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Abstract

This paper provides a quantitative framework for estimating the effects on house prices
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area. According to our estimates, low-income households without a college degree benefit
more from the construction of low-quality rather than high-quality housing, but low-quality
construction makes many other households worse off. These conclusions depend on household
mobility across cities, the strength of urban spillovers, the indivisibility of housing, and the
differential preferences of households with and without a college degree.
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Since 1980, the inflation-adjusted price of housing has significantly risen in many large cities

around the world. In the United States, many households with low incomes or lacking a college de-

gree have migrated away from such cities in response to rising house prices (Gyourko et al., 2013;

Diamond, 2016; Ganong and Shoag, 2017). Policymakers have called this situation an “affordabil-

ity crisis” (e.g., White House, 2016). Several economists recommend that cities ease permitting

rules so that the construction of new housing units can bring down house prices. Using fast track-

ing, inclusionary zoning, or tax credits, many governments relax permitting rules specifically for

the construction of smaller units or units in neighborhoods with low-income households. While

there exist empirical studies of these policies, little theoretical work has estimated how the type of

construction affects house prices and the composition of households within a metropolitan area.

To answer this question, we model a city with different qualities of housing that is home to

households of varying education and income. We study the effects of raising the quantity of

different types of housing, which we interpret as a targeted relaxation in permitting rules. When

we estimate our model using data from Boston in 2016, we find that low-quality construction

increases the welfare of low-education, low-income households twice as much as high-quality

construction. However, low-quality construction makes many other households worse off because

in-migration of low-education, low-income households lowers the city’s wages and amenities.

The model features multiple cities with different amenities, labor markets, and housing stocks.

Households take house prices, amenities, and labor prices as given and choose a city and type

of housing to maximize utility. Amenities rise with the share of a city’s population with high

education, as in Diamond (2016). High- and low-education wages also depend on the composition

of city households. High-education households care relatively more about amenities than wages

than low-education households do, which is consistent with the evidence in Bayer et al. (2007)

and Diamond (2016).

The negative welfare effects of construction depend critically on these assumptions on ameni-

ties. When amenities do not depend on the city population—or when high- and low-education

households have the same preference for amenities—construction makes few, if any, households

worse off. In contrast, the results are robust to whether the neighborhood or the city-wide share

of high-education households alters the amenities a household enjoys. Surprisingly, rich house-

holds suffer from low-quality construction even more when amenities depend on neighborhood

characteristics, even though construction does not directly alter rich neighborhoods.

To study the affordability crisis, we introduce a skill-biased shock that raises high-education

productivity and lowers low-education productivity. This shock significantly raises city house

prices and drives many poor, low-education households out of the city. Displacing them are

middle-income households with a college degree who switch from higher- to lower-quality hous-

ing within the city. In this manner, the shock endogenously generates gentrification, as in Guerri-

eri et al. (2013).

How effective are different policy responses to this shock? The construction we observe in the
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data does attenuate the out-migration of poor households without a college degree, but it does

not eliminate it. It would take quadruple the amount of construction—a 1.7% expansion of the

housing stock—to prevent the shock from driving any households out of the city. In fact, the

city could achieve this objective with only a 1.4% expansion of the housing stock by building

lower quality housing than current construction. Increasing construction in either manner lowers

the welfare of rich households relative to the construction in the data, which may explain why

local governments do not allow more construction in Boston. Rent control drives even more poor

households out of the city while increasing in-migration of the rich. By lowering the slope of

house prices with respect to quality, rent control amplifies switching of households down the

quality distribution, who out-compete the poor for low-quality housing.

The paper proceeds as follows. Section 1 relates our work in more detail to the previous litera-

ture. Section 2 lays out the economic environment, defines equilibrium, and characterizes equilib-

rium house prices with and without divisibility. Section 3 theoretically analyzes the equilibrium

effects of construction and productivity shocks. Section 4 discusses our strategy for estimating the

model, and Section 5 describes the data we use. Section 6 presents the quantitative results, and

Section 7 concludes. Supplements to Sections 2–4 appear, respectively, in Appendices A–C.

1 Relation to literature

The key contribution of our paper is incorporating urban spillovers into a quantitative model of

heterogeneous housing quality. Spillovers distinguish our paper from an older theoretical litera-

ture building on Sweeney (1974b), who theoretically analyzes the effects of constructing different

qualities of indivisible housing on house prices (see Arnott, 1987 for a literature review). Braid

(1981), for instance, corresponds to the special case of our indivisible model without spillovers

and mobility. In these older models, neither incomes nor amenities depend on the composition of

households in the city. These spillovers drive our key theoretical and quantitative results.

Our results hold because households are mobile across cities and because housing is indivis-

ible. When households are immobile, construction makes all of the city’s households better off,

and building a unit of the highest quality improves welfare more than building a unit of any other

quality. The same holds when housing is divisible—households can costlessly divide any housing

unit into two new units of lesser quality—for a subset of the spillovers we consider. Papers have

studied indivisibility with immobility (Braid, 1981; Määttänen and Terviö, 2014; Landvoigt et al.,

2015) and divisibility with mobility (Henderson, 1974; Glaeser and Gottlieb, 2009). The combina-
tion of mobility and indivisibility breaks the trickle-down mechanism in these frameworks.1

Another contribution is to explain why certain households oppose construction in their city of

1Like us, Davis and Dingel (2018) incorporate spillovers into a spatial equilibrium model with heterogeneous and
indivisible housing quality. However, their focus is on the sorting of households and firms across cities. They do not
analyze increases to housing supply.
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residence. According to our estimates, high-income and high-education households oppose low-

quality construction because it attracts low-education households, who lower amenities and labor

prices. This mechanism differs from that in Hilber and Robert-Nicoud (2013) and Ortalo-Magné

and Prat (2014). These papers formalize the “homevoter hypothesis” of Fischel (2001) with mod-

els in which homeowners oppose construction in order to increase their home equity wealth. This

incentive is absent from our static model. Our results might explain why the restrictiveness of

zoning correlates more closely with demographics than with homeownership in multiple empiri-

cal studies (Gyourko and Molloy, 2015).

Several empirical papers estimate the effects of subsidies for low-income housing on housing

supply and house prices. Schwartz et al. (2006), Baum-Snow and Marion (2009), and Diamond

and McQuade (2017) find that these subsidies increase the supply of low-income housing in the

neighborhoods they target and increase the value of surrounding homes in low-income and de-

clining neighborhoods. Unlike these studies, our paper estimates the effect of low-quality housing

on an entire city or metropolitan area. This distinction matters, as many of these subsidies fail to

increase the supply of low-income housing at the metropolitan area level (Eriksen and Rosenthal,

2010; Schuetz et al., 2011). As a result, existing subsidy programs may not identify the effects of

constructing low-quality housing on a metropolitan area. Our structural approach does.

Another paper estimating the effect of construction on house prices with a structural approach

is Anenberg and Kung (2018). Our papers differ in how we treat the cross-city migration that

occurs in response to construction. Anenberg and Kung (2018) assume that households from

outside the city occupy all newly built housing, irrespective of any adjustment to house prices.

In contrast, migration demand in our model is a downward-sloping function of house prices that

we endogenously derive. Anenberg and Kung (2018) estimate that building high-quality housing

has no effect on the prices of other types of housing, while we find large effects of high-quality

construction on low-quality house prices.

Our theoretical results on the effect of high-quality construction correspond to the empirical

findings of Mast (2019). Using micro data on address history, he finds that luxury development

frees up housing in poor neighborhoods by inducing a series of moves within a metropolitan area.

This channel exists in our model, and its quantitative size is similar to what Mast (2019) finds

empirically.

Several papers analyze the distributional consequences of rent control, which we examine as

a policy response to house price growth. Diamond et al. (2018) find empirically that rent control

increases the population of high income households relative to poor households. We find this

effect in our model as well, although the mechanism is different. In the data, rent control leads

to housing supply changes that favor the rich, whereas rent control favors the rich in our model

without any housing supply changes. Favilukis et al. (2019) present a theoretical model of rent

control and other policies that try to address affordability. They focus on the risk-sharing and

distortionary effects of these policies with a lifecycle model featuring endogenous housing supply
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and location choices within the New York City metropolitan area. While risk and endogenous

supply are absent from our model, we have endogenous cross-city mobility, local amenities, and

wages. Therefore, our paper and Favilukis et al. (2019) present complementary analyses of a

similar problem.

Our framework does not directly model filtering, the process through which high-quality con-

struction eventually houses low-income households after years of depreciation (Rosenthal, 2014).

Despite this omission, there is a simple way to map our framework into a filtering model. Filtering

models admit a unique steady-state distribution for housing quality that depends on the intensity

of construction of each type of housing (Sweeney, 1974a). The stock of housing in our static model

corresponds to the steady-state distribution in a filtering model. Increasing the housing stock in

our framework maps to the change in construction intensity in a filtering model that would cause

the corresponding shift to the steady-state distribution of housing quality.

2 Environment and equilibrium

2.1 Housing supply

The economy consists of T cities indexed by t. In city t, available housing qualities are qj,t > 0,

where j ∈ Jt = {0, ..., Jt} and qj,t strictly increases in j. The measure of housing of quality qj,t is

hj,t > 0, and this housing trades in competitive markets at a price pj,t.

There are two types of agents: households and rentiers. Rentiers are endowed with the entire

housing stock and have utility that is a linear function of a composite non-housing consumption

good c, whose price we normalize to 1. They take house prices as given and choose how much

housing to sell and how much c to consume subject to a budget constraint.

2.2 The distribution of households

Households differ in their education, e ∈ {L,H}, labor endowment, z > 0, and taste for each city

t, εt. Across households and cities, the εt are distributed independently as identical Gumbel

distributions (McFadden, 1973). The distribution of z among households of education e equals

ñe(z), about which we assume the following:

Assumption 1. For each e ∈ {L,H},

(a) the support of ñe is convex;

(b) the greatest lower bound of the support of ñe equals zero;

(c) ñe is continuous; and

(d)
∫∞

0 ñe(z)dz > 0.

Assumptions 1(a) and 1(b) mean that there are no gaps in the distribution of labor endowments
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and that there are households with arbitrarily small labor endowments. These conditions ensure

that equilibrium house prices are locally unique. Assumption 1(c) rules out mass points, in which

a positive measure of households have the same education and labor endowment, as well as jumps

in the endowment distributions. This assumption allows us to define comparative statics with

respect to an equilibrium.

Each household lives in one city. We denote the measure of households of education e with

labor endowment z living in city t by ne,t(z). The population of households of education e in

city t equals Ne,t =
∫∞

0 ne,t(z)dz, and the total population of households in city t is Nt = NL,t +

NH,t. The total labor endowment of education group e in city t is Ze,t =
∫∞

0 zne,t(z)dz. We restrict

attention to allocations of households across cities in which Ne,t > 0 for each e ∈ {L,H} and t ∈
{1, ...T }; that is, some households of each education group must live in each city. This restriction

allows us to divide by these populations when we specify amenity and productivity spillovers.

Such allocations are possible due to Assumption 1(d), which guarantees a nonzero population of

households with each education.

2.3 Household preferences and constraints

Households have preferences over four goods—composite non-housing consumption c, housing

quality q, city amenities a, and an idiosyncratic taste for each city ε—represented by the utility

function

ue(c,q,a,ε) = cβc,eqβq,eaβa,e exp(βε,eε), (1)

where βc,e,βq,e,βa,e,βε,e > 0 for each e ∈ {L,H}.

Cobb-Douglas preferences over housing and non-housing consumption, such as in (1), ap-

pear in many equilibrium models of city choices (e.g., Glaeser and Gottlieb, 2009; Gennaioli

et al., 2013; Diamond, 2016), and are consistent with the stability of housing expenditure as a

share of income across places and time (Davis and Ortalo-Magné, 2011). The term involving ε

is present in some recent work (Kline and Moretti, 2014; Hsieh and Moretti, 2018) and limits

household mobility across cities in response to changes in utility coming from c, q, and a. As

in Diamond (2016), preferences may differ across education groups. For instance, low-education

households may care relatively more about non-housing consumption than amenities compared

to high-education households. Differences in preferences across the groups are quite important

for our results.

Amenities in each city are non-rival and non-excludable to city households. As in Diamond

(2016), amenities depend on exogenous characteristics of the city as well as the relative population

of households with education H :

at = ãt

(
NH,t
NL,t

)γa
, (2)

where γa ≥ 0 and ãt > 0 for each t. When γa > 0, city amenities increase when more high education
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households arrive. Households may simply enjoy meeting high-education households. Alterna-

tively, consumption by high-education households may produce non-excludable benefits to other

households, as is the case with philanthropy. Diamond (2016) discusses (2) further.

Labor in each city trades in competitive markets, and we denote the price of labor of education

e in city t by we,t . A household’s income then equals we,tz, which we denote ye,t(z). Each house-

hold takes house prices, labor prices, and amenities as given and chooses a city t, non-housing

consumption c, and a quantity xj of each housing quality qj,t subject to the following constraints:

c+
∑
j∈Jt

pj,txj ≤ we,tz (3)

q =
∑
j∈Jt

xjqj,t (4)

t ∈ {1, ...,T } (5)

0 ≤ c (6)

0 ≤ xj , ∀j ∈ Jt . (7)

Within these constraints, households can combine fractional amounts of housing of different qual-

ities into a single effective housing unit. These activities might take the form of splitting time be-

tween different locations, renting a single room in a larger house, or knocking down walls between

neighboring apartment units.

Many of these activities, however, involve costs not present in our model, such as the privacy

lost from occupying a single room in a larger house. Another cost, which is particularly relevant in

the cities that motivate this paper, are regulations prohibiting divisibility like minimum lot sizes

and maximum occupancy constraints (Gyourko et al., 2008; Glaeser and Ward, 2009). To capture

these costs, we introduce two additional constraints:

(x0, ...,xJt ) ∈ {0,1}
Jt+1 (8)

Jt∑
j=0

xj = 1. (9)

We call (8) and (9) the indivisibility constraints. Within them, each household must choose exactly

one unit of one type of housing. Recent papers featuring these constraints include Määttänen and

Terviö (2014) and Landvoigt et al. (2015).
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2.4 Firms

Firms in each city t combine low-education and high-education labor to produce the non-housing

consumption good c according to the production function

Ft(ZL,ZH ) =
((
AL,tZL

)ρ +
(
AH,TZH

)ρ) 1
ρ , (10)

where Ze is the quantity of labor of education e a firm uses, and 0 < ρ ≤ 1. A large literature in

labor economics adopts (10) to explain the evolution of wages for workers with and without a

college degree (Goldin and Katz, 2008; Card, 2009). Firms in t take AL,t and AH,t as given and

choose labor inputs ZL and ZH . The resulting profits, Ft(ZL,ZH ) −wL,tZL −wH,tZH , accrue to the

rentiers living in city t.

The only differences in production technology across cities come from variation in AL,t and

AH,t, which govern the productivity of each type of labor. As with amenities, productivity depends

on exogenous characteristics of the city as well as the city’s population:

Ae,t = Ãe,tN
γN
t

(
NH,t
Nt

)γH
, (11)

where γN ≥ 0, γH ≥ 0, and Ãe,t > 0 for each t. When γN > 0, productivity increases when the

population of the city goes up and the relative share of each education group remains constant.

