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1. Introduction

We develop a new dartboard methodology to delineate urban areas using detailed informa-

tion about building location, which we implement using a map of buildings in France. For

each pixel, our approach compares actual building density after smoothing to counterfactual

smoothed building density computed after randomly redistributing buildings. We define as

urban any area with statistically significant excess building density. We also define the urban

cores of these urban areas in a similar manner. Finally, we develop novel one- and two-sided

tests to provide a statistical basis to compare maps with different delineations, which we

use to document the robustness of our approach and large differences between our preferred

delineation and the corresponding official one.

Delineating urban areas is important for at least two reasons. First, urban research obvi-

ously needs to define its object. Extant administrative units such as municipalities do not

generally constitute self-contained, functionally autonomous units.1 Second, inappropriately

defined units may lead to a variety of biases. Urban areas that are defined too narrowly or too

broadly may fall foul of the modifiable areal unit problem (maup) by, for instance, misstating

the extent of urban sprawl or by missing important positive or negative spatial spillovers of

urban policy interventions.2

To delineate urban areas, the first key choice regards what to consider to define function-

ally integrated units: flows of commuters (or perhaps other flows) or some form of proximity

between people or between buildings. We believe both types of definitions are legitimate.

Flows of commuters are meant to capture integrated labour markets while morphological

approaches that rely on physical proximity or contiguity arguably reflect a broad set of

interactions. Our approach falls into this second category.3 We rely on data about buildings

rather than population since (residential) population data may fail to capture where people

are during the day.

1In many countries, as cities grew, they would directly annex surrounding municipalities. This process of
amalgamation has stopped for a variety of reasons, from mayors willing to keep their job to richer municipalities
resisting fiscal integration with their poorer neighbours.

2Inappropriate definitions may also affect perceptions and consequently policies more broadly. For instance,
Latin American countries appear unusually highly urbanised for their level of gdp per capita when using
national definitions of what is urban. In turn, this apparent over-urbanisation of Latin America was accepted as
fact and fed a long-standing skepticism towards urbanisation on the continent. More systematic and comparable
definitions using satellite data show that the ‘over-urbanisation of Latin America’ is an artefact of lax definitions
that categorise even small villages as urban (Roberts, Blankespoor, Deuskar, and Stewart, 2017).

3For functional definitions, the term metropolitan area may be more appropriate.
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To develop and implement our approach, we face four main challenges. The first is to

avoid arbitrary thresholds. Official definitions typically aggregate arbitrarily-defined admin-

istrative units using a set of ad hoc rules mandating, among others, pre-defined urban cores,

minimum population thresholds, minimum distances between constructions, or minimum

shares or numbers of commuters, etc. While the use of thresholds is unavoidable for any

approach that seeks to discretise a continuous territory into urban and rural areas, the main

decisions that underlie our delineation are grounded either in maximisation criteria or in

standard statistical thresholds associated with our dartboard methodology. This is our first

innovation.

Our second challenge is to provide a statistically-grounded approach to compare different

delineations, such as delineations generated by different variants of our approach or our

preferred delineation and official ones. Whether some settlements form a single unified

urban area or two separate ones may depend on a few joining locations which may be close

to the threshold of being urban. Statistically, a perfectly reasonable approach may sometimes

delineate a single urban area in a region while, some other times, it may delineate two. Hence,

it is desirable to assess how much of the differences between two delineations is due to

sampling. Alternatively, the difference between one integrated urban area and two separate

nearby urban areas may reflects true methodological differences. Being able to assess the

importance of sampling is our second main innovation.

Our third challenge is more mundane. We need to retain computational feasibility. We

smooth a large number of buildings over a large number of pixels in a three-dimensional

space and repeat the exercise many times for counterfactual distributions. Doing this for both

our baseline approach and for a number of variants can be computationally overwhelming.

