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Abstract 

We use county-level panel data on mortality to estimate the effect of fine particulate 
matter (PM2.5) pollution on mortality in China. Causal inference relies on changes in 
local pollution correlated with demand shocks from export destinations amid the 2008 
global financial crisis. Combining satellite data on local emissions with regional 
mortality data, we find an economically and statistically significant impact of the long-
term exposure to PM2.5 on cardiovascular and respiratory mortality. Mortality impacts 
are largest for those 65 years and older. Using the variability in particulate levels both 
across time and geographic space, we examine how the dose-response function 
changes at higher levels of pollution. We find evidence of a concave dose-response, 
with diminishing marginal mortality impacts of pollution at levels beyond those in 
developed nations. 
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1. Introduction 

Outdoor air pollution is one of the leading environmental factors for mortality, accounting 

for about 4.5 million premature worldwide deaths per year as of 2015.  In the past decade, 

a body of economic studies examined the causal impact of air pollution on health, exploring 

exogenous variations in air pollution through quasi-experimental approaches (e.g., Beatty 

and Shimshack, 2014; Chay and Greenstone, 2003; Chay et al., 2003; Currie and Walker, 

2011; Evans and Smith, 2006; Janke et al., 2009; Janke, 2014; Knittel et al., 2016; 

Schlenker and Walker, 2015). Most of these studies focus on areas with comparatively low 

levels of air pollution (e.g., OECD countries), where annual average PM2.5 concentrations 

rarely exceed 30 micrograms per cubic meter of air (μg/m3) (Pope and Dockery, 2013).2 In 

major developing and fast-growing countries such as China and India, PM2.5 concentration 

is much higher, and half of premature pollution deaths occur in China and India (Lancet 

Commission, 2016). During the 2011-2015 period, while less than 20% of the population in 

OECD and high-income countries were exposed to PM2.5 with the annual mean 

concentration above the WHO guideline of 10 μg/m3, more than 90% of the population in 

low-and-middle income countries faced such levels. For example, the annual concentration 

of PM2.5 in China was constantly over 50 μg/m3 in recent years.3  

The relationship between economic growth and environmental quality presents a 

challenge to developing economies. Income growth increases the demand for environmental 

quality and quality of life. At the same time, the rise in vehicle ownership and travel 

demand, together with the burning of fossil fuel for industrial activities to maintain 

economic growth, continue to put pressure on the environment. Understanding the potential 

tradeoff between economic growth and environmental quality requires a better 

understanding of the health impact of environmental quality in developing economies. As 

                                                
2 PM2.5 or fine particulate matter refers to particulate matter of less than 2.5 micrometers in aerodynamic 
diameter. 
3 China's PM2.5 concentration in 2014 was more than six times of that in the US (8μg/m3) in the same year 
(WHO, 2016), almost three times of that (21μg/m3) during the period of 1979-1983 (Pope et al., 2009) and 
almost twice of that (30μg/m3) in the most polluted United States cities in the late 1970s. China's PM2.5 

concentration in 2014 was ranked in the 169th place among all 184 countries that have data available and twice 
of the world average (26 μg/m3) in 2014 (WHO, 2016). Population weighted annual concentration of PM2.5 in 
China in 2010 (mean 59μg/m3) substantially exceed levels in India (28μg/m3) (Apte. et al., 2015). The annual 
standard set by China's Ministry of Environmental Protection (MEP) is 35 μg/m3.  
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economic growth is often accompanied by improvement in health care, establishing a causal 

link between air pollution and health is particularly complicated in rapidly developing 

nations. As a result, the exact regions that stand to benefit most from understanding the link 

between air pollution and health are those with traits that could complicate identifying 

causal associations. 

This paper examines the causal impact of long-term exposure to PM2.5 on mortality in 

China, using county-level panel data for the 161 counties covered by the Disease 

Surveillance Point System (DSPS) of Chinese Center for Disease Control and Prevention 

(CDC) for the periods of 2004, 2008, and 2010. To address the potential endogeneity of 

PM2.5 concentration, we construct an instrumental variable (IV) leveraging the 2008 

worldwide economic recession, which generates plausibly exogenous shocks to export 

demand and hence local manufacturing activities in different parts of China. Our IV is the 

interaction between two factors that vary at the local level: (1) pre-sample (year 2000) 

export intensity at the county level, and (2) the total exports to top 5 importing destinations 

at the county level. Such shocks affect counties in China differently because of cross-county 

differences in exposure. Our causal inference relies on county-level PM2.5 variation from 

demand shocks in corresponding exporting destinations in the spirit of Autor et al. (2013), 

which leverages supply-driven shocks in China to measure the impact of trade on the U.S. 

labor market. Economic shocks to export destinations propagate through demand for goods 

from different counties in China, leading to variations in local manufacturing activities and 

thus PM2.5 concentrations.   

We find long-term exposure to PM2.5, as measured by three-year ambient pollution 

levels, causes a significant increase in all-cause and cardiorespiratory mortality. PM2.5 has 

the largest mortality impact on those 65 years and older; this has strong implications for the 

future disease burden given a growing older population in China. Using the substantial 

variation in PM2.5 both across time and location, we also examine how the dose-response 

pollution and health function changes at higher and lower levels of emissions. We find 

suggestive evidence of larger marginal mortality impacts at lower concentrations, indicating 

the dose-response function is concave. This aligns with the important recent findings in 
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Cohen et al (2016) that air quality improvements will result in only "modest reductions in 

burden in the most polluted countries unless PM2.5 concentrations decline markedly." 

Our results align with the growing body of economics literature on estimating the 

impact of air pollution on mortality in economics. Much of this literature pays particular 

attention to causal inference by leveraging potentially exogenous variation in air pollution. 

While earlier work focused on infants (Chay and Greenstone, 2003; Currie and Neidell, 

2005; Currie and Walker, 2011; Knittel et al., 2015), recent research shows negative effects 

for adults as well (Anderson, 2015; Barreca, Neidell, and Sanders, 2018; Deryugina et al., 

2018). We provide empirical evidence on the health impact for the older population under 

much higher levels of air pollution than those observed in aforementioned studies. Our 

estimation is most closely related to Chen et al. (2013), He et al. (2016) and Ebenstein et al. 

(2017), all of which consider the relationship between pollution and mortality in China. Our 

results are broadly consistent earlier findings, while providing three important additions. 

First, Chen et al. (2013) estimate the impact of TSP and He at al. (2016) and Ebenstein et al. 

