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Abstract

We introduce and estimate a quantile vector autoregressive model.

Unlike standard VAR model which model only the average interac-

tion, quantile VAR allows one to model the interaction between any

quantile of the endogenous variables. The methodology illustrates

how to estimate and forecast multivariate quantiles within a struc-

tural model. The model is estimated using real and financial variables

for the euro area. The results show that the dynamic properties of

the model change significantly when the economy is hit by abnormal

financial and real shocks, with respect to tranquil times. The econo-

metric framework is used to perform multi period ahead stress testing

exercises, where the euro area economy is hit with a series of financial

and real economic shocks which mimic those that occurred during the

recent crises.
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1 Introduction

Vector autoregressive (VAR) models are the empirical workhorse of macroe-

conomists. These models often rely on constant coefficients and i.i.d. Gaus-

sian innovations. There is, however, substantial empirical evidence that

macroeconomic variables are characterised by nonlinearities and asymmetries

which cannot be captured by simple linear Gaussian models (Perez-Quiros

and Timmermann 2000, Hubrich and Tetlow 2015, Kilian and Vigfusson

2017, Adrian et al. 2019b). This paper shows how structural VAR models

can be estimated with quantile regression methods, thus offering a robust

alternative to study asymmetric dynamics in time series econometrics.

Quantile regression has a long and illustrious history in econometrics. It

was introduced by Koenker and Bassett (1978) and has found many appli-

cations in economics (Koenker 2005, 2017). Early applications to univari-

ate time series include Engle and Manganelli (2004) and Koenker and Xiao

(2006). White, Kim and Manganelli (2010, 2015) develop a framework to

model multivariate quantiles. Schueler (2014) introduces a Bayesian quan-

tile structural vector autoregressive model.

Two long standing challenges of the regression quantile literature are how

to deal with multiple variables and how to forecast in a time series context.

We provide a solution to both problems and show that they are closely con-

nected. The VAR for VaR model of White et al. (2015) represents the starting

point of our model, as it provides the general framework for inference. Cast-

ing the problem in a multivariate framework such as a VAR model immedi-

ately raises the issue of the definition of structural shocks and identification.

We show that structural identification and quantile modelling of multiple

variables are different sides of the same coin. We identify the quantile VAR

by estimating a recursive model, where the first variables of the system are

allowed to contemporaneously affect the remaining variables. This corre-

sponds to performing a Cholesky decomposition in a standard VAR model

and falls within the recursive conditioning framework of Chesher (2003). The
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quantile at any time of the second variable, say, becomes a random variable

as it depends on the contemporaneous value taken by the first variable, and

as such it is characterised by a certain distribution. By taking any quantile

of this quantile distribution we can estimate the quantile value taken by the

second random variable when the first random variable is equal to its own

quantile. This reasoning can be repeated recursively for all the cross section

of random variables, therefore giving the quantile of the quantile of the cross

section at any given point in time.

This intuition holds also for forecasting future quantiles. Since future

quantiles depend on future shocks, they are themselves random variables. By

taking specific quantiles of these random variables, we can characterise their

future distribution. Any quantile forecast at any point in time is therefore the

quantile of future quantiles. The logic is similar to the one used to factor any

likelihood into a product of marginal and conditional densities. We refer to

this relationship as to the law of iterated quantiles. A key difference with the

law of iterated expectations is that while expectations are additive, quantiles

are not, so that the quantile of the quantile of a sum of random variables is

not equal to the quantile of the sum.

Our econometric framework is general enough to cover the modelling of

multiple quantiles of multiple random variables. It is this multivariate ap-

proach that gives the flexibility to assess the impact of any desired scenario.

Stress testing can be thought of as an estimate of the reaction of the en-

dogenous random variables when the system is hit by a sequence of quantile

shocks. Stress scenarios are nothing else than an arbitrary series (to be cho-

sen by the policy maker or calibrated to past crises) of quantile shocks hitting

the environment.

We estimate a quantile VAR model on euro area data for industrial pro-

duction and an indicator of financial distress. We find that severe financial

shocks – defined as a tail quantile realization – are transmitted to the real

economy only when the economy is simultaneously hit by a real negative
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shock. Modelling the mean dynamics with a standard VAR misses most of

this action. Furthermore, shutting down the financial channel of transmis-

sion in the system significantly changes the dynamics of the real economy

when hit by negative shocks, but leaves the dynamics largely unaffected in

normal conditions.