Labor productivity is indeed higher in more populous cities, and an extensive literature in urban

economics finds that part of this phenomenon is a causal effect of population on productivity

(Combes and Gobillon, 2015).

When γH > 0, productivity increases when the share of high-education households in the city

rises. The functional form of this effect matches that in Lucas (1988), who posits a constant elas-

ticity of productivity spillover with respect to the average human capital in the population. While

productivity is higher in cities and states with more human capital (Moretti, 2004a,b; Gennaioli et

al., 2013), some of this effect may arise from the decisions of relatively productive firms to locate

in regions with more human capital. We explore the implications of both positive and zero values.

2.5 Equilibrium definitions

Local equilibrium consists of house prices pj,t, labor prices we,t, amenity levels at, productivity

levels Ae,t, populations ne,t(z), and housing demands xj,t for each e ∈ {L,H}, j ∈ Jt, and t ∈ {1, ...,T }
satisfying six conditions:

• the measure of households of education e and labor endowment z choosing city t equals

ne,t(z), while the sum of xj across households choosing city t equals xj,t;

• households choose c and xj to maximize utility subject to the constraints (3)–(7) and also

(8)–(9) in the case of indivisible housing;
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• rentiers in each city t choose a quantity of housing to sell to maximize utility subject to their

budget constraints, and the quantity they choose of housing of quality qj equals xj,t;

• each firm in each city chooses ZL and ZH to maximize profits, and the total labor of education

e firms in city t choose equals Ze,t;

• the population of households of education e, Ne,t, is positive for each city t; and

• the amenity and productivity equations, (2) and (11), hold for each city t.

In local equilibrium, markets clear, and households maximize utility conditional on their city

choices. An equilibrium is a local equilibrium in which household city choices maximize utility.

2.6 Equilibrium characterization

We begin by characterizing equilibrium prices of labor. Firm profit maximization implies that

these labor prices coincide with marginal products:

we,t =
((
AL,tZL,t

)ρ +
(
AH,tZH,t

)ρ) 1
ρ−1A

ρ
e,tZ

ρ−1
e,t (12)

for each e ∈ {L,H} and t ∈ {1, ...,T }. Because the population of each education group in each city,

Ne,t, is positive, the productivities and labor endowments, Ae,t and Ze,t, for the corresponding

households are positive as well. As a result, we,t > 0 for each education group in each city, meaning

that all households earn positive income in equilibrium.

We next characterize the equilibrium city choice of each household. To do so, we define indi-

rect utility, ve,t(z) to be the maximized utility of a household in city t whose idiosyncratic taste for

that city is zero. Specifically,

ve,t(z) = max
c,xj

ue(c,q,at ,0) (13)

subject to the relevant constraints between (3) and (9). In the indivisible case, some households

may be unable to choose any combinations of c and xj within these constraints, in which case the

right side of (13) does not exist. This situation arises precisely for households too poor to afford

even the cheapest housing unit, that is, when we,tz < min(p0,t , ...,pJt ,t), and for these households,

we define ve,t(z) = 0. Indirect utility also equals zero for households in the indivisible case who

must spend all of their income to live in city t, in which case we,tz = min(p0,t , ...,pJt ,t).

To study the average welfare of households in the economy, we introduce another measure of

indirect utility, ve,t(z), that delivers the average utility of all households in city t with a given e

and z. Specifically, we define ve,t(z) = exp(E(logue(c,q,at ,εt) | e,z, t)) whenever ne,t(z) > 0. Putting

the log inside the expectation is necessary because the expected level of utility fails to exist due to

the thickness of the Gumbel distribution’s tail.

Because households choose cities to maximize utility, a household chooses city t when, for each

t′ , t, ve,t(z)exp(βε,eεt) > ve,t′ (z)exp(βε,eεt′ ). Standard results on Gumbel distributions (McFadden,
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1978) allow us to solve for the population distributions and average utilities, ne,t and ve,t, in terms

of the indirect utilities, ve,t. Lemma 1 provides these solutions and uses Assumptions 1(a) and (c)

to prove facts about each ne,t that are useful for characterizing equilibrium.

Lemma 1. In equilibrium, the following hold for each z > 0, e ∈ {L,H}, and t ∈ {1, ...,T }:

(a) there exists t′ ∈ {1, ...,T } such that ve,t′ (z) > 0;

(b) ne,t is a continuous distribution with convex support satisfying

ne,t(z) =
ñe(z)ve,t(z)β

−1
ε,e∑T

t′=1 ve,t′ (z)
β−1
ε,e

; (14)

(c) inf{ve,t(z′) | ne,t(z′) > 0} = 0; and

(d) if ne,t(z) > 0, then ve,t(z) = exp(βε,eγ)
(∑T

t′=1 ve,t′ (z)
β−1
ε,e

)βε,e , where γ is Euler’s constant.

Proof. Appendix A.1.

By Lemma 1(a), every household can achieve positive utility in one of the economy’s cities.

As shown in the proof, this result depends on Assumption 1(b). Lemma 1(a) guarantees that the

denominator in (14) is positive so that the solution for ne,t(z) is well-defined. By Lemma 1(b),

there are no mass points, discontinuities, or gaps in the distributions of labor endowments among

households of a given education within each city. These properties hold for the distributions

within the entire economy, ñe, so Lemma 1(b) proves that the within-city distributions inherit

these properties. Lemma 1(c) states that indirect utility comes arbitrarily close to zero within

each education group in each city. This result relies on Assumptions 1(a) and 1(b).

The formula that Lemma 1(d) gives for ve,t(z) does not depend on t. Therefore, the average

utility of households of a given e and z is the same in all cities where they live. In urban models

with perfect mobility, utility is equal in all cities for households of a given skill level (Roback,

1982; Glaeser and Gottlieb, 2009). Imperfect mobility generalizes this equivalence by requiring

only that the average level of utility is equal across cities (see Hsieh and Moretti, 2018 for further

discussion of this point). We label this average ve(z).

To finish characterizing equilibrium, we solve for equilibrium house prices and indirect utili-

ties within each city, pj,t and ve,t(z), as functions of the distributions of households in the city, ne,t.

We consider the divisible and indivisible cases separately.

2.6.1 Divisible housing

When housing is divisible, the price per unit of quality, pj,t/qj,t, must be equal in equilibrium

across the different types of housing in the city. To demonstrate this result, we write each house-
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hold’s first-order condition with respect to xj (the amount of housing of quality qj,t) as

∂ue/∂q

∂ue/∂c
≤
pj,t
qj,t

, (15)

with consumption of xj only in the case of equality. If pj,t/qj,t exceeds pj ′ ,t/qj ′ ,t for any j ′ , j,

then no household will choose quality qj,t. This situation cannot hold in equilibrium because the

market for that type of housing must clear.

Proposition 1 solves for the equilibrium price-to-quality ratio.

Proposition 1. In equilibrium, pj,t = µtqj,t for each j ∈ Jt, where

µt =

∑
e∈{L,H}

(
βc,e + βq,e

)−1
βq,ewe,tZe,t∑

j ′∈Jt hj ′ ,tqj ′ ,t
. (16)

Proof. Appendix A.2.

Each household in city t can purchase a unit of housing quality at an effective price µt. Because

preferences over c and q are Cobb-Douglas, each household chooses to spend a constant share of

income on housing quality, and this share equals βq,e/(βc,e+βq,e). As a result, the numerator of (16)

gives the total expenditure on housing in city t. Plugging the c and q choices of each household

into (1) yields each household’s indirect utility:

ve,t(z) = ββcc β
βq
q

(
βc + βq

)−(βc+βq) (
we,tz

)βc,e+βq,e µ−βq,et a
βa,e
t . (17)

2.6.2 Indivisible housing

In the indivisible case, each household occupies exactly one housing unit in equilibrium. Because

households are optimizing, house prices must strictly increase in quality among occupied units.

Furthermore, the set of occupied units must equal theNt highest quality units in city t. Otherwise,

a rentier endowed with a high quality vacant unit would not be optimizing. Finally, the housing

quality a household chooses must weakly increase in that household’s labor endowment, z, within

each education group, e. In other words, households sort on labor endowment, and hence income,

within each education group. As shown by Määttänen and Terviö (2014) for more general utility

functions, this sorting condition holds whenever the marginal rate of substitution from housing

to non-housing consumption increases in non-housing consumption.

Proposition 2 formalizes these statements.

Proposition 2. In equilibrium,

j0,t = sup

j ∈ Jt
∣∣∣∣∣∣∣∣
Jt∑
j ′=j

hj ′ ,t ≥Nt

 (18)
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exists, pj,t strictly increases over j ≥ j0,t and equals zero for j such that
∑Jt
j ′=j hj ′ ,t > Nt, and xj,t equals

zero for j < j0,t and hj,t for j > j0,t. The quality chosen by a household of education e and labor endow-
ment z weakly increases in z for each e.

Proof. Appendix A.3.

Proposition 2 pins down the price of the lowest quality occupied unit, pj0,t ,t, when the housing

stock exceeds the city’s population:

pj0,t ,t = 0 (19)

if
∑
j∈Jt hj,t > Nt. The prices of the city’s higher quality units solve the system that equates house-

hold demand for these units to the rentiers’ endowments. Under the conditions in the following

lemma, this system of equations admits a unique solution.

Lemma 2. Suppose nL,t and nH,t are continuous distributions whose supports are convex sets with
greatest lower bound zero. If

∑
j∈Jt hj,t > Nt, then a unique local equilibrium exists.

Proof. Appendix A.4.

In equilibrium, nL,t and nH,t satisfy the continuity and convexity properties by Lemma 1(b). Fur-

thermore, when (19) holds, the greatest lower bounds of the distributions’ supports are zero by

Lemma 1(c). Therefore, in any equilibrium in which
∑
j∈Jt hj,t > Nt, the population distributions

nL,t and nH,t uniquely determine the local equilibrium in city t.

We characterize this local equilibrium when a positive measure of households from each ed-

ucation group choose each type of occupied housing. Such equilibria are the focus of our com-

parative statics analysis in Section 3 and our estimation in Section 4. The other case, in which

a positive measure of only one education group chooses some types of housing, complicates the

comparative statics analysis and does not hold for the data we analyze in Section 6.

For each chosen quality level—that is, for each j ≥ j0,t—we define ze,j,t to be the greatest lower

bound of labor endowments z among households of education e choosing qj,t. When j > j0,t, ze,j,t
also equals the least upper bound of labor endowments among households of education e choosing

the quality one step below, qj−1,t, because of sorting and because the support of ne,t is convex. A

household with this endowment and education level is indifferent between qj,t and qj−1,t:(
we,tze,j,t − pj,t

)βc,e
q
βq,e
j,t =

(
we,tze,j,t − pj−1,t

)βc,e
q
βq,e
j−1,t (20)

for each j ∈ {j0,t + 1, ..., Jt} and e ∈ {L,H}. By Proposition 2, the measure of households choosing

each such quality level coincides with the total housing stock available:

hj,t =
∑

e∈{L,H}

∫ ze,j+1,t

ze,j,t

ne,t(z)dz (21)
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for each j ∈ {j0,t + 1, ..., Jt}, where ze,Jt+1,t equals the least upper bound (or ∞, if no upper bound

exists) of the labor endowments of households of education e in city t.

By (20), the endowment cutoffs are linear functions of house prices. Substituting these func-

tions into (21) delivers, together with (19), Jt−j0,t+1 equations in Jt−j0,t+1 unknown house prices.

As we show in Appendix A.5, these equations always admit a unique solution for house prices,

and prices in this solution strictly increase in quality. When the resulting endowment cutoffs also

strictly increase in quality, the unique local equilibrium is one in which households from each

education group choose each type of housing. The indirect utility of each household in city t is

ve,t(z) = ue(we,tz − pj,t ,qj,t , at ,0), z ∈ (ze,j,t , ze,j+1,t]. (22)

3 Equilibrium effects of construction

In this section, we study the effects of constructing housing in a single city, t∗, on equilibrium

house prices and welfare there. Constructing housing of quality qj,t∗ in city t∗ corresponds to

increasing hj,t∗ . We interpret such construction as the outcome of a relaxation of permitting rules

for housing of quality qj,t∗ . House prices exceed the marginal costs of land and structure in many

metropolitan areas (Glaeser and Gyourko, 2003), suggesting that easier permitting would lead

developers to build more housing.

We later explore the equilibrium effects of exogenous changes to amenities and productivity.

To encompass these changes as well, we study the equilibrium effect of marginally increasing each

hj,t∗ by δh,j , each log Ãe,t∗ by δA,e, and logat∗ by δa. We denote the combined equilibrium effect of

these changes by ∂, which we call a comparative static.

The effect of these changes on house prices consists of ∂pj,t∗ for j ∈ Jt∗ . For households who

strictly prefer t∗ to all other cities, the effect on the log of their indirect utility equals ∂ logve,t∗(z).

This effect does not depend on the household’s idiosyncratic taste for the city, εt∗ , which appears

as an additive constant in the log of the household’s indirect utility. We adopt ∂ logve,t∗(z) as our

measure of the effect of the changes in t∗ on welfare.

3.1 Equilibrium assumptions

To avoid edge cases, we proceed under two assumptions about the equilibrium around which we

compute comparative statics. First, a positive measure of households of each education choose

each occupied quality of housing in city t∗:

Assumption 2. For each e ∈ {L,H} and j ∈ {j0,t∗ , ..., Jt∗}, xe,j,t∗ > 0.

Due to Assumption 2, we may differentiate (20) and (21) to calculate comparative statics. The

data we analyze in Section 6 satisfy this assumption. Second, some of the lowest quality occupied
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housing remains vacant:

Assumption 3. xj0,t∗ ,t∗ < hj0,t∗ ,t∗ .

If this lowest quality, qj0,t∗ ,t∗ , represents outdoor locations, then Assumption 3 holds as long as

there remain some unoccupied outdoor locations where households could feasibly reside. In the

data we present in Section 5, we identify qj0,t∗ ,t∗ as locations where the homeless live. Assumption

3 implies that
∑
j∈Jt hj,t > Nt. As a result, (19) holds, and nL,t∗ and nH,t∗ uniquely determine local

equilibrium by Lemma 2.

3.2 Local approximation

An exact solution for comparative statics in city t∗ necessitates computing comparative statics in

all other cities as well. This interconnectedness is apparent from (14), which shows that a change

to ve,t∗(z), the indirect utility in t∗, alters the population levels in all other cities, ne,t(z). These

population changes move indirect utilities, ve,t(z), and these changes feed back to the population

levels in t∗, ne,t∗(z).

Computing comparative statics in every city substantially complicates both the theoretical and

quantitative analysis. To avoid these complications, we propose an approximation that allows us

to solve for comparative statics in t∗ exclusively using the equilibrium allocations in t∗:

∂ logve(z) ≈ 0 (23)

for each e ∈ {L,H} and z such that ne,t∗(z) > 0. When (23) holds, changes in t∗ do not affect the aver-

age utility in the economy of households of a given education and labor endowment, or they affect

this average only a small amount. Models with perfect mobility (e.g., Roback, 1982), sometimes

make the analogous approximation that changes in one city do not affect household utility. This

approximation may hold because the city is a relatively small share of the economy.

3.3 Derivatives of equilibrium conditions

To solve for the effects on house prices and welfare, we differentiate the model’s equilibrium

conditions to obtain a system of linear equations that we can directly solve.