(2017) examine PM10, while our analysis focuses on PM2.5. Health literature suggests fine 

particle PM2.5 (including sulfates, nitrates, acids, metals, and particles with various 

chemicals adsorbed) has larger adverse health impact because they may be more toxic and 

can penetrate deeper into lungs and remain suspended for longer period of time than larger 

particles such as PM10 (Pope and Dockery, 2012). Second, Chen et al. (2013) and Ebenstein 

et al. (2017) use the regression discontinuity approach based on the Huai river heating 

policy in China. We offer a different identification strategy using variation across both 

location and time. Our results largely align despite using two very different identification 

strategies, which supports earlier findings. Third, our analysis examines the shape of the 

dose-response function by considering effects above and below the median PM2.5 levels in 

China (42 μg/m3).  

Section 2 of this paper provides background on China’s air pollution challenge and 

describes various data components. Section 3 provides graphic evidence to illustrate the 

identification strategy. Section 4 discusses our empirical framework. Section 5 presents 

empirical results, and Section 6 concludes.  
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2. Background and Data 

2.1 Background 

Amid heightened public concerns of health impacts of air pollution, improving air 

quality has become a major policy goal of the Chinese central government. Every five 

years, China’s Central Government issues a new Five-Year Plan (FYP), outlining the 

country’s socio-economic development goals for the next five years. China's 11th FYP 

(2006-2010) first proposed monitoring PM2.5 in major cities in China. The 13th FYP (2016-

2020) explicitly regulated PM2.5 pollution as a key policy goal.4 Economic development 

remains the most important focus of local and national governments, and these FYPs also 

set forth the specific strategies to achieve development goals.  

Recent national plans such as the One-Belt and One-Road initiative aim to reduce 

economic disparity across different regions by encouraging manufacturing activities to 

move from the east coast to the west and by improving public infrastructure and investment 

in the western region. These economic development strategies could lead to significant 

changes in environmental quality in an area where environmental awareness among the 

general population may be weak and access to healthcare is still poor. The potential tradeoff 

between economic development and environmental quality should be an important concern 

for policy makers (Grossman and Krueger 1995), and understanding the health consequence 

of environmental degradation such as air pollution is an important component in that 

tradeoff. 

2.2 Data and Descriptive Statistics 

We assemble several data components on mortality, air pollution, trade, and socioeconomic 

conditions at the county level from multiple sources covering the years 2004, 2008, and 

2010. Our data vary at either the prefecture or county level, where prefecture is a higher 

level of aggregation and contains multiple counties. 

                                                
4 FYPs are passed by the Standing Committee of National People’s Congress, the highest-level of government 
organ that has the power to legislate. The first FYP was made for the period of 1953-1957. 
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Mortality data 

Mortality data are from the Disease Surveillance Point System (DSPS) of the Chinese 

Center for Disease Control and Prevention (CDC)5. We obtained confidential mortality 

statistics by age group, gender, and by cause of deaths for all 161 counties/city districts 

covered by DSPS for 2004, 2008 and 2010. The data divide population into six age groups: 

(0-15 years), [15-20 years), [20-35 years), [35-50 years), [50-65 years), and 65 years and 

above. Causes of mortality fall into four categories: respiratory, cardiovascular, suicide, and 

other. For our analyses, we group populations in a given county into three age groups, 

including children and teens (below 20 years), young and middle-aged (between 20 and 65 

years) and the elderly (65 and above). 

The raw mortality rate counts the total number of deaths divided by the midyear 

population. As many health outcomes vary by age, to compare groups with different age 

distributions, we construct the age-adjusted mortality rate. Based on the raw mortality rate 

data, we calculate the age-adjusted mortality rate for each age group for a given county. In 

county i, there are k (k=1,..., K) age groups, the population size of age group k is  and 

the total mortality in age group k is . is the age-specific raw mortality rate 

for age group k in county i. The age-adjusted mortality is defined as 

 , 

where is the reference population share by age in China. 

Pollution data 

We focus on long-term exposure to PM2.5 on mortality. In epidemiology, long-term 

exposure often refers to exposures of a year or more to ambient air pollution (e.g., Pope et 

al., 2002; Brunekreef et al., 2006; Hoek et al., 2013; Miller, 2013). We measure pollution 

exposure using PM2.5 concentration derived from satellite Aerosol Optical Depth 

                                                
5 For detailed discussions on the establishment of surveillance points set by CDC and mortality information, 
please be kind to refer to Zhou et al. (2015).  
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observations.6 In China, ground-level air quality monitoring stations before 2013 were rare 

and the information was not public. We retrieve data from the Global Annual PM2.5 Grids 

from MODIS (Moderate Resolution Imaging Spectroradiometer), MISR (Multi-angle 

Imaging SpectroRadiometer), and SeaWiFS (Sea-Viewing Wide Field-of-View Sensor) 

Aerosol Optical Depth (AOD) data sets, which have been used in many health impact 

studies (e.g. Brauer et al., 2012).  These data sets are a series of three-year running 

averages of fine particulate matter at the grid level derived from a combination of MODIS, 

MISR and SeaWIFS AOD satellite retrievals during 1998-2012. Grids have a resolution of 

0.1 x 0.1 degrees. We transform satellite-derived PM2.5 data at the grid level to 161 

counties/city districts using geographic information (the longitude and the latitude) of each 

county. We use the current year and past two-year average PM2.5 concentration for 2004, 

2008 and 2010 as the long-term exposure to PM2.5 and hereafter refer to this value as our 

measure of PM2.5 concentration.7  

Trade data 

We collect information on the export of industrial goods and their destination countries 

for 145 prefectures covering our 161 county/city districts from China’s Customs database. 

We identify the top five destination countries for each prefecture during the period of 2001- 

2010, then collect information on total imports of these countries from China in each year 

from the World Bank’s World Development Indicators. For each of 161 counties/city 

districts, we construct a measure of export intensity (total export/total GDP from the 

manufacturing sector) in 2000. This variable captures the susceptibility of the local (county) 

economy to economic shocks of exporting destinations. Our instrument is the interaction 

between the baseline (year 2000) export intensity of each county and total exports from 

China to each county's top 5 destination countries. The interaction allows demand shocks 

from the same destination countries to have different effects across Chinese counties 

depending on county trade intensity. 

                                                
6 The data is available from http://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-avg-pm2-5-2001-
2010. Satellite remote sensing data are being increasingly used for air quality measurement due to its extensive 
spatial coverage (Li et al. 2015). 
7 For example, the pollution level reported for 2004 is an average of pollution levels in 2002, 2003, and 2004. 



8 
 

Socio-economic data 

Socioeconomic conditions at the local level can affect both pollution and health 

outcomes. In the Chinese context, prefectures are the hubs of local economic development 

as well as healthcare services. Residents in counties usually go to hospitals in the capital 

city of the prefecture when they have a severe illness, some of which may not be treatable 

by local hospitals at the county seats. This presents a spatial complication, as neighboring 

counties in the same prefecture may benefit from government spending on health care and 

pollution reduction as well as hospital facilities provided at the prefectural level.   