Comparing maps using the approach we develop below can be equally daunting from a

computational point of view. While demanding, our computations only require weeks,

not years, of computer time. Our methodology is thus able to satisfy this implementation

challenge.

Finally, we need appropriate high-resolution data describing the built environment of an

entire country. We also need detailed data to describe the natural environment to avoid

buildings being distributed in the middle of bodies of water or on the peak of the highest

mountains in our counterfactual distributions. Finally, the computation of population for the

urban areas that we delineate also requires high-resolution data for population. We gathered

these data for France.
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Our work contributes to the literature that seeks to define urban areas, and more generally

any form of spatial units. A long standing concern in the literature has been to provide a

rigourous definition of urban or metropolitan areas, first relying on a notion of central places

(Berry, 1960, Fox and Kumar, 1965), then integrated local labour markets (Berry, Lobley, Go-

heen, and Goldstein, 1969, Kanemoto and Kurima, 2005, Duranton, 2015), contiguous devel-

opment (Rozenfeld, Rybski, Gabaix, and Makse, 2011), or various forms of spatial interactions

measured, in particular, with land prices (Bode, 2008, Corvers, Hensen, and Bongaerts, 2009).

A second concern in the literature has been to develop robust approaches with minimal data

requirements so that urban areas can be delineated in a comparable manner over several

countries (Hall and Hay, 1980, Cheshire and Hay, 1989).

There has been a renewed interest in delineating urban areas in the recent past. Concerns

about urbanisation and cities in policy and development circles (e.g., caf Development Bank

of Latin America, 2017, Ferreyra and Roberts, 2018, for the World Bank) have led to a number

of attempts to delineate urban areas for comparative purpose using night-time lights from

satellite data (Ch, Martin, and Vargas, 2018, Davis, Dingel, and Miscio, 2018), a combination

of night- and day-time lights (Baragwanath-Vogel, Goldblatt, Hanson, and Khandelwal, 2018)

or gridded population data (Dijkstra, Florczyk, Freire, Kemper, and Pesaresi, 2018, Hender-

son, Kriticos, and Nigmatulina, 2018, Veneri, Boulant, Moreno-Monroy, and Royuela, 2018).

Comparability across countries imposes some limitations to the methodology being adopted

and the data being used. We can label these approaches as ‘wide but shallow’.

New sources of data, sometimes unique to particular countries, have given instead some

impetus for ‘deep but narrow’ approaches. Like Arribas-Bel, Garcia-Lopez, and Viladecans-

Marsal (2018), our work belongs to this second group. A different approach is taken by Galdo,

Li, and Rama (2018) who use a variety of data sources combined with human judgement for a

small subsample of locations in India. Human judgement is then mechanically replicated for

the whole of India. Bosker, Roberts, and Park (2018) propose another type of ‘deep but nar-

row’ approach. They use commuting data together with many other sources to look at both

difference in delineation of urban areas for Indonesia across a broad variety of approaches.

In the spirit of Briant, Combes, and Lafourcade (2010), they also explore the implications of

different delineations for the estimation of a number of urban relationships.

Our work is also related to a large literature in spatial statistics that relies on dartboard

counterfactuals. Much of that work is concerned with detecting spatial concentration from

the distribution of distances between its objects of interests such as establishments within
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the same industry (Duranton and Overman, 2005). Unfortunately, we cannot adapt this type

of approach to buildings since it would only tell us about whether a statistically significant

concentration of buildings is observed (and at which spatial scale) but not whether a specific

group of buildings in an area is spatially concentrated. There is a literature that attempts

to detect clusters of particular sectors of economic activity in adjacent areas. See Mori,

Nishikimi, and Smith (2014) for a recent development. A key difficulty in this literature

is to isolate a single or multiple clusters by grouping contiguous discrete regions. Our

approach uses instead ‘arbitrarily small’ spatial units and relies on detecting excess smoothed

density. While more demanding in terms of data, this allows us to treat geographic space as

a quasi-continuum and bypass the difficult computations associated with finding the best

cluster of regions or the best set of clusters. Billings and Johnson (2012) propose an approach

closer to ours but they use it to assess industrial specialisation instead of clusters.

