Local Projections and VARs
Estimate the Same Impulse Responses

Mikkel Plagborg-Møller Christian K. Wolf
Princeton University Princeton University

NBER Summer Institute
July 9, 2019
Estimation of IRFs

• How to estimate impulse response functions (IRFs)?

\[
E(y_{t+h} \mid \varepsilon_{j,t} = 1) - E(y_{t+h} \mid \varepsilon_{j,t} = 0), \quad h = 0, 1, 2, \ldots
\]

• Two popular competing semi-structural approaches:

1. **Structural Vector Autoregression (SVAR):** Sims (1980)

\[
A(L)w_t = B\varepsilon_t, \quad A(L) = I_n - \sum_{\ell=1}^{p} A_{\ell}L^{\ell}, \quad \varepsilon_t \sim WN(0, I_n).
\]

2. **Local Projections (LP):** Jordà (2005)

\[
y_{t+h} = \mu_h + \beta_h\varepsilon_{j,t} + \text{controls} + \xi_{h,t}, \quad h = 0, 1, 2, \ldots
\]
Conventional wisdom:

- SVAR is “more efficient”. LP is “more robust to misspecification”.
- LP requires that we observe a measure of the “shock”. SVAR needed for more exotic identification approaches (long-run/sign restrictions, etc.).

Simulation studies offer conflicting rankings. Meier (2005); Kilian & Kim (2011); Brugnolini (2018); Nakamura & Steinsson (2018); Choi & Chudik (2019)

SVAR and LP approaches often yield different empirical conclusions. Ramey (2016)
Our contributions

1 Proposition: In population, linear LPs and SVARs estimate the same IRFs.
 • Nonparametric result. Only requires unrestricted lag structures.
 Jordà (2005); Kilian & Lütkepohl (2017)

2 Derive implications for...
 • Efficient estimation.
 • Structural identification.
 • Identification using IV/proxy.
 • Linear estimands in nonlinear DGPs.
1. Main equivalence result

2. Estimation

3. Structural identification
 - Implementing “SVAR” identification using LP
 - Identification with instruments

4. Empirical illustration

5. Conclusion
Equivalence result: Nonparametric assumptions

• Observed data: \(w_t = (r_t', x_t', y_t', q_t')' \).

• Interested in response of \(y_t \) to an impulse in \(x_t \). Other var’s: “controls” (more soon).

Assumption: Nonparametric regularity

\(\{w_t\} \) is covariance stationary and purely non-deterministic, with an everywhere nonsingular spectral density matrix and absolutely summable Wold coefficients.

To simplify notation, we proceed as if \(\{w_t\} \) were a (strictly stationary) jointly Gaussian vector time series.

• No assumption (yet) about underlying causal structure.

• Gaussianity: use conditional expectation/variance. Can replace with projections.
Equivalence result: Definition of LP IRF

• Consider for each \(h = 0, 1, 2, \ldots \) the linear projection

\[
y_{t+h} = \mu_h + \beta_h x_t + \gamma_h r_t + \sum_{\ell=1}^{\infty} \delta_{h,\ell} w_{t-\ell} + \xi_{h,t}.
\]

• \(\xi_{h,t} \): projection residual.

• \(\mu_h, \beta_h, \gamma_h, \delta_{h,1}, \delta_{h,2}, \ldots \): projection coefficients.

• **LP IRF** of \(y_t \) with respect to \(x_t \): \(\{\beta_h\}_{h \geq 0} \).

• Note: Projection controls for the contemporaneous value of \(r_t \) but not of \(q_t \). Also controls for all lags of all series.
Equivalence result: Definition of SVAR IRF

• Consider the multivariate linear “VAR(∞)” projection

\[w_t = c + \sum_{\ell=1}^{\infty} A_\ell w_{t-\ell} + u_t. \]

• \(u_t \equiv w_t - E(w_t \mid \{w_\tau\}_{-\infty<\tau<t}): \) projection residual. \(c, A_1, A_2, \ldots: \) proj. coefficients.

