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Estimation of IRFs

® How to estimate impulse response functions (IRFs)?

E(yesnleje=1)— E(Vern | €6 =0), h=0,1,2,...
® Two popular competing semi-structural approaches:
@ Structural Vector Autoregression (SVAR): Sims (1980)
A(L)we = Bey,  A(L) =l — S22 ALY, g0 ~ WN(O, I,).
@® Local Projections (LP): Jorda (2005)

Yern = Ha+ Brej.e + controls + Epe,  h=0,1,2,...



SVAR vs. LP: State of the literature

e Conventional wisdom:
® SVAR is “more efficient”. LP is “more robust to misspecification”.

® | P requires that we observe a measure of the “shock”. SVAR needed for more exotic
identification approaches (long-run/sign restrictions, etc.).

e Simulation studies offer conflicting rankings. Meier (2005); Kilian & Kim (2011); Brugnolini
(2018); Nakamura & Steinsson (2018); Choi & Chudik (2019)

® SVAR and LP approaches often yield different empirical conclusions. Ramey (2016)



Our contributions

@ Proposition: In population, linear LPs and SVARs estimate the same IRFs.

® Nonparametric result. Only requires unrestricted lag structures.
Jorda (2005); Kilian & Liitkepohl (2017)

® Derive implications for. ..
® Efficient estimation.
® Structural identification.
® |dentification using IV/proxy.

® | inear estimands in nonlinear DGPs.
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Equivalence result: Nonparametric assumptions

nrx1l 1x1 1x1 ngx1
e Y R et Nt Watay
® Observed data: wy = ("rt /"¢, ye 5 qr ')

® Interested in response of y; to an impulse in x¢. Other var's: “controls” (more soon).

Assumption: Nonparametric regularity

{w:} is covariance stationary and purely non-deterministic, with an everywhere nonsingular
spectral density matrix and absolutely summable Wold coefficients.

To simplify notation, we proceed as if {w;} were a (strictly stationary) jointly Gaussian
vector time series.

® No assumption (yet) about underlying causal structure.

e Gaussianity: use conditional expectation/variance. Can replace with projections.



Equivalence result: Definition of LP IRF

Consider for each h=0,1,2,... the linear projection
o0
Yerh = b+ Brxe + Ypre + Z O eWe—t + Enye-
=1

&nt: projection residual.
thy BhsVhy On1,0n2, .. .- projection coefficients.
LP IRF of y; with respect to x;: {fh}h>0.

Note: Projection controls for the contemporaneous value of r; but not of g;. Also
controls for all lags of all series.



Equivalence result: Definition of SVAR IRF

Consider the multivariate linear “VAR(o0)” projection
W = C+ Y poq AeWe—g + Ut
ur = wy — E(wy | {w;}_co<r<t): projection residual. ¢, Aj, Ap,...: proj. coefficients.
Cholesky decomp.: ¥, = E(u;u;) = BB’, where B lower triangular.
Corresponding recursive SVAR representation w. orthogonal “shocks":
A(Dws = c+ By, A(L)=1-2, ALY 0 =B lu,.
Note: r; ordered first, g; ordered last.

VAR IRF of y; with respect to an innovation in x¢: {64 }n>0, where

0y = Ch,n,+2,oBo,n,+17 Z?.;O CZLE = C(L) = A(L)fl.



Equivalence result

Proposition: Equivalence between LP and SVAR

Under Assumption “Nonparametric Regularity”, the LP and VAR IRFs are equal, up to a
constant of proportionality:

Op =\/E(%2) x Bp forall h=0,1,2,...,

% = x¢ — E(x¢ | rey {wr }—ococr<t)-

where

J

® Any LP IRF can be obtained as an appropriately ordered SVAR IRF. Ordering corresponds
to contemporaneous control variables in LP.

® Constant of proportionality does not depend on y; or h.



Equivalence result: Intuition

® |ntuition: Impulse responses are just linear projections.
i) VAR impulse response: h-step least-squares forecast based on model-implied second moments.
i) VAR(co) captures all second moments of data.
= VAR(oc0) impulse response: direct projection (LP).

e Extension in paper: non-recursive SVARs.