These results are broadly in line with those found by Adrian et al. (2019b)

for the U.S. economy. The empirical model estimated by Adrian et al. (2019b)

is equivalent to estimating only one equation of our quantile VAR model. The

advantage of quantile VAR is that it allows us to perform impulse response

analyses and to forecast the quantiles of the endogenous variables. We find

that by hitting the system with a financial shock there is a strong and persis-

tent asymmetric impact on the distribution of industrial production, which

takes about two years to be absorbed.

Quantile VAR provides also the natural environment to perform stress

testing exercises. At its core, stress testing is a forecast of what happens to

the system when it is hit by an arbitrary sequence of negative shocks. If the

euro area is hit by a sequence of six monthly consecutive financial and real

tail shocks, its industrial production contracts by a cumulated amount of

more than 10% over the same period. This contrasts with a median increase

of industrial production of around 2%, a forecast which would hold under

normal circumstances.

The paper is organized as follows. Section 2 develops the general quantile

structural vector autoregressive framework. It provides the links with stan-

dard OLS structural VAR, derives the asymptotic distributions, and shows

how to do forecasting with quantile structural VAR. Section 3 estimates the

quantile VAR model for the euro area and performs a stress testing exercise.

Section 4 concludes.
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2 Quantile Vector Autoregression

This section defines the concept of structural quantile impulse response func-

tion, shows how to compute quantile VAR forecasts and provides the asymp-

totic properties of the model.

2.1 The Law of Iterated Quantiles and Quantile Im-

pulse Response Functions

Consider a sequence of random variables {Ỹt : t = 1, . . . , T}, where Ỹt is an

n× 1 vector with ith element denoted by Ỹit for i ∈ {1, . . . , n}.
Consider the following structural vector autoregressive model, written in

recursive and reduced form:

Ỹt+1 = ω + A0Ỹt+1 + A1Ỹt + εt+1 εt+1 ∼ i.i.d.(0,Σ) (1)

= µt + (In − A0)
−1εt+1 (2)

where µt ≡ (In−A0)
−1ω+(In−A0)

−1A1Ỹt, A0 and A1 are a n×n coefficient

matrices, ω is a n × 1 vector of constants, εt+1 is a n × 1 vector of i.i.d.

structural shocks with Σ a diagonal matrix, and In is a n-dimensional identity

matrix. Imposing that A0 has a lower triangular structure, the identification

of this system is equivalent to assuming a Choleski decomposition of the

errors from a standard reduced form vector autoregressive model (see, for

instance, chapter 2 of Lutkepohl 2005).

The expected value of the process (1) at time t + H, given Ωt+H , the

information available at time t+H, is:

Et+H(Ỹt+H+1) ≡ E(Ỹt+H+1|Ωt+H)

= µt+H

= ν +BỸt+H
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where ν ≡ (In−A0)
−1ω and B ≡ (In−A0)

−1A1, which together with (2) can

be solved backwards in terms of the structural shocks {εt+h}Hh=1, for H ≥ 1:

µt+H =
H∑
h=0

Bhν +BH+1Ỹt +
H∑
h=1

BH−h+1(In − A0)
−1εt+h

Since µt+H depends on future shocks, it is a random variable. The standard

way to characterise the properties of this random variable is to compute the

expectation of its future expectations:

Et(· · ·Et+H−1(µt+H)) =
H∑
h=0

Bhν +BH+1Ỹt

This is convenient because the expectation of future expectations depends

only on the estimated parameters and Ỹt. In principle, one could choose

to characterise the properties of µt+H by looking at any other part of its

distribution, at the cost, however, of estimating additional parameters.

The impulse-response function is defined by the marginal impact that a

structural shock has on the expected value of future expectations, via the

impact it has on Ỹt:

∂Et(· · ·Et+H−1(µt+H))/∂ε′t = BH+1(In − A0)
−1 for H ≥ 1 (3)