Differentiating (14) while applying (23) and Lemma 1(d) yields

∂ logne,t∗(z) = β−1
ε,e∂ logve,t∗(z) (24)

for each e ∈ {L,H} and z such that ne,t∗(z) > 0. Due to the approximation in (23), changes to the

population in city t∗ depend only on changes to indirect utility there and not in any other city. The

population of households of a given education and labor endowment moves in the same direction
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as their indirect utility, rising if it rises and falling if it falls. This relation is stronger when βε,e is

smaller because the idiosyncratic city taste, ε, has less of an effect on utility.

Differentiating (2) produces

∂ logat∗ = δa +γa∂ logNH,t∗ −γa∂ logNL,t∗ . (25)

The city’s amenities increase with an exogenous shock, δa. In the presence of amenity spillovers—

that is, when γa > 0—amenities also increase when the population of high-education households

endogenously rises or when the population of low-education households endogenously falls.

Differentiating (11) delivers

∂ logAe,t∗ = δA,e + (γN −γH )
NL,t∗

N ∗t
∂ logNL,t∗ +

(
γN

NH,t∗

Nt∗
+γH

NL,t∗

Nt∗

)
∂ logNH,t∗ (26)

for each e ∈ {L,H}. Productivity increases with an exogenous shock, δA,e. If population spillovers

are stronger than human capital spillovers, then γN > γH and productivity also increases when

the population of low-education households endogenously rises. Under the reverse, γN < γH
and productivity falls when the population of low-education households rises. Productivity rises

along with the population of high-education households as long as γN > 0 or γH > 0.

Differentiating (12) gives

∂ logwe,t∗ = ∂ logAe,t∗ + (1− ρ)
Y∼e,t∗

Yt∗
∂ log

(
Z∼e,t∗

Ze,t∗

)
+ (1− ρ)

Y∼e,t∗

Yt∗
∂ log

(
A∼e,t∗

Ae,t∗

)
(27)

for each e ∈ {L,H}, where ∼e denotes the other education group, Ye,t∗ = we,t∗Ze,t∗ is the total income

of households in that group, and Yt∗ = YL,t∗ + YH,t∗ is the total income of the city’s households.

When ρ = 1, high- and low-education labor are perfect substitutes, so each labor price depends

only on that labor’s productivity. When ρ < 1, each labor price increases with the relative scarcity

of that type of labor in the city, given by the endogenous ratio Z∼e,t∗/Ze,t∗ . It also decreases with

any relative increase in that labor’s productivity, A∼e,t∗/Ae,t, meaning that an increase in logAe,t∗

raises logwe,t∗ more when a similar shock occurs to logA∼e,t∗ .

Equations (25)–(27) express changes to amenities and labor prices in terms of changes to the

total populations and labor endowments of each education group in city t∗. The changes in these

totals come from aggregating (24), which gives the change in the population of every household

in the city by education e and labor endowment z. Integrating (24) over all households in each

education group yields

∂ logNe,t∗ =N−1
e,t∗

∫
z|ne,t∗ (z)>0

∂ logne,t∗(z)ne,t∗(z)dz, (28)

which states that the total log change equals the average of the log changes for households with
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each labor endowment. The change in the total labor endowment follows a similar formula, but

now the average involves weighting by the income of each household:

∂ logZe,t∗ = Y −1
e,t∗

∫
z|ne,t∗ (z)>0

∂ logne,t∗(z)ye,t∗(z)ne,t∗(z)dz. (29)

The remaining equilibrium conditions are those determining house prices and indirect utili-

ties. We differentiate these separately in the divisible and invisible cases.

3.3.1 Divisible housing

By Proposition 1, the change in equilibrium house prices is given by

∂ logpj,t∗ = ∂ logµt∗ (30)

for each j ∈ Jt∗ . Across all quality levels present in the city, log house prices move lock-step

according to fluctuations in the city’s price-to-quality ratio, µt∗ . Proposition 1 allows us to derive

the change in this ratio as

∂ logµt∗ = −
∑
j∈Jt∗ δh,jqj,t∗∑
j∈Jt∗ hj,t∗qj,t∗

+
∑

e∈{L,H}

(βc,e + βq,e)−1βq,eYe,t(∂ logwe,t +∂ logZe,t)

(βc,L + βq,L)−1βq,LYL,t + (βc,H + βq,H )−1βq,HYH,t
. (31)

The first term gives the log change to the total housing quality present in city t∗. An log increase

to this quantity enters the equation negatively. The effect of building a unit of housing is more

negative when that unit is of larger quality, as the new unit then has a larger effect on the total

housing quality in the city. The second term gives the log change in the average income in the city.

Households spend more on housing when they have more income, so this term is positive.

To calculate the change in indirect utility, we differentiate (17) to obtain

∂ logve,t∗(z) = (βc,e + βq,e)∂ logwe,t∗ − βq,e∂ logµt∗ + βa,e∂ logat∗ (32)

for all z > 0 and for each e ∈ {L,H}. Indirect utility rises with labor prices, falls with the house

price-to-quality ratio, and rises with amenities. These changes do not depend on the labor en-

dowment z, so all households of the same education experience the same log change in welfare.

3.3.2 Indivisible housing

In equilibrium, the measure of households choosing each quality level above the lowest occupied

one coincides with the measure of housing at that quality level. Differentiating this condition,
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which appears in (21), gives

δh,j =
∑

e∈{L,H}


ze,j+1,t∗ne,t∗(ze,j+1,t∗)∂ logze,j+1,t∗︸                                   ︷︷                                   ︸

trickle-up

−ze,j,tne,t∗(ze,j,t)∂ logze,j,t∗︸                        ︷︷                        ︸
trickle-down

+
∫ ze,j+1,t∗

ze,j,t∗
∂ logne,t∗(z)ne,t∗(z)dz︸                               ︷︷                               ︸

migration



(33)

when j0,t∗ < j < Jt∗ . When j = Jt∗ , (33) holds without the trickle-up term. Three forces combine

to absorb the δh,j units of new housing. The first, which we call trickle-up, involves marginal

households from the next highest quality level switching down to qj,t∗ . The second, which we call

trickle-down, involves marginal households from the next lowest quality level switching up to

qj,t∗ . The final term, migration, represents households who move to the city and choose qj,t∗ .

We relate the trickle-up and trickle-down terms to house prices by differentiating (20):

∂ logze,j,t∗ =
(ye,j,t∗ − pj−1,t∗)∂pj,t∗

ye,j,t∗(pj,t∗ − pj−1,t∗)
−

(ye,j,t∗ − pj,t∗)∂pj−1,t∗

ye,j,t∗(pj,t∗ − pj−1,t∗)
−∂ logwe,t∗ , (34)

where ye,j,t∗ = ye,t∗(ze,j,t∗), for each e ∈ {L,H} and j ∈ {j0,t∗ + 1, ..., Jt∗} The endowment cutoff—that

is, the left side of (34)—rises when the price of the higher quality level rises or the price of the

lower quality level falls. Both price changes induce marginal households to switch from the higher

quality to the lower one. The endowment cutoff also rises when the price of the education group’s

labor, we,t∗ , falls, as a decline in income leads marginal households to switch to the lower quality.

Due to Assumption 3, (19) holds. Furthermore, xj,t∗ < hj,t∗ continues to hold for j = j0,t∗ under

perturbations to the local equilibrium given the strict inequality. As a result, the identity of the

lowest occupied quality does not change, so

∂pj,t∗ = 0 (35)

for j = j0,t∗ .

For households not on the margin between two qualities, differentiating (22) yields

∂ logve,t∗(z) =
βc,eye,t∗(z)∂ logwe,t∗

ye,t∗(z)− pj,t∗
−

βc,e∂pj,t∗

ye,t∗(z)− pj,t∗
+ βa,e∂ logat∗ , z ∈ (ze,j,t∗ , ze,j+1,t∗) (36)

for each e ∈ {L,H}. A household’s welfare rises with the price of its labor and with the amenities

in the city. Welfare falls with the price of the housing the household currently consumes. Any
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changes in the prices of other qualities of housing have no direct effect on the household’s welfare.

The change for marginal households depends on whether the corresponding endowment cutoff
increases or decreases. If ∂ logze,j,t∗ > 0, then the marginal households all choose the lower quality

level as a result of the changes to primitives, so the relevant house price for them in (36) is pj−1,t∗ .

If ∂ logze,j,t∗ < 0, then the marginal households all choose the higher quality level as a result of the

changes to primitives, so the relevant house price in (36) is pj,t∗ .

3.4 When trickle-down economics works

We present two special cases in which trickle-down housing economics works. That is, construc-

tion improves the welfare of all households in city t∗, and a single new housing unit improves

welfare most when the quality of the unit is qJt∗ ,t∗ , the highest quality available. Both properties

fail in the model we estimate in Section 6. For the rest of this section, δA,L = δA,H = δa = 0.

3.4.1 Divisible housing

In the divisible case, the total quality-adjusted housing stock,
∑
j∈Jt qj,thj,t, determines local equi-

librium. As a result, the effects of construction depend on the change to this total,
∑
j∈Jt qj,tδh,j .

An increase raises household welfare under two conditions. First, the equilibrium is locally stable,

meaning that perturbations to the city’s population raise the welfare of departing households or

decrease the welfare of arriving households. A formal definition appears in Appendix B.1. Sec-

ond, γN = 0, which limits spillovers to those depending on the relative population of households

with different education.

Proposition 3. In the divisible model, for each e ∈ {L,H} and z > 0,

∂ logve,t∗(z) ∝
∑
j∈Jt∗

qj,t∗δh,j , (37)

where ∝ denotes proportionality that is positive if the equilibrium is locally stable and γN = 0.

Proof. Appendix B.2.

According to Proposition 3, the benefits constructing high quality housing trickle down to

lower income households. Furthermore, each household benefits most when the quality of a single

new unit is the highest quality in the city. A rich household may move into this new unit, and then

poor households may move into partitions of the rich household’s vacated unit whose quality

exceeds that of their previous housing. This reallocation is one way that the benefits of high

quality construction can trickle down to lower income households.
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3.4.2 Indivisible housing with nearly no mobility

In the limit without mobility, the outcomes that depend on the city population remain fixed.

These fixed outcomes include labor prices and amenities. The effect on welfare, ∂ logve,t∗(z), de-

pends only on house price changes, as is apparent from (36). Welfare increases more when the

price of the housing that a household is choosing decreases more. The following proposition char-

acterizes the effect of construction on house prices and welfare:

Proposition 4. Suppose δh,j ≥ 0 for j > j0,t∗ , with at least one strict inequality, in the immobile limit
of the indivisible model. For each e and z ≥ ze,j0,t∗+1,t∗ , ∂ logve,t∗(z)/∂δh,j ′ is positive, increases over
j ′ ∈ {j0,t∗ + 1, ..., j}, and stays constant over j ′ ∈ {j, ..., Jt∗}. If z < ze,j0,t∗+1,t∗ , then ∂ logve,t∗(z) = 0.

Proof. Appendix B.3.

An analogous result appears in Section 3C of Braid (1981).

The benefits of constructing high quality housing again trickle down to lower income house-

holds, with the exception of non-marginal households choosing the lowest unoccupied quality,

who are indifferent. For other households, the decline in one’s house price is largest when con-

struction occurs at the city’s highest quality, qJt∗ ,t∗ . As in the divisible case, the strict Pareto opti-

mum for constructing a set amount of housing is to build all of it at this highest quality. Another

similarity is that constructing any unit whose price is positive lowers all positive house prices and

increases the welfare of all households choosing housing with a positive price.

The mechanism behinds these results is similar to the one in the divisible case. When con-

struction occurs at a high quality, the price of this housing falls so that some households on the

margin with the next lowest quality choose the new housing. This choice creates vacancy at the

next lowest quality, so the price of this housing falls to induce poorer marginal households to

switch. This process continues down to the lowest occupied quality, lowering the price of all oc-

cupied housing in the city above the lowest level. Even the prices of housing of quality higher

than the construction must fall; otherwise, richer households would choose to switch down to the

new housing, which Proposition 2 rules out. However, a given inframarginal household benefits

most when construction occurs at or above the quality it currently chooses.

4 Estimation strategy

To solve the system of linear equations determining comparative statics in the indivisible case,

we require values of the following parameters: ρ, γa, γN , γH , βc,e/βε,e, and βa,e/βε,e for e ∈ {L,H}.
We also require values of the following equilibrium outcomes: Ne,t∗/Nt∗ , Ye,t∗/Yt∗ , ye,j,t∗ , and pj,t∗

for e ∈ {L,H} and j ∈ {j0,t∗ , ..., Jt∗}. Two other equilibrium outcomes appear in the equations: ze,j,t∗

and ne,t∗ for e ∈ {L,H} and j ∈ {j0,t∗ , ..., Jt∗}. By changing variables from the labor endowment, z,
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to income, y, we replace these outcomes with the probability density functions of income within

each education group, fL,t∗ and fH,t∗ . Details of this change in variables appear in Appendix C.1.

The remainder of Section 4 describes how we estimate the parameters and equilibrium out-

come we need using household-level data from city t∗ and prior estimates from the literature.

4.1 Observations

We observe a representative sample of households indexed by i in a single metropolitan area with

the following data. First is a sample weight, gi . Second is a dummy variable, ei , equal to one if the

household has educationH and zero if the household has education L. Third is the income that the

household reports for the prior year, yi . Fourth is a categorical variable, oi ∈ {−1,0,1}, giving the

status of the household’s ownership of its place of residence. This variable equals minus one for

households who reside in a house of the lowest occupied quality, qj0,t∗ ,t∗ . For households residing

in houses of higher quality, oi equals zero for renters and one for owner-occupants. When oi = 0,

we observe the monthly rent that the household pays, ri , and when oi = 1, we observe the value of

the house, vi .

4.2 House prices and housing demands

Our first step is imputing an annual price of housing for each household, which we call pi . Due

to the assumption above, we know from the model that pj0,t∗ ,t∗ = 0, so we set pi = 0 when oi = −1.

We set pi = 12ri when oi = 0, meaning we multiply the monthly rent by twelve. For owner-

occupants, the annual price of housing equals the cost of capital times vi , plus maintenance costs

and taxes, less expected capital gains. If the latter are proportional to vi , then there exists some

constant, φ, such that the annual price for each owner-occupant is pi = φvi . We assume that such

proportionality holds, and we take φ from data we present in Section 5.

The second step is assigning households, i, to housing quality indices, j. In the absence of mea-

surement error, each distinct value of the annual house price, pi , corresponds to a distinct quality

by Proposition 2. Measurement error may arise for a variety of reasons, including misreporting

and unmodeled search frictions leading to price dispersion for similar housing units. To smooth

this error, we assign quality indices by binning households along annual house prices, pi . Specif-

ically, we set j(i) = 0 when oi = −1. When oi ∈ {0,1}, we set j(i) equal to the quantile of pi among

households in this group, out of a total of 50 quantiles. We assume that Jt = {0, ...,50}, meaning

that we observe households in every occupied quality level. We estimate the price for each quality

as the average of pi among households choosing that quality: p̂j,t∗ =
∑
i giδi,jpi/

∑
i giδi,j , where δi,j

is an indicator equal to one if and only if j(i) = j.For each j ∈ Jt∗ , our estimate of the share of

households choosing housing of quality qj,t∗ is
∑
i giδi,j /

∑
i gi .
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4.3 The distribution of households

To fit income distributions to the data, we specify fL,t∗ and fH,t∗ as double Pareto-lognormal dis-

tributions, a four-parameter family that Reed (2003) and Reed and Jorgensen (2004) propose to

characterize income distributions. Because it allows for Pareto behavior in both the upper and

lower tails, the double Pareto-lognormal distribution describes income distributions better than

the lognormal distribution.