In the remainder of this paper, section 2 presents our data and our preparatory data work.

Section 3 describes our methodology to delineate urban areas. Section 4 provides descriptive

evidence about our baseline delineation. Section 5 introduces our methodology to assess

the similarity between maps in the context of a comparison between our approach and the

delineation proposed by the French statistical institute. Section 6 makes a number of further

comparisons between maps arising from variants of our approach. Finally, section 7 proposes

some concluding thoughts.

2. Data

Our main source of data is the 2014 bd topo from the French Geographical Institute (ign).

This is a three-dimensional vectorial representation of the French territory with a one-metre

precision. This dataset is a key component of the large-scale geographical reference for the

country and it integrates a variety of pre-existing sources from ign, satellite images, and

the French cadastral information. It contains information on all buildings, including their

footprint, height, and use.

Table 1 reports some descriptive statistics for the 33,960,665 buildings in ’mainland’ France

(which includes a number of small nearby islands but not Corsica nor overseas territoires).

Unsurprisingly, there is much variation around the mean footprint of 153 m2 and the mean

volume of 1,057 m3 per building. The largest building in France is the Peugeot car assembly

line near Sochaux, which is several kilometre long, has footprint of nearly 0.6 km2, and an
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Table 1: Descriptive statistics on buildings

Min. 25th pctl Med. Mean 75th pctl 95th pctl 99th pctl Max. St. dev.

Surface (m2) 0.2 44 93 153 151 421 1,224 579,352 508
Volume (m3) 0.6 186 465 1,057 849 3,054 10,920 14,483,810 7,325

Notes: Authors’ calculations for 33,960,665 buildings from BD TOPO. We eliminated 5 buildings with
zero footprint in the data.

Table 2: Descriptive statistics for pixel building density (volume and footprint)

Built area Min. 25th pctl Med. 75th pctl 95th pctl 99th pctl Max. St. dev.

Raw (m2) 0 0 0 0 2,155 6,929 579,352 1,484
— (%) 0 0 0 0 5.39 17.3 1,448 3.71
— (m3) 0 0 0 0 12,417 49,149 14,483,810 27,982

Smoothed (m2) 0 69 171 343 1,377 4,192 23,104 808
— (%) 0 0.17 0.43 0.86 3.44 10.5 57.8 2.02
— (m3) 0 394 984 2032 9,011 32,801 456,697 8,056

Notes: Authors’ calculations from BD TOPO using 13,628,277 pixels. To keep buildings lumpy, we
attribute each building to the pixel that includes the largest share of its area. In extremely rare cases,
this leads to a builtup density that exceeds one.

average height of 25 metres. Overall, the footprint of all buildings in France represents 0.94%

of the area of mainland France with an average height of 6.90 metres, which corresponds to

about two stories.

Our approach requires the rasterisation of the information about actual buildings to work

with pixels. To keep the implementation computationally manageable, we divide the French

territory into pixels of 200 metres by 200 metres, which we designed to match those used by

the French national statistical institute (insee).4 We then compute the ‘building density’ of

each pixel. For our baseline approach, we use the volume of builtup space in each pixel to

measure building density. In a variant, we also use the footprint of all buildings in each pixel.

Table 2 reports descriptive statistics about building density. We note that 76% of pixels are

unbuilt. Even at the 95
th percentile of the distribution of pixel building footprints, only 5.4%

of a pixel is built up. It is only at the far-right tail of the distribution that we observe intensely

built pixels. At the 99
th percentile, a pixel is 17.3% built up. More generally, the distribution

of buildings across pixels is highly skewed with a Gini coefficient of 0.933 for builtup volume

4Pixel sizes are approximate because of tiny variations arising from the curvature of the earth. We also note
that insee only considers pixels with positive population whereas our grid is complete.
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and 0.918 for builtup area.