This framework motivates our definition of a quantile structural vector

autoregressive model. Since we want to consider the possibility of jointly

modelling multiple quantiles, we need additional notation. For our purposes,

it is important to define a recursive information set, which allows us to work

with structural models. Define Ωit ≡ {Ỹ1t, . . . , Ỹi−1,t, Ỹt−1, Ỹt−2, . . .} for i ∈
{2, . . . , n} and Ω1t ≡ {Ỹt−1, Ỹt−2, . . .}, so that the information set Ω2t, say,

contains all the lagged values of Ỹt as well as the contemporaneous value of

Ỹ1t. We consider also p distinct quantiles, 0 < θ1 < θ2 < . . . < θp < 1.1 The

1The model can be generalised to the case where quantile indices are different for
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quantile structural vector autoregressive model is defined as follows, written

again in recursive and reduced form:

Yt+1 = ωθ + Aθ0Yt+1 + Aθ1Yt + εθt+1, P (ε
θj
i,t+1 < 0|Ωit) = θj, (4)

i = 1, . . . , n, j = 1, . . . , p

= qθt + (Inp − Aθ0)−1εθt+1 (5)

where qθt = (Inp − Aθ0)−1ωθ + (Inp − Aθ0)−1Aθ1Yt. The dependent variable Yt

is now an np-vector, which is obtained as Yt = ιp⊗ Ỹt, where ιp is a p-vector

of ones, and εθt ≡ [εθ11t , . . . , ε
θ1
nt, . . . , ε

θp
1t , . . . , ε

θp
nt]
′. The matrices Aθ0 and Aθ1 are

block diagonal, to avoid trivial multicollinearity problems. We further impose

that the diagonal blocks of Aθ0 are lower triangular matrices with zeros along

their main diagonal, reflecting the recursive identification assumption of the

system. The probability relationship defining the regression quantile follows

the recursive structure of the identification assumption.

An explicit example may help. Consider a model with two endogenous

random variables and two quantiles, say 50% and 90%. System (4) can be

written explicitly as:
Ỹ1,t+1

Ỹ2,t+1

Ỹ1,t+1

Ỹ2,t+1

 =


ω.51

ω.52

ω.91

ω.92

+


0 0

a.5021 0

0 0

0 0

0 0

0 0

0 0

a.9021 0



Ỹ1,t+1

Ỹ2,t+1

Ỹ1,t+1

Ỹ2,t+1

+

+


a.511 a.512

a.521 a.522

0 0

0 0

0 0

0 0

a.911 a.912

a.921 a.922



Ỹ1,t

Ỹ2,t

Ỹ1,t

Ỹ2,t

+


ε.51,t+1

ε.52,t+1

ε.91,t+1

ε.92,t+1


Given the recursive structure of (4), the quantiles of Ỹ2,t+1, . . . , Ỹn,t+1 are

different elements of Yt. See White et al. (2015) for details.
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random vectors at time t, as they depend on the vector of contemporaneous

structural shocks via the term Aθ0Yt+1. Consider the θj quantile of Ỹn,t+1

and write the random part of Ỹn,t+1 as a1ε
θj
1,t+1 + . . . an−1ε

θj
n−1,t+1 + ε

θj
n,t+1, for

suitably chosen scalars a1, . . . , an−1. The θj quantile of this term, given the

information set Ωnt, is a1ε
θj
1,t+1 + . . .+ an−1ε

θj
n−1,t+1, by the quantile property

of ε
θj
n,t+1 in (4). In turn, the θj quantile of this θj quantile conditional on

the information set Ωn−1,t is a1ε
θj
1,t+1 + . . . + an−2ε

θj
n−2,t+1

2. Repeating this

argument for all the cross section of variables in Yt+1 we obtain that the θj

quantile of all the cross section of θj quantiles of the shocks (Inp−Aθ0)−1εθt+1

conditional on all the lagged and the recursive contemporaneous dependent

variables is zero. We write for brevity Qθ
t ((Inp − Aθ0)

−1εθt+1) = 0, mean-

ing that this contemporaneous recursive iteration has been applied to each

element of the vector. That is, for any np-vector x, we define Qθ
t (x) ≡

[Qθ1
t (x11), . . . , Q

θ1
t (. . . Qθ1

t (x1n)), . . . , Q
θp
t (xp1), . . . , Q

θp
t (. . . Q

θp
t (xpn))]′ andQ

θj
t (xji )

is implicitly defined by P (xji < Q
θj
t (xji )|Ωit) = θj. This reasoning implies also

that Qθ
t (Yt+1) = qθt .