• Cholesky decomp.: \(\Sigma_u \equiv E(u_t u_t') = BB', \) where \(B \) lower triangular.

• Corresponding recursive SVAR representation w. orthogonal “shocks”:

\[A(L)w_t = c + B\eta_t, \quad A(L) \equiv I - \sum_{\ell=1}^{\infty} A_\ell L^\ell, \quad \eta_t \equiv B^{-1}u_t. \]

Note: \(r_t \) ordered first, \(q_t \) ordered last.

• **VAR IRF** of \(y_t \) with respect to an innovation in \(x_t: \) \(\{\theta_h\}_{h \geq 0}, \) where

\[\theta_h = C_{h,n_r+2,\bullet} B_{\bullet,n_r+1}, \quad \sum_{\ell=0}^{\infty} C_\ell L^\ell = C(L) \equiv A(L)^{-1}. \]
Proposition: Equivalence between LP and SVAR

Under Assumption “Nonparametric Regularity”, the LP and VAR IRFs are equal, up to a constant of proportionality:

\[\theta_h = \sqrt{E(\tilde{x}_t^2)} \times \beta_h \quad \text{for all } h = 0, 1, 2, \ldots, \]

where

\[\tilde{x}_t \equiv x_t - E(x_t \mid r_t, \{w_\tau\}_{-\infty < \tau < t}). \]

- Any LP IRF can be obtained as an appropriately ordered SVAR IRF. Ordering corresponds to contemporaneous control variables in LP.
- Constant of proportionality does not depend on \(y_t \) or \(h \).
Equivalence result: Intuition

- Intuition: Impulse responses are just linear projections.

 i) VAR impulse response: \(h \)-step least-squares forecast based on model-implied second moments.

 ii) \(\text{VAR}(\infty) \) captures all second moments of data.

 \(\Rightarrow \) \(\text{VAR}(\infty) \) impulse response: direct projection (LP).

- Extension in paper: non-recursive SVARs.

 - Arbitrary SVAR IRF = LP on a linear combination \(b'w_t \) (and lags).
Proposition: Equivalence between LP and SVAR, finite lag length

Let “Nonparametric Regularity” assumption hold. Define

$$\tilde{x}_t(\ell) \equiv x_t - E(x_t \mid r_t, \{w_\tau\}_{t-\ell \leq \tau < t}), \quad \ell = 0, 1, 2, \ldots$$

Let the nonnegative integers h, p satisfy $h \leq p$.

If $\tilde{x}_t(p) = \tilde{x}_t(p - h)$, then $\theta_h(p) = \sqrt{E(\tilde{x}_t(p)^2)} \times \beta_h(p)$.
Illustration: IRFs of output in Smets-Wouters model

Note: $p = 4$. Left panel: shock observed. Right panel: recursive ID.
Note: $p = 8$. Left panel: shock observed. Right panel: recursive ID.
Illustration: IRFs of output in Smets-Wouters model

Note: $p = 12$. Left panel: shock observed. Right panel: recursive ID.
Outline

1 Main equivalence result

2 Estimation

3 Structural identification
 - Implementing “SVAR” identification using LP
 - Identification with instruments

4 Empirical illustration

5 Conclusion
Efficient estimation: Bias/variance trade-off

• Proposition (in paper): Sample LP and VAR estimators equivalent as \(p, T \to \infty \).

• We face finite-sample bias-variance trade-off. Which dimension reduction technique for linear projection works best?

 • If DGP = VAR(\(p \)), SVAR estimator has small bias and extrapolates efficiently. Unrealistic.