We illustrate our data work with the city of Grenoble for reasons that will become clear

below. Panel a of figure 1 shows a Google Earth capture of a section of central Grenoble,

which centres on its ‘scientific polygon’ located at the confluence of the Isère and Drac rivers.

The large round building at the northwestern end is the European Synchrotron Radiation

Facility, a particle accelerator. In panel b, we overlay the picture of panel a with the bd topo

data for buildings and pixel boundaries. We note from this panel that the overlap of buildings

between bd topo and Google Earth is near perfect.5 Panels c and d of the same figure repeat

the same exercise for a rural area on the outskirts of Grenoble. Again the building overlap

is extremely good. The exceptions are some isolated buildings in the bd topo which do not

appear in the Google Earth capture. As it turns out, these buildings exist but are hidden by

the canopy.

Our approach involves randomly redistributing buildings across pixels. Some pixels are

difficult or impossible to build upon because they are covered by a body of water, have an

extremely steep slope, or are located high in altitude. Information about bodies of water can

be retrieved from the bd carthage. Data about elevation is obtained from bd alti. From this

last source, we can also compute a measure of mean slope for each pixel. See Appendix A for

further details.

Among pixels which contain at least one building, we determine the 99
th percentile for

the share of the pixel covered by water (42.4%), the elevation (1,213 metres), and the average

slope (21.0%). We then consider all pixels with either a proportion of water or an elevation or

a slope above the 99
th percentile to be non-buildable.6 Overall, this led us to discard 8.2% of

all pixels and we end up with 12,506,581 buildable pixels. Figure 2 represents non-buildable

pixels according to these criteria taken separately or together. While high-elevation and

steep-sloped pixels are unsurprisingly concentrated around the Alps and the Pyrenees, pixel

covered with water are more evenly spread out but nonetheless follow expected patterns and

highlight major rivers and lakes.

5Most grey areas not highlighted in red in the peninsula are parking lots. A careful inspection reveals one
building close to the rail tracks that does not appear in the bd topo data. This building was torn down. A
Google Earth update posterior to the production of figure 1 shows this area as a construction site while Google
Streetviews, updated even more recently, shows some new constructions (as of June 2018).

6We do not consider maxima which impose little to no restrictions due to a small number of exceptional cases
such as high altitude observatories or tiny islands that were built up to host a jail or defense facilities.
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Figure 1: bd topo: Illustrations for Grenoble

Panel a: A part of central Grenoble Panel b: A part of central Grenoble
Google Earth capture Google Earth overlaid with buildings and pixels

Panel c: Rural area near Grenoble Panel d: Rural area near Grenoble
Google Earth capture Google Earth overlaid with buildings and pixels

To illustrate our treatment of the data, we return to the Grenoble region in figure 3.

Panel a overlays the data about buildings from bd topo for Greater Grenoble on top of a

Google Earth capture. Panel b represents our final data. The map shows both individual

buildings and building density of buildable pixels. It also shows empty buildable pixels

and non-buildable pixels covered by water, with steep slopes, or with high elevation. We

chose Grenoble for our illustration because it is the only city in France with population above

half a million surrounded by mountains and thus all three types of non-buildable pixels are

well-represented.

Finally, we use geolocalised population data from insee originally collected for fiscal

purposes. These data are readily available for the pixels we use.
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Figure 2: Non-buildable areas

Panel a:Water Panel b: Elevation

Panel c: Slope Panel d: Water, elevation and slope

Notes: Maps produced using bd carthage (water) and bd alti (elevation and slope).
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Figure 3: Non-buildable areas and data treatment: Illustrations for Grenoble

Panel a: Greater Grenoble, Google Earth overlaid with bd topo buildings

Panel b: Greater Grenoble, buildings (in black), builtup densities (shades of orange), buildable but
unbuilt areas (in white) and non-buildable areas (rivers in blue, steep slopes in green, and high
elevations in yellow).
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3. Delineating urban areas: methodology

Our analysis is conceptually simple. We first compute building density for each pixel as

described above from the volume of all buildings attached to the pixel. The second step is

to smooth building densities across pixels using a kernel. In the third step, we then generate

counterfactual building densities by randomly redistributing buildings across buildable pix-

els and smooth these counterfactual building densities just like we smooth the actual density.