Given the above context, instead of collecting county-level socio-economic 

information, we collect prefectural-level data from Statistical Yearbooks of Prefectural 

Cities in China (2001-2010). Variables include: GDP per capita, local government 

spending, number of employees, and total number of hospital beds. We generate the past 3-

year average for each variable for 2004, 2008, and 2010 to be consistent with the timing of 

our PM2.5 exposure variable. 

Weather data 

We collect daily weather information from the National Bureau of Meteorology on 

temperature, precipitation, humidity, solar radiation and wind speed for each station, and 

then aggregate daily information. Considering weather conditions may have non-linear 

effects on pollution and health outcomes (see, for example, Barreca et. al 2016), we create 

temperature bins with a bandwidth of 10-degree days in Fahrenheit at the station level. 

Among those 161 counties covered by the DSPS system, some counties have weather 

stations while others do not. For counties without weather stations, we use Inverse Distance 

Weighting (IDW) interpolation to generate a county-level measure. Specifically, for a given 

county/city district, we take the weighted average of weather data from stations within a 

radius of 200 km using the IDW method. As with other variables, we calculate the past 3-

year average values to be consistent with the timeframe of the pollution variable. 
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2.3 Summary statistics 

Table 1 presents summary statistics for all variables used in our study. Across 2004, 2008 

and 2010, the average annual age-adjusted total mortality rate was 105 deaths per 100,000 

people. The average age-adjusted respiratory and cardiovascular mortality rates were 57 and 

42 deaths per 100,000 people, respectively.8  

The aggregated 3-year PM2.5 concentration for the 161 counties was 44.14 μg/m3 (first 

row of the Table 1) and the population weighted average annual PM2.5 concentration was 

45.73 μg/m3 (second row of the Table 1), which is substantially higher than the WHO 

guideline for PM2.5 average annual exposure (10 μg/m3) and the US EPA's primary standard 

(12 μg/m3). It was also higher than China's national standard (35 μg/m3). These 161 

counties, on average, have better air quality than the national average; counties in the 

country's most polluted areas (such as Hebei, Henan, Shandong and Shanxi) are under-

sampled. The average PM2.5 concentration at the national level based on over 1000 ground 

level monitoring stations was 56 μg/m3 during 2013-2015 and the population weighted 

average was 62 μg/m3.  

Table 1 also shows large variations, ranging from 1 μg/m3 to 117 μg/m3, among 

counties in terms of regular exposure to PM2.5 pollution. Counties' median PM2.5 

concentration was 42 μg/m3. Figure 1 depicts variation in the exposure to PM2.5 pollution 

across counties in 2010, showing substantial geographic variation in levels. Most counties 

in central and eastern China had PM2.5 concentration levels higher than China's national 

standard, while counties in land-locked western China and remote regions in northeastern 

China have comparatively lower PM2.5 concentrations (below 19 μg/m3).   

Figure 2 presents variation among sample counties in terms of changes in the exposure 

to PM2.5 pollution from 2004 to 2010. Most counties experienced an increase in PM2.5 

concentration between 2004 and 2010, but with varied magnitudes of change across 

counties. Some counties experienced changes greater than 20 µg/ m3 while others saw 

changes below 1 µg/ m3.  Counties experiencing the biggest change are located in central 

                                                
8 The average age-adjusted mortality rate due to suicide was about 1.68 deaths per 100,000 people per year. 
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and eastern China, while counties with smaller changes are from land-locked western China 

and the more remote part of northeastern China. 

2.4 Variations in PM2.5, Mortality and Trade 

The timing of our available mortality data spans the global financial crisis in 2008, which 

significantly affected international trade between China and its major trading partners. 

Between January and February of 2009, China’s overall exports were 17.5% lower than the 

corresponding months in 2008 (Whalley et al., 2009). The annual changes in exports of 

goods/services in 2008 and 2009 were -1% and -12%, respectively. With the reduced 

demand for China's output from destination countries, production of industrial goods likely 

contracted, driving changes in PM2.5 concentrations. Figure 3 shows trends in average PM2.5 

concentrations, the mortality rate, top-5 destination country imports from China (the basis 

for our instrument and averaged from the county level), and GDP per capita during 2004, 

2008, and 2010.9 

Between 2004 and 2010, GDP per capita increased steadily, which implies local 

GDP growth is not driven entirely by trade. Although PM2.5 concentration and top-5 imports 

from China increased overall from 2004 to 2010, both peaked in 2008 and then decreased 

slightly by 2010. All-cause mortality reached its lowest level in 2008, ending slightly higher 

in 2010 but still below initial 2004 levels. Figure 3 thus provides suggestive evidence on [1] 

the possible co-movements of PM2.5 concentration and top-5 imports from China during our 

period, and [2] a close relationship between changes in PM2.5 concentration and changes in 

mortality. 

The increasing trend of PM2.5 concentration masks heterogenous changes in PM2.5 

concentration by county, due possibly to different industry structures and socio-economic 

characteristics.  To investigate how our variables change over time for higher- versus 

lower-pollution areas, we take the change in PM2.5 concentration between 2004 and 2010, 

calculate change quartiles, and then divide all counties into three groups: groups with little 

                                                
9 We identify top-5 destination countries for each county according to detailed information of the export of 
industrial goods from the county and their destination countries.  Once the top-5 destination countries are 
identified, we then compile information on their import from China for each year during our sample period.   
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pollution change (lowest quartile), medium (25th-75th percentile), and big (greatest quartile) 

pollution changes.10 Note that, unlike trends in developed nations, pollution levels in China 

are generally increasing over time. As a result, each groups sees pollution increase overall 

across the period, but there is variation in the total size of the increase. 

Figure 4 shows striking differences across groups in terms of changes in PM2.5 

concentration. In the "Big Change" group, PM2.5 concentration increased by 38%, while the 

"Small Change" group had only a 3% increase during the same period. PM2.5 concentrations 

in the "Big Change" group increased in both 2008 and 2010, while the "Small Change" and 

"Middle Change" groups, both reached peak PM2.5 concentration in 2008. 

Figure 5 plots the mortality rate by the same grouping. These are unadjusted mortality 

differences that contain a good deal of noise, so are suggestive at best. Unlike pollution 

levels, mortality rates are decreasing across time. This hints at a possible source and 

direction of bias in OLS estimate, where general trends in economic development 

(increasing) and mortality (decreasing) might bias results in the negative direction. Panel A 

shows the trend in all-cause mortality, while Panel B presents the trend in respiratory 

mortality.  