 • Forecasting literature has already examined the bias-variance trade-off of “LP” vs. “VAR”: direct vs. iterated multi-step forecasts.
 Schorfheide (2005); Marcellino, Stock & Watson (2006); Chevillon (2007); McElroy (2015)

 • There exists spectrum of “shrinkage” techniques: Bayes, model averaging, smoothness priors.
 Giannone, Lenza & Primiceri (2015); Hansen (2016); Plagborg-Møller (2016); Barnichon & Brownlees (2018); Miranda-Agrippino & Ricco (2018)

 • No method uniformly dominates in terms of MSE. Depends on DGP.
Outline

1. Main equivalence result
2. Estimation
3. Structural identification
 - Implementing “SVAR” identification using LP
 - Identification with instruments
4. Empirical illustration
5. Conclusion
Outline

1. Main equivalence result
2. Estimation
3. **Structural identification**
 - Implementing “SVAR” identification using LP
 - Identification with instruments
4. Empirical illustration
5. Conclusion
• Assume causal model: **Structural Vector Moving Average.** Stock & Watson (2018)

\[
 w_t = \mu + \sum_{\ell=0}^{\infty} \Theta_{\ell} \varepsilon_{t-\ell},
 \\
 \varepsilon_t = (\varepsilon_{1,t}, \ldots, \varepsilon_{n_{\varepsilon},t})' \sim N(0, I_{n_{\varepsilon}}).
\]

• For now, assume all shocks are invertible (SVAR assumption):

\[
 \varepsilon_{j,t} \in \text{span}\left(\{w_\tau\}_{-\infty<\tau\leq t}\right), \quad j = 1, 2, \ldots, n_{\varepsilon}.
\]

• Main result \(\Rightarrow\) Recursive SVAR identification can be implemented through LPs.

• Other “SVAR” identification schemes also implementable using LPs. Next: long-run ID.
Structural identification: Long-run restrictions

- Data: $w_t \equiv (\Delta gdp_t, unr_t)'$, log GDP growth and unemployment rate.
- Assume SVMA model with $n_\varepsilon = 2$ shocks. $\varepsilon_{1,t}$: supply shock, $\varepsilon_{2,t}$: demand shock.
- Assume $\sum_{\ell=0}^{\infty} \Theta_{1,2,\ell} = 0$. No long-run effect of demand shock on the level of output. Blanchard & Quah (1989)
- Given a large horizon H, consider the linear projection
 \[gdp_{t+H} - gdp_{t-1} = \tilde{\mu}_H + \sum_{\ell=0}^{\infty} \tilde{\delta}'_{H,\ell} w_{t-\ell} + \tilde{\xi}_{H,t}. \]
- Proposition: $\Theta_{i,1,h} \propto \lim_{H \to \infty} \bar{\beta}_{h,H}$ for $h \geq 0$, where
 \[w_{i,t+h} = \bar{\mu}_{h,H} + \bar{\beta}_{h,H}(\tilde{\delta}'_{H,0} w_t) + \sum_{\ell=1}^{\infty} \tilde{\delta}'_{h,H,\ell} w_{t-\ell} + \bar{\xi}_{h,H,t}. \]
Implementing “SVAR” identification using LP: Summary

- SVAR identification approaches work if and only if corresponding LP approaches work.
 - Additional example in paper: sign restrictions.

- Lesson: Choice of identification approach is logically and practically distinct from choice of dimension reduction technique (i.e., linear projection estimator).

- Finite-sample bias/variance trade-off depends on specifics of DGP.
1 Main equivalence result

2 Estimation

3 Structural identification
 - Implementing “SVAR” identification using LP
 - Identification with instruments

4 Empirical illustration

5 Conclusion
• Popular applied strategy: Identify IRFs using proxy/IV z_t for $\varepsilon_{1,t}$:

$$z_t = c_z + \sum_{\ell=1}^{\infty} (\psi_{\ell} z_{t-\ell} + \Lambda_{\ell} w_{t-\ell}) + \alpha \varepsilon_{1,t} + v_t,$$

where $v_t \overset{i.i.d.}{\sim} N(0, \sigma_v^2)$ and independent of ε_t at all leads/lags.
• Popular applied strategy: Identify IRFs using **proxy/IV** z_t for $\varepsilon_{1,t}$:

\[
 z_t = c_z + \sum_{\ell=1}^{\infty} (\Psi_{\ell} z_{t-\ell} + \Lambda_{\ell} w_{t-\ell}) + \alpha \varepsilon_{1,t} + \nu_t,
\]

where $\nu_t \overset{i.i.d.}{\sim} N(0, \sigma_\nu^2)$ and independent of ε_t at all leads/lags.