In the fourth step, we consider that a pixel is urban if its actual smoothed density is above

the 95
th percentile of the distribution of counterfactual smoothed densities computed for that

pixel. Urban areas are finally defined as sets of contiguous urban pixels.

As it turns out, this process delineates several thousand urban areas. To avoid having to

shorten this long list using an arbitrary population threshold, we also define urban cores.

We do so by replicating our analysis a second time for urban pixels only. Our second set of

counterfactuals randomly redistributes all buildings in urban pixels across all urban pixels.

We then consider that a pixel is part of an urban core if its smoothed density is above the

95
th percentile of the distribution of smoothed densities computed from this second set of

counterfactuals. Finally, this procedure allows us to distinguish between urban areas that

contain one or more cores from those that do not have one.

We now describe some of these steps in greater details.

Smoothing building density

After computing building density for each pixel directly from the data as described in section

2, we smooth this density across pixels.

Smoothed building density for pixel j with coordinates (xj,yj) is given by:

ẑj = ∑
i

Kh(dij)zi , (1)

where zi is the building density for pixel i, dij =
√(

xj − xi
)2

+
(
yj − yi

)2 is the distance

between pixels i and j, and Kh is a kernel with bandwidth h.

We need to choose a type of kernel and a bandwidth h. Our choice of kernel is dictated

by computational reasons. To avoid using too many (all) pixels for smoothing, we choose a

bisquare kernel verifying:

Kh
(
dij
)
=

[
1−

(
dij

h

)2
]2

1{dij < h} ,
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such that weights are zero after a given distance h. This choice of kernel allows us to split

France into partially overlapping tiles of 100 kilometres by a 100 kilometres. In practice, our

kernel allows us to drastically reduce the size of our computations since the building density

of each pixel is smoothed over hundreds of other pixels instead of millions in the case of a

Gaussian kernel.7 At the same time, we retain a sufficient overlap between our tiles to smooth

consistently and avoid any loss of mass from smoothing across tiles.

For our choice of bandwidth, we note the following tradeoff. Taking a large bandwidth

will lead to over-smoothed data and make it difficult to identify differences between more or

less intensely builtup areas. Taking a small bandwidth will instead lead to under-smoothed

data and make it hard to define homogeneous areas. To decide on a bandwidth, we use

the following generalised cross-validation criterion. We first compute the building density

of each pixel net of its own contribution. That is, we amend the computation described by

equation (1) to exclude the pixel at hand from the summation: ẑj = ∑i 6=j Kh(dij)zi. Next,

for each bandwidth h and each tile, we measure the fit between actual building density and

smoothed building density (excluding own pixel contribution) using a pseudo-R2. Then, we

determine the optimal bandwidth for each tile as the one that maximises the fit between

actual and smoothed density. Finally, we take the median optimal bandwidth across all

tiles as our preferred value.8 Applying this procedure, we end up with a bandwidth of 1.97

kilometres.9 Smoothing obviously reduces the skew of the distribution of building densities.

After smoothing only 3.3% of pixels are ‘unbuilt’ instead of 76% for raw density. Conversely,

the pixel at the 99
th percentile of the smoothed density is 10.5% builtup instead of 17.3% in

raw data. As a result of smoothing, the Gini coefficient is 0.71 for smoothed builtup density

in volume instead of 0.93 for raw density.