Proposition 2 sharply restricts the joint distribution of income and housing quality by requir-

ing that yi ≥ yi′ whenever j(i) ≥ j(i′) and ei = ei′ . The data violate this restriction if there are

any pairs of households of the same education in which the poorer household lives in a higher

quality house than the richer household. To fit the model to data that may violate this restric-

tion, we assume that the income we observe, yi , does not necessarily equal the income from the

model, yei ,t∗(zi), where zi is the unobserved labor endowment of household i. Instead, yi equals

yei ,t∗(zi) plus noise. This noise may come from temporary fluctuations in income that, due to ad-

justment costs, do not cause households to change the quality of the housing they choose (Chetty

and Szeidl, 2007). Our empirical strategy identifies several parameters of the model under the

following assumption about this noise:

Assumption 4. 0 = Eδi,jei(yi − yei ,t∗(zi)) = Eδi,j(1− ei)(yi − yei ,t∗(zi)) for each j ∈ Jt∗ .

By Assumption 4, the noise not only has a mean of zero but also is uncorrelated with a household’s

education, housing choice, and the interaction of the two.

We exploit Assumption 4 to estimate several of the remaining parameters using the gener-

alized method of moments (Hansen, 1982). These parameters consist of the eight double Pareto-

lognormal parameters as well as the rent-to-price ratio, φ, the population shares of each education

group, NL,t∗/Nt∗ and NH,t∗/Nt∗ , and the ratio (βq,L/βc,L)/(βq,H /βc,H ), which we call ζ. This ratio de-

scribes the relative preference of low-education households for housing versus non-housing con-

sumption relative to high-education households. We denote the vector of these twelve parameters

by θ, and we denote the set over which we search for this vector by Θ.

Given our estimates of house prices and housing demands, the components of θ uniquely

determine the incomes of the households on the margin between the occupied quality levels,

ye,j,t∗ for e ∈ {L,H} and j ∈ {1, ...,50}. To illustrate this correspondence, we divide (21) by the city

population, Nt∗ , and change variables from z to y to obtain∑
i giδi,j∑
i gi

=
∑

e∈{L,H}

Ne,t∗

Nt∗

∫ ye,j+1,t∗

ye,j,t∗
fe,t∗(y)dy (38)

for each j ∈ {1, ...,50}. We also equate the two solutions to (20) for qj,t∗/qj−1,t∗ :

(
yL,j,t∗ − p̂j,t∗
yL,j,t∗ − p̂j−1,t∗

) βc,L
βq,L

=
(
yH,j,t∗ − p̂j,t∗
yH,j,t∗ − p̂j−1,t∗

) βc,H
βq,H

(39)
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for each j ∈ {1, ...,50}. For certain θ, these equations give unique solutions for the income cutoffs:

Lemma 3. If ∑
j ′∈{j,...,50}

∑
i giδi,j ′∑

i gi
≤

∑
e∈{L,H}

Ne,t∗

Nt∗

∫ ∞
p̂j,t∗

fe,t∗(y)dy (40)

for each j ∈ {1, ...,50}, then unique values of ye,j,t∗ for e ∈ {L,H} and j ∈ {1, ...,50} solve (38)–(39). When
ζ = 1, these values strictly increase in j for each e.

Proof. Appendix C.2.

Lemma 3 guarantees unique solutions for the income cutoffs when θ satisfies (40), which

states, for each j, that the share of housing of quality at least qj,t∗ in the data cannot exceed the

share of households in the model with income at least p̂j,t∗ . Assumption 2 requires that the result-

ing income cutoffs strictly increase in j for each e. To abide by this restriction, we limit Θ to θ that

satisfy (40) and for which the resulting income cutoffs strictly increase in j. Because monotonicity

holds when ζ = 1, Θ is nonempty. For computational reasons, we further restrict Θ to lie within a

neighborhood of our initial guess, θ0.

To estimate θ, we compare several conditional expectations of income and education in the

model to the data. In the model, the average income of households of education e choosing hous-

ing quality qj,t∗ , which we denote ye,j,t∗(θ), equals the conditional mean under the distribution

fe,t∗ over the interval [ye,j,t∗(θ), ye,j+1,t∗(θ)). Similarly, the average education of households choos-

ing housing quality qj,t∗ , which we denote ej,t∗ , equals the ratio of the measure under fe,t∗ of the

interval [ye,j,t∗(θ), ye,j+1,t∗(θ)) to the sum of these measures across both values of e. The follow-

ing moment conditions equate empirical realizations of these conditional expectations to their

model-based counterparts:

0 = Eδi,j(1− ei)(yi − yL,j,t∗(θ)) (41)

0 = Eδi,jei(yi − yH,j,t∗(θ)) (42)

0 = Eδi,j(ei − ej,t∗(θ)) (43)

for each j ∈ Jt∗ . These moment conditions hold due to Assumption 4.

As in Hansen (1982), we estimate θ by minimizing a quadratic form of the realizations of

these moments in the data. The covariance of each pair of distinct moments equals zero, so a valid

weighting matrix for the estimation is the diagonal matrix consisting of the inverses of the sample

variances of each moment under our initial guess, θ0. The resulting estimator is then

θ(θ0) = argmin
θ∈Θ

∑
j∈Jt

(
∑
i giδi,j(1− ei)(yi − yL,j,t∗(θ)))2∑
i giδi,j(1− ei)(yi − yL,j,t∗(θ0))2

+
(
∑
i giδi,jei(yi − yH,j,t∗(θ)))2∑
i giδi,jei(yi − yH,j,t∗(θ0))2 +

(
∑
i giδi,j(ei − ej,t∗(θ)))2∑
i giδi,j(ei − ej,t∗(θ0))2 .

(44)
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We iterate the generalized method of moments estimation by using θ(θ0) as the initial guess to

arrive at a final estimate of θ̂ = θ(θ(θ0)). This estimator chooses the value of θ that best fits the

joint distribution of income, education, and housing quality we observe in the data.

4.4 Remaining parameters

We take the production function parameters—ρ, γN , and γH—from prior estimates in the litera-

ture. The remaining parameters we need are βc,L/βε,L, βc,H /βε,H , βa,L/βε,L, βa,H /βε,H , and γa.

We rely on three sets of estimates for these remaining parameters. To describe these existing

estimates, we let βw,e = βc,e+βq,e denote the sum of the utility weights on non-housing and housing

consumption for each education e ∈ {L,H}. The first estimate is the average of the ratio βq,e/βw,e in

a subset of the population. This estimate, which we denote α, equals the average share of income

spent on housing in the divisible model. In the indivisible model, this ratio satisfies the equation

1−α = (1− eα)
βc,L
βw,L

+ eα
βc,H
βw,H

, (45)

where eα equals the share of households of educationH among the subset in which α is the average

value of βq,e/βw,e. This education share constitutes the second of the three estimates. Together with

the equation defining ζ, (45) determines the ratios βc,L/βw,L and βc,H /βw,H :

Lemma 4. Given ζ, unique values of βc,L/βw,L and βc,H /βw,H jointly in (0,1) solve (45).

Proof. Appendix C.3.

Using our estimate of ζ from θ̂, we solve for these unique values of βc,L/βw,L and βc,H /βw,H .

The final source is a paper that jointly estimates βw,L/βε,L, βw,H /βε,H , βa,L/βε,L, βa,H /βε,H , and

γa, the vector of which we denote ψ. These joint estimates identify the remaining parameters

when we multiply the first two estimates by the ratios βc,L/βw,L and βc,H /βw,H . The equilibrium

under all of the parameters we have estimated may not be stable. The paper whose estimates we

are using provides a sampling distribution for ψ in addition to point estimates. To ensure stability,

we sample 10,000 times from the sampling distribution for ψ and use the mean of the estimates

for which the marginal effects of δa on at∗ and of each δA,e on Ae,t∗ are positive.
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5 Data

5.1 American Community Survey

5.1.1 Data description

Household-level data come from the American Community Survey (ACS), which the U.S. Census

Bureau has conducted annually since 2005 to provide current economic information about the

United States (see U.S. Census Bureau, 2014 for the most recent available documentation). We

use the public use microdata sample that is part of the Integrated Public Use Microdata Series

(Ruggles et al., 2018). The data are a weighted random sample of the U.S. population.

The Census Bureau categorizes observations depending on the type of residence where the

surveyed person lives. The names of the two types of residences are “housing units” and “group

quarters.” When a sampled person resides at a housing unit, we observe all persons living at that

place of residence. The respondent designates one of these persons—someone owning or renting

the unit, if possible—as the “householder.” We observe no other linked persons in the case of a

person residing in group quarters.

Group quarters consist of institutional (e.g., prisons and hospitals) and non-institutional fa-

cilities. Non-institutional group quarters fall into one of three types: college dormitories, mil-

itary facilities, and “other.” The ACS excludes seven sub-categories of other non-institutional

group quarters. The non-excluded sub-categories are homeless shelters, religious group quarters,

adult group homes, adult residential treatment centers, and workers’ living quarters (U.S. Census

Bureau, 2012). For sampled persons in other non-institutional group quarters, the ACS sample

weights reflect the full population in other non-institutional group quarters. To construct these

weights, the Census Bureau uses population estimates from the decennial census, which counts

persons in both the excluded and included sub-categories.

We aggregate all persons in a housing unit into a single household observation, i, while a per-

son in group quarters constitutes a single observation. We use the “household weight” variable,

which assigns a weight to each group quarters person and housing unit, as gi . We use total per-

sonal income, which is available for all persons at least 15 years old, as yi for persons in group

quarters. For each housing unit, we use the sum of this variable across persons as yi . We set ei = 1

if a person in group quarters or the householder of a housing unit has a bachelor’s degree. For

housing units, we set oi = 0 if the residents rent the housing unit and oi = 1 if the residents own

or are purchasing the housing unit. We set oi = −1 for persons in group quarters. For renters pay-

ing cash rent, we use monthly contract rent as ri . We use the survey respondent’s estimate of the

house value as vi when oi = 1. The Census Bureau top-codes rent and home values above separate

thresholds in each state with the average of the variable above that threshold in that state. Finally,

we label a housing unit as new construction if the household reports the construction year as the

one directly before the survey year.
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5.1.2 Sample selection

For renter households not paying cash rent, we do not observe the value of any non-cash goods

and services they pay to reside in their housing unit. Because our estimation strategy depends on

observing this information, we drop such households.

The group quarters observations we keep should correspond to persons living in the lowest

quality housing in each city. Ideally, we could limit group quarters persons to the homeless,

but we do not observe homelessness in the ACS. To attempt this refinement, we drop persons in

institutional group quarters, and then among the remaining group quarters population, we drop

minors, students, and the employed (which includes the armed forces). The remaining persons

likely reflect adults in other non-institutional group quarters who do not have a job.

We limit our estimation sample to the Boston-Cambridge-Newton, MA-NH metropolitan area

in 2016 (the most recent data year when we starting writing this paper). Among the largest 20

metropolitan areas in the United States in 2016, Boston has some of the lowest construction ac-

tivity and highest home values and rents. Some of the large metropolitan areas more extreme

than Boston in these dimensions are New York-Newark-Jersey City, NY-NJ-PA and San Francisco-

Oakland-Hayward, CA. We choose Boston over these metropolitan areas because New York and

California allow rent control while Massachusetts and New Hampshire prohibit it. Our model

assumes that a competitive market determines rents.

5.1.3 Summary statistics

Table 1 lists summary statistics for the data from the Boston metropolitan area in 2016. As shown

in Panel A, we drop about 91% of the group quarters persons when selecting our estimation sam-

ple. This share is large because most group quarters persons reside in an institution or are minors,

students, or employed. In contrast, we drop only about 3% of renter households, corresponding

to those not paying cash rent. We keep all owner-occupant households.

Panel B shows weighted means of the variables we use. Income of owner-occupant households

is about twice that of renter households, on average. The mean income of group quarters per-

sons is much lower, at $7,531. Our flag for a college degree is also highest for owner-occupant

households and lowest for group quarters persons. Among renters, the average rent is $1,284,

and the Census Bureau censors less than 2% of rents. Among owner-occupants, the average home

value is $491,724, with the Census Bureau censoring less than 1% of home values. Almost all

of our weighted sample consists of renter and owner-occupant households, with about twice as

many owner-occupant households as renters. The total number of unweighted observations in the

estimation sample is 18,269.
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5.2 Real Capital Analytics

Real Capital Analytics (RCA) provides quarterly estimates of the capitalization rate (i.e., the

annual income return) for multifamily rental properties with at least ten units in the Boston

metropolitan area that sold in 2016. RCA also provides quarterly estimates of the rental rev-

enue and net operating income per square foot for multifamily properties held by institutional

investors. For each quarter in 2016, we calculate the annual rental return by multiplying the

capitalization rate by the institutional rental revenue per square foot and then dividing by the

institutional operating income per square foot. The average of the rental yield estimate for each

quarter, 0.09, serves as our estimate for φ.

5.3 Estimates from other work

Several papers in labor economics estimate the inverse elasticity of substitution between college

and non-college labor to be about 0.7 (see the discussion in Card, 2009). This inverse elasticity

corresponds to 1−ρ, so we set ρ = 0.3. Combes and Gobillon (2015) review the empirical literature

on productivity spillovers and find that the typical estimate of the elasticity of productivity with

respect to population density lies between 0.04 and 0.07. These estimates correspond to γN , so

we set γN = 0.055, which is the midpoint of this range.

Moretti (2004b) estimates that log output in an industry within a city rises about 0.0055 (“a

0.5–0.6-percentage-point increase”) when the college share in other industries in the same city

rises by one percentage point. Interpreting this estimate as 100 times the derivative of log pro-

ductivity with respect to NH,t/Nt, we obtain 0.55 = γHNt/NH,t. The college shares in the two years

in the sample in Moretti (2004b) are 0.161 and 0.191. Setting NH,t/NH equal to the average of

these two numbers, 0.176, gives us γH = 0.097.2

Diamond (2016) estimates ψ = (βw,L/βε,L,βw,H /βε,H ,βa,L/βε,L,βa,H /βε,H ,γa) using the general-

ized method of moments. Her data include labor incomes, rental payments, and city choices of

workers with and without a college degree in the United States between 1980 and 2000, and her

model is close to the divisible housing framework in our paper. We use the estimate from her “full

model,” corresponding to column 3 of her Table 5 (ignoring differential effects for Blacks and im-

migrants), which is ψ = (4.026,2.116,0.274,1.1012,2.60). We obtain the sampling distribution of

ψ from her replication files. Under her point estimate, low-education households care more than

2A similar approach to calibrating γH uses numbers from Gennaioli et al. (2013), who estimate that an additional
year of average schooling in a sub-national region raises log productivity in that region by 0.074. In their data, the
average college share is 0.11, the years of schooling for individuals with a college degree is 16, and the average years
of schooling for all individuals is 6.52. The average years of schooling among individuals without a college degree is
thus (6.52 − 0.11 ∗ 16)/0.89 = 5.35. A one percentage point increase in the college share increases log productivity by
0.01 ∗ (16−5.35) ∗0.074 = 0.0079 if we assume that the commensurate one percentage point decrease in the non-college
share is orthogonal to their years of schooling. Multiplying this estimate by 100 and by the college share (as we did
in the Moretti, 2004b calculation) yields γH = 0.087. Reassuringly, this number is close to the one from the Moretti
(2004b) calculation. We use the larger estimate, 0.097, to explore the full effects of human capital spillovers in the
model.
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high-education households about income when choosing a city. The reverse is true for amenities.