• **LP-IV**: Given SVMA+IV, can estimate relative structural IRF using 2SLS version of LP:

\[
 y_{t+h} = \mu_h + \beta_h x_t + \sum_{\ell=1}^{\infty} \delta'_{h,\ell} w_{t-\ell} + \xi_{h,t} \quad \text{with } z_t \text{ as IV for } x_t.
\]

Mertens (2015); Jordà et al. (2015, 2018); Ramey & Zubairy (2018); Stock & Watson (2018)

• Reason: \(\text{Cov}(y_{t+h}, z_t \mid \{w_\tau, z_\tau\}_{-\infty < \tau < t}) = \alpha \times \Theta_{nr+2,1,h} \quad \Rightarrow \quad \frac{\Theta_{nr+2,1,h}}{\Theta_{nr+1,1,0}} \text{ identified.} \)
LP-IV

- Popular applied strategy: Identify IRFs using proxy/IV z_t for $\varepsilon_{1,t}$:

$$z_t = cz + \sum_{\ell=1}^{\infty} (\Psi_\ell z_{t-\ell} + \Lambda_\ell w_{t-\ell}) + \alpha \varepsilon_{1,t} + v_t,$$

where $v_t \sim N(0, \sigma_v^2)$ and independent of ε_t at all leads/lags.

- **LP-IV**: Given SVMA+IV, can estimate relative structural IRF using 2SLS version of LP:

$$y_{t+h} = \mu_h + \beta_h x_t + \sum_{\ell=1}^{\infty} \delta_{h,\ell} w_{t-\ell} + \xi_{h,t} \quad \text{with } z_t \text{ as IV for } x_t.$$

Mertens (2015); Jordà et al. (2015, 2018); Ramey & Zubairy (2018); Stock & Watson (2018)

- **Reason**: $\text{Cov}(y_{t+h}, z_t \mid \{w_\tau, z_\tau\}_{-\infty<\tau<t}) = \alpha \times \Theta_{nr+2,1,h} \iff \frac{\Theta_{nr+2,1,h}}{\Theta_{nr+1,1,0}}$ identified.

- $\varepsilon_{1,t}$ allowed to be non-invertible: $\varepsilon_{1,t} \notin \text{span}(\{w_\tau\}_{-\infty<\tau<t})$.

LP-IV: Estimand

• Will now reinterpret LP-IV estimand. Set $W_t \equiv (z_t, w'_t)'$.

• “Reduced-form” LPs:

$$y_t + h = \mu_{RF,h} + \beta_{RF,h} z_t + \sum_{\ell=1}^{\infty} \delta'_{RF,h,\ell} W_{t-\ell} + \xi_{RF,h,t}, \quad h \geq 0.$$

• “First-stage” LP (doesn’t depend on h):

$$x_t = \mu_{FS} + \beta_{FS} z_t + \sum_{\ell=1}^{\infty} \delta'_{FS,\ell} W_{t-\ell} + \xi_{FS,t}.$$

• As usual (one IV, one endogenous covariate), 2SLS estimand given by ratio

$$\beta_{LPIV,h} \equiv \frac{\beta_{RF,h}}{\beta_{FS}}, \quad h \geq 0.$$

• Equivalence result $\implies \beta_{LPIV,h}$ can be obtained from an SVAR.
LP-IV: Equivalence with recursive SVAR

Proposition: Equivalence of LP-IV and recursive SVAR

Let “Nonparametric Regularity” assumption hold for expanded data \(W_t \equiv (z_t, w_t')' \).

