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Estimation of IRFs

• How to estimate impulse response functions (IRFs)?

E (yt+h | εj,t = 1)− E (yt+h | εj,t = 0), h = 0, 1, 2, . . .

• Two popular competing semi-structural approaches:

1 Structural Vector Autoregression (SVAR): Sims (1980)

A(L)wt = Bεt , A(L) = In −
∑p

`=1 A`L`, εt ∼WN(0, In).

2 Local Projections (LP): Jordà (2005)

yt+h = µh + βhεj,t + controls + ξh,t , h = 0, 1, 2, . . .
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SVAR vs. LP: State of the literature

• Conventional wisdom:

• SVAR is “more efficient”. LP is “more robust to misspecification”.

• LP requires that we observe a measure of the “shock”. SVAR needed for more exotic
identification approaches (long-run/sign restrictions, etc.).

• Simulation studies offer conflicting rankings. Meier (2005); Kilian & Kim (2011); Brugnolini
(2018); Nakamura & Steinsson (2018); Choi & Chudik (2019)

• SVAR and LP approaches often yield different empirical conclusions. Ramey (2016)

3



Our contributions

1 Proposition: In population, linear LPs and SVARs estimate the same IRFs.

• Nonparametric result. Only requires unrestricted lag structures.
Jordà (2005); Kilian & Lütkepohl (2017)

2 Derive implications for. . .

• Efficient estimation.

• Structural identification.

• Identification using IV/proxy.

• Linear estimands in nonlinear DGPs.
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Equivalence result: Nonparametric assumptions

• Observed data: wt = (
nr×1︷︸︸︷
rt
′,

1×1︷︸︸︷
xt ,

1×1︷︸︸︷
yt ,

nq×1︷︸︸︷
qt
′)′.

• Interested in response of yt to an impulse in xt . Other var’s: “controls” (more soon).

Assumption: Nonparametric regularity

{wt} is covariance stationary and purely non-deterministic, with an everywhere nonsingular
spectral density matrix and absolutely summable Wold coefficients.

To simplify notation, we proceed as if {wt} were a (strictly stationary) jointly Gaussian
vector time series.

• No assumption (yet) about underlying causal structure.

• Gaussianity: use conditional expectation/variance. Can replace with projections.
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Equivalence result: Definition of LP IRF

• Consider for each h = 0, 1, 2, . . . the linear projection

yt+h = µh + βhxt + γ′hrt +
∞∑
`=1

δ′h,`wt−` + ξh,t .

• ξh,t : projection residual.

• µh, βh, γh, δh,1, δh,2, . . . : projection coefficients.

• LP IRF of yt with respect to xt : {βh}h≥0.

• Note: Projection controls for the contemporaneous value of rt but not of qt . Also
controls for all lags of all series.
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Equivalence result: Definition of SVAR IRF

• Consider the multivariate linear “VAR(∞)” projection

wt = c +
∑∞
`=1 A`wt−` + ut .

• ut ≡ wt − E (wt | {wτ}−∞<τ<t): projection residual. c,A1,A2, . . . : proj. coefficients.

• Cholesky decomp.: Σu ≡ E (utu′t) = BB′, where B lower triangular.

• Corresponding recursive SVAR representation w. orthogonal “shocks”:

A(L)wt = c + Bηt , A(L) ≡ I −
∑∞
`=1 A`L`, ηt ≡ B−1ut .

Note: rt ordered first, qt ordered last.

• VAR IRF of yt with respect to an innovation in xt : {θh}h≥0, where

θh = Ch,nr +2,•B•,nr +1,
∑∞
`=0 C`L` = C(L) ≡ A(L)−1.
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Equivalence result

Proposition: Equivalence between LP and SVAR
Under Assumption “Nonparametric Regularity”, the LP and VAR IRFs are equal, up to a
constant of proportionality:

θh =
√

E (x̃2
t )× βh for all h = 0, 1, 2, . . . ,

where
x̃t ≡ xt − E (xt | rt , {wτ}−∞<τ<t).

• Any LP IRF can be obtained as an appropriately ordered SVAR IRF. Ordering corresponds
to contemporaneous control variables in LP.