In the divisible model that Diamond (2016) estimates, βq,e/βw,e coincides with the share of

income that a household of education e spends on housing. Davis and Ortalo-Magné (2011) es-

timate that renters in the United States between 1980 and 2000 (the setting in which Diamond,

2016 estimates her model) spend about 24% of their income on housing, so we set α = 0.24. The

final estimate is eα, the share of renter households in the United States between 1980 and 2000 in

which the householder has a college degree. In the U.S. Census from 1980, 1990, and 2000 (the

same data that Davis and Ortalo-Magné (2011) and Diamond (2016) use), eα = 0.18.

6 Quantitative results

6.1 Estimation

Table 2 reports our estimates of the model parameters as well as some of the equilibrium out-

comes. Households split roughly evenly between low and high education, with about 51% in the

former category and 49% in the latter. However, the low education households earn only about

one third of the city’s income. On average, then, high education households earn about double

what low education households earn.

The components of ψ—the vector of parameters whose sampling distribution we take from

Diamond (2016)—substantially differ from the point estimates in Diamond (2016) only for γa,

the amenity spillover. Our equilibrium is unstable under her point estimates.3 When we take

the mean of the resamples that lead to stability, we obtain an estimate for γa of 1.103, which is

less than half the point estimate of 2.6 from Diamond (2016). The other estimates change much

less, indicating that the strength of the amenity spillover in the point estimate prevents stabil-

ity. These estimates imply that high-education households value amenities versus non-housing

consumption 8.20 times more than low-education households do.

Figure 1 displays the average incomes and education shares of households choosing each qual-

ity of housing against the price of the corresponding quality. We plot these averages in both the

model and the data. Our estimation minimizes the differences between the model and data aver-

ages, so the closeness of these outcomes indicates the goodness of fit.

As Panel A shows, the model matches the empirical income averages quite well with the no-

table exception of over-predicting the incomes of the few low-education households choosing very

high quality housing and under-predicting the incomes of the few high-education households

choosing very low quality housing. Conditional on housing quality, the incomes of high-education

3Because our models differ, this instability does not imply that the equilibrium in Diamond (2016) is unstable. In
particular, by imposing the local approximation in (23), we assume away economy-wide changes in utility levels from
migrations into and out of Boston. Diamond (2016) estimates her model for the entire United States, meaning that
such migrations change economy-wide utility levels. As a result, re-allocations of households that cause instability in
our approximate model may not do so in her more complete framework.
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households exceed the incomes of low-education households in both the model and the data. This

outcome is consistent with our estimated value of ζ = 1.603, which indicates that low-education

households value housing versus non-housing consumption relatively more than high-education

households.

Panel B shows that the model likewise closely fits the education shares for each type of hous-

ing, with the exception of under-predicting the high-education share choosing very low quality

housing and over-predicting the high-education share choosing very high quality housing. Only

about 10% of households choosing the lowest quality levels have high education, while more than

80% of the households choosing the highest quality levels have high education.

6.2 Construction effects

6.2.1 Low-quality construction

What is the effect of building low-quality housing on household welfare? To answer this question,

we study construction in bin j = 10, which represents the 20th percentile of occupied housing

units. We consider what would happen if the housing stock of the city expanded by 0.45% solely

through new housing of this quality type. We choose 0.45% to match the metro-wide construction

we observe in the data. To implement this experiment mathematically, we set δh,j = 0 for j , 10

and δh,10 = 0.0045, and then we solve the linear system of equations from Section 2.

Our outcome of interest is ∂ logve,t∗(z), the welfare change for a household of education e and

endowment z who remains in t∗ after the construction. According to (24), this welfare change is

proportional to ∂ logne,t∗(z), the change in the population of such households. We average this

population response across each education group e and housing bin j. Because households sort

by income across housing bins, the effect in low bins delivers the welfare change for the poor. The

effect on high bins describes what happens to the rich.

Figure 2 displays the results. Our baseline specification appears in Panel D. According to these

results, low-quality construction makes poor non-college households better off. At that same time,

it makes rich households worse off. It also hurts middle-income college households. Equivalently,

such construction increases the population of poor non-college households while causing out-

migration of the rich and college-educated.

The combination of spillovers and preference heterogeneity is key for causing negative welfare

effects from construction. To illustrate this point, Panels A–C reproduce Panel D under different

parameter values. We turn off spillovers by setting γN = γH = γa = 0 and ρ = 1. In this case,

city amenities and each household’s income no longer depend on the composition of city house-

holds. We turn off preference heterogeneity by setting βc,L/βε,L and βc,H /βε,H (resp. βa,L/βε,L and

βa,H /βε,H ) equal to their average value in the city before the construction. In this specification, the

cross-city migration response to non-housing consumption and amenities is equally sensitive for
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college and non-college households.4

Panel A displays the results under preference homogeneity without spillovers. Construction

improves the welfare of all households by lowering house prices. On a proportional basis, it low-

ers low-quality house prices more than high quality prices, leading to larger welfare gains for

the poor. When we turn on spillovers, construction continues to improve the welfare of college

households, as Panel B shows. Some very rich non-college households suffer from labor market

competition with poor non-college migrants. Panel C turns off spillovers but re-introduces pref-

erence heterogeneity. The picture is largely similar to Panel A—without spillovers, construction

makes no one worse off. It is only in Panel D that construction hurts many city households.

Why does the combination of spillovers and preference heterogeneity lead to negative welfare

effects? Figure 3 clarifies this point by decomposing the average welfare effect in Panel D for two

groups of households: non-college with incomes in the bottom quartile of the city income distri-

bution, and college with incomes in the top quartile. Poor non-college households benefit entirely

because house prices fall. In contrast, rich college households suffer solely because city ameni-

ties decline. Constructing low-quality housing inherently attracts more non-college households

because they constitute a larger share of households living in such housing. In the presence of

spillovers, amenities endogenously fall as a result. Because preferences are heterogeneous, college

households react more strongly to this decline in amenities, moving out of the city. This migra-

tion lowers house prices, stimulating further in-migration of poor non-college households. The

result is a strong price welfare effect for these households and a negative amenity welfare effect for

rich college households. Consistent with this mechanism, the welfare gain for poor non-college

households in Figure 2 is largest in Panel D.

6.2.2 High-quality construction

To study the effects of high-quality construction, we perform a similar experiment where all con-

struction occurs at bin j = 40, which is the 80th percentile of occupied housing units. We narrow

our attention by further averaging the welfare effect across education groups and city income

quartiles. Doing so gives us eight categories (two of which appear in Figure 3). We report results

in column (1) of Panel B of 3. Panel A reports analogous results for building in the 20th percentile.

High-quality construction hurts college households much less than low-quality construction.

Only the richest quartile suffer losses, which are small enough to round to 0.00%. Conversely,

poor non-college households gain much less than before, 0.93% versus 1.66%. Significantly, high-

quality construction continues to improve poor non-college welfare, but much less effectively. As

a result, rich college households prefer different construction than poor non-college households.

By lowering low-quality prices less, high-quality construction is worse for poor households, most

of whom are in the non-college group. Less of them migrate to the city, which improves amenities

4College and non-college households still differ in βq,e/βε,e. The estimation forces this difference by selecting a value
of ζ , 1. When we change βc,e/βε,e, we keep the ratio (βq,L/βc,L)/(βq,H /βc,H ) constant at our estimated value of ζ.
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and makes college households better off.

How much low-quality housing does high-quality construction make available? High-quality

construction raises the city’s population by 0.33%. Because the housing stock expands by 0.45%,

100 new luxury units bring about 73 new households into the city, freeing up new units for 27

existing residents on net. As a result, many poor households move up to higher quality housing.

In aggregate, the measure of existing residents in the bottom quartile and bottom half of the non-

homeless housing distribution who move to a nicer house equals 0.19% and 0.29% of the total

city population, corresponding to 42 and 64 vacated units. These numbers are close to the 34 and

65 that Mast (2019) calculates.

6.2.3 Extensions

The remaining columns in Table 3 explore welfare effects of construction under different param-

eters and assumptions. This exercise clarifies the robustness of the results so far and the mecha-

nisms generating them.

In column (2), we set γa = 0 so that amenities no longer depend on the composition of city

households. Low-quality construction no longer makes college households worse off. In fact,

both types of construction make all four groups of college households better off than in column

(1). The endogeneity of amenities is crucial in generating the negative welfare effects on college

households. In contrast, low-quality construction continues to improve poor non-college welfare

more than high-quality construction. Therefore, this feature of the baseline model does not de-

pend on endogenous amenities.

In the next column, we report results from an extension in which endogenous amenities dif-

fer across housing bins. This extension captures the empirical dependence of amenities on the

composition of households in one’s neighborhood (Bayer et al., 2007). Specifically, amenities for

households choosing qj,t are now

aj,t = ãt

(
NH,t
NL,t

)γa−γal (NH,j,t
NL,j,t

)γal
, (46)

where Ne,j,t is the measure of households of education e choosing qj,t. This specification re-

allocates some of the city-wide amenity channel to each housing sub-market, which we think

of as a neighborhood. Specifically, an increase in NH,j,t/NL,j,t that is uniform across all j raises

amenities the same amount under this new specification as under (2), the baseline amenity spec-

ification. We use estimates from Bayer et al. (2007) on the willingness-to-pay for an increase in

college households in one’s neighborhood to get a value of γal = 0.05.5 We then re-estimate θ

5According to their Table 8, a 10 percentage point increase in the neighborhood college share increases the
willingness-to-pay of college households to live in the neighborhood by $68.51 per month. Using their summary
statistics on mean income, housing costs, and college neighborhood shares, as well as our value for βa,H /βc,H , we
calculate γal = 0.06. Because they find a negative willingness-to-pay of non-college households for this amenity, we
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using this new amenity specification, as the trade-off between adjacent housing bins must now

reflect the different college shares in each bin. The new θ is very close to the baseline value. We

perform comparative statics with the new θ for internal consistency.

Column (3) displays the results. Unsurprisingly, poor college households are worse off than

under the baseline, as the migration of poor non-college households into their bins has a negative

effect on local amenities. More notable is that rich college households are also worse off than un-

der the baseline, even though amenities are more localized than before. The in-migration of poor

non-college households is stronger because they more easily push out poor college households.

This effect is large enough to increase the overall non-college population. Because the rich col-

lege amenities still depend on this population (although less than in the baseline), their welfare

decreases. The negative effect of construction on college households is therefore robust to this

localization of amenities.

We next add to the model local supply of services by non-college households. These jobs have

become an increasingly important part of the U.S. labor market (Autor and Dorn, 2013). We follow

Autor and Dorn (2013) in modeling the production of services using a linear production function

of non-college labor. We allow services to enter the utility function, splitting the log of utility

from βc,e logc into βcs,e logcs + βcm,e logcm, with βcs,e + βcm,e = βc,e. Here, cs denotes consumption

of services, and cm denotes consumption of manufactured goods, which firms in our baseline

model produce. Households consume only services that other households in their city supply.

Equilibrium pins down the local price of services, the wage paid to labor from L households, and

the allocation of this labor across the service and manufacturing sectors in each city.

To calibrate this extended model, we set βcs,L = 0, meaning that only college households con-

sume low-skilled services. This assumption gives us the greatest chance of attenuating the nega-

tive effects of construction on college households. To estimate βcs,H , we calculate the total wage

and salary earnings of non-college workers in service occupations our data. The ratio of this total

to the aggregate income less housing costs of college households equals βcs,H , which we calculate

as 8.2%.

The results appear in column (4). As expected, construction harms college households less

than in the baseline. The in-migration of poor non-college households lowers the price of ser-

vices, which makes college households better off. However, the aggregate effect of low-quality

construction still makes rich college households worse off. The extent of service consumption is

not large enough to attenuate the baseline effects.

Finally, column (5) reports results where we turn off cross-city migration. As Proposition 4

states, construction now makes all households better off, and all households prefer high-quality

construction to low-quality construction. We further learn that all households are better off than

they are in the baseline. For instance, welfare of poor non-college households improves by more

than 6%. Migration significantly attenuates the welfare gains from construction, turning them

conservatively round the number down slightly to 0.05.
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negative in some cases.

A final extension, which we do not report in the table, is to include property tax revenue. A

local government spends this revenue on a public good that enters the utility function. In this

extension, construction at the 80th percentile fails to raise property tax revenue—although there

is more housing to tax, house prices fall by so much that total revenue falls. Construction in only

the top seven bins raises tax revenue.

6.3 Addressing the affordability crisis

House prices have grown so much in certain cities because productivity has risen while construc-

tion has been low (Hsieh and Moretti, 2018). We study a productivity shock that raises house

prices in our model, asking how effective different policies are in addressing welfare losses.

6.3.1 Effects of a skill-biased productivity shock

The exogenous productivity shifters for L and H labor are δA,L and δA,H . Diamond (2016) esti-

mates that, for the period between 1980 and 2000, the values of these shifters are −0.314 and

0.075 for the Boston metropolitan area (see Table A.6 of her online appendix). According to these

estimates, the Boston production function changed to make high-education labor more produc-

tive and low-education labor less. We annualize these numbers by setting δA,L = −0.0157 and

δA,H = 0.0038. During this period, real house prices in Boston doubled by growing at an annual

rate of 3.78%.

Figure 4 plots the house price and population changes that occur in response to this shock.

House prices sharply increase relative to their initial value, as Panel A shows. The largest gains

occur in the lowest quality bins. House price growth during the 2000–2005 U.S. boom also fol-

lowed this pattern (Guerrieri et al., 2013; Landvoigt et al., 2015). The remaining panels clarify

why this pattern holds in our model.

Panel C shows the net measure of households moving into each bin from outside the city. The

high bins accept an influx of college households, while non-college households move out of the

low bins. Therefore, the shock generates an affordability crisis: a sharp rise in prices accompany-

ing an out-migration of poor households without a college degree. The combined effect, shown in

gray, is in-migration to high bins and out-migration from low bins. Given the out-migration from

low bins, why do house prices increase most sharply there?

The answer comes from changes in demand between adjacent bins. Panel D plots the net

switching into each bin from households already in the city before the shock. Because the housing

market clears, the combined switching effect—appearing in gray—exactly cancels the combined

migration effect in Panel C. In particular, college households exert demand on the low bins by

switching down into them. To induce this switching, the slope of house prices with respect to
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quality cannot increase too much, as switching households are using this slope to decide which

bin to choose. Consistent with this idea, the growth in house price levels across bins is relatively

constant, as Panel B shows. Only between the lowest bins does this slope increase much. The net

demand to switch into these bins is very strong so the slope must rise more there.

The mechanism in Figure 4 resembles the endogenous gentrification that Guerrieri et al. (2013)

study. In both cases, richer households drive up low-quality house prices by pushing out lower

income households. The importance of switching between adjacent housing qualities is similar to

phenomenon that Landvoigt et al. (2015) describe. However, they generate the pattern in Panel A

with a housing demand shock that is strongest for poor households. In contrast, we generate the

same pattern with a shock that is weakest for the poor.