If system (1) is the data generating process, then ωθ = ιp⊗ω+κθ, where

κθ is the np-vector containing the θ quantiles of εt+1, A
θ
0 = Ip ⊗ A0 and

Aθ1 = Ip ⊗A1. Under this assumption, the VAR and quantile VAR are char-

acterized by identical dynamics. In general, however, this need not be the

case. In homoskedastic linear regression models, the conditioning variables

shift the location of the conditional density of Yt, but they have no effect

on conditional dispersion or shape. Quantile regression is a semiparametric

technique which allows different covariates to affect different parts of the dis-

tribution. If and how this happens is an empirical question. In our empirical

applications, we find that estimates of quantile regression slopes and quantile

impulse response functions vary across quantiles. This may happen either

because of unmodelled time varying higher order moments, and/or because

2Here we have a slight abuse of notation, as P (an−1ε
θj
n−1,t+1 < 0) = 1 − θj when

an−1 < 0, and so it becomes the (1− θj) quantile.
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the conditioning variables affect the conditional distribution of the dependent

variables in a nonlinear way. These effects cannot be detected with standard

OLS VAR estimates.

The θ quantile of process (4) at time t+H, given the information available

at time t+H, is:

Qθ
t+H(Yt+H+1) = qθt+H

= νθ +BθYt+H

= νθ +Bθqθt+H−1 +Bθ(Inp − Aθ0)−1εθt+H (6)

where νθ ≡ (Inp−Aθ0)−1ωθ and Bθ ≡ (Inp−Aθ0)−1Aθ1. Recursive substitution

gives:

qθt+H =
H∑
h=0

(Bθ)hνθ + (Bθ)H+1Yt +
H∑
h=1

(Bθ)H−h+1(Inp − Aθ0)−1εθt+h (7)

Notice again that like µt+H also qθt+H is a random vector at time t, as it

depends on the vector of future structural shocks εθt+h. Applying recursions

over time similar to those outlined above gives the θ quantile of future θ

quantiles:

Qθ
t (· · ·Qθ

t+H−1(q
θ
t+H)) =

H∑
h=0

(Bθ)hνθ + (Bθ)H+1Yt (8)

because by the previous reasoning Qθ
t+h−1((B

θ)H−h+1(Inp − Aθ0)−1εθt+h) = 0

for all h. We refer to equation (8) as to the Law of Iterated Quantiles (LIQ).

Notice the difference with respect to the Law of Iterated Expectations (LIE).

For LIE, given any generic random variable Xt with finite expectation, it

holds that:

Et(Xt+1 +Xt+2) = Et(Et+1(Xt+1 +Xt+2))
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For the LIQ, instead, this is generally not the case:

Qθ
t (Xt+1 +Xt+2) 6= Qθ

t (Q
θ
t+1(Xt+1 +Xt+2))

From equation (7) or (8), it is possible to define the quantile impulse

response function as the marginal impact that a structural shock has on the

quantile of future quantiles:

∂Qθ
t (· · ·Qθ

t+H−1(q
θ
t+H))/∂(εθt )

′ = (Bθ)H+1(Inp − Aθ0)−1 for h ≥ 1 (9)

Standard OLS impulse response functions measure the impact of a struc-

tural shock on the expectation of expectations of future values of the endoge-

nous variables. The law of iterated quantiles, instead, implies that quantile

impulse response functions measure the impact of a structural shock on the

quantile of the quantiles of future values of the endogenous variables. In other

words, future quantiles are random variables themselves and will therefore

be characterized by a distribution. The quantile impulse response function

traces the impact of shocks on the quantiles of the distribution of future

quantiles.

2.2 Forecasting and stress testing

Forecasts are future values taken by parts of the distribution of the dependent

variables of interest, and are obtained by giving specific values to the error

terms. In the case of the OLS, forecasts are future values taken by the mean

of the distribution obtained by setting future mean shocks to zero. In the

case of quantile regression models, forecasts are the values taken by specific

quantiles of the distribution obtained by setting the corresponding future

quantile shocks to zero.