• Constant of proportionality does not depend on yt or h.
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Equivalence result: Intuition

• Intuition: Impulse responses are just linear projections. Proof

i) VAR impulse response: h-step least-squares forecast based on model-implied second moments.

ii) VAR(∞) captures all second moments of data.

⇒ VAR(∞) impulse response: direct projection (LP).

• Extension in paper: non-recursive SVARs.

• Arbitrary SVAR IRF = LP on a linear combination b′wt (and lags).
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Equivalence result: Finite lag length

• Let θh(p) and βh(p) denote the VAR and LP impulse response estimand at horizon h
when we project on only p lags of the data wt .

Proposition: Equivalence between LP and SVAR, finite lag length
Let “Nonparametric Regularity” assumption hold. Define

x̃t(`) ≡ xt − E (xt | rt , {wτ}t−`≤τ<t), ` = 0, 1, 2, . . . .

Let the nonnegative integers h, p satisfy h ≤ p.

If x̃t(p) = x̃t(p − h), then θh(p) =
√

E (x̃t(p)2)× βh(p).

• If xt is a “shock” that doesn’t affect rt on impact, then x̃t(`) = xt for all ` ≥ 0.

• More generally, in practice, we often have x̃t(p) ≈ x̃t(p − h) for h� p.
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Illustration: IRFs of output in Smets-Wouters model
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Note: p = 4. Left panel: shock observed. Right panel: recursive ID.
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Efficient estimation: Bias/variance trade-off

• Proposition (in paper): Sample LP and VAR estimators equivalent as p,T →∞.

• We face finite-sample bias-variance trade-off. Which dimension reduction technique for
linear projection works best?

• If DGP = VAR(p), SVAR estimator has small bias and extrapolates efficiently. Unrealistic.

• Forecasting literature has already examined the bias-variance trade-off of “LP” vs. “VAR”:
direct vs. iterated multi-step forecasts.
Schorfheide (2005); Marcellino, Stock & Watson (2006); Chevillon (2007); McElroy (2015)

• There exists spectrum of “shrinkage” techniques: Bayes, model averaging, smoothness priors.
Giannone, Lenza & Primiceri (2015); Hansen (2016); Plagborg-Møller (2016); Barnichon & Brownlees
(2018); Miranda-Agrippino & Ricco (2018)

• No method uniformly dominates in terms of MSE. Depends on DGP.
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Structural identification: SVAR vs. LP

• Assume causal model: Structural Vector Moving Average. Stock & Watson (2018)

wt = µ+
∑∞
`=0 Θ`εt−`,

εt = (ε1,t , . . . , εnε,t)′ i .i .d .∼ N(0, Inε).

• For now, assume all shocks are invertible (SVAR assumption):

εj,t ∈ span ({wτ}−∞<τ≤t) , j = 1, 2, . . . , nε.

• Main result =⇒ Recursive SVAR identification can be implemented through LPs.

• Other “SVAR” identification schemes also implementable using LPs. Next: long-run ID.
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Structural identification: Long-run restrictions

• Data: wt ≡ (∆gdpt , unr t)′, log GDP growth and unemployment rate.

• Assume SVMA model with nε = 2 shocks. ε1,t : supply shock, ε2,t : demand shock.

• Assume
∑∞
`=0 Θ1,2,` = 0. No long-run effect of demand shock on the level of output.

Blanchard & Quah (1989)

• Given a large horizon H, consider the linear projection

gdpt+H − gdpt−1 = µ̃H +
∑∞
`=0 δ̃

′
H,`wt−` + ξ̃H,t .

• Proposition: Θi ,1,h ∝ limH→∞ β̄h,H for h ≥ 0, where

wi ,t+h = µ̄h,H + β̄h,H(δ̃H,0
′wt) +

∑∞
`=1 δ̄

′
h,H,`wt−` + ξ̄h,H,t .
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Implementing “SVAR” identification using LP: Summary

• SVAR identification approaches work if and only if corresponding LP approaches work.

• Additional example in paper: sign restrictions.

• Lesson: Choice of identification approach is logically+practically distinct from choice of
dimension reduction technique (i.e., linear projection estimator).

• Finite-sample bias/variance trade-off depends on specifics of DGP.
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LP-IV

• Popular applied strategy: Identify IRFs using proxy/IV zt for ε1,t :

zt = cz +
∑∞
`=1(Ψ`zt−` + Λ`wt−`) + αε1,t + vt ,

where vt
i .i .d .∼ N(0, σ2

v ) and independent of εt at all leads/lags.