6.3.2 Policy effectiveness

Table 4 analyzes the effectiveness of various policies in addressing the migratory responses to this

shock. Panel A reports the population changes of non-college households in each income quartile,

Panel B gives the same information for college households. Panel C summarizes house price and

quantity changes from each policy.

Results in column (1) correspond to the case in Figure 4 when there is no policy response.

Consistent with Panel C of that figure, the poor non-college population declines while the college

population increases at all income levels. House prices rise by 5.78% on average, with a median

increase of 4.14%. There is no change in the housing stock (by assumption).

Column (2) presents the case where construction matches what we observe in the data for

2015. Mathematically, we set δh,j equal to the measure of new housing in each bin that we observe

in our data, and then solve the linear system in Section 3 using the aforementioned values of δA,L
and δA,H . This level of construction does curtail the out-migration of poor non-college households,

but it does not come close to reducing it to zero. In the lowest income quartile, the population

change is −2.78% versus −3.84% in the baseline. At the same time, this construction lowers the

welfare of rich college households, curtailing their in-migration from 3.58% to 3.50%. This change

is small, which may explain why local governments enacted this policy in reality, as households

with more education are more active in the political process (Galston, 2001; Milligan et al., 2004).

House price growth falls to 4.26% and 3.06% for the average and median, respectively. These

values are close to the empirical house price growth of 3.78% in response to the shock.

How much construction is necessary to stem the out-migration of poor non-college house-

holds? Columns (3)–(5) answer this question in different ways. We search for a set of construction

amounts, δh,j , so that the combined effect of the productivity shock and construction makes no

household in the city worse off. Such an outcome represents a Pareto improvement over the base-

line. In particular, poor non-college households no longer leave the city.

Column (3) finds the minimal number of new housing units necessary to achieve this objective.
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Mathematically, we find δh,j that minimizes
∑50
j=1 δh,j subject to the constraints that ∂ logve,t∗(z) ≥ 0

for all households and that δh,j ≥ 0 for all j. As Panel C reports, this minimal construction expands

the housing stock by 1.43%, more than triple the amount in the data. Furthermore, the quality

of new housing is almost 17% lower in column (3) than column (2). We compute construction

quality as the average price of new housing in the pre-shock equilibrium. The population of all

eight household groups increases, which must hold because the shock and construction response

makes no one worse off.

Should governments in the Boston metropolitan area change permitting rules to implement

the construction in column (3)? Doing so would make poor non-college households better off, but

would harm many households relative to the status quo in column (2). In particular, the welfare

of households in the upper half of the income distribution would fall. Switching from actual

construction to that in column (3) is not a Pareto improvement.

In column (4), we instead minimize the value of new housing using the pre-shock equilibrium

prices,
∑50
j=1pj,t∗δh,j . We think of this sum as proportional to the cost of constructing this hous-

ing. This minimand addresses the possibility that it is cheaper to supply lower quality housing.

The “construction cost” column reports this sum as a fraction of the initial value of the housing

stock,
∑50
j=1pj,t∗hj,t∗ . The construction in column (4) involves a cost of only 1.49% of the housing

stock, which is lower than the 1.74% cost in column (3). The construction tilts even more toward

lower quality housing, with a quality that is 29% lower than the 2015 amount. While cheaper to

implement, this policy further lowers the welfare of households in the top income quartile.

Column (5) serves as a placebo check to columns (3) and (4). It requires that the quality

distribution match that in column (2), while solving for the total quantity of construction that

eliminates out-migration. The resulting optimum expands the housing stock by 1.71%, which is

moderately more than in columns (3) and (4). The construction cost, at 2.53% of the housing stock,

is much higher than the 1.49% number from column (4). The welfare losses relative to column (2)

are much smaller. Therefore, while keeping the quality distribution involves higher construction

costs, many households prefer that policy over one that involves building lower-quality units.

Finally, column (6) reports an analysis of rent control. We limit all prices changes to 2%:

∂ logpj,t∗ ≤ log(1.02) for j ∈ {1, ...,50}. For housing bins where demand exceeds supply, we ration

households randomly within each bin. To solve the system, we impose 2% growth of prices at

certain indices and solve for the rationing at those indices and the price responses at other indices.

Using iteration, we find a set of indices where demand exceeds supply at the rationed indices and

price growth is less than 2% at the un-rationed indices. The rationed indices are the lowest 22

occupied housing bins.

Consistent with this price cap, price growth is much smaller in column (6) than under the

baseline without construction or the 2015 construction policy. Both average and median price

growth is between 1.5% and 2%. However, the policy fails to limit the out-migration of the poor.

In fact, it accelerates it—the out-migrations in the bottom two quartiles are larger in column
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(6) than in column (1). By capping price growth, rent control limits the growth in the slope of

prices with respect to quality at the low end of the distribution. As a result, switching down the

quality distribution is stronger. Consistent with this mechanism, the population of third quartile

non-college households and top quartile college households grows under rent control. These are

the households exerting the most downward pressure through switching in Panel D of Figure 4.

Rent control makes these households better off even though it does not directly limit the growth

of their house prices. Diamond et al. (2018) find empirically that rent control attracted higher

income residents to San Francisco, which is consistent with these results.

7 Conclusion

To conclude, we return to the topic with which we began: what can stem the rapid growth of house

prices in many cities? Like many economists, our analysis recommends expanding the stock of

available housing. The novelty of our approach is to consider the quality of construction. We

calculate that expanding the housing stock in Boston by 1.4% annually would eliminate welfare

losses if the new units primarily are at the lower end of the housing market. This finding provides

one rationale for cities to relax permitting rules specifically for low-quality construction. How-

ever, building such units makes high-education and high-income households worse off, which

might explain why expensive cities have not already relaxed permitting rules for low-income

housing enough to eliminate welfare lost by low-income, low-education households.
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Notes: The two-dimensional size of each marker is proportional to the number of housing units in each housing value and education bin.
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Figure 2. Effect of 20th percentile construction on resident welfare

Notes: The size of each marker is proportional to the number of housing units in each housing value and education bin.
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Figure 4. Effect of skill-biased productivity shock on housing submarkets

Notes: Panels C and D plot the change in demand for each house type from outside and inside the city, respectively.
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TABLE 1

Summary statistics for Boston-Cambridge-Newton, MA-NH metropolitan area in 2016

Group quarters Renters Owners

Panel A: All observations

Present in estimation sample 0.091 0.968 1

Weighted observations 170,602 701,301 1,120,455

Unweighted observations 3,223 6,156 11,893

Panel B: Estimation sample

Ownership status −1 0 1

Income $7,531 $64,961 $138,223

Education 0.128 0.397 0.554

Rent - $1,284 -

Rent censoring - 0.019 -

Home value - - $491,724

Home value censoring - - 0.009

New construction - 0.005 0.004

Weighted observations 15,486 678,917 1,120,455

Unweighted observations 430 5,946 11,893
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TABLE 2

Estimates of model parameters

Low education High education

Panel A: Parameters differing by education group

Ne,t∗/Nt∗ 0.509 0.491

Ye,t∗/Yt∗ 0.334 0.666

βw,e/βε,e 4.398 2.078

βc,e/βε,e 3.280 1.713

βa,e/βε,e 0.245 1.047

Panel B: Parameters not differing by education group

ζ 1.603

γa 1.103

γN 0.055

γH 0.098
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TABLE 3

Effect of construction on resident welfare (%)

Non-

college

Col-

lege

Non-

college

Col-

lege

Non-

college

Col-

lege

Non-

college

Col-

lege

Non-

college

Col-

lege

Baseline

(1)

Exogenous

amenities

(2)

Neighborhood

amenities

(3)

Local services

(4)

Closed city

(5)

Panel A. Construction at 20th percentile

Income quartile

1 1.66 0.24 0.95 0.49 1.94 −0.45 1.60 0.27 6.07 2.26

2 0.40 0.06 0.34 0.41 0.30 −0.21 0.39 0.10 3.10 1.50

3 −0.38 −0.22 0.02 0.25 −0.48 −0.41 −0.35 −0.17 1.83 0.90

4 −1.03 −0.41 −0.19 0.16 −1.67 −0.53 −0.97 −0.35 1.11 0.46

Panel B. Construction at 80th percentile

Income quartile

1 0.93 0.21 0.54 0.35 1.39 −0.30 0.88 0.24 6.12 2.26

2 0.49 0.15 0.46 0.34 0.43 −0.15 0.48 0.17 3.66 1.56

3 0.27 0.08 0.50 0.34 0.12 −0.17 0.29 0.11 2.69 1.10

4 −0.33 −0.00 0.14 0.31 −1.10 −0.21 −0.29 0.03 1.75 0.70
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TABLE 4

Effects of skill-biased productivity shock under different policies (%)

Consruction policies

None

(1)

2015

(2)

Unit-

minimizing

optimum

(3)

Cost-

minimizing

optimum

(4)

2015

quality

optimum

(5)

Rent

control

(6)

Panel A. Non-college population change

Income quartile

1 −3.84 −2.78 0.09 0.09 0.26 −4.23

2 −1.43 −0.97 0.02 0.02 0.32 −1.88

3 0.32 0.38 0.03 0.02 0.56 0.55

4 1.89 1.62 0.17 0.05 0.87 0.93

Panel B. College population change

Income quartile

1 2.29 2.50 2.93 2.98 3.09 −1.17

2 2.71 2.81 2.89 2.95 3.07 −1.51

3 3.21 3.18 2.88 2.94 3.12 2.90

4 3.58 3.50 2.98 2.94 3.28 4.06

Panel C. Housing market changes

Average price 5.78 4.26 0.53 0.50 0.13 1.76

Median price 4.14 3.06 0.48 0.44 0.11 1.96

Housing units 0.00 0.45 1.43 1.43 1.71 0.00

Construction cost 0.00 0.66 1.74 1.49 2.53 0.00

Construction quality – 0.00 −16.95 −29.25 0.00 –

Notes: “Construction cost” gives the total value of new housing as a share of the value of existing housing, using
pre-shock prices. “Construction quality” gives the average value of new housing relative to the average value of new
housing in 2015, using pre-shock prices.
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A Supplements to Section 2

A.1 Proof of Lemma 1

For a contradiction, suppose (a) fails, so that ve,t(z) = 0 for all t ∈ {1, ...T } for some e ∈ {L,H} and
z > 0. This situation may hold only in the indivisible and requires that we,tz ≤min(p0,t , ...,pJt ,t) for
all t ∈ {1, ...,T }. By Assumption 1(b), there exists households of education e with labor endowment
z′ < z. For such households, we,tz′ < we,tz ≤ min(p0,t , ...,pJt ,t) for all t ∈ {1, ...,T }, contradicting the
budget constraint for such households and proving (a).

We next prove (14). Consider households of education e with endowment z. No such house-
hold chooses t if ve,t(z)exp(βε,eεt) < ve,t′ (z)exp(βε,eεt′ ) for any t′ , t. If ve,t(z) = 0, then this in-
equality holds by part (a), so ne,t(z) = 0. Such households choose city t if ve,t(z) > 0 and εt − εt′ >
β−1
ε,e logve,t(z′) − β−1

ε,e logve,t(z) for all t′ , t such that ve,t′ (z) > 0. Train (2009), on pages 36 and 74–
75, shows that the probability that independent draws from a Gumbel distribution satisfy this
inequality is ve,t(z)β

−1
ε,e /

∑
t′ |ve,t′ (z)>0 ve,t′ (z)

β−1
ε,e . Because the measure of such households in the econ-

omy is ñe(z), (14) follows.

To finish proving (b), we note that the denominator of (14) is always positive and that ve,t(z)β
−1
ε,e

is either zero or positive. Therefore, ne,t can have a mass point only if ñe does, which Assumption
1(c) rules out, so ne,t is atomless. Consider z′ < z′′ such that ne,t(z′),ne,t(z′′) > 0. It follows thats
ñe(z′), ñe(z′′),ve,t(z′) > 0. If z ∈ (z′ , z′′), then ñe(z) > 0 by Assumption 1(a). Furthermore, ve,t(z) >
ve,t(z′) because we,tz > we,tz′, meaning that a household with endowment z can choose the same
housing bundle and greater non-housing consumption as a household with endowment z′. It
follows that ne,t(z) > 0, implying that the support of ne,t is convex.

We now prove (c). In equilibrium, Ne,t > 0 (by definition), so zlbe,t = inf{z | ne,t(z) > 0} exists. By
Assumption 1(b), inf{z | ñe(z) > 0} = 0. By (14), ne,t(z) > 0 if ve,t(z) > 0 and ñe(z) > 0. It follows that
zlbe,t = inf{z | ve,t(z) > 0}, which equals zlbe,t = 0 in the divisible case and zlbe,t = w−1

e,t min(p0,t , ...,pJt ,t) in
the indivisible case. Consider δz > 0. When z = zlbe,t + δz, the maximal value of c that satisfies the
household constraints is we,tδz, so as δz → 0, ve,t(z

lb
e,t + δz)→ 0. It follows that inf{ve,t(z) | ne,t(z) >

0} = inf{ve,t(z) | ve,t(z) > 0} = 0.

To prove (d), we denote Ve,t(z) = β−1
ε,e logve,t(z). Using the simplifications on page 74 of Train

(2009), we have

E(εt | e,z, t) =

∫∞
−∞ εt exp

(
−exp(−εt)

∑
t′ |ve,t′ (z)>0 exp(Ve,t′ (z)−Ve,t(z))

)
exp(−εt)dεt∫∞

−∞ exp
(
−exp(−εt)

∑
t′ |ve,t′ (z)>0 exp(Ve,t′ (z)−Ve,t(z))

)
exp(−εt)dεt

. (A1)

Changing variables to τ = exp(−εt) and simplifying, as on page 75 of Train (2009), gives

E(εt | e,z, t) = −

∫∞
0 log(τ)exp

(
−τ

∑
t′ |ve,t′ (z)>0 exp(Ve,t′ (z)−Ve,t(z))

)
dτ∫∞

0 exp
(
−τ

∑
t′ |ve,t′ (z)>0 exp(Ve,t′ (z)−Ve,t(z))

)
dτ

. (A2)

Evaluating these integrals yields E(εt | e,z, t) = γ −Ve,t + log
∑
t′ |ve,t′ (z)>0 exp(Ve,t′ (z)). It follows that

logve,t(z) = βε,eVe,t(z) + βε,eE(εt | e,z, t) = βε,eγ + βε,e log
∑
t′ ve,t′ (z)

β−1
ε,e . Exponentiating proves (d).
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A.2 Proof of Proposition 1

The text above Proposition 1 proves that pj,t = µtqj,t for each j ∈ Jt. Using this result, we re-write
the budget constraint, (3), as c + µtq ≤ we,tz. Given t, maximizing (1) is equivalent to maximizing
the Cobb-Douglas utility function c1−αqα given income we,tz and prices one and µt for c and q,
where α = βq,e(βc,e + βq,e)−1. If µt ≤ 0, then households cannot optimize, so µt > 0 in equilibrium.
As shown on pages 55–56 of Mas-Collel et al. (1995), the optimal consumption bundle in this
environment consists of expending a share α of income on q, so that q = βq,e(βc,e + βq,e)−1µ−1

t we,tz.
Given that pj,t > 0 for all j ∈ Jt, rentiers maximize utility by selling all of their housing. Equating
the total housing quality rentiers sell to the total quality households demand produces (16).