The figure shows counties with the smallest increases in PM2.5 concentration had the 

largest decline both in all-cause and respiratory mortality. In Panel A, all-cause mortality 

declined more for the "Big Change" group than the "Middle Change" group, though for 

respiratory mortality the "Big Change" group declined less rapidly than the "Middle 

Change" group.  The different trends of these two categories of mortality may be because 

all-cause mortality also includes factors other than PM2.5 pollution, while respiratory 

mortality has been shown to be closely associated with particulate air pollution (see Pope 

and Dockery, 1994).  

Our IV identification hinges on the differential impacts of the 2008 financial crisis.  

Figure 6 provides visual inspections on changes in the top-5 destination imports from China 
                                                
10 The big change group consists of counties with the biggest change (i.e. in the 75th percentile, with PM2.5 
concentration increased by 14.36 ) and the small change group consists of counties with the smallest 
change (i.e. in the 25th percentile, with PM2.5 concentration increased by 2.89 ).  The middle change 
group is composed of all other counties, i.e. 25th -75th inter-quartiles. 

3/mgµ
3/mgµ
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by counties across different PM2.5 change groups and exhibits two salient features. First, for 

counties in all three groups, the top-5 imports from China all peaked in 2008 and had very 

similar rates of change over time. Second, during 2008 and 2010, changes in top-5 imports 

for counties in the "Big Change" group were larger than the other two groups. In terms of 

the size of export in 2000, counties in the "Big Change" group had the largest variation, 

while counties in the "Small Change" group had the smallest. These results suggest that the 

2008 crisis had differential impacts across the sample counties depending on the 

composition of their destination countries.  

3 The Empirical Framework 

We estimate the following linear model to identify the mortality effect of PM2.5 

concentration: 

            𝑦"# = 𝑝𝑚"#𝛼 + 𝑥"#𝛽 + 𝜇# + 𝛿" + 𝜀"#,  (1) 

where i denotes a county-age-gender cell and t denotes a year. yit is the mortality rate for 

county-age-gender group i in year t. pm denotes the 3-year (t, t-1, and t-2) average of PM2.5 

concentration. x01	is a vector of control variables including weather conditions and 

socioeconomic variables. 𝜇# is a vector of year fixed effects, and 𝛿"	a vector of county-

age-gender fixed effects. We cluster standard errors at the county level, the level of 

variation for mortality and emissions data. 

The key empirical challenge in identifying the impact of PM2.5 on mortality is the 

potential endogeneity of PM2.5 from measurement error and/or unobservables. Our PM2.5 

data are derived from the satellite data on Aerosol Optical Depth rather than from ground-

level monitors11. Measurement errors arise when translating the satellite data to ground 

level PM2.5 concentrations through a combination of estimation models and spatial 

extrapolation methods. To the extent measurement error uncorrelated with the true value, 

OLS estimates are subject to attenuation bias.  

                                                
11Measurement error also exists when using ground monitoring station data, leading to attenuation bias. For 
detailed discussion, please refer to a recent paper by Jia et al. (2017). 
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Unobservables such as avoidance behavior and economic growth related to both the 

pollution level and health outcomes could be a second source of endogeneity. To reduce 

pollution exposure, individuals may decrease outdoor activities or choose to wear anti-smog 

facemasks or install indoor air purifiers. Recent studies in China find a strong and positive 

relationship between observable air pollution and the purchase of preventive products such 

as face masks and air purifiers (e.g. Zhang and Mu, 2014; Ito and Zhang, 2016 and Su et al., 

2017).  In addition, individuals may engage in short- or long-term migration to reduction 

pollution exposure. Although the rigid Hukou system in China may limit residential sorting, 

anecdotal evidence does show an increasing number of the elderly from regions where 

winter smog is heavy and weather is harsh, temporarily migrate to Hainan Province in 

southern China to spend their winter (Zhai et al., 2015). These different types of avoidance 

behavior could bias the mortality impact downwards.  

Our IV strategy leverages demand shocks due to the 2008 global financial which 

generate variation in the demand for manufacturing goods and hence pollution across 

counties. We construct the IV by: [1] finding each county's top-5 exporting destination 

countries and generating the average import from China over the past three years (to align 

with the temporal resolution of our emissions data), and [2] interacting the average import 

with the pre-determined (year 2000) export intensity of the county measured by the total 

export of the prefectures where the country is located. The interaction term leverages both 

cross-sectional variation in export intensity and yearly variation in exports to allow demand 

shocks from the 2008 global financial crisis to have differential impacts across origin 

counties. The IV also leverages the temporal and cross-sectional variations in the demand 

shocks due to the variation in exporting destinations across counties.   

The identifying assumption is that demand shocks in the top-5 exporting destinations of 

each county affect health outcomes of that county only through impacts on PM2.5 levels. 

There are two concerns regarding the validity of the assumption. First, demand shocks from 

exporting destinations could affect local economic conditions which in turn could affect 

health outcomes. We control for a rich set of social and economic variables in our model 

such as GDP per capita, government spending, population density, hospital beds and 
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employment. Our results show that, in both in the first and second stages, local socio-

economic variables are not significant and controlling these variables does not change the 

coefficients of interest, implying those potential confounders are unlikely to be a threat to 

identification. Second, one might worry the economic downturn in destination countries 

could be affected by the exports in China given the importance of the China in the export 

market. Here we note the 2008 worldwide economic crisis was initially caused by the bust 

of the housing market bubble in the United States; China’s economy was quite robust itself 

during the crisis and played a positive role in helping with world economic recovery.12  

4 Empirical Results 

5.1 Relation between PM2.5 concentration and all-cause mortality 

To analyze the pollution-health relationship, we follow the convention in the literature and 

use a log-linear functional form. The dependent variable is log-transformed mortality and 

the key regressor is the three-year average PM2.5 concentration, which serves as a proxy for 

measuring long-term exposure to PM2.5. 

We start with OLS to analyze the association between PM2.5 and all-cause mortality.  

The first model is a pooled cross-sectional OLS model including socio-economic and 

weather controls. The second model adds year fixed effects to control for common shocks 

in all counties over years, such as changes in macro-economic conditions and national 

health care policies. The third model adds county-age-gender fixed effects to control for 

unobserved time-invariant determinants of mortality. We next apply the IV with the same 

sets of controls. 

Socio-economic controls are at the prefectural level, and include GDP per capita, 

population density, government spending, number of hospital beds and employment. 

Weather controls are at the county level and include bins of temperature, precipitation, wind 

speed and humidity. We weight all regressions by county age/gender population.   