To formalize, define Sjt+1 the n × np matrix selecting specific quantile

shocks from the vector εθt+1. That is, Sjt+1ε
θ
t+1 = [ε

θ
j1t+1

1,t+1, . . . , ε
θjnt+1

n,t+1]
′ for jit+1 ∈
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{1, . . . , p} and i ∈ {1, . . . , n}. Then by (4), the forecast of Ỹt+1, conditional

on setting the shocks identified by the matrix Sjt+1 to zero, is:

Ŷt+1
(n×1)
|Sjt+1 = Sjt+1Yt+1

= Sjt+1(ω
θ + Aθ0Yt+1 + Aθ1Yt)

= ω̄θt+1 + B̄θ
t+1Yt

where ω̄θt+1 ≡ (In − Sjt+1A
θ
0S̄)−1Sjt+1ω

θ, B̄θ
t+1 ≡ (In − Sjt+1A

θ
0S̄)−1Sjt+1A

θ
1,

and S̄ is the pn× n duplication matrix such that Yt+1 = S̄Sjt+1Yt+1.

Solving this equation forward, for any given sequence {Sjt+h
}Hh=1, we ob-

tain the forecast of the dependent variables at any future point in time H:

Ŷt+H |{Sjt+h
}Hh=1 = ω̄θt+H + B̄θ

t+H ω̄
θ
t+H−1 + . . .+ (10)

+ (B̄θ
t+HB̄

θ
t+H−1 . . . B̄

θ
t+2)ω̄

θ
t+1+

+ (B̄θ
t+HB̄

θ
t+H−1 . . . B̄

θ
t+1)Yt

For instance, the forecast of Yt+H conditional on future shocks taking their

median values can be obtained by choosing the {Sjt+h
}Hh=1 matrices such that

they select the median quantile and setting the corresponding median shocks

to zero.

Equation (10) is a generalization of (8). Relationship (8) implicitly as-

sumes a specific sequence of shocks and does not take into account the cross

restrictions which bind the different quantile shocks of the same random vari-

able together. For instance, the first element of (8) is the θ1 quantile asso-

ciated with the first dependent variable of all the future and cross-sectional

θ1 quantiles of the dependent variables. This corresponds to the first el-

ement of (10) when the sequence {Sjt+h
}Hh=1 selects the following shocks

{εθ11,t+1, . . . , ε
θ1
n,t+1, . . . , ε

θ1
1,t+H , . . . , ε

θ1
n,t+H} to be set to zero. Equation (10) al-

lows one to forecast any quantile of any future and cross-sectional quantile.

It is also possible to rewrite the impulse response function in terms of (10).
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Suppose that we are interested in the median forecast of all future medians

and suppose that the median corresponds to the θj quantile. Let Sj be the

matrix selecting the median elements of system (4). The median forecast

is then given by SjQ
θ
t (· · ·Qθ

t+H−1(q
θ
t+H)), where the quantile of the quantile

function is specified in (8). This is equivalent to (10) with Ŷt+H |{Sjt+h
=

Sj}Hh=1. We are now interested in how this median forecast would change,

had we observed the shock ε
θj′
it = 0, for some j′ ∈ {1, . . . , p}. Denoting with

Ÿt the shocked vector, the change in forecast is given by:

Ŷt+H |{Ÿt, {Sjt+h
= Sj}Hh=1}−Ŷt+H |{Sjt+h

= Sj}Hh=1 (11)

= B̄θ
t+HB̄

θ
t+H−1 . . . B̄

θ
t+1(Ÿt − Yt)

which is proportional to the corresponding element of (9). The generic im-

pulse response function for any quantile of any future quantile is given by

Ŷt+H |{Ÿt, {Sjt+h
}Hh=1} − Ŷt+H |{Sjt+h

}Hh=1.

The greater generality and flexibility of (10) provides the natural environ-

ment to perform stress testing exercises. A policy maker interested in how

the endogenous variables react to a given stressful scenario can first define

the scenario by setting a series of future tail (say, 10% or 1%) quantile shocks

to zero, and then obtain the forecast of the endogenous variables conditional

on the chosen scenario.

Finally, it is straightforward to compute average step ahead forecasts from

the QVAR model. Suppose that at time T the interest lies in the average

H-step ahead values of the dependent variables, that is:

YT,H ≡ H−1
H∑
h=1

YT+h (12)
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Then, the forecast, conditional on the sequence of shocks {SjT+h
}Hh=1, is:

ŶT,H |{SjT+h
}Hh=1 ≡ H−1

H∑
h=1

ŶT+h|{SjT+i
}hi=1

where ŶT+h|{SjT+i
}hi=1 is defined in (10).