Counterfactual building densities

Next, we generate counterfactual building densities for the entire country. To do this, we

randomly redistribute all existing buildings across all buildable pixels with equal probability.

This redistribution of all buildings without replacement is equivalent to a full ‘reshuffling

7In addition, each tile can be processed independently (and in parallel).
8We consider tiles separately and take the median and not the average because the optimal bandwidth can

be fairly large in some (mountainous) tiles with low building density. In areas with very few buildings, it is best
to fully smooth them out to predict a landscape mostly devoid of buildings on most pixels.

9The optimal bandwidth when using building footprint is 1.80 kilometres.
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of the deck’. We repeat this procedure to generate one hundred counterfactual building

densities for the country.

For each counterfactual distribution of buildings and for each pixel, we compute its coun-

terfactual building density just like we computed its actual building density above. We then

smooth each counterfactual building density across pixels like we smoothed actual building

density. We end up with one hundred smoothed counterfactual building densities.

Detecting excess building density

For each pixel, we can now measure its actual smoothed building density relative to its

distribution of counterfactual smoothed building densities. We call ‘urban’, a pixel for

which the actual smoothed building density is above the 95
th percentile of its distribution of

counterfactual smoothed building densities.10 We refer to the other pixels as ‘rural’. Finally,

we define an ‘urban area’ as a set of contiguous urban pixels.11

We note that we compute a different distribution of counterfactual building densities for

each pixel. If all pixels were buildable and in absence of geographic discontinuities and

obstacles, we would be able to compute the distribution of counterfactual building densities

for a single representative pixel and use this distribution for all pixels. With buildings of the

same size, we could even use a normal approximation and apply a formula to compute the

density threshold for a pixel to be defined as urban.12 However, the presence of non-buildable

pixels and the irregular geography of the country make such shortcuts problematic. Table

3 documents how the 75
th, 95

th, and 99
th percentiles of the counterfactual distribution of

building densities vary across pixels and reports various moments for these thresholds.

For instance, the 95
th percentile of the counterfactual distribution of building densities to

be designated as urban is 3,959m3 for the median pixel, whereas the 25
th percentile is at

3,706 m3 and the 75
th percentile is at 4,228 m3. Put differently, these are percentiles of the

distributions of the 95
th percentile of (the distributions of) counterfactual building densities,

that is, ‘percentiles of percentiles’. While modest at the 95
th percentile used to classify a

10We use the 95
th percentile for our baseline results but we also consider alternative thresholds at the 75

th and
99

th percentiles in supplementary results.
11We verify that no urban area is divided because of a river.
12We can think of building density as the outcome of a binomial distribution which we can approximate by

a normal distribution given the large number of draws. However, such normal approximation is unlikely to
work well in any case given the skew in the distribution of building sizes and the fact that the probability of
receiving any given building is equal to the inverse number of pixels and is thus close to zero. For the smoothed
distribution of buildings, this formula will be fairly involved since it needs to account for smoothing across
pixels.

12



pixel as urban, this variation should not be ignored. We show below that it makes a sizeable

difference to the results in some cases.

In part, this variation in the thresholds across pixels arises from our sampling of a finite

number of counterfactuals. However, figure 4 shows that this variation also, and perhaps

mainly, reflects the uneven geography of buildable pixels in France. The 95
th percentile of the

distribution of counterfactual building densities is lower for pixels that are surrounded by

non-buildable pixels from which they receive nothing from the smoothing of counterfactual

distributions. This 95
th percentile is even equal to zero for non-buildable pixels for which the

distance to the nearest buildable pixels is more than the smoothing bandwidth and thus can

never receive a strictly positive building density.

Although relatively small, the differences across the columns of table 3 cannot be ne-

glected. Thus, we must work with pixel-specific percentiles computed from a full set of

counterfactual distributions of buildings instead of computing statistics for a ‘representative’

pixel or even using a normal approximation.

We can also draw an interesting conclusion from a comparison across rows in table 3.