® Arbitrary SVAR IRF = LP on a linear combination b’w; (and lags).



Equivalence result: Finite lag length

® Let O4(p) and Bu(p) denote the VAR and LP impulse response estimand at horizon h
when we project on only p lags of the data w;.

Proposition: Equivalence between LP and SVAR, finite lag length

Let “Nonparametric Regularity” assumption hold. Define
)?t(g) =Xt — E(Xt | rta{WT}t—€§T<t)7 ‘€:0a1727""

Let the nonnegative integers h, p satisfy h < p.
If %:(p) = %:(p — h), then O4(p) = |/ E(%:(p)?) x Ba(p)-

® If x; is a "shock” that doesn’t affect r; on impact, then X:(¢) = x; for all £ > 0.

® More generally, in practice, we often have X:(p) ~ X:(p — h) for h < p.
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Efficient estimation: Bias/variance trade-off

® Proposition (in paper): Sample LP and VAR estimators equivalent as p, T — oc.

® We face finite-sample bias-variance trade-off. Which dimension reduction technique for
linear projection works best?

® |f DGP = VAR(p), SVAR estimator has small bias and extrapolates efficiently. Unrealistic.

® Forecasting literature has already examined the bias-variance trade-off of “LP" vs. "VAR":
direct vs. iterated multi-step forecasts.
Schorfheide (2005); Marcellino, Stock & Watson (2006); Chevillon (2007); McElroy (2015)

® There exists spectrum of “shrinkage” techniques: Bayes, model averaging, smoothness priors.
Giannone, Lenza & Primiceri (2015); Hansen (2016); Plagborg-Mgller (2016); Barnichon & Brownlees
(2018); Miranda-Agrippino & Ricco (2018)

® No method uniformly dominates in terms of MSE. Depends on DGP.

12
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Structural identification: SVAR vs. LP

Assume causal model: Structural Vector Moving Average. Stock & Watson (2018)

we =+ 3020 Oret e,
er= (1t remt) = N(O, 1)

For now, assume all shocks are invertible (SVAR assumption):
gj,t €5pan ({Wr} oocr<t), J=1,2,...,n;

Main result = Recursive SVAR identification can be implemented through LPs.

Other “SVAR" identification schemes also implementable using LPs. Next: long-run ID.

13



Structural identification: Long-run restrictions

Data: wy = (Agdp,, unrt)’, log GDP growth and unemployment rate.
Assume SVMA model with n. = 2 shocks. €1 ;: supply shock, 3 ;: demand shock.

Assume ;2,012 = 0. No long-run effect of demand shock on the /evel of output.
Blanchard & Quah (1989)

Given a large horizon H, consider the linear projection
8AdpeH — 8APe—1 = fir + 22720 Oy ¢We—t + EHe-
Proposition: ©; 1 p o limy_o0 Bh,H for h > 0, where

Witih = fihH + 5h,H(5H,0/Wt) + >0 5;,7/-/,th—£ +&nH,t-

14



Implementing “SVAR" identification using LP: Summary

® SVAR identification approaches work if and only if corresponding LP approaches work.

® Additional example in paper: sign restrictions.

® | esson: Choice of identification approach is logically+practically distinct from choice of
dimension reduction technique (i.e., linear projection estimator).

¢ Finite-sample bias/variance trade-off depends on specifics of DGP.

15
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LP-IV

® Popular applied strategy: ldentify IRFs using proxy/IV z; for 1 ¢:

zr=Cr 4+ > o1 (Weze—p + Nowy—y) + a1 + g,

ii.d

where v; "~ N(0,02) and independent of ¢; at all leads/lags.

16



LP-IV

® Popular applied strategy: ldentify IRFs using proxy/IV z; for 1 ¢:

zr=Cr 4+ > o1 (Weze—p + Nowy—y) + a1 + g,
where v; "% N(0,02) and independent of ; at all leads/lags.

e LP-1V: Given SVMA+IV, can estimate relative structural IRF using 2SLS version of LP:
Yerh = fth + Bnxe + 22721 Op oWe—e + Epe With zp as IV for x;.
Mertens (2015); Jorda et al. (2015, 2018); Ramey & Zubairy (2018); Stock & Watson (2018)

i 6,,, 2,1,h : .
® Reason: COV(yt+h,Zt | {WT,ZT}700<T<1-) =« X @nr+2717h — m identified.