2.3 General quantile VAR(q) model

Model (4) can be easily generalized to any VAR(q) model using its companion

form. Define the npq vectors ω̄ ≡ [(ωθ)′, 0′, . . . , 0′]′, Ȳt+1 ≡ [Y ′t+1, Y
′
t , . . . , Y

′
t−q+2]

′,

εt+1 ≡ [(εθt+1)
′, 0′, . . . , 0′]′, and the (npq × npq) matrices

A0 =


Aθ0, 0, . . . , 0

0, 0, . . . , 0
...

. . .

0, 0, . . . , 0

 and A1 =


Aθ1, Aθ2, . . . , Aθq

Inp, 0, . . . , 0
...

. . .

0, . . . , Inp, 0

 .

Then the companion form of the VAR(q) model is:

Ȳt+1 = ω̄ + A0Ȳt+1 + A1Ȳt + εt+1 (13)

All the results of the previous sections extend to model (13).

2.4 Estimation and Asymptotics

The recursive QVAR model (4) can be estimated using the framework devel-

oped by White, Kim and Manganelli (2015). Let qθt (β) ≡ ωθ +Aθ0Yt+Aθ1Yt−1

and q
θj
it (β) the jth quantile of the ith variable of the vector qθt (β), where we

have made explicit the dependence on β, the vector containing all the un-

known parameters in ωθ, Aθ0, and Aθ1. Define the quasi-maximum likelihood

13



estimator β̂ as the solution of the optimization problem:

β̂ = arg min
β
T−1

T∑
t=1

{
n∑
i=1

p∑
j=1

ρθ

(
Ỹit − q

θj
it (β)

)}
, (14)

where ρθ (u) ≡ u(θ − I(u < 0)) is the standard check function of quantile

regressions.

Under the assumptions of theorems 1 and 2 of White et al. (2015), β̂ is

consistent and asymptotically normally distributed. The asymptotic distri-

bution is: √
T (β̂ − β∗) d−→ N(0, Q−1V Q−1) (15)

where

Q ≡
n∑
i=1

p∑
j=1

E[f
θj
it (0)∇qθjit (β∗)∇′qθjit (β∗)]

V ≡ E[ηtη
′
t]

ηt ≡
n∑
i=1

p∑
j=1

∇qθjit (β∗)ψθj(ε
θj
it )

ψθj(ε
θj
it ) ≡ θj − I(ε

θj
it ≤ 0)

ε
θj
it ≡ Ỹit − q

θj
it (β∗)

and f
θj
it (0) is the conditional density function of ε

θj
it evaluated at 0. The

asymptotic variance-covariance matrix can be consistently estimated as sug-

gested in theorems 3 and 4 of White et al. (2015), or using bootstrap based

methods in the spirit of Buchinsky (1995).3

3Modern statistical softwares contain packages for regression quantile estimation and
inference. This paper uses the interior point algorithm discussed by Koenker and Park
(1996).
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To obtain the standard errors of the forecasts in (10), let

B̄ ≡ [ω̄, A0, A1]

where ω̄, A0 and A1 are defined in (13). Define

vec(B̄) = Rβ + γ (16)

where R is a (npq(1 + 2npq) × b) matrix of restrictions with b the size of β

and γ is the corresponding vector of 0 and 1 constraints (see chapter 5 of

Lütkepohl, 2005). The matrix R can be easily constructed in a software by

creating a matrix of 0s and an index φ which identifies the position of the

elements of vec(B̄) different from 0 and 1, and then setting R(φ(i), i) = 1,

for i = 1, . . . , b. Letting ω̄ = B̄Kω, A0 = B̄K0 and A1 = B̄K1, for suitable

Kω, K0 and K1 matrices, the standard error of the forecast can be obtained

from a Taylor expansion:

YT,H(β̂) ≡ ŶT,H |{Sjt+h
}Hh=1

≈ YT,H(β∗) + Φ(β̂)(β̂ − β∗)

where the term Φ(β̂) ≡ ∂YT,H(β̂)/∂β′ can be computed numerically or ap-

plying the rules of matrix differentiation (see, for instance, Lütkepohl, 2005).

From the asymptotic properties of β̂, it follows that:

√
T (YT,H(β̂)− YT,H(β∗))

d−→ N(0,Φ(β∗)Q−1V Q−1Φ′(β∗)) (17)

The standard errors associated with the impulse response function (9)

can be computed in a similar fashion.
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3 Is growth in Europe vulnerable to financial

distress?