• LP-IV: Given SVMA+IV, can estimate relative structural IRF using 2SLS version of LP:

yt+h = µh + βhxt +
∑∞
`=1 δ

′
h,`wt−` + ξh,t with zt as IV for xt .

Mertens (2015); Jordà et al. (2015, 2018); Ramey & Zubairy (2018); Stock & Watson (2018)

• Reason: Cov(yt+h, zt | {wτ , zτ}−∞<τ<t) = α×Θnr +2,1,h =⇒ Θnr +2,1,h
Θnr +1,1,0

identified.

• ε1,t allowed to be non-invertible: ε1,t /∈ span({wτ}−∞<τ≤t).
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LP-IV: Estimand

• Will now reinterpret LP-IV estimand. Set Wt ≡ (zt ,w ′t)′.

• “Reduced-form” LPs:

yt+h = µRF ,h + βRF ,hzt +
∑∞
`=1 δ

′
RF ,h,`Wt−` + ξRF ,h,t , h ≥ 0.

• “First-stage” LP (doesn’t depend on h):

xt = µFS + βFSzt +
∑∞
`=1 δ

′
FS,`Wt−` + ξFS,t .

• As usual (one IV, one endogenous covariate), 2SLS estimand given by ratio

βLPIV ,h ≡
βRF ,h
βFS

, h ≥ 0.

• Equivalence result =⇒ βLPIV ,h can be obtained from an SVAR.
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LP-IV: Equivalence with recursive SVAR
Proposition: Equivalence of LP-IV and recursive SVAR

Let “Nonparametric Regularity” assumption hold for expanded data Wt ≡ (zt ,w ′t)′.

Consider a recursive SVAR(∞) in Wt , with zt ordered first. Define:

• θ̃y ,h: SVAR-implied imp. resp. of yt wrt. first shock at horizon h.

• θ̃x ,0: SVAR-implied imp. resp. of xt wrt. first shock on impact.

Then βLPIV ,h = θ̃y ,h/θ̃x ,0.

• Under structural SVMA+IV as’ns: Consistently estimate relative IRFs by ordering IV first
in recursive SVAR (“internal instrument”). Robust to non-invertibility! Noh (2018)

• In contrast, SVAR-IV (“external instruments”) estimator requires invertibility.
Stock (2008); Stock & Watson (2012); Mertens & Ravn (2013); P-M & W (2019)
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Response of bond spread to monetary shock: VAR and LP estimates

0 5 10 15 20

-1

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20

-1

-0.5

0

0.5

1

1.5

2

2.5

Note: Shock normalized to increase 1-year bond rate by 100 basis points on impact. 19
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Conclusion

• Linear LPs and SVARs share the same population IRF estimand. Nonparametric result.

• Implications:

• Unavoidable bias/variance trade-off in finite samples. Estimation procedures lie on a spectrum.

• Identification ⊥ dimension reduction. “SVAR” identification can be phrased in terms of LPs.

• LP-IV estimator can be implemented by ordering IV/proxy first in SVAR (“internal
instruments”). Robust to non-invertibility, unlike SVAR-IV (“external instruments”).

• In paper: Linear LP/VAR IRF estimand = “best linear approximation” in non-linear DGP.

• This is all about IRFs. Variance/historical decomp’s more involved. P-M & W (2019)
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LP vs. SVAR: High-freq. identification of monetary shocks

Source: Ramey (2016) handbook chapter

Back
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Equivalence result: Proof sketch

• Formal proof just requires least-squares algebra.

• LP estimand from Frisch-Waugh Theorem:

βh = Cov(yt+h, x̃t)
E (x̃2

t )
.
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Equivalence result: Proof sketch (cont.)

• VAR reduced-form impulse responses A(L)−1 from Wold decomp.:

wt = χ+ C(L)ut = χ+
∑∞
`=0 C`Bηt , χ ≡ C(1)c.

• Hence, VAR estimand equals

θh = Ch,nr +2,•B•,nr +1 = Cov(yt+h, ηx ,t),

where we partition ηt = (η′r ,t , ηx ,t , ηy ,t , η
′
q,t)′.