Consider a recursive SVAR(\(\infty \)) in \(W_t \), with \(z_t \) ordered first. Define:

- \(\tilde{\theta}_{y,h} \): SVAR-implied imp. resp. of \(y_t \) wrt. first shock at horizon \(h \).
- \(\tilde{\theta}_{x,0} \): SVAR-implied imp. resp. of \(x_t \) wrt. first shock on impact.

Then \(\beta_{LPIV,h} = \tilde{\theta}_{y,h}/\tilde{\theta}_{x,0} \).

- Under structural SVMA+IV as’ns: Consistently estimate relative IRFs by ordering IV first in recursive SVAR (“internal instrument”). Robust to non-invertibility! Noh (2018)
LP-IV: Equivalence with recursive SVAR

Proposition: Equivalence of LP-IV and recursive SVAR

Let “Nonparametric Regularity” assumption hold for expanded data $W_t \equiv (z_t, w'_t)'$.

Consider a recursive SVAR(∞) in W_t, with z_t ordered first. Define:

- $\tilde{\theta}_{y,h}$: SVAR-implied imp. resp. of y_t wrt. first shock at horizon h.

- $\tilde{\theta}_{x,0}$: SVAR-implied imp. resp. of x_t wrt. first shock on impact.

Then $\beta_{LPIV,h} = \tilde{\theta}_{y,h}/\tilde{\theta}_{x,0}$.

- Under structural SVMA+IV as’ns: Consistently estimate relative IRFs by ordering IV first in recursive SVAR (“internal instrument”). Robust to non-invertibility! Noh (2018)

- In contrast, SVAR-IV (“external instruments”) estimator requires invertibility. Stock (2008); Stock & Watson (2012); Mertens & Ravn (2013); P-M & W (2019)
Outline

1. Main equivalence result
2. Estimation
3. Structural identification
 - Implementing “SVAR” identification using LP
 - Identification with instruments
4. Empirical illustration
5. Conclusion
Response of bond spread to monetary shock: VAR and LP estimates

$p = 4$

$p = 12$

Note: Shock normalized to increase 1-year bond rate by 100 basis points on impact.
1. Main equivalence result

2. Estimation

3. Structural identification
 - Implementing “SVAR” identification using LP
 - Identification with instruments

4. Empirical illustration

5. Conclusion
• Linear LPs and SVARs share the same population IRF estimand. Nonparametric result.

• Implications:
 • Unavoidable bias/variance trade-off in finite samples. Estimation procedures lie on a spectrum.
 • Identification \perp dimension reduction. “SVAR” identification can be phrased in terms of LPs.
 • LP-IV estimator can be implemented by ordering IV/proxy first in SVAR (“internal instruments”). Robust to non-invertibility, unlike SVAR-IV (“external instruments”).
 • In paper: Linear LP/VAR IRF estimand = “best linear approximation” in non-linear DGP.

• This is all about IRFs. Variance/historical decomp’s more involved. P-M & W (2019)
Thank you!
LP vs. SVAR: High-freq. identification of monetary shocks

Source: Ramey (2016) handbook chapter
Equivalence result: Proof sketch

- Formal proof just requires least-squares algebra.
- LP estimand from Frisch-Waugh Theorem:

\[
\beta_h = \frac{\text{Cov}(y_{t+h}, \tilde{x}_t)}{E(\tilde{x}_t^2)}.\]
Equivalence result: Proof sketch (cont.)

- VAR reduced-form impulse responses $A(L)^{-1}$ from Wold decomp.:

 $$w_t = \chi + C(L)u_t = \chi + \sum_{\ell=0}^{\infty} C_\ell B \eta_t, \quad \chi \equiv C(1)c.$$

- Hence, VAR estimand equals

 $$\theta_h = C_{h,n_{r+2},n_{r+1}} = \text{Cov}(y_{t+h}, \eta_{x,t}),$$

 where we partition $\eta_t = (\eta'_{r,t}, \eta_{x,t}, \eta_{y,t}, \eta'_{q,t})'$.

