

totically, the above is the expectation of a log-normal variable. In particular,

after some algebra,

E(z) [R0→t] = e
φ(θ+1)
θ+φ

[
z√
θ
σ
√
T+ θ+1

2
( 1
θ

+ 1
θ+φ

)σ2T
]
. (53)

Setting φ = t
T

, the proof is complete. Finally, note that by substituting φ = 1

and h = 1
2

+ η

2θ
√
N

+ z√
8θN

we obtain equation (30).

Proof of Result 8:

Proof. Note that 2φN is the number of periods corresponding to t = φT .

Writing qm,t for the risk neutral probability of going from node (0, 0) to node

(m, t), we have (as in Lemma 1) qm,t = p0,0
pm,t

cm,t, where

cm,t =

(
2φN

m

)
B(α +m,β + 2φN −m)

B(α, β)
.

As the risk-free rate is 0, it follows that the time zero price of a call option

with strike K, maturing at time t, is

C(0, t;K) =

2φN∑
m=0

qm,t(pm,t −K)+

= p0,0

2φN∑
m=0

cm,t

(
1− K

pm,t

)+

= p0,0 E

[(
1− K

bt
e−

θ+1
φ+θ

σ
√

2φTψt

)+
]

where the expectation is taken with respect to the random variable m which

follows a BB(2Nφ, α, β) distribution and in the last line we have substituted

pm,t with its (continuous time limit) value computed at equation (50) (re-

member, ψt = m−φN√
φN

) . By the result of Paul and Plackett, the asymptotic
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distribution of m satisfies

m− φN − η
θ
φ
√
N√

φ+θ
2θ
φN

→ Ψ ∼ N(0, 1)

as N →∞. Equivalently:

1√
φ+θ
2θ

(
ψt −

η

θ

√
φ
)
→ Ψ ∼ N(0, 1)

Thus

C(0, t;K) = p0,0 · E

[(
1− K

bt
e−

θ+1
θ+φ

σ
√

2φT (Ψ
√

φ+θ
2θ

+ η
√
φ
θ

)

)+
]
.

(Note that convergence in distribution implies convergence of the expectation

by the Helly-Bray theorem, since the function of Ψ inside the expectation is

bounded and continuous.) This expectation is now standard, and we have

C(0, t;K) = p0,0

[
Φ

(
− log(X)

σ̃
√
t

)
− e

σ̃2t
2
K

bt
e−

θ+1
θ+φ

σ
√

2T ηφ
θ Φ

(
− log(X) + σ̃2t

σ̃
√
t

)]

where X = K
bt
e−

θ+1
θ+φ

σ
√

2T ηφ
θ and

σ̃2t =
(θ + 1)2

θ(θ + φ)
σ2t = var

[
log

(
K

bt
e−

θ+1
θ+φ

σ
√

2T (Ψ
√

φ+θ
2θ

φ+ ηφ
θ

)

)]

Finally, noting that p0,0 = e
σ̃2t
2
K
bt
e−

θ+1
θ+φ

σ
√

2T ηφ
θ , we arrive at the Black–Scholes

formula

C(0, t;K) = p0,0Φ(d1)−KΦ(d1 − σ̃
√
t)

where

d1 =
log
(p0,0
K

)
+ 1

2
σ̃2t

σ̃
√
t
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and volatility is determined endogenously via

σ̃ =
θ + 1√
θ(θ + t

T
)
σ .

Proof of Result 9:

Proof. An agent’s SDF links his or her perceived true probabilities to the

objectively observed risk-neutral probabilities. Thus

M
(h)
t (m) =

p0,0

pm,t

cm,t

π
(h)
t (m)

where π
(h)
t (m) is the probability that we will end up at node (m, t), as perceived

by agent h. As cm,t has a beta-binomial distribution and π
(h)
t (m) has a binomial

distribution, they are each asymptotically Normal16 and we have the following

characterization for the SDF MT :

M
(h)
t (m) ∼

√
4h(1− h)θ

φ+ θ
p0,0b

−1
t e−

θ+1
θ+φ

σ
√

2φTψt−
θ(m−φN− η

θ
φ
√
N)2

(φ+θ)φN
+

(m−2φNh)2

4h(1−h)φN (54)

where ψt = m−φN√
φN

is asymptotically Normal from the perspective of any agent

h by the De Moivre–Laplace theorem.17 Parametrizing further h with z such

that h = 1
2

+ η

2θ
√
N

+ z√
8θN

, the right hand side can be rewritten as

M
(z)
t (ψt) ∼

√
θ

φ+ θ
p0,0b

−1
t e
− θ+1
θ+φ

σ
√

2φTψt− θ
(φ+θ)

(ψt− ηθ
√
φ)2+(ψt−

√
φ( η
θ

+ z√
2θ

))2
. (55)

Thus M
(z)
t (ψt) is asymptotically equivalent to a function of the random

variable ψt, and hence of the variable Ψ(z) =
√

2(ψt −
√
φ(η

θ
+ z√

2θ
)) which

converges in distribution to a standard normal (as Ψ(z) = m−2φNh√
2φNh(1−h)

). By the

continuous mapping theorem, since this function is continuous, it converges in

16Note that the price at 0, is given by Result 4. Moreover the asymptotic distributions of
cm and π(h)(m) are given in the proof of Result 5.

17The notation A ∼ B is used to denote A being asymptotically equivalent to B, or in
other words: limN→∞

A
B = 1.
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distribution to f(Z) (where f(·) is the corresponding function).