While the 75
th, 95

th, and 99
th percentiles of the counterfactual distribution of building densi-

ties obviously differ, the differences between them are also modest relative to the differences

observed in the actual distribution. For the median pixel, the 75
th percentile of the coun-

terfactual distribution of building densities is at 3,031 m3 (or 1.09% of the pixel built when

measuring density with building footprint), the 95
th percentile is at 3,959 m3 (or 1.30% built),

and the 99
th percentile is at 5,205 m3 (or 1.54% built). Table 2 reports that for smoothed

building density the bottom quartile is 394 m3 (or 0.17% built) while building density for

a pixel at the 95% percentile is 9,011 m3 (or 3.44% built). That is, the former pixel will be

classified as rural and the latter will be classified as urban, regardless of the threshold we

use, 75
th, 95

th, or 99
th percentile. The extreme nature of the distribution of building densities

documented in table 2 implies that our delineations of urban areas will be only moderately

sensitive to the exact threshold we use.

To gain further insight about this important point, figure 5 plots the cumulative distribu-

tion functions of smoothed and unsmoothed pixel building densities (measured in m3 per

pixel). Consistent with the very uneven distribution of buildings across pixels in France,

these cumulative distribution functions have three starkly different regions. For low building

densities, the cumulative distribution function is extremely steep. This reflects the facts that
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Table 3: Descriptive statistics on smoothed building density thresholds

Pixel Min 25
th pctl Med 75

th pctl 95
th pctl 99

th pctl Max Std. dev.
distribution
Density threshold to be defined as urban:
Q75 (m2) 0 427 437 445 456 465 613 71

Q95 (m2) 0 499 521 542 580 615 949 87

Q99 (m2) 0 568 615 676 818 1,002 6,510 140

Q75 (%) 0 1.07 1.09 1.11 1.14 1.41 1.53 0.18

Q95 (%) 0 1.25 1.30 1.36 1.45 1.54 2.37 0.21

Q99 (%) 0 1.42 1.54 1.69 2.05 2.51 16.2 0.35

Q75 (m3) 0 2,932 3,031 3,109 3,222 3,314 4,363 701

Q95 (m3) 0 3,706 3,959 4,228 4,722 5,190 9,337 976

Q99 (m3) 0 4,556 5,205 6,098 8,337 11,409 152,606 2,003

Notes: Authors’ calculations from bd topo from 13,628,277 pixels. This table reports various moments
of the distribution of pixels for three urban thresholds (75

th, 95
th, and 99

th percentiles). From row 8,
we can read that a pixel at the bottom quartile in the distribution of all pixels has its 95

th percentile of
counterfactual building densities at 3,706 m3 (column 2). The corresponding 95

th percentile threshold
for the top quartile is 4,228 m3.

Figure 4: 95
th percentile of the distribution of counterfactual smoothed building densities in France

Notes: Authors’ calculations. Building density is in m3 per pixel.
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Figure 5: Distribution of building densities

Notes: Authors’ calculations. Pixel building density (in m3) on the horizontal axis and cumulative
distribution function on the vertical axis. The dotted curve represents raw building density and the
plain curve represents smoothed building density.

a large majority pixels are empty of buildings (for unsmoothed building density) or close to

empty (for smoothed building density). For high building densities, the cumulative distribu-

tion function is instead nearly horizontal which reflects the extreme skew of the distribution

of buildings across pixels in the upper tail. In between these two main regions, there is a

small intermediate region where the cumulative distribution function is very concave as it

transitions from near-vertical to near-horizontal.