- By $u_t = B \eta_t$ and properties of Cholesky decomposition,

 $$\eta_{x,t} \propto \tilde{u}_{x,t},$$

 where we partition $u_t = (u'_{r,t}, u_{x,t}, u_{y,t}, u'_{q,t})'$ and define

 $$\tilde{u}_{x,t} \equiv u_{x,t} - E(u_{x,t} \mid u_{r,t}) = \tilde{x}_t.$$

- Conclude

 $$\theta_h \propto \text{Cov}(y_{t+h}, \tilde{x}_t) \propto \beta_h.$$
Equivalence result: Non-recursive specifications

- In general, any SVAR identification scheme studies the propagation of some rotation of the Wold innovations:
 \[\tilde{\eta}_t \equiv b' u_t. \]

- Can show that the SVAR IRF to this innovation corresponds to coefficients \(\{ \beta_h \}_{h \geq 0} \) from linear projections
 \[y_{t+h} = \bar{\mu}_h + \beta_h (b' w_t) + \sum_{\ell=1}^{\infty} \delta'_{h,\ell} w_{t-\ell} + \xi_{h,t}, \]
 up to constant of proportionality.

- Equivalent LP projects on linear combination \(b' w_t \) of variables.
Sample asymptotic equivalence

- Consider least-squares sample analogues of LP and VAR. Include \(p \) lags of \(w_t \) in both methods.

- \(\hat{x}_t(p) \): residual from regression of \(x_t \) on intercept, \(r_t, w_{t-1}, \ldots, w_{t-p} \).

- LP estimator (from Frisch-Waugh theorem):

\[
\hat{\beta}_h(p) = \frac{\sum_{t=p+1}^{T-h} y_{t+h} \hat{x}_t(p)}{\sum_{t=p+1}^{T-h} \hat{x}_t(p)^2}.
\]

- \(\hat{\theta}_h(p) \): horizon-\(h \) impulse response of \(y_t \) to an innovation in \(x_t \) in a Cholesky-identified estimated VAR(\(p \)) model (with intercept).

- Will now show that \(\hat{\beta}_h(p) \approx \text{constant} \times \hat{\theta}_h(p) \) as \(T \to \infty \), provided \(p \to \infty \) at appropriate rate.
Proposition: In-sample near-equivalence of LP and SVAR

Suppress notation $p = p(T)$. Assume:

i) $\{w_t\}$ is covariance stationary and has a VAR(∞) representation with $\sum_{\ell=1}^{\infty} \|A_\ell\| < \infty$. Wold innovations u_t have finite and pos. def. cov. matrix Σ. (Perhaps non-Gaussian.)

ii) Reduced-form least-squares VAR estimator satisfies

$$\|\hat{c}(p) - c\| = o_p(1), \quad \|\hat{A}(p) - A(p)\| = o_p(1), \quad \|\hat{\Sigma}(p) - \Sigma\| = o_p(1).$$

Lewis & Reinsel (1985); Gonçalves & Kilian (2007)

Then as $p, T \to \infty$,

$$\hat{\theta}_h(p) = \left(\frac{1}{T-p} \sum_{t=p+1}^{T} \hat{x}_t(p)^2 \right)^{-1/2} \times \hat{\beta}_h(p) + O_p(\hat{R}(p)),$$

$$\hat{R}(p) = \frac{\max\{1, \sup_{1 \leq t \leq T} \|w_t\|\}^2}{T - p} + \left(\sum_{\ell=p-h+1}^{p} \|\hat{A}_\ell(p)\|^2 \right)^{1/2}.$$
Structural identification: Short-run restrictions

• “Fast-\(r\)-slow” short-run identification of monetary policy shocks: CEE (2005)

\[
A(L) \begin{pmatrix} r_t \\ x_t \\ q_t \end{pmatrix} = \begin{pmatrix} B_{11}\varepsilon_{1,t} \\ B_{21}\varepsilon_{1,t} + B_{22}\varepsilon_{2,t} \\ B_{31}\varepsilon_{1,t} + B_{32}\varepsilon_{2,t} + B_{33}\varepsilon_{3,t} \end{pmatrix}.
\]

(\(n = 3\) for clarity.)