16



LP-IV

Popular applied strategy: ldentify IRFs using proxy/IV z; for £1

zr=Cr 4+ > o1 (Weze—p + Nowy—y) + a1 + g,

where v; "% N(0,02) and independent of ; at all leads/lags.

LP-1V: Given SVMA+IV, can estimate relative structural IRF using 2SLS version of LP:

Yerh = fth + Bnxe + 22721 Op oWe—e + Epe With zp as IV for x;.
Mertens (2015); Jorda et al. (2015, 2018); Ramey & Zubairy (2018); Stock & Watson (2018)
Omi2h o pi
Reason: Cov(yeth, 2t | {Wr, Zr}—oocrat) =X Opyo1p = ﬁ identified.

e1,¢ allowed to be non-invertible: €1+ ¢ Span({w; } —co<r<t).

16



LP-1V: Estimand

Will now reinterpret LP-1V estimand. Set W; = (z;, wy)'.

“Reduced-form” LPs:

Ye+h = URE,h + BREhZe + 32021 Ogp p Wit + ERF pe,  h > 0.

“First-stage” LP (doesn't depend on h):

Xt = Fs + Brsz: + Zﬁl 5%575 Wi + §FS,t~

As usual (one 1V, one endogenous covariate), 2SLS estimand given by ratio

BRF,h’ h>o.
BFs

Equivalence result = 3, pjy » can be obtained from an SVAR.

BLpiv,h =

17



LP-1V: Equivalence with recursive SVAR
Proposition: Equivalence of LP-IV and recursive SVAR

Let “Nonparametric Regularity” assumption hold for expanded data W; = (z;, w})'.

Consider a recursive SVAR(co) in W, with z; ordered first. Define:
° éy,h: SVAR-implied imp. resp. of y; wrt. first shock at horizon h.

° éx,oi SVAR-implied imp. resp. of x; wrt. first shock on impact.

Then Brpv . = 0,.1/0x0.

® Under structural SVMA-+IV as’ns: Consistently estimate relative IRFs by ordering IV first
in recursive SVAR (“internal instrument”). Robust to non-invertibility! Noh (2018) @



LP-1V: Equivalence with recursive SVAR
Proposition: Equivalence of LP-IV and recursive SVAR

Let “Nonparametric Regularity” assumption hold for expanded data W; = (z;, w})'.

Consider a recursive SVAR(co) in W, with z; ordered first. Define:
° éy,h: SVAR-implied imp. resp. of y; wrt. first shock at horizon h.

° éx,oi SVAR-implied imp. resp. of x; wrt. first shock on impact.

Then Brpv . = 0,.1/0x0.

® Under structural SVMA-+IV as’ns: Consistently estimate relative IRFs by ordering IV first
in recursive SVAR (“internal instrument”). Robust to non-invertibility! Noh (2018) @

¢ In contrast, SVAR-IV (“external instruments") estimator requires invertibility. >
Stock (2008); Stock & Watson (2012); Mertens & Ravn (2013); P-M & W (2019)



Outline

@ Main equivalence result
® Estimation

© Structural identification
m Implementing “SVAR" identification using LP

m |dentification with instruments
® Empirical illustration

©® Conclusion



Response of bond spread to monetary shock: VAR and LP estimates
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Note: Shock normalized to increase 1-year bond rate by 100 basis points on impact.
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Conclusion

® Linear LPs and SVARs share the same population IRF estimand. Nonparametric result.

® |mplications:
® Unavoidable bias/variance trade-off in finite samples. Estimation procedures lie on a spectrum.
® |dentification | dimension reduction. “SVAR" identification can be phrased in terms of LPs.

® LP-IV estimator can be implemented by ordering 1V /proxy first in SVAR (“internal
instruments”). Robust to non-invertibility, unlike SVAR-IV (“external instruments").