                                                
12 For example, China surpassed the U.S. in new vehicle sales to become the largest automobile market in 
2009. GM sold more cars in China than in the US for seven consecutive years since 2010 and the robust 
market in China helped pulling GM from the brink of the bankruptcy. 
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Table 2 presents regression results. OLS results in columns (1) - (3) show a positive but 

statistically insignificant relationship between the long-term exposure to PM2.5 and all-cause 

mortality. A 10 µg/m3 increase in PM2.5 (approximately 40% of one standard deviation) 

raises mortality rates by 1-3%. IV results in columns (4)-(6) show a positive and statistically 

significant effect that is much larger: the full model estimate in column (6) is 0.022, almost 

8 times as large as the corresponding OLS estimate in column 3, and statistically significant 

at the 1% level. This suggests a 10 µg/m3 increase in the long-term exposure to PM2.5 would 

lead to a 22% increase in all-cause mortality. The F-statistics on the IV from the first-stage 

shown in the last row of the Table 2 suggest our first-stage is strong enough by conventional 

measures for second-stage inference (full first-stage results are in Appendix Table 1).  

The large difference between the OLS and 2SLS methods is common in recent 

economic literature using IV methods to identify the health effect of air pollution (e.g. 

Knittel et al., 2015; Schlenker and Walker, 2015).13 But it is also possible our instrument 

impacts mortality through channels other than particulate matter. A common problem in 

single pollutant models is that the coefficient on the included pollutant carries all the 

mortality impacts from other correlated pollutants. For example, if PM2.5 reductions go 

along with reductions in ozone, carbon monoxide, or other hazardous emissions, our model 

assigns gains from reduction in co-pollutants to PM2.5 exclusively. It may be that our 

instrument impacts health through other channels our model does not include, which would 

similarly place the weight of such changes on the PM2.5 coefficient. Columns (4) to (6) in 

Table 2 show that the coefficient estimates are quite robust across different model 

specifications where different sets of controls are included, which suggests that, at least 

within our model as specified, the instrument effects are not a result of a common non-

pollution channel (e.g., income). Specifically, the difference between the coefficient 

estimate in the model without socio-economic controls (column 5) and that with those 

controls (column 6) is quite small (0.026 vs. 0.022).  

                                                
13 Attenuation bias alone likely cannot explain differences of this size – other relevant sources of bias include 
avoidance behavior and improvements in health care that go along with economic development. 
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To place the magnitude of our findings in context, we summarize comparable estimates 

of pollution and mortality in China from the economics literature. Most closely related is 

Ebenstein et al. (2017), which identifies the causal effect of long-term exposure to PM10 in 

Northern China using a regression discontinuity design to leverage the heating policy 

differences across the Huai River. The estimated coefficient from their study, an 8%-11% 

increase in mortality per 10 units of PM10, is about one-third to one-half the size of our IV 

estimates. Chen et a. (2013) find a 10 μg/ m3 increase in total suspended particulates (TSP), 

which includes PM2.5 and PM10, increased mortality rates by 1.4%. Comparing these two 

results suggests the impact of PM10 is approximately 7 times that of TSP. We know of no 

direct conversion between the effects of a unit of TSP, PM10 and PM2.5, though the health 

literature suggests the per-unit health effects increase as particle size decreases, which 

aligns with the above results. As a point of further comparison, Appendix Table 4 shows 

results from various other pollution and health studies in epidemiology and economics.  

5.2. Heterogeneity of the health effect of long-term exposure to PM2.5 

Recent studies recognize the health impact of air pollution can differ across population 

groups with different characteristics such as age and gender (Schlenker and Walker, 2015; 

Clougherty, 2010; Zhou et al., 2016; Dockery and Pope, 1993). We first analyze effects by 

age groups in terms of all-cause mortality, cardiorespiratory mortality (i.e., mortality due to 

cardiovascular and respiratory) and respiratory mortality. The strong link between 

cardiorespiratory mortality and long-term exposure to PM2.5 has been well-established in 

epidemiological studies (e.g. Pope et al., 1995, 2002, 2004; WHO, 2006).  Studies have 

also shown that elderly people and children are particularly vulnerable to the exposure to 

pollution (WHO, 2013; Brook et al., 2012). In the epidemiological research, the link 

between PM pollution and respiratory mortality is among the first to be established (as 

reviewed by Dockery and Pope, 1993; Lim et al., 2012). For all subgroup analysis we focus 

on the IV results. 

Table 3 shows the IV results by age groups (Appendix Table 2 shows first-stage 

results). Panels A and B show suggestive evidence health effects of PM2.5 pollution vary 

across age groups. In all but one case (all-cause mortality for the below 20 age group) 
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results are statistically significant at conventional levels. Coefficients across age groups are 

close enough to be statistically indistinguishable, though magnitudes are largest for the age 

65 and above group in all cases.  

To examine the robustness of the results, we run additional regressions using the linear-

linear form. Table 4 presents the estimation results by age with the linear functional form. 

The elderly group remains most vulnerable group among all age groups, consistent with 

results from the log-linear specifications.  

5.3 The shape of the dose-response function. 

Discussions in the epidemiological literature suggest nonlinearity has important 

implications for public polices (e.g. Pope et al., 2009; Pope and Dockery, 2006). To address 

the lack of data and rigorous empirical evidence on the health impacts of air pollution in 

developing countries, the literature has often relied on the benefit transfer approach which 

interpolates the estimated dose-response function in developed countries to developing 

countries (e.g., Lelieveld et al. 2015 and World Bank 2007). However, the level of 

concentration in developing countries is often outside of the range observed in developed 

countries. Whether the dose-response function exhibits nonlinearity is critical for 

conducting credible out-of-sample predictions and understanding optimal levels of 

regulation.  

An advantage of our study is the wide variation in pollution levels across time and 

space in China, which allows for greater study of the dose-response shape. To test for 

evidence of nonlinearity, we run linear spline regressions for all-cause, cardiorespiratory 

and respiratory mortality. Ideally, we would trace out the shape of the dose-response 

function across many levels. In our IV framework, each additional knot in the spline 

generates another potentially endogenous variable and thus requires an additional 

instrument for sufficient identification. This means we face a trade-off between statistical 

power and flexibility. We opt to test across two regions in the pollution distribution, using 

the median (42 µg/m3) of the PM2.5 concentration as the cut-off point for our linear spline 

regressions. This cut-off point is very close to the global annual median concentration of 
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PM2.5 pollution in urban areas in 2014 (43 µg/m3) (WHO, 2016) and annual mean 

concentration of PM2.5 pollution in China in 2017 (43 µg/m3).  

To generate additional instruments, we create four dummy variables based on quartiles 

of PM2.5 concentration (below the 25th percentile, between the 25th percentile and the 50th 

percentile, between the 50th percentile and the 75th percentile, and above the 75th percentile). 