On the horizontal axis of figure 5, we also plot the 75
th, 95

th, and 99
th percentile of the

distribution of smoothed densities (for the median pixel as per table 3). As could be expected,

these thresholds are all in the intermediate region of the cumulative distribution function of

pixel building densities. The 75
th percentile corresponds to 84% of all pixels being classified

as rural while the corresponding figures are 88% and 91% for the 95
th and 99

th percentiles,

respectively.13 Although these figures obviously differ, their range is limited. Taking the 99
th

percentile instead of the 95
th leads to only a three percentage point difference in the share of

13These figures are only rough approximations. As made clear above, each pixel requires to be compared to
its own threshold at any level of statistical confidence.
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urban pixels.

We draw some important lessons from figure 5. First, the steep part of the cumulative

distribution function of pixel building densities indicates a large majority of ‘obviously’ rural

pixels while the flatter part indicates a small minority of ‘obviously’ urban pixels. Given

our purpose, this is good news since we expect all reasonable thresholds to fall into the

intermediate region of the cumulative distribution function of pixel building density and

agree on ‘obviously’ urban and ‘obviously’ rural pixels.

However, there is a middle class of ‘marginally urban’ pixels in between ‘obviously’ rural

and ‘obviously urban’ pixels. While, the cumulative distribution function of pixel building

density in figure 5 is very concave, it does not exhibit any obvious kink. In the absence of

such kink, any binary classification into urban and rural pixels will thus have to wrestle with

how to treat this middle class as it needs to define a density threshold. Put differently, the

existence of ‘marginally urban’ pixels that are intrinsically hard to classify implies that small

methodological differences are expected to generate different delineations.

Pixels that belong to this middle class of marginally urban pixels are found in smaller set-

tlements or at the periphery of larger settlement since we observe a slowly declining building

density away from city centres (Combes, Duranton, and Gobillon, 2019). This is not specific to

the geography of French cities. We thus expect this middle class of marginally urban pixels to

be found everywhere. More concretely, this implies that disagreements between delineations

are expected to concern the periphery of urban areas and smaller settlements.

Three further remarks are in order. First, this existence of a middle class of marginally

urban pixels may be read as a call to define richer classifications with more categories. While

such classifications may be needed for some purposes, this would not solve the issue at hand.

Two kinks in the cumulative distribution function of pixel building density are needed to

cleanly define this middle class. Since there is no single kink in the cumulative distribution

function of pixel building density that allows us to neatly separate urban from rural pixels,

there will not be two. Second, this middle class of marginally urban pixels is small relative to

‘obviously rural’ pixels but seems large relative ‘obviously urban’ pixels. Figure 5 suggests

that perhaps 80% of pixels are obviously rural and maybe 5 to 10% are obviously urban. This

leaves 10 to 15% of pixels in the middle class of marginally urban pixels. Third, while the

set of marginally urban pixels may be geographically larger than the set of ‘obviously urban’

pixels, it may host only a small fraction of the population relative to ‘obviously urban’ pixels.

Hence while delineations may differ widely in terms of the fraction of pixels they deem to be
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urban, the differences will be relatively smaller for population.

Urban cores

Before turning to our results, we note the following. The approach described so far will lead

to the delineation of a large number of urban areas, ranging from major metropolitan areas

hosting a million or more buildings to villages with no more than a few hundred buildings.

This result simply reflects the fact that most buildings are much closer to each other than a

random assignment would predict. Recall that for the ‘median’ pixel in table 3 it only takes

a smoothed building density of 1.30%, corresponding to a builtup footprint of 521 m2, or a

building volume of 3,959 m3 to qualify as urban.

While we think it is useful to delineate all statistically significant peaks of building density

and be able to study them, for many applications ranging from the study of the scarcity of

land for housing to the agglomeration of production establishments in the same location(s),

we would like to focus on larger urban areas. To avoid arbitrary minimum size thresholds

defined in terms of number of buildings or population, we propose the following approach.

After applying the methodology described above and classifying all pixels in the country

into urban and rural, we discard rural pixels and their buildings. We then repeat the same

dartboard approach as previously and generate one hundred counterfactual redistributions

of all buildings located in an urban pixel across all buildable urban pixels. After smoothing as

previously, we say that a