® |n paper: Linear LP/VAR IRF estimand = “best linear approximation” in non-linear DGP.

® This is all about IRFs. Variance/historical decomp's more involved. P-M & W (2019)

20
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LP vs. SVAR: High-freq. identification of monetary shocks

A B
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Fig. 3 Gertler—Karadi's monetary shock. (A) Gertler—Karadi's monetary proxy SVAR, VAR from 1979m7
to 2012m6, instrument from 1991m1 to 2012m6. (B) Gertler—Karadi monetary shock, Jorda
1990m1-2012mé6. Light gray bands are 90% confidence bands.

Source: Ramey (2016) handbook chapter

22



Equivalence result: Proof sketch

® Formal proof just requires least-squares algebra.
® LP estimand from Frisch-Waugh Theorem:

Bh — Cov(yt+h> )?t)
E(x?)

23



Equivalence result: Proof sketch (cont.)

VAR reduced-form impulse responses A(L)~! from Wold decomp.:
we =x+ C(L)ur = x + 2020 CeBne, x = C(1)c.
Hence, VAR estimand equals
0h = Ch,n,+2,oBo,nr+1 = COV(ytJrhanx,t)v
where we partition n: = (1] ;, x,t, ny,t,nﬁw)’.
By u; = Bn; and properties of Cholesky decomposition,
77X,t’ X ax,h
where we partition uy = (uy 4, Uxt, Uy 1, Ug ;)" and define
Uyt = Ux,t — E(Ux,t ’ ur,t) = X¢.

Conclude
On oc Cov(ytyn, %) X Bh.

24



Equivalence result: Non-recursive specifications

® In general, any SVAR identification scheme studies the propagation of some rotation of
the Wold innovations:
ﬁt = b’ut.

® Can show that the SVAR IRF to this innovation corresponds to coefficients {Bh}hzo from
linear projections

Yi+h = tp + Bh(let) + > S;,’th—K + f_h,ta

up to constant of proportionality.

e Equivalent LP projects on linear combination b’'w; of variables.

25



Sample asymptotic equivalence

Consider least-squares sample analogues of LP and VAR. Include p lags of w; in both
methods.

%¢(p): residual from regression of x; on intercept, ry, we_1,..., We_p.

LP estimator (from Frisch-Waugh theorem):

2 Sipin Veenke(p)
Bu(p) = ST p+1xt( %

éh(p): horizon-h impulse response of y; to an innovation in x; in a Cholesky-identified
estimated VAR(p) model (with intercept).

Will now show that Bh(p) A constant X @h(p) as T — oo, provided p — oo at
appropriate rate.

26



Sample asymptotic equivalence (cont.)

Proposition: In-sample near-equivalence of LP and SVAR

Suppress notation p = p(T). Assume:

i) {w:} is covariance stationary and has a VAR(o0) representation with >~p2; [|A¢|| < oo.
Wold innovations u; have finite and pos. def. cov. matrix X. (Perhaps non-Gaussian.)

i) Reduced-form least-squares VAR estimator satisfies
12(p) = cll = 0p(1), [IA(p) = A(p)I| = 0p(1), I=(p) = Z|| = 0p(1).
Lewis & Reinsel (1985); Goncalves & Kilian (2007)
Then as p, T — oo,

-1/2

0n(p) = (755 S pia %)) " x Balp) + Op(R(p)).

N max{l,suplStST [|we|| }2 1/2

R(p) = T—p * (Zg:p—h—i-l ||’2\f(p)”2) Ea




Structural identification: Short-run restrictions

® “Fast-r-slow” short-run identification of monetary policy shocks: CEE (2005)

re Brie1:
A(L) | x¢ | = | Ba1e1,t + Boeat
qt Bzie1,t + Bzoear + Bzzes

(n = 3 for clarity.)
® x;: Federal Funds Rate. r;: "slow-moving”. g;: “fast-moving”.