A.3 Proof of Proposition 2

In equilibrium, the housing market clears, so the measure of households must be no greater than
the total measure of housing rentiers may sell:

∑
j∈Jt hj,t ≥Nt. It follows that j0,t exists.

We next prove the statements about housing demand. Because rentiers optimize, they sell hj,t
units of housing of quality qj,t when pj,t > 0, they sell any amount of such housing when pj,t = 0,

and pj,t < 0 is impossible. Consider j < j0,t such that xj,t > 0. Because
∑Jt
j ′=j0,t

hj ′ ,t ≥ N , there exists
j ′ ≥ j0,t such that xj ′ ,t < hj ′ ,t. It follows that pj ′ ,t = 0, which implies that households choosing
qj,t are failing to optimize because qj ′ ,t > qj,t and 0 = pj ′ ,t ≤ pj,t. This contradiction implies that
no such j exist, so xj,t = 0 when j < j0,t. Similarly, consider j such that j > j0,t and xj,t < hj,t.

Then pj,t = 0. Furthermore, because
∑Jt
j ′=j0,t+1hj ′ ,t < Nt, there exists j ′ ≤ j0,t such that xj ′ ,t > 0.

Households choosing qj ′ ,t cannot be optimizing, as pj,t ≤ pj ′ ,t and qj,t > qj ′ ,t. This contradiction
implies that there are no such j, proving that xj,t = hj,t when j > j0,t.

To prove the statements about house prices, we first consider j such that
∑Jt
j ′=j hj ′ ,t > Nt and

hj,t > 0. By the definition of j0,t, j ≤ j0,t. If j < j0,t, then 0 = xj,t < hj,t, so pj,t = 0. If j = j0,t, then

xj,t =Nt−
∑Jt
j ′=j0,t+1hj ′ ,t < hj0,t ,t = hj,t, again implying pj,t = 0. Next, consider j, j ′ such that hj,t ,hj ′ ,t >

0 and j0,t ≤ j < j ′. Because xj,t = hj,t > 0, there exist households choosing qj,t. If pj,t ≥ pj ′ ,t, these
households are failing to optimize because qj ′ ,t > qj,t. It follows that pj,t < pj ′ ,t.

We prove the final statement by contradiction. Consider two households with education e and
respective labor endowments z < z′ and quality choices qj,t > qj ′ ,t. Optimality for each household

implies the inequalities (we,tz − pj,t)βc,eq
βq,e
j,t ≥ (we,tz − pj ′ ,t)βc,eq

βq,e
j ′ ,t and (we,tz′ − pj ′ ,t)βc,eq

βq,e
j ′ ,t ≥ (we,tz′ −

pj,t)βc,eq
βq,e
j,t . If we,tz = pj,t, then the first optimality inequality is violated because pj ′ ,t < pj ′ ,t, which

implies that we,tz − pj ′ ,t > we,tz − pj,t = 0. By the budget constraint, we,tz ≥ pj,t, so we must have
we,tz > pj,t. Because z < z′, we,tz < we,tz′, so we,tz′−pj,t > we,tz−pj,t > 0. We may therefore rearrange
the optimality inequalities to produce

we,tz − pj ′ ,t
we,tz − pj,t

≤
(
qj,t
qj ′ ,t

) βq,e
βc,e

≤
we,tz

′ − pj ′ ,t
we,tz′ − pj,t

. (A3)

Cross-multiplying the outer terms yields the contradiction (pj,t − pj ′ ,t)(z′ − z) ≤ 0.
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A.4 Proof of Lemma 2

Denote by pt = (p0,t , ...,pJt ,t) a vector of potential house prices in city t. Define Pt = {pt | 0 ≤ p0,t ≤
... ≤ pJt ,t}. We derive housing demand as a function of pt ∈ Pt.

For j, j ′ ∈ Jt distinct, a household of education e and endowment z prefers and can afford
qj,t over qj ′ ,t only if two conditions hold. First, we,tz ≥ pj,t. Second, either we,tz < pj ′ ,t or both
we,tz ≥ pj ′ ,t and (

we,tz − pj,t
)βc,e

q
βq,e
j,t ≥

(
we,tz − pj ′ ,t

)βc,e
q
βq,e
j ′ ,t , (A4)

with strict preference in the case of strict inequality. The point where (A4) becomes an equality is

ze,j,j ′ ,t(pt) =
q
βq,e
βc,e

j,t pj,t − q
βq,e
βc,e

j ′ ,t pj ′ ,tq βq,eβc,e

j,t − q
βq,e
βc,e

j ′ ,t

we,t . (A5)

If j > j ′, then (A4) holds if and only if z ≥ ze,j,j ′ ,t(pt). Furthermore, because pj ′ ,t ≤ pj,t, ze,j,j ′ ,t(pt) ≥
w−1
e,t pj,t ≥ w−1

e,t pj ′ ,t. Therefore, if j > j ′, the household prefers and can afford qj,t over qj ′ ,t only
if ze,j,j ′ ,t(pt), with strict preference when z > ze,j,j ′ ,t(pt). By symmetry, when j < j ′, these prefer-
ence relations hold when z ≤ ze,j ′ ,j,t(pt) = ze,j,j ′ ,t(pt), strictly with strict inequality. Let zmine,j,t (pt) =
max{ze,j,j ′ ,t(pt) | j > j ′} for j > 0 and zero for j = 0. Let zmaxe,j,t (pt) = min{ze,j,j ′ ,t(pt) | j < j ′} for j < Jt
and infinity for j = Jt. Demand for qj,t equals

xj,t(pt) =
∑

e∈{L,H}
xe,j,t(pt), (A6)

where

xe,j,t(pt) =
∫ zmaxe,j,t (pt)

zmine,j,t (pt)
ne,t(z)dz. (A7)

The following lemma collects useful facts about demand.

Lemma A1. For each j ∈ Jt, xj,t is continuous. Let pt ,p′t ∈ Pt. If p′j,t ≥ pj,t and p′j ′ ,t ≤ pj ′ ,t for j ′ , j,
then xj,t(p′t) ≤ xj,t(pt), with strict inequality if p′j,t < pj,t and xj,t(pt) > 0. Finally,

pt = inf

p̃ ≥ 0

∣∣∣∣∣∣∣∣
∑

e∈{L,H}

∫ ∞
w−1
e,t p̃
ne,t(z)dz < hJt ,t

 (A8)

exists, and if pJt+1,t = pt, then xj,t(pt) ≤ hj,t if pj,t = pj+1,t.

Proof. We prove the first two sentences for each xe,j,t; they then hold for xj,t immediately. Both zmine,j,t
and zmaxe,j,t (the latter only for j < Jt), are continuous functions of pt. Because ne,t is continuous by
assumption, and because the composition of continuous functions is continuous, the fundamental
theorem of calculus implies that xe,j,t is continuous.

From (A5), ze,j,j ′ ,t(pt) strictly increases in pj,t and decreases in pj ′ ,t if j > j ′ and strictly decreases
in pj,t and increases in pj ′ ,t if j < j ′. Therefore, zmine,j,t (p

′
t) ≥ zmine,j,t (pt) and zmaxe,j,t (p

′
t) ≤ zmaxe,j,t (pt). It
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follows that xe,j,t(p′t) ≤ xe,j,t(pt). Now suppose that xe,j,t(pt) > 0 and that p′j,t < pj,t. We claim

that 0 ≤ zmine,j,t (pt) < sup{z | ne,t(z) > 0}. The first inequality follows because for j > j ′, ze,j,j ′ ,t(pt) ≥
w−1
e,t pj,t ≥ 0. If the second inequality fails, then [zmine,j,t (pt), z

max
e,j,t (pt)] ∩ {z | ne,t(z) > 0} is either ∅ or

{sup{z | ne,t(z) > 0}}, both of which have measure zero under ne,t, contradicting xe,j,t(pt) > 0. Then
inf{z | ne,t(z) > 0} = 0 ≤ zmine,j,t (pt) < sup{z | ne,t(z) > 0}. Therefore, because zmine,j,t (pt) < z

min
e,j,t (p

′
t), the

convexity of the support of ne,t implies that xe,j,t(p′t) < xe,j,t(pt), as desired.

Let j < Jt. If pj,t = pj+1,t, then ze,j,j+1,t(pt) = w−1
e,t pj,t. A household of education can afford

qj,t only if z ≥ w−1
e,t pj,t and prefers qj+1,t over qj,t only if z ≤ ze,j,j+1,t(pt) = w−1

e,t pj,t. Therefore,
only those with z = w−1

e,t pj,t may choose qj,t, and the measure of such households equals zero, so
xj,t(pt) = 0 ≤ hj,t. We turn to the case j = Jt. The limit of the integral in (A8) as p̃→∞ equals zero,
so pt exists. A household chooses qJt ,t only if z ≥ we,tpJt ,t, so the summation in (A8) provides an
upper bound on xJt ,t(pt) when p̃ = pj,t. Therefore, xJt ,t(pt) ≤ hJt ,t when pJt ,t ≤ pt = pJt+1,t.

We next prove local equilibrium existence by constructing a sequence pit ∈ Pt whose limit pro-
vides a local equilibrium. For all i ≥ 0, set pJt+1,t = pt. We set p0

t = 0. If i + j ≡ 0 (mod Jt + 1)
and xj,t(p

i
t) > hj,t, then pij,t is the unique solution to hj,t = xj,t(p

i
j,t;p

i−1
−j,t). Uniqueness and exis-

tence follow from the intermediate value theorem and Lemma A1 because xj,t(p
i−1
j,t ;pi−1

−j,t) > hj,t ≥
xj,t(p

i−1
j+1,t;p

i−1
−j,t) and hj,t > 0. Otherwise, we set pij,t = pi−1

j,t . At each step, pij,t ∈ [pi−1
j,t ,p

i−1
j+1,t], so pi ∈ Pt

for all i ≥ 0. Furthermore, pij,t weakly increases in i for each j ∈ {0, ..., Jt}, and pij,t ≤ p
i
Jt+1,t = p for

all such j and all i ≥ 0. By the monotone converge theorem, pit converges. We denote the limit p∗t .

Consider j such that p∗j,t > 0. Let ij be the first i such that pij,t > 0. We claim that xj,t(p
i
t) ≥ hj,t

for i ≥ ij . When i = ij , p
i
j,t > p

i−1
j,t = 0, so xj,t(p

i
t) = hj,t. We proceed by induction. For each i > ij ,

pij ′ ,t ≥ p
i−1
j ′ ,t for j ′ , j. If pij,t = pi−1

j,t , then by Lemma A1, xj,t(p
i
t) ≥ xj,t(pi−1

t ) ≥ hj,t. If pij,t > p
i−1
j,t ,

then xj,t(p
i
t) = hj,t. Therefore, xj,t(p

i
t) ≥ hj,t for all i ≥ ij , as claimed. It follows that xj,t(p

i
t) = hj,t

for all i ≡ −j (mod Jt + 1). Because xj,t is continuous by Lemma A1, xj,t(p
i
t) converges because pit

does. This limit must equal hj,t because it appears infinitely often in the sequence. Therefore,
xj,t(p∗t ) = limi→∞ xj,t(p

i
t) = hj,t.

Consider j such that p∗j,t = 0. For all i > 0 such that i ≡ −j (mod Jt+1), xj,t(p
i
t) ≤ hj,t. Because xj,t

is continuous by Lemma A1, xj,t(p
i
t) converges. This limit cannot exceed hj,t because xj,t(p

i
t) ≤ hj,t

for infinitely many i. Therefore, xj,t(p∗t ) = limi→∞ xj,t(p
i
t) ≤ hj,t.

Given that wL,t and wH,t clear the labor market when (12) holds, local equilibrium holds if and
only if prices clear the housing market. Rentiers sell all housing at positive prices and any amount
of housing at zero prices, so the market clears at p∗t if and only if xj,t(p∗t ) = hj,t when p∗j,t > 0 and
xj,t(p∗t ) ≤ hj,t when p∗j,t = 0. Therefore, p∗t provides local equilibrium house prices.

We finally prove that this local equilibrium is unique. Consider two local equilibrium price
vectors pt and p′t. For a contradiction, suppose that pt , p′t. By Proposition 2 and (19), pj,t = p′j,t = 0
for j ≤ j0,t, pj,t ,p′j,t > 0 for j > j0,t, and pt ,p′t ∈ Pt. Furthermore, for j > j0,t, xj,t(pt) = xj,t(p′t) = hj,t.
Without loss of generality, suppose that pj,t < p′j,t for some j > j0,t. Let J ′t = {j ∈ {0, ..., Jt} | pj,t < p′j,t}.
Given pt, a household of education e and endowment z prefers and can afford qj,t over all qj ′ ,t,
where j ∈ J ′t and j ′ < J ′t , only if max{ze,j,j ′ ,t(pt) | j > j ′ < J ′t } ≤ z ≤ min{ze,j,j ′ ,t(pt) | j < j ′ < J ′t }.
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Therefore, total demand for qualities qj,t, where j ∈ J ′t , equals∑
j∈J ′t

hj,t =
∑
j∈J ′t

xj,t(pt) =
∑

e∈{L,H}

∫
Ze,t(pt)

ne,t(z)dz, (A9)

where
Ze,t(pt) =

⋃
j∈J ′t

[
max

{
ze,j,j ′ ,t(pt) | j > j ′ < J ′t

}
,min

{
ze,j,j ′ ,t(pt) | j < j ′ < J ′t

}]
. (A10)

We define Ze,t(p′t) similarly. Because pj,t < p′j,t for j ∈ J ′t and pj,t ≥ p′j,t for j < J ′t , ze,j,j ′ ,t(pt) <
ze,j,j ′ ,t(p′t) if J ′t 3 j > j ′ < J ′t and ze,j,j ′ ,t(pt) > ze,j,j ′ ,t(p′t) if J ′t 3 j < j ′ < J ′t . Therefore, Ze,t(p′t) ⊂
Ze,t(pt). Furthermore, ze,j,j ′ ,t(p′t) > 0 when J ′t 3 j > j ′ because p′j,t > 0 and p′t ∈ Pt. It follows that
minZe,t(pt) > minZe,t(p′t) > 0. Because the greatest lower bounds of the supports of nL,t and nH,t
equal zero, ∫

Ze,t(p′t)
ne,t(z)dz ≤

∫
Ze,t(pt)

ne,t(z)dz, (A11)

with strict inequality if Ze,t(z) , ∅, which holds for some e due to (A9). Therefore, by (A9),∑
j∈J ′t hj,t =

∑
j∈J ′t xj,t(p

′
t) <

∑
j∈J ′t xj,t(pt) =

∑
j∈J ′t hj,t, a contradiction.

A.5 Solution to (19)–(21)

For each j ∈ {j0,t + 1, ..., Jt}, we rewrite (20) and (21) as

Nt −
Jt∑
j ′=j

hj ′ ,t =
∑

e∈{L,H}

∫ ze,j,t(pj,t ,pj−1,t)

0
ne,t(z)dz, (A12)

where ze,j,t(pj,t ,pj−1,t) = ze,j,j−1,t(pt). By the definition of j0,t, the minimum value of the left side of
(A12) is positive. The maximal value is less than Nt because hJt ,t > 0. Therefore, the left side of
(A12) lies in (0,Nt) for each j ∈ {j0,t+1, ..., Jt}. Because ze,j,t(·, ·) is an increasing linear function of its
first argument, and because the support of each ne,t is convex, the right side of (A12) strictly and
continuously increases in pj,t over the range [0,Nt). Therefore, given pj−1,t, a unique value of pj,t
solves (A12) for each j ∈ {j0,t+1, ..., Jt}. Because (19) determines pj0,t ,t, induction shows that unique
values of pj,t solve (A12).