We then interact these four dummy variables with the original IV and their square terms to 

generated eight IVs for spline regressions. Our intent is to not just increase the number of 

available instruments, but to do so in a manner that is consistent with identifying effects at 

different levels of the distribution of pollution. This instrument could potentially violate the 

exclusion restriction if the quartile of pollution levels correlates with the error term in the 

regression of pollution and mortality. 

Columns (1)-(3) in Table 5 show marginal effects are statistically and economically 

significant for both higher and lower levels of pollution. For all-cause mortality, the 

marginal effect of the PM2.5 pollution at the lower concentration level is 1.41 additional 

deaths per 100,000, which is approximately 50% higher than marginal effects at higher 

levels, 0.92 additional deaths per 100,000. These results are suggestive of a concave dose-

response function, which support the recent results in Cohen et al. (2015).  

The F-statistic for the first stage is weak for the below-median range (7.85), below the 

Stock-Yogo critical value. Further, standard errors are large enough such that, while both 

portions of the spline are statistically different from zero, they have overlap in their 

confidence intervals. Both factors suggest we should be cautious in interpretation of 

differences in marginal effects across the pollution distribution. Columns (2) and (3) show 

that we observe similar patterns for cardiorespiratory and respiratory mortality, where the 

marginal effect of the pollution at the lower level is 30% and 70%, respectively, higher than 

that at the higher level.  

The diminishing marginal effect of pollution on health suggests the shape of the dose-

response function is concave higher pollution levels. This suggests larger health benefits to 

reducing PM2.5 below 42 µg/m3, a level below the annual mean PM2.5 concentration in China 

in 2017 and the global annual median concentration in urban areas in 2014. This also 
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implies returns to improving air quality may appear low when pollution levels are very 

high, which carries important implications for comparing studies across low- vs. high-

pollution areas. The concavity in the dose-response function means out-of-sample 

projections of health benefits from reducing PM2.5 in developing countries based on the 

dose-response function at the low level of concentration typically observed in developed 

countries could lead to overestimation.  

Variation in the shape of the dose-response function may also help explain why some 

successful pollution-reduction programs in high-pollution areas see limited marginal 

improvements in health. For example, Greenstone and Hanna (2014) find that a catalytic 

converter policy in India reduced ambient total suspended particulates by 49 µg/m3, but 

observed only small and statistically noisy improvements in infant mortality (a reduction of 

0.6 deaths per 1,000 live births).14 They did not perform an IV analysis, but converting 

their reduced form result to an IV by dividing by the "first stage" gives a (noisy) marginal 

effect of 0.01 deaths per 1,000 live births per unit of particulates. This is at a very high pre-

policy pollution level of 252 µg/m3. Compare that to the Chay and Greenstone (2003) 

results from the United States which finds 0.05 fewer deaths per 1,000 live births per unit of 

particulates, from a pollution baseline of approximately 70 µg/m3.15 Our results suggest one 

reason for the small effect may be the concavity of the dose-response function, which 

suggests that reductions in particulates may have had small marginal effects, but also 

pushed India toward a point of higher marginal returns to further reductions. 

5 Conclusion 

Using mortality data by age groups and gender from 161 counties in China in 2004, 2008 

and 2010, we estimate the causal impact of ambient PM2.5 on mortality in the context of a 

modern developing economy. Our identification relies on variation in pollution induced by 

demand shocks in Chinese export destinations (countries that import goods from China) 

                                                
14 We derive this estimate using the 5 year effect results from Table 3 for PM, and 5 year effect results from 
Table 6 for infant mortality. 
15 We derive this estimate using the IV results from Table IV, which suggest mortality reductions of 5 fewer 
deaths per 100,000 live births per unit of TSP. 
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during the 2008 global financial crisis. Demand shocks from areas across the globe filter 

through local economies via reduced demand for goods. This can affect local PM2.5 

concentration differently across counties in China due to both (1) differences in the 

exposure of local economy to export, and (2) variation in the demand shocks themselves.  

Severe air pollution in China will likely persist into the near future as vehicle 

ownership continues to rise and the manufacturing sector and electricity generation rely 

heavily on fossil fuel. Recent national polices outlined in the 13th 5-year plan call for 

significant reduction in PM2.5, which will entail significant cost through technology 

adoption and transition to cleaner energy. Our study contributes to our understanding of the 

potential health benefit from pollution reduction, a key component in the cost-benefit 

analysis of air pollution regulations in China.  

Our results suggest long-term exposure to PM2.5 (measured as a rolling 3-year average) 

leads to statistically and economically significant increases in cardiorespiratory and 

respiratory mortality, especially among individuals 65 years old and above. Our analysis 

provides suggestive quasi-experimental empirical evidence of a concave dose-response 

function. Using a linear spline with a knot point at the median in our data, we find per-unit 

reductions in ambient PM2.5 have approximately 1.5 times the benefit at lower levels of 

baseline PM2.5. This suggests one should use caution when using the benefit transfer 

approach to infer the benefit of environmental regulation in developing countries based on 

evidence from developed countries, and provides a framework for considering how early 

pollution reductions can lay the groundwork for greater gains in the future. 
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Table 1: Summary statistics 

Variables Mean Min Max N 
PM2.5 Concentration, µg/ m3 44.14 1 117 5652 
 (24.02)    
PM2.5 Concentration (population weighted), µg/ m3  45.73 1 117 5652 
 (23.97)    
All-cause mortality, per 100,000 persons 104.85 0 808 5583 
 (150.76)    
Respiratory Mortality, per 100,000 persons 15.39 0  323 5583 
 (34.19)    
Cardiovascular Mortality, per 100,000 persons 42.51 1 420 5602 
 (75.50)    
Top 5 Destination Countries' Import, US$ billion 72.21 0 197 5592 
 (41.95)    
City-level export in 2000, billion yuan 6.83 0 132 5736 
 (19.14)    
GDP per Capita, yuan/person 22453.34 841 142262 5688 
 (23286.56)    
Population Density, persons/ km2 666.28 2 2930 5700 
 (775.33)    
Local Government Spending,100 million yuan 74.34 0  2525 5700 
 (266.86)    
Hospital Beds per 10,000 persons 6860.59 0  93000 5664 
 (14488.68)    
No of Employees, 10,000 persons 29.43 0 564 5700 
 (76.77)    
Precipitation, mm 326.79 69  673 5772 
 (86.40)    
Humidity,1% 66.79 34 83 5772 
 (10.17)    
Wind Speed, mph 2.13 1 5 5772 
 (0.71)    
Temperature,℉ 56.94 9.14 [36,77] 5772 