• \(x_t\): Federal Funds Rate. \(r_t\): “slow-moving”. \(q_t\): “fast-moving”.

• Given this model, our equivalence result implies that the IRF of \(q_t\) (say) wrt. \(\varepsilon_{2,t}\) is proportional to \(\{\beta_h\}_{h \geq 0}\) from the LP

\[
q_{t+h} = \mu_h + \beta_h x_t + \gamma_h r_t + \sum_{\ell=1}^{\infty} \delta_{h,\ell} w_{t-\ell} + \xi_{h,t}.
\]
Long-run restrictions: Proof sketch

\[w_t = \chi + C(L)u_t, \quad u_t = B\varepsilon_t \quad (\dagger) \]

- Standard argument: Long-run restriction \(\Theta_{1,2}(1) = 0 \) implies
 \[e'_1 C(1)u_t = \Theta_{1,1}(1) \times \varepsilon_{1,t}. \]

- Since \(w_{1,t} = \Delta \text{gdp}_t \),
 \[\tilde{\delta}'_H = \text{Cov}(gdp_{t+H} - gdp_{t-1}, u_t)\Sigma_u^{-1} = \sum_{\ell=0}^{H} \text{Cov}(w_{1,t+\ell}, u_t)\Sigma_u^{-1}. \]

- Wold decomposition \((\dagger)\) implies
 \[\sum_{\ell=0}^{\infty} \text{Cov}(w_{t+\ell}, u_t)\Sigma_u^{-1} = \sum_{\ell=0}^{\infty} C_{\ell} = C(1). \]

- So
 \[\lim_{H \to \infty} \tilde{\delta}'_H = e'_1 C(1). \]

- Finally, apply main equivalence result.
Structural identification: Sign restrictions

- Want IRF of y_t wrt. monetary shock. Assume SVMA + invertibility.

- Impulse response at horizon h given by $\nu' \tilde{\beta}_h$ for unknown $\nu \in \mathbb{R}^{nw}$, where $\tilde{\beta}_h$ is obtained from projection

$$y_{t+h} = \tilde{\mu}_h + \tilde{\beta}'_h w_t + \sum_{\ell=1}^{\infty} \delta'_{h,\ell} w_{t-\ell} + \xi_{h,t}.$$

- Impose sign restrictions: r_t responds positively to a monetary shock at all horizons $s = 0, 1, \ldots, \bar{H}$. Uhlig (2005)

- For $s = 0, 1, \ldots, \bar{H}$, store coef. vector $\tilde{\beta}_s$ from projection

$$r_{t+s} = \tilde{\mu}_s + \tilde{\beta}'_s w_t + \sum_{\ell=1}^{\infty} \delta'_{s,\ell} w_{t-\ell} + \xi_{s,t}.$$

- Largest possible response of y_{t+h} to a monetary shock that raises r_t by one unit on impact:

$$\sup_{\nu \in \mathbb{R}^{nw}} \nu' \tilde{\beta}_h \quad \text{subject to} \quad \tilde{\beta}'_0 \nu = 1, \quad \tilde{\beta}'_s \nu \geq 0, \quad s = 1, \ldots, \bar{H}.$$
Examples of IVs/proxies

- Narrative fiscal shocks. Mertens & Ravn (2013); Ramey & Zubairy (2017); Mertens & M. Olea (2018)
- Large oil discoveries. Arezki, Ramey & Sheng (2016)
- Volatility spikes. Carriero et al. (2015)
LP-IV: Intuition for equivalence