• By ut = Bηt and properties of Cholesky decomposition,

ηx ,t ∝ ũx ,t ,

where we partition ut = (u′r ,t , ux ,t , uy ,t , u′q,t)′ and define

ũx ,t ≡ ux ,t − E (ux ,t | ur ,t) = x̃t .

• Conclude
θh ∝ Cov(yt+h, x̃t) ∝ βh. Back
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Equivalence result: Non-recursive specifications

• In general, any SVAR identification scheme studies the propagation of some rotation of
the Wold innovations:

η̄t ≡ b′ut .

• Can show that the SVAR IRF to this innovation corresponds to coefficients {β̄h}h≥0 from
linear projections

yt+h = µ̄h + β̄h(b′wt) +
∑∞
`=1 δ̄

′
h,`wt−` + ξ̄h,t ,

up to constant of proportionality.

• Equivalent LP projects on linear combination b′wt of variables.

Back
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Sample asymptotic equivalence

• Consider least-squares sample analogues of LP and VAR. Include p lags of wt in both
methods.

• x̂t(p): residual from regression of xt on intercept, rt , wt−1, . . . ,wt−p.

• LP estimator (from Frisch-Waugh theorem):

β̂h(p) =
∑T−h

t=p+1 yt+hx̂t(p)∑T−h
t=p+1 x̂t(p)2

.

• θ̂h(p): horizon-h impulse response of yt to an innovation in xt in a Cholesky-identified
estimated VAR(p) model (with intercept).

• Will now show that β̂h(p) ≈ constant× θ̂h(p) as T →∞, provided p →∞ at
appropriate rate.
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Sample asymptotic equivalence (cont.)
Proposition: In-sample near-equivalence of LP and SVAR

Suppress notation p = p(T ). Assume:
i) {wt} is covariance stationary and has a VAR(∞) representation with

∑∞
`=1 ‖A`‖ <∞.

Wold innovations ut have finite and pos. def. cov. matrix Σ. (Perhaps non-Gaussian.)

ii) Reduced-form least-squares VAR estimator satisfies
‖ĉ(p)− c‖ = op(1), ‖Â(p)− A(p)‖ = op(1), ‖Σ̂(p)− Σ‖ = op(1).

Lewis & Reinsel (1985); Gonçalves & Kilian (2007)

Then as p,T →∞,

θ̂h(p) =
(

1
T−p

∑T
t=p+1 x̂t(p)2

)−1/2
× β̂h(p) + Op(R̂(p)),

R̂(p) ≡
max{1, sup1≤t≤T ‖wt‖}2

T − p +
(∑p

`=p−h+1 ‖Â`(p)‖2
)1/2

.
Back
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Structural identification: Short-run restrictions

• “Fast-r -slow” short-run identification of monetary policy shocks: CEE (2005)

A(L)

rt
xt
qt

 =

B11ε1,t
B21ε1,t + B22ε2,t
B31ε1,t + B32ε2,t + B33ε3,t

 .
(n = 3 for clarity.)

• xt : Federal Funds Rate. rt : “slow-moving”. qt : “fast-moving”.

• Given this model, our equivalence result implies that the IRF of qt (say) wrt. ε2,t is
proportional to {βh}h≥0 from the LP

qt+h = µh + βhxt + γhrt +
∑∞
`=1 δ

′
h,`wt−` + ξh,t .

Back
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Long-run restrictions: Proof sketch

wt = χ+ C(L)ut , ut = Bεt (†)

• Standard argument: Long-run restriction Θ1,2(1) = 0 implies
e′1C(1)ut = Θ1,1(1)× ε1,t .

• Since w1,t = ∆gdpt ,
δ̃′H = Cov(gdpt+H − gdpt−1, ut)Σ−1

u =
∑H
`=0 Cov(w1,t+`, ut)Σ−1

u .

• Wold decomposition (†) implies∑∞
`=0 Cov(wt+`, ut)Σ−1

u =
∑∞
`=0 C` = C(1).

• So
lim

H→∞
δ̃′H = e′1C(1).

• Finally, apply main equivalence result. Back
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Structural identification: Sign restrictions

• Want IRF of yt wrt. monetary shock. Assume SVMA + invertibility.