In order to be able to take expectations of M2
t (for the rest of the proof,

we suppress the dependence on z in our notation) we need one additional

condition. In particular we will prove that the above sequence of random

variables is uniformly integrable.

For that, rewrite equation (55) as (M2
t )(N) := DeA(ψ

(N)
t )2+Bψ

(N)
t +C to denote

a sequence of random variables whose limiting expectation we want to find (we

write ψ
(N)
t , (M2

t )(N) instead of ψt, M
2
t , to emphasize the dependence on N).

We want to prove that there exists an ε > 0 such that

sup
N

E[(eA(ψ
(N)
t )2+Bψ

(N)
t +C)1+ε] <∞.

As Lp convergence for p > 1 implies uniform integrability, this will give us the

result we want.

By Hoeffding’s inequality,18

P(|m− φN√
φN

| ≥ k) ≤ 2e−k
2

(56)

for any k > 0. As the coefficient, A, on ψ2
t in M2

t satisfies A = 2φ
φ+θ

< 1, we

can set ε > 0 such that A = 1− ε. Then inequality (56) implies that

P
(
e

1
1+ε2

(mt−φN)2

φN ≥ x

)
≤ 2

1

x1+ε2
(57)

for x > 0, γ > 0.

18Hoeffding’s inequality states that if Z1, Z2, . . . , Zn are i.i.d. random variables, with

Zi ∈ [a, b], and X = 1
n

∑n
i=1 Zi, then E[|X − E[X]| ≥ k] ≤ 2e

− 2nk2

(b−a)2 . In our case, mt is the
sum of 2φN i.i.d. Bernoulli variables, so the theorem can be applied.
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Using this inequality together with the fact that e
1

1+ε2
(m−φN)2

φN ≥ 1 we have

E[e
1

1+ε2ψ2
t ] = E[e

1
1+ε2

(mt−φN)2

φN ] ≤
∫ ∞

0

P
(
e

1
1+ε2

(mt−φN)2

φN ≥ x

)
dx

≤ 1 +

∫ ∞
1

P
(
e

1
1+ε2

(mt−φN)2

φN ≥ x

)
dx

≤ 1 + 2

∫ ∞
1

1

x1+ε2
dx

= 1 +
2

ε2
<∞.

Finally note that (1 + ε)A = 1 − ε2 < 1
1+ε2

. Hence there exists a con-

stant, K, such that (1 + ε)(Aψ2
t + Bψt + C) < 1

1+ε2
ψ2
t + K, and therefore

E[eAψ
(N)
t +Bψ

(N)
t +C ] < E[e

1
1+ε2

ψ2
t+K

] < ∞. Thus our sequence is uniformly inte-

grable, and hence there is convergence of expectations.19

We can now work towards finding the variance of Mt from the perspective

of agent h. The results above imply that this problem reduces, in the limit

as N →∞, to finding the moment generating function (the expectation of an

exponential) of a chi-squared random variable. By computing this expectation

we find that

E[M2
t ] =

θ√
θ2 − φ2

exp

{[
z
√
θφ+ (θ + 1)σ

√
φT
]2

θ (θ − φ)

}
.

Proof of Result 10:

Proof. We follow the logic of the proof of Result 9. Note, from equation (55),

that logMt is a quadratic function of ψt. Let us assume this quadratic has

the form Fψ2
t + Gψt + H for some constants F,G,H. Then this sequence of

random variables converges in distribution to the corresponding quadratic of

a Normal variable. By the Hoeffding inequality (56), P(2Fψ2
t ≥ x) = P(|ψt| ≥√

x/2F ) ≤ 2e−x/2F . Thus E[2Fψ2
t ] ≤ 2

∫∞
0
e−x/2Fdx = 4F < ∞, and hence

19From equation (57) one could deduce that our sequence of random variables is dom-
inated by the tail of a Pareto distribution, which has a finite expectation, and then use
the dominated convergence theorem to reach the conclusion that there is convergence of
expectations.
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E [Fψ2
t +Gψt +H] < E [2Fψ2

t + c] < ∞ for some constant c, which implies

that the sequence is uniformly integrable. We can thus take the expectation

under the corresponding normal distribution. In particular, m−2φNh√
2φNh(1−h)

con-

verges to a standard Normal. We can then write ψt in terms of this random

variable (as in the proof of the previous result) to find

E log(Mt) =

[
z
√
θφ+ (θ + 1)σ

√
t
]2

2θ (θ + φ)
+

1

2

(
log

θ + φ

θ
− φ

θ + φ

)
.

Proof of Result 11:

Proof. Note that W
(z)
T = W0 ·R(z)

0→T , where R
(z)
0→T is the growth optimal return

from 0 to T as perceived by investor z, and W0 is the initial endowment which

equals p0,0. As N →∞,

W
(h)
T = (M

(h)
T )−1p0,0 ∼ pT

√
θ + 1

θ
e

θ
(1+θ)

(ψ− η
θ

)2+(ψ−( η
θ

+ z√
2θ

))2
.

Substituting ψ = m−N√
N

and parametrizing
√
N(2h− 1) = η

θ
+ z√

2θ
, we have

W
(z)
T =

√
θ + 1

θ
exp

(
− ψ2

θ + 1
+ ψ(

2η

θ(θ + 1)
+

2z√
2θ

+ σ
√

2T )− z2

2θ
− 2zη√

2θθ
− η2

θ2(θ + 1)

)
.

Finally, substituting log(pT ) = σ
√

2Tψ, we obtain Result 11.
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