® Given this model, our equivalence result implies that the IRF of g; (say) wrt. €3¢ is
proportional to {84 }h>0 from the LP

Qe+h = Ph + Buxe + Yare + 3721 5;7,5Wt—£ +&h,t-

28



Long-run restrictions: Proof sketch

=x+ C(L)ut, ur= Bey

Standard argument: Long-run restriction ©12(1) = 0 implies
ei C(].)Ut == 6171(1) X €1t
Since wy ; = Agdp,

1y = Cov(gdp, y — 8dp,_1, ur) Tyt = SiLo Cov(wy epr, up) 5

Wold decomposition (t) implies

Ze oCOV(Wt+€, Ut) Ze 0C = C( )

So )
Jim oy = €1 C(1).

Finally, apply main equivalence result.

29



Structural identification: Sign restrictions

Want IRF of y; wrt. monetary shock. Assume SVMA + invertibility.

Impulse response at horizon h given by V' By for unknown v € R™, where 3}, is obtained
from projection

Yih = fin + /JY);,Wt + Z?i1 S;MWt—E + gh,t-

Impose sign restrictions: r; responds positively to a monetary shock at all horizons
s=0,1,...,H. Unlig (2005)

For s =0,1,..., H, store coef. vector 35 from projection

ft4s = fls + B;Wt +2002 5;,£Wtf€ + §"s,t-

Largest possible response of y;.p, to a monetary shock that raises r; by one unit on
impact:

sup V/th subject to Bél/ =1, ﬁ;u >0,s=1,...,H.
vERMW

30



Examples of IVs/proxies

Narrative monetary shocks. Romer & Romer (2004)

Narrative fiscal shocks. Mertens & Ravn (2013); Ramey & Zubairy (2017); Mertens & M. Olea
(2018)

High-frequency asset price changes around FOMC announcements. Barakchian & Crowe
(2013); Gertler & Karadi (2015)

Oil supply disruptions. Hamilton (2003)
Large oil discoveries. Arezki, Ramey & Sheng (2016)
Utilization-adjusted TFP growth. Fernald (2014); Caldara & Kamps (2017)

Volatility spikes. Carriero et al. (2015)
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LP-IV: Intuition for equivalence

Why does recursive SVAR work even under non-invertibility?
Shock €1+ still non-invertible wrt. expanded info set:
€1t ¢ span ({WTva}*OO<T§t) in general.
But remaining non-invertibility is due only to classical measurement error in
Zr =zt — E(z¢ | {wr, Zr } —cocr<t) = €1t + Ve

Attenuation bias is the same (in pct terms) for all horizons and response variables

On,12,1,h

— Relative impulse responses g==--" correctly identified (not absolute).
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LP-1V: Comparison with SVAR-IV

® The alternative SVAR-IV approach manipulates the Wold innovations
ur = wy — E(we | {wr} _co<r<t) from an SVAR in w; alone.

® Specifically, SVAR-IV identifies the shock of interest as
1 f

Var(z])

€1t

where
EI = E(Et ’ Ut).

® 1+ # €1,t, except if the shock is invertible. Plagborg-Mgller & Wolf (2019)
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Estimands in non-linear models

Often claimed that LP is “robust to misspecification/non-linearities”. Our equivalence
result implies that this is not true.

Assume the general non-linear DGP (assumed stationary)
iid.
we = g(et,€t-1,6t-2,...), &t ~ N(O, /).
Using Wold decomposition, can represent as linear SVMA model
wr =+ 32020070+ 2i2o Vi

Ct: ny-dimensional white noise, uncorrelated at all leads/lags with e;.

Linear SVMA impulse responses ©} corresponding to the structural shocks ; have a
best linear approximation interpretation:

- 2
(©9,01,...) € argmin E [(g(et,at_l,...)— Yoiso @get_g) } .
(©0,01,...)
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Estimands in non-linear models (cont.)

~ 2
(©9,07,...) € argmin E {(g(et,stl, ) =200 egEt_g> }
(©0,01,...)

Linear SVAR/LP IRF estimand can be given “best linear approximation” interpretation.

Estimators that rely on higher moments are not as easy to interpret under
misspecification.

We do not take a stand on whether the best linear approximation is structurally
interesting. Depends on application.

In some applications, non-linearities may be the key objects of interest, in which case
linear SVAR/LP methods are not useful.
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