We apply the methodology developed in the previous section to model the

interaction between real and financial variables in Europe. We study the

interrelationship between the euro area industrial production (Ỹ1t) and the

composite indicator of systemic stress in the financial system (CISS, Ỹ2t)

of Hollo, Kremer and Lo Duca (2012). Adrian et al. (2019b) have shown

that there are substantial asymmetries in the relationship between the US

real GDP growth and financial conditions. In particular, they find that

the estimated lower quantiles of the distribution of future GDP growth are

significantly affected by financial conditions, while the upper quantiles appear

to be more stable over time. The quantile model specification of Adrian et

al. (2019b) is the following:

Ỹ1,t+1 = ωθ1 + aθ11Ỹ1,t + aθ12Ỹ2t + εθt+1 (18)

They estimate this model for θ ∈ {0.05, 0.25, 0.75, .95}. This corresponds

to the first line of model (4). An obvious drawback of neglecting to model

the second line of the quantile VAR model is that forecasting becomes im-

possible. In fact, for the four quarters ahead analysis, they have to resort to

direct estimation, whereby they quantile regress the four quarter ahead GDP

directly on current GDP and financial conditions. Our framework, instead,

allows us to estimate the model at the highest possible frequency and still to

study the forecasting properties of the system as well as to test the presence

of any feedback effect.

We start by reporting in figure 1 the monthly time series of industrial

production and CISS in the euro area from January 1999 until July 2018.

The data is downloaded from the Statistical Data Warehouse database of the
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Figure 1: Real and financial variables

Note: Time series evolution of euro area industrial production (black line) and CISS (red
line). Monthly data, source: ECB.

ECB.4 A cursory view at the plot reveals a clear negative correlation between

the two time series, especially during the Great Financial Crisis.

Next, we estimate the quantile VAR model (4):

Ỹ1,t+1 = ωθ1 + aθ11Ỹ1t + aθ12Ỹ2t + εθ1,t+1

Ỹ2,t+1 = ωθ2 + aθ0Ỹ1,t+1 + aθ21Ỹ1t + aθ22Ỹ2t + εθ2,t+1

By ordering CISS after industrial production, we impose the structural

identification assumption that financial variables can react contemporane-

ously to real variables, but real variables react to financial developments

only with a lag. This corresponds to a Choleski identification where shocks

to real economic variables have an immediate impact on financial variables,

4Available at https://sdw.ecb.de/home.do.
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while shocks to financial variables are allowed to affect real variables only

with a lag. Given the speed at which financial markets react to news, this

seems like a reasonable assumption.

As pointed out by Adrian et al. (2019a), the interaction between real

and financial variables can be tested by checking whether the off-diagonal

coefficients of the matrices Aθ0 and Aθ1 are statistically different from zero:

H0 : aθ12 = aθ0 = aθ21 = 0 (19)

Figure 2 reports the estimated quantile coefficients aθ12, a
θ
0, a

θ
21 for θ ∈

{0.05, 0, 10, 0, 15, . . . , 0.95}, together with the OLS estimate. We observe the

presence of substantial asymmetries, especially in the aθ12 coefficient, which

cannot be detected with standard OLS models. The coefficient estimates of

aθ12 are consistent with the findings of Adrian et al. (2019b), whereby financial

conditions significantly affect the left tail of the distribution of industrial

production, but not the right tail.

In the top panel of figure 3, we show that the impact of financial conditions

is not only statistically significant, but also economically relevant. The figure

reports the 10% and 90% quantiles of industrial production. It reveals that

worsening of financial conditions impacts the left tail by about two percentage

points. The middle line represents the estimated expected value of industrial

production according to a standard OLS VAR model. Notice that the impact

of the financial crisis is much more muted relative to the one obtained with

the 10% quantile. For comparison, in the bottom panel of figure 3 we report

the same time series quantile estimates of industrial production where the

off-diagonal coefficient aθ12 has been set to zero.