• Impulse response at horizon h given by ν ′β̌h for unknown ν ∈ Rnw , where β̌h is obtained
from projection

yt+h = µ̌h + β̌′hwt +
∑∞
`=1 δ̌

′
h,`wt−` + ξ̌h,t .

• Impose sign restrictions: rt responds positively to a monetary shock at all horizons
s = 0, 1, . . . , H̄. Uhlig (2005)

• For s = 0, 1, . . . , H̄, store coef. vector β̈s from projection

rt+s = µ̈s + β̈′swt +
∑∞
`=1 δ̈

′
s,`wt−` + ξ̈s,t .

• Largest possible response of yt+h to a monetary shock that raises rt by one unit on
impact:

sup
ν∈Rnw

ν ′β̌h subject to β̈′0ν = 1, β̈′sν ≥ 0, s = 1, . . . , H̄.
Back
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Examples of IVs/proxies

• Narrative monetary shocks. Romer & Romer (2004)

• Narrative fiscal shocks. Mertens & Ravn (2013); Ramey & Zubairy (2017); Mertens & M. Olea
(2018)

• High-frequency asset price changes around FOMC announcements. Barakchian & Crowe
(2013); Gertler & Karadi (2015)

• Oil supply disruptions. Hamilton (2003)

• Large oil discoveries. Arezki, Ramey & Sheng (2016)

• Utilization-adjusted TFP growth. Fernald (2014); Caldara & Kamps (2017)

• Volatility spikes. Carriero et al. (2015)

Back
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LP-IV: Intuition for equivalence

• Why does recursive SVAR work even under non-invertibility?

• Shock ε1,t still non-invertible wrt. expanded info set:

ε1,t /∈ span ({wτ , zτ}−∞<τ≤t) in general.

• But remaining non-invertibility is due only to classical measurement error in

z̃t ≡ zt − E (zt | {wτ , zτ}−∞<τ<t) = αε1,t + vt .

• Attenuation bias is the same (in pct terms) for all horizons and response variables
=⇒ Relative impulse responses Θnr +2,1,h

Θnr +1,1,0
correctly identified (not absolute).

Back
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LP-IV: Comparison with SVAR-IV

• The alternative SVAR-IV approach manipulates the Wold innovations
ut ≡ wt − E (wt | {wτ}−∞<τ<t) from an SVAR in wt alone.

• Specifically, SVAR-IV identifies the shock of interest as

ε̃1,t ≡
1√

Var(z̃†t )
× z̃†t ,

where
z̃†t ≡ E (z̃t | ut).

• ε̃1,t 6= ε1,t , except if the shock is invertible. Plagborg-Møller & Wolf (2019)

Back

33



Estimands in non-linear models

• Often claimed that LP is “robust to misspecification/non-linearities”. Our equivalence
result implies that this is not true.

• Assume the general non-linear DGP (assumed stationary)

wt = g(εt , εt−1, εt−2, . . . ), εt
i .i .d .∼ N(0, Inε).

• Using Wold decomposition, can represent as linear SVMA model

wt = µ∗ +
∑∞
`=0 Θ∗`εt−` +

∑∞
`=0 Ψ∗`ζt−`.

• ζt : nw -dimensional white noise, uncorrelated at all leads/lags with εt .

• Linear SVMA impulse responses Θ∗` corresponding to the structural shocks εt have a
best linear approximation interpretation:

(Θ∗0,Θ∗1, . . . ) ∈ argmin
(Θ̃0,Θ̃1,... )

E
[(

g(εt , εt−1, . . . )−
∑∞
`=0 Θ̃`εt−`

)2
]
.
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Estimands in non-linear models (cont.)

(Θ∗0,Θ∗1, . . . ) ∈ argmin
(Θ̃0,Θ̃1,... )

E
[(

g(εt , εt−1, . . . )−
∑∞
`=0 Θ̃`εt−`

)2
]

• Linear SVAR/LP IRF estimand can be given “best linear approximation” interpretation.

• Estimators that rely on higher moments are not as easy to interpret under
misspecification.

• We do not take a stand on whether the best linear approximation is structurally
interesting. Depends on application.

• In some applications, non-linearities may be the key objects of interest, in which case
linear SVAR/LP methods are not useful.

Back
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