- Why does recursive SVAR work even under non-invertibility?
- Shock $\varepsilon_{1,t}$ still non-invertible wrt. expanded info set:
 \[\varepsilon_{1,t} \notin \text{span}\left(\{w_\tau, z_\tau\}_{-\infty<\tau\leq t}\right) \text{ in general}. \]
- But remaining non-invertibility is due only to classical measurement error in
 \[\tilde{z}_t \equiv z_t - E(z_t \mid \{w_\tau, z_\tau\}_{-\infty<\tau<0}) = \alpha \varepsilon_{1,t} + \nu_t. \]
- Attenuation bias is the same (in pct terms) for all horizons and response variables \[\Rightarrow \text{Relative impulse responses } \frac{\Theta_{nr+2,1,h}}{\Theta_{nr+1,1,0}} \text{ correctly identified (not absolute)}. \]
LP-IV: Comparison with SVAR-IV

- The alternative **SVAR-IV** approach manipulates the Wold innovations \(u_t \equiv w_t - E(w_t \mid \{w_\tau\}_{-\infty<\tau<t}) \) from an SVAR in \(w_t \) alone.

- Specifically, SVAR-IV identifies the shock of interest as
 \[
 \tilde{\varepsilon}_{1,t} \equiv \frac{1}{\sqrt{\text{Var}(\tilde{z}_t^\dagger)}} \times \tilde{z}_t^\dagger,
 \]
 where
 \[
 \tilde{z}_t^\dagger \equiv E(\tilde{z}_t \mid u_t).
 \]

- \(\tilde{\varepsilon}_{1,t} \neq \varepsilon_{1,t} \), except if the shock is invertible. *Plagborg-Møller & Wolf (2019)*
Estimands in non-linear models

- Often claimed that LP is “robust to misspecification/non-linearities”. Our equivalence result implies that this is not true.

- Assume the general non-linear DGP (assumed stationary)

\[w_t = g(\varepsilon_t, \varepsilon_{t-1}, \varepsilon_{t-2}, \ldots), \quad \varepsilon_t \sim \text{i.i.d.} N(0, I_{n_\varepsilon}). \]

- Using Wold decomposition, can represent as linear SVMA model

\[w_t = \mu^* + \sum_{\ell=0}^{\infty} \Theta^*_\ell \varepsilon_{t-\ell} + \sum_{\ell=0}^{\infty} \Psi^*_\ell \zeta_{t-\ell}. \]

- \(\zeta_t \): \(n_w \)-dimensional white noise, uncorrelated at all leads/lags with \(\varepsilon_t \).

- Linear SVMA impulse responses \(\Theta^*_\ell \) corresponding to the structural shocks \(\varepsilon_t \) have a **best linear approximation** interpretation:

\[
(\Theta_0^*, \Theta_1^*, \ldots) \in \operatorname{argmin}_{(\bar{\Theta}_0, \bar{\Theta}_1, \ldots)} E \left[\left(g(\varepsilon_t, \varepsilon_{t-1}, \ldots) - \sum_{\ell=0}^{\infty} \bar{\Theta}_\ell \varepsilon_{t-\ell} \right)^2 \right].
\]
Estimands in non-linear models (cont.)

$$(\Theta^*, \Theta^*_1, \ldots) \in \arg\min_{(\tilde{\Theta}_0, \tilde{\Theta}_1, \ldots)} E \left[\left(g(\varepsilon_t, \varepsilon_{t-1}, \ldots) - \sum_{\ell=0}^{\infty} \tilde{\Theta}_\ell \varepsilon_{t-\ell} \right)^2 \right]$$

- Linear SVAR/LP IRF estimand can be given “best linear approximation” interpretation.
- Estimators that rely on higher moments are not as easy to interpret under misspecification.
- We do not take a stand on whether the best linear approximation is structurally interesting. Depends on application.
- In some applications, non-linearities may be the key objects of interest, in which case linear SVAR/LP methods are not useful.