We now prove that this unique solution for pj,t strictly increases over j ∈ {j0,t , ..., Jt}. Because
ze,j0,t+1,t(pj0,t ,t ,pj0,t ,t) = 0 and the left of (A12) exceeds zero, pj0,t+1,t > 0 = pj0,t ,t. Proceeding induc-
tively, we note that

ze,j,t(pj−1,t ,pj−1,t) = w−1
e,t pj−1,t = ze,j−1,t(pj−1,t ,pj−1,t) < ze,j−1,t(pj−1,t ,pj−2,t) (A13)

as ze,j−1,t(·, ·) strictly falls in its second argument. The left of (A12) strictly rises in j, so pj,t > pj−1,t.

Finally, we characterize the condition under which xe,j,t > 0 for each e ∈ {L,H} and j ∈ {j0,t , ..., Jt}.
Denote ze,j,t = ze,j,t(pj,t ,pj−1,t), where the prices are the unique solutions to (19)–(21). We claim
that, in local equilibrium, a positive measure of households of each education choose each type of
occupied housing if and only if ze,j,t strictly increases over j ∈ {j0,t , ..., Jt + 1} for each e ∈ {L,H}.

Suppose such monotonicity holds. Appendix A.4 shows that for j ∈ Jt, a household of edu-
cation e and endowment z prefers and can afford to choose qj,t over qj−1,t if and only if z ≥ ze,j,t
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when j > 0; that same household prefers and and can afford to choose qj,t over qj+1,t if and only
if z ≤ ze,j+1,t when j < Jt. By transitivity and the assumed monotonicity, a household of education
e with endowment z ∈ [ze,j,t , ze,j+1,t] prefers and can afford to choose qj,t over all qj ′ ,t for j ′ ∈ Jt
because either ze,j ′ ,t ≤ ... ≤ ze,j,t ≤ z or z ≤ ze,j+1,t ≤ ... ≤ ze,j ′ ,t. Therefore, all households optimize
their housing choices when prices solve (19)–(21) and a household of education e and endowment
z chooses qj,t only if z ∈ [ze,j,t , ze,j+1,t]. Because housing markets clear by (21), these prices and
housing demands constitute a local equilibrium, and due to Lemma 2, they give the unique lo-
cal equilibrium. In this local equilibrium, xe,j,t > 0 for each e ∈ {L,H} and j ∈ {j0,t , ..., Jt} because
inf{z | ne,t(z) > 0} = ze,j0,t ,t ≤ ze,j,t < ze,j+1,t ≤ ze,Jt+1,t = sup{z | ne,t(z) > 0} and ne,t has convex support.

Conversely, suppose such monotonicity fails to hold. As argued in the text, in any local equi-
librium in which xe,j,t > 0 for e ∈ {L,H} and j ∈ {j0,t , ..., Jt}, a household of education e chooses qj,t
for such j only if z ∈ [ze,j,t , ze,j+1,t]. If monotonicity fails, then there exists some such e and j such
that xe,j,t = 0, a contradiction.

B Supplements to Section 3

B.1 Local stability in the divisible model

In any equilibrium of the divisible model, ne,t(z)/Ne,t = ñe(z)/Ñe, where Ñe equals the mass of
households of education e in the economy. This relation follows from substituting (17) into (14).
As a result, Ze,t =

∫∞
0 zne,t(z)dz =Ne,t

∫∞
0 zÑ−1

e ñe(z)dz =Ne,tze, where ze equals the average z among
households of education e. Therefore, in equilibrium, NL,t and NH,t determine ZL,t and ZH,t.
Because amenities, productivities, and prices in t are all functions of NL,t, NH,t, ZL,t, and ZH,t, the
populations NL,t and NH,t pin down the local equilibrium in any equilibrium. By (17), there exist
functions vNe,t(NL,t ,NH,t) for each e ∈ {L,H} and t ∈ {1, ...,T } such that ve,t(z) = zβc,e+βq,evNe,t(NL,t ,NH,t)
for all z > 0 in any equilibrium.

An equilibrium is locally stable in city t if the Jacobian of vNt = (vNL,t ,v
N
H,t) at (NL,t ,NH,t) is

Volterra-Lyapunov stable (Cross, 1978). Equivalently for a two-by-two Jacobian, the diagonal
is negative and its determinant is positive (Cross, 1978).

Because the diagonal is negative, perturbing Ne,t moves equilibrium welfare of households of
education e in the opposite direction when local stability holds. Furthermore, perturbing both
NL,t and NH,t moves equilibrium welfare of at least one of the education groups in the opposite
direction. If not, then there exist dNL,t ,dNH,t , 0 and a non-negative diagonal matrixDNt such that
(DvNt )(dNL,t ,dNH,t) =DNt (dNL,t ,dNH,t). As a result, DvNt −DNt has an eigenvalue of zero, meaning
that dvNt is not strongly stable and hence is not Volterra-Lyapunov stable, a contradiction (Cross,
1978). We prove Proposition 3 using these results.

B.2 Proof of Proposition 3

In the divisible case, each δh,j enters the derivatives of the equilibrium conditions only in (31),
where it appears with a coefficient proportional to qj,t∗ . Due to the linearity of the system of
equations, ∂ logve,t∗(z) is proportional to

∑
j∈Jt∗ qj,t∗δh,j , as claimed.

Suppose that γN = 0 and that the equilibrium is locally stable in t∗. Define Qt =
∑
j∈Jt qj,thj,t.

To prove positive proportionality in (37), we assume without loss of generality that ∂Qt∗ > 0. For a
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contradiction, suppose that ∂ logve′ ,t∗(z) ≤ 0 for some e′ ∈ {L,H} and z > 0. By (32), ∂ logve′ ,t∗(z′) =
∂ logve′ ,t∗(z) for all z′ > 0, which, by (24), implies that ∂Ne′ ,t∗ ≤ 0. Consider the following pertur-
bation to the initial equilibrium:

d logNe,t∗ = ∂ logNe,t∗ −


0, ∂ logN∼e′ ,t∗ ∈ (−∞,0]

∂ logN∼e′ ,t∗ , ∂ logN∼e′ ,t∗ ∈ (0,∂ logQt∗]

∂ logQt∗ , ∂ logN∼e′ ,t∗ ∈ (∂ logQt∗ ,∞)

(B1)

for each e ∈ {L,H}, where ∼e′ = H when e′ = L and ∼e′ = L when e′ = H . In equilibrium, Ze,t∗ =
zeNe,t∗ , so ZL,t∗/ZH,t∗ =NL,t∗/NH,t∗ . As a result, NL,t∗/NH,t∗ determines labor prices and amenities in
t∗ in equilibrium when γN = 0. Because d log(NL,t∗/NH,t∗) = ∂ log(NL,t∗/NH,t∗), dat∗ = ∂at∗ , dwL,t∗ =
∂wL,t∗ , and dwH,t∗ = ∂wH,t∗ . Combining (31) with (B1) yields

d logµt∗ = ∂ logµt∗ +


∂ logQt∗ , ∂ logN∼e′ ,t∗ ∈ (−∞,0]

∂ logQt∗ −∂ logN∼e′ ,t∗ , ∂ logN∼e′ ,t∗ ∈ (0,∂ logQt∗]

0, ∂ logN∼e′ ,t∗ ∈ (∂ logQt∗ ,∞).

(B2)

When ∂ logN∼e′ ,t∗ ≤ 0, d logvNe,t∗ < ∂ logvNe,t∗ ≤ 0 for each e ∈ {L,H}. These inequality contradicts lo-
cal stability because d logNe,t∗ ≤ 0 for each e ∈ {L,H}. When 0 < ∂ logN∼e′ ,t∗ ≤ ∂ logQt∗ , d logvNe′ ,t∗ <
∂ logvNe′ ,t∗ ≤ 0. This inequality contradicts local stability because d logNe′ ,t∗ ≤ 0 and d logN∼e′ ,t∗ = 0.
When ∂ logN∼e′ ,t∗ > ∂ logQt∗ , d logNe′ ,t∗ < ∂ logNe′ ,t∗ ≤ 0 and d logN∼e′ ,t∗ > 0. These inequalities
contradict local stability because d logvNe′ ,t∗ = ∂ logvNe′ ,t∗ ≤ 0 and d logvN∼e′ ,t∗ = ∂ logvN∼e′ ,t∗ > 0.

B.3 Proof of Proposition 4

In the limit, (24) becomes ∂ logne,t∗(z) = 0 for e ∈ {L,H} and z > 0. Using this result, we differentiate
(A12) for j ∈ {j0,t∗ +1, ..., Jt∗}. Because ze,j,t∗ linearly increases in pj,t∗ and decreases in pj−1,t∗ , solving
for ∂pj,t∗ yields

∂pj,t∗ ∝ χj,t∗∂pj−1,t∗ −
J∗t∑
j ′=j

δh,j ′ , (B3)

for each such j, where χj,t∗ > 0. Using this equation, we induct on j ′ to prove that ∂pj,t∗/∂δh,j ′ is
negative for j, j ′ ∈ {j0,t∗ + 1, ..., Jt∗}, strictly decreases over j ′ ∈ {j0,t∗ + 1, ..., j}, and remains constant
over j ′ ∈ {j, ..., Jt∗}. The claim is immediate for j ′ = j0,t∗ + 1 because of (35). The inductive step
follows immediately as well.

Because ∂ logne,t∗(z) = 0 for e ∈ {L,H} and z > 0, ∂Ne,t∗ = ∂Ze,t∗ = 0 for each e ∈ {L,H}, giving
∂ logat∗ = 0 from (2), ∂ logAe,t∗ = 0 from (26), and ∂ logwe,t∗ = from (27). Therefore, (36) indicates
that ∂ logve,t∗(z) = −βc,e∂pj,t∗/(ye,t∗(z) − pj,t∗) when z ∈ (ze,j,t∗ , ze,j+1,t∗). This equation holds for z =
ze,j,t∗ because ∂ logze,j,t∗ ≤ 0, which comes from differentiating (A12) and applying the assumption
that δh,j ′ ≥ 0 for j ′ > j0,t∗ . Proposition 4 follows from the earlier statements proved about ∂pj,t∗ .
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C Supplements to Section 4

C.1 Changing variables from z to y

For each e ∈ {L,H}, the cumulative distribution function of income equals N−1
e,t∗

∫ w−1
e,t∗y

0 ne,t∗(z)dz.
Differentiating gives the probability density function, f (y) = N−1

e,t∗w
−1
e,t∗ne,t∗(we,t∗y). For y such that

ne,t∗(w
−1
e,t∗y) > 0, define σe,t∗(y) = (∂ logne,t∗)(w

−1
e,t∗y). Applying these equations and the change of

variables y = we,t∗z, we transform (28) to

∂ logNe,t∗ =
∫
y|σe,t∗ (y)>0

σe,t∗(y)fe,t∗(y)dy (C1)

(29) to

∂ logZe,t∗ =Ne,t∗Y
−1
e,t∗

∫
y|σe,t∗ (y)>0

σe,t∗(y)yfe,t∗(y)dy, (C2)

and (33) to

δh,j
Nt∗

=
∑

e∈{L,H}

Ne,t∗

Nt∗

ye,j+1,t∗fe,t∗(ye,j+1,t∗)∂ logze,j+1,t∗︸                                  ︷︷                                  ︸
trickle-up

−ye,j,t∗fe,t∗(ye,j,t∗)∂ logze,j,t∗︸                          ︷︷                          ︸
trickle-down

+
∫ ye,j+1,t∗

ye,j,t∗
σe,t∗(y)fe,t∗(y)dy︸                         ︷︷                         ︸
migration


.

(C3)

To calculate σe,t∗(y), we combine (24) and (36) to obtain

σe,t∗(y) =
βc,e
βε,e

y∂ logwe,t∗
y − pj,t∗

−
βc,e
βq,e

∂pj,t∗

y − pj,t∗
+
βa,e
βε,e

∂ logat∗ , y ∈ (ye,j,t∗ , ye,j+1,t∗). (C4)

We calculate Ne,t∗/Ye,t∗ = (Ne,t∗/Nt∗)/(Ye,t∗/Yt∗). This methodology allows us to measure δh,j /Nt∗
instead of δh,j , so we consider changes to the housing stock as a share of the initial population.

C.2 Proof of Lemma 3

We rearrange (39) to produce

yH,j,t∗ = p̂j−1,t∗ +
p̂j,t∗ − p̂j−1,t∗

1−
(
yL,j,t∗−p̂j,t∗
yL,j,t∗−p̂j−1,t∗

)ζ (C5)

for each j ∈ {1, ...,50}. We rewrite the term in parentheses as 1−(p̂j,t∗− p̂j−1,t∗)/(yL,j,t∗− p̂j−1,t∗), which
strictly increases from zero to one in yL,j,t∗ ∈ [p̂j,t∗ ,∞). Therefore, as a function of yL,j,t∗ , yH,j,t∗
strictly increases from pj,t∗ to ∞ for yL,j,t∗ ∈ [p̂j,t∗ ,∞). By taking cumulative sums, we rewrite (38)
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as ∑
j ′∈{j,...,50}

∑
i giδi,j ′∑

i gi
=
NL,t∗

Nt∗

∫ ∞
yL,j,t∗

fL,t∗(y)dy +
NH,t∗

Nt∗

∫ ∞
yH,j,t∗ (yL,j,t∗ )

fH,t∗(y)dy (C6)

for each j ∈ {1, ...,50}, where we use the fact that ye,51,t∗ = ∞ because the support of the double
Pareto-lognormal distribution is unbounded from above. The right side is defined for yL,j,t∗ ≥ p̂j,t∗
and strictly increases in yL,j,t∗ . Because (40) holds, the intermediate value theorem implies the
existence of a unique solution for yL,j,t∗ , which then delivers a unique yH,j,t∗ . If ζ = 1, then yH,j,t∗ =
yL,j,t∗ . The solutions to (C6) then strictly increase in j because the left side does.

C.3 Proof of Lemma 4

Define ρe = βc,e/βw,e for e ∈ {L,H}. Because βq,e/βc,e = (βw,e −βc,e)/βc,e = βw,e/βc,e −1, we may rewrite
the equation defining ζ as ζ = (ρ−1

L − 1)/(ρ−1
H − 1), which reduces to ρL = ρH (ζ + (1 − ζ)ρH )−1. We

substitute this equation into (45), which takes the form 1−α = (1−eα)ρL+eαρH . After multiplying
through by ζ+(1−ζ)ρH and simplifying, we obtain 0 = eα(1−ζ)ρ2

H +(ζ+(α−eα)(1−ζ))ρH −(1−α)ζ.
The right side is a quadratic function of ρH that changes sign between ρH = 0, where it equals
−(1−α)ζ, and ρH = 1, where it equals α. Therefore, there exists a unique solution for ρH ∈ (0,1).
Because ζ + (1− ζ)ρH = ρH + ζ(1− ρH ) > ρH , the corresponding solution for ρL also lies in (0,1).
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