 Note: Standard deviations are in parenthesis.  
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Table 2: The impact of PM2.5 on all-cause mortality 
  OLS    2SLS  
 (1) (2) (3)  (4) (5) (6) 
PM2.5 0.001 0.002 0.003  0.020** 0.026** 0.022*** 
 (0.001) (0.001) (0.002)  (0.010) (0.011) (0.008) 
ln(GDP per capita) -0.003 0.038 0.088    0.059 
 (0.049) (0.053) (0.075)    (0.086) 
ln(population density) -0.062 -0.074* -0.025    -0.027 
 (0.040) (0.043) (0.052)    (0.052) 
ln(government 
spending)  

-0.124*** -0.093* -0.072    -0.128 
(0.035) (0.053) (0.085)    (0.099) 

ln(hospital beds) -0.015 -0.036 0.039    0.005 
 (0.026) (0.029) (0.070)    (0.096) 
ln(employment) 0.085** 0.065* 0.026    0.042 
 (0.034) (0.036) (0.036)    (0.039) 
Precipitation 1.5E-04 1.4E-04 -2.0E-04   5.4E-05 -9.2E-05 
 (3.3E-04) (3.3E-04) (4.5E-04)   (0.001) (4.83E-04) 
Humidity 9.4E-05 -0.001 -0.004   -0.001 -0.002 
 (0.006) (0.006) (0.010)   (0.010) (0.010) 
Wind speed 0.004 -0.002 0.038   0.005 0.019 
 (0.061) (0.061) (0.065)   (0.066) (0.065) 
Temperature <40F -0.002 -0.001 0.005   0.011* 0.010* 
 (0.002) (0.002) (0.004)   (0.006) (0.005) 
Temperature (40-60 F) 0.000 -0.000 0.002   0.005 0.004 
 (0.001) (0.001) (0.003)   (0.003) (0.003) 
Temperature (80-90 F) -0.004* -0.003 -0.005   -0.008** -0.009** 
 (0.002) (0.002) (0.004)   (0.004) (0.004) 
Temperature (≥90F) 0.001 0.003 0.001   0.009 0.007 
 (0.006) (0.007) (0.011)   (0.011) (0.011) 
Constant 4.433*** 4.283***      
 (0.811) (0.795)      
County-age-gender FE NO NO YES  YES YES YES 
Year FE NO YES YES  YES YES YES 
Observations 5367 5367 5188  5188 5188 5188 
First-stage F-statistics  
(p-values) 

- - -  18.63 
(0.000) 

17.98 
(0.000) 

30.75 
(0.000) 

Note: [1] the dependent variables are in logarithm; PM2.5 are past 3-year mean PM2.5 concentration serving 
as a proxy for long-term exposure to PM2.5; the reference group for temperature bins is 60-80 F; [2] *, ** and 
*** are significance levels at 1%, 5% and 10%, respectively; [3] standard errors clustered at the county level 
are in parenthesis.  
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Table 3: The effect of PM2.5 on mortality by age 
 All ages Below 20 [20, 65) 65&above 
Panel A: all-cause mortality 

PM2.5 
0.022*** 0.016 0.024*** 0.026** 
(0.008) (0.011) (0.009) (0.011) 

All other controls YES YES YES YES 
Panel B: Cardiorespiratory mortality 

PM2.5 
0.021** 0.021** 0.022** 0.027** 
(0.009) (0.010) (0.010) (0.012) 

All other controls YES YES YES YES 
Panel C: Respiratory mortality     

PM2.5 
0.021*** 0.025** 0.021*** 0.032* 
(0.007) (0.010) (0.008) (0.017) 

All other controls YES YES YES YES 
Observations 5188 1709 2605 874 
First-stage F-statistics  
(p-values) 

30.75 
(0.000) 

32.65 
(0.000) 

30.72 
(0.000) 

19.92 
(0.000) 

Note: [1] the dependent variables are in logarithm; [2] all regressions include socio-economic and weather 
controls, year FE, county-age-gender FE; [3] *, ** and *** are significance levels at 1%, 5% and 10%, 
respectively; [4] standard errors clustered at the county levels are in parenthesis.  
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Table 4: Robustness check: linear-linear regressions by age 
 All ages Below 20 [20, 65) 65&above 
Panel A: All-cause mortality 

PM2.5 
1.685*** 0.299 1.434*** 11.113*** 
(0.576) (0.237) (0.490) (4.137) 

All other controls YES YES YES YES 
Panel B: Cardiorespiratory mortality 

PM2.5 
0.754** 0.027 0.387** 8.023** 
(0.322) (0.081) (0.185) (3.217) 

All other controls YES YES YES YES 
Panel C: Respiratory mortality 

PM2.5 
0.330*** 0.043 0.225*** 3.461** 
(0.110) (0.072) (0.060) (1.407) 

All other controls YES YES YES YES 
Observations 5188 1709 2605 874 
First-stage F-statistics 
(p-values) 

30.75 
(0.000) 

32.65 
(0.000) 

30.72 
(0.000) 

19.92 
(0.000) 

Note: [1] the dependent variables are in levels; [2] all regressions include socio-economic and weather 
controls, year FE, county-age-gender FE; [3] *, ** and *** are significance levels at 1%, 5% and 10%, 
respectively; [4] standard errors clustered at the county level are in parenthesis.  
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Table 5: Spline regressions 

 All-cause 
mortality 

Cardiorespiratory 
mortality 

Respiratory 
mortality 

PM2.5 below 42 µg/m3 1.410** 0.572* 0.255** 
 (0.655) (0.340) (0.128) 
PM2.5 above 42 µg/m3 0.922*** 0.442** 0.147*** 
 (0.291) (0.176) (0.057) 
All other controls YES YES YES 
First-sate Angrist-Pischke F-statistics (p-values) 
PM2.5 below 42 µg/m3 7.85 7.85 7.85 
 (0.0000) (0.0000) (0.0000) 
PM2.5 above 42 µg/m3 21.68 21.68 21.68 
 (0.0000) (0.0000) (0.0000) 
Stock-Yogo critical values (10%)  10.22 10.22 10.22 
Observations 5188 5188 5188 