In figure 4 we compute a three dimensional quantile impulse response

function corresponding to (9), which studies how different quantiles of in-

dustrial production react to a shock to CISS. The thought experiment is the

following: How different the various quantiles would have been if we had

observed a different realization in the financial conditions of the euro area
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Figure 2: Testing interactions between real and financial variables

Note: Estimated coefficients of the off diagonal elements at different θ quantiles, with 90%
confidence intervals. The flat line represent the OLS estimate.
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Figure 3: Euro area growth at risk

Note: Time series estimates of the 10% and 90% quantiles of euro area industrial pro-
duction, together with the mean estimate according to a standard OLS VAR. The top
panel represents the unrestricted estimates, the bottom panel restricts the off-diagonal
coefficients to be zero.
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Figure 4: Quantile impulse response function for the euro area industrial
production

Note: The figure reports how a shock to the financial variable would affect the estimates
of the different quantiles of euro area industrial production at different time horizons.

economy? The change in quantile forecasts is measured along the vertical

axis (QIRF), while the horizontal plane contains the different quantiles (θ)

and time horizons (h). We continue to notice substantial asymmetric im-

pacts in different parts of the distribution, but the chart now reveals that

these asymmetries disappear after around 24 periods, which corresponds to

two years. This analysis highlights the advantage of our framework. It is an

internally consistent fully dynamic model of the real and financial variables

of the euro area economy, which allows us to study the propagation of shocks

across the different parts of the distribution and through time.
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We conclude our empirical illustration of the quantile VAR model with a

forecasting and stress testing exercise.

In figure 5, we report the distribution forecast of industrial production

several months ahead, conditional on the future endogenous variables being

hit by different quantile shocks. Each dotted line corresponds to alternative

specifications for the sequence of {SjT+h
}10h=1 matrices in (10). Unlike the

forecast within an OLS VAR, which can only set the future OLS shocks to

zero, within the quantile VAR we are free to set to zero any future series of

shocks. The various dots at each point in time can be thought as possible

realizations from the distribution of the future random variables.

We have highlighted two specific scenarios. The one in blue corresponds

to a situation where the sequence of future random variables are set to their

median values. This roughly corresponds to the results that one would obtain

from a standard OLS VAR analysis. Our framework, however, allows us also

to create arbitrary stress scenarios and to assess their impact. In the same

figure, we have highlighted in red the forecast of the system associated with

the following stress testing exercise. We assume that the euro area economy

will be hit by a series of six consecutive 90% quantile shocks to its financial

system and 10% quantile real economy shocks. This can be seen by the

fact that the red line initally follows the trajectory of the second from the

bottom dotted line, which traces the forecasts associated with consecutive

90% and 10% quantile shocks. After that, we assume that the system is hit

by a series of median shocks, reverting to normal functioning. The number of

consecutive tail financial shocks is calibrated to mimic the situation of euro

area sovereign debt crisis. We see that industrial production contracts by a

maximum of around 2%.

Figure 6 reports the implication of the scenarios of figure 5 in levels

of industrial production. Notice that the chosen stress scenario implies an

overall contraction in industrial production of more than 10% over 6 months,

a contraction falling somewhere in between the one experienced during the
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Figure 5: Forecasting and stress testing the real and financial variables in
the euro area

Note: The figure reports the time series of industrial production for the euro area together
with the forecasts associated with different scenarios. The path highlighted in blue cor-
responds to a scenario where both the real and financial variables are hit by a sequence
of median shocks. The path highlighted in red corresponds to the stress scenario where
the financial variable is hit by a 90% shock and the real variable by a 10% shock for six
consecutive months, followed by median shocks.
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Figure 6: Evolution of industrial production under alternative scenarios

Note: The figure reports the historical time series of industrial production together with
its projected levels as of July 2018 under the stress scenario (red line) and median scenario
(blue line). The stress scenario is defined as in figure 5 as a sequence of six monthly 90%
financial and 10% real shocks, followed by a sequence of median shocks.
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financial crisis in 2008-2009 and that of the euro area sovereign debt crisis

in 2012. Charts of this type can be used by policy makers to calibrate the

severity of the stress test according to their own preferences.

4 Conclusion

We have developed a quantile VAR model and used it to forecast and stress

test the interaction between real and financial variables in the euro area. Un-

like OLS VAR, quantile VAR models each quantile of the distribution. This

provides the natural modelling environment to design particular stress sce-

narios and test the impact that they have on the economy. A stress scenario

is just a sequence of tail quantile shocks, which can be chosen arbitrarily by

the policy maker or calibrated to mimic previous crisis episodes. We find

the presence of strong asymmetries in the transmission of financial shocks

in the euro area, with negative financial shocks being particularly harmful

when coupled with negative real shocks. By modelling the average inter-

action between the random variables, OLS VAR models miss most of these

detrimental interactions.
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