Note: [1] the dependent variables are in levels; [2] all regressions include socio-economic and weather 
controls, year FE, county-age FE; [3] *, ** and *** are significance levels at 1%, 5% and 10%, respectively; 
[4] standard errors clustered at the county level are in parenthesis.  
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Figure 1: PM2.5 Concentration in 2010 (3-year Average) 
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Figure 2: Changes in 3-year Average PM2.5 Concentration, 2004-2010 
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Figure 3: Trends in Mortality, Past 3-year Average PM2.5 Concentration, Top 5 
Imports and GDP (2004-2010) 
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Figure 4:Mortality, by change in PM2.5 (2004-2010) 
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Figure 5:PM2.5 concentration, by change in PM2.5 (2004-2010) 
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Figure 6: Import by Top 5 Destination Countries, by Change in PM2.5 (2004-2010) 
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Appendix Table 1: Effect of PM2.5 on mortality (1st stage) 
 (1) (2) (3) 
ln(export in 2000)*Top-5 Import 0.001*** 0.001*** 0.001*** 
 (1.3E-04) (1.3E-04) (1.2E-04) 
Precipitation  -0.007 -0.004 
  (0.008) (0.008) 
Humidity  -0.192 -0.166 
  (0.183) (0.175) 
Wind speed  1.216 1.109 
  (1.581) (1.488) 
Temperature below 40F  -0.263* -0.197 
  (0.152) (0.145) 
Temperature (40-60 F)  -0.143 -0.088 
  (0.101) (0.094) 
Temperature (80-90 F)  0.073 0.101 
  (0.091) (0.094) 
Temperature (90 F and above)  -0.184 -0.248 
  (0.211) (0.219) 
ln(GDP per capita)   1.880 
   (2.016) 
ln(population density)   -1.304 
   (1.322) 
ln(government spending)    4.306* 
   (2.447) 
ln(hospital beds)   1.848 
   (2.864) 
ln(employment)   -2.656* 
   (1.572) 
County-gender-age FE  YES YES YES 
Year FE YES YES YES 
No of observations 5188 5188 5188 
First-stage F-statistics  18.63 17.98 30.75 
(p-values) (0.0000) (0.0000)  
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Appendix Table 2: Effect of PM2.5 on mortality (by gender, 1st stage) 
 Male Female 
ln(city export in 2000)* Top 5 import 0.001*** 0.001*** 
 (1.2E-04) (1.2E-04) 
ln(GDP per capita) 1.870 1.890 
 (2.012) (2.020) 
ln(population density) -1.269 -1.341 
 (1.312) (1.332) 
ln(government spending)  4.324* 4.288* 
 (2.435) (2.461) 
ln(hospital beds) 1.926 1.766 
 (2.854) (2.876) 
Employment -2.617* -2.695* 
 (1.562) (1.582) 
Precipitation -0.004 -0.004 
 (0.008) (0.008) 
Humidity -0.170 -0.162 
 (0.174) (0.175) 
Wind speed 1.069 1.151 
 (1.489) (1.487) 
Temperature below 40F -0.191 -0.202 
 (0.144) (0.145) 
Temperature (40-60 F) -0.084 -0.091 
 (0.094) (0.094) 
Temperature (80-90 F) 0.101 0.102 
 (0.094) (0.094) 
Temperature (90 F and above) -0.253 -0.243 
 (0.221) (0.217) 
County-gender-age FE  YES YES 
Year FE YES YES 
No of observations 2614 2574 
First-stage F-statistics  30.33 31.01 
(p-values) (0.0000) (0.0000) 
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Appendix Table 3: The effect of PM2.5 on mortality by age groups (1ststage) 
 All Below 20 [20, 65) 65&above 

ln(export in 2000)*Top-5 Import 0.001*** 0.001*** 0.001*** 0.001*** 
 (1.2E-04) (1.2E-04) (1.2E-04) (1.3E-04) 
ln(GDP per capita) 1.880 2.148 1.760 1.806 
 (2.016) (2.011) (2.014) (2.137) 
ln(population density) -1.304 -1.338 -1.349 -0.760 
 (1.322) (1.342) (1.316) (1.491) 
ln(government spending)  4.306* 4.748** 4.091* 4.222 
 (2.447) (2.390) (2.472) (2.605) 
ln(hospital beds) 1.848 2.062 1.900 0.949 
 (2.864) (2.871) (2.859) (3.037) 
ln(employment) -2.656* -3.404* -2.424 -1.974 
 (1.572) (1.814) (1.495) (1.465) 
Precipitation -0.004 -0.002 -0.004 -0.006 
 (0.008) (0.009) (0.008) (0.008) 
Humidity -0.166 -0.166 -0.168 -0.149 
 (0.175) (0.184) (0.171) (0.172) 
Wind speed 1.109 0.874 1.159 1.417 
 (1.488) (1.508) (1.480) (1.560) 
Temperature below 40F -0.197 -0.190 -0.195 -0.216 
 (0.145) (0.141) (0.145) (0.160) 
Temperature (40-60 F) -0.088 -0.116 -0.079 -0.054 
 (0.094) (0.095) (0.094) (0.099) 
Temperature (80-90 F) 0.101 0.094 0.101 0.123 
 (0.094) (0.092) (0.095) (0.099) 
Temperature (90 F and above) -0.248 -0.186 -0.260 -0.316 
 (0.219) (0.230) (0.215) (0.234) 
County-age-gender FE YES YES YES YES 
Year FE YES YES YES YES 
No of observations 5188 1709 2605 874 
First-stage F-statistics  30.75 32.65 30.72 19.92 
(p-values) (0.0000) (0.0000) (0.0000) (0.0000) 
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Appendix Table 4: Long-term effect of pollution on mortality 
Sources Dose, additional  Response 
Ebenstein et al. (2017) a 10-μg/ m3 increase in annual 

mean PM10 concentration 
 8%-11% increase in cardiorespiratory 

mortality in Northern China (RD) 
2% increase in cardiorespiratory mortality 
in Northern China (OLS) 

Zhou et al. (2015) a 10-μg/m3 increase in monthly 
mean PM10 concentration 

 Associated increase in adult respiratory 
mortality by 1.05% (OLS) 

Pope et al. (2009) A 10-μg/m3 increase in annual 

mean PM2.5 concentration 

 0.61±0.20 years of associated decrease in 
life expectancy in the USA (OLS) 

Yin et al. (2017) A 10-μg/m3 increase in daily 

PM2.5 concentration 

 a 0.44% increase in daily number of deaths 
in China (OLS) 

Janke et al. (2009) a 10-μg/m3 increase in annual 
mean PM10 concentration 

 Associated increase in all-cause mortality 
by 2.8% in England (OLS) 

Shi et al. (2016) a 10-μg/m3 increase in annual 

exposure to PM2.5 

 Associated increase in all-cause mortality 
by 7.52% for the elderly (age>65) in USA 
(OLS) 

Our estimates    
OLS  10-µg/m3 increase in 3-year 

average PM2.5 concentration 

 1-3% increase in all-cause mortality  

IV 10-µg/m3 increase in 3-year 
average PM2.5 concentration 

 22% increase in all-cause mortality and 
21% increase in cardiorespiratory 
mortality 
21% increase in respiratory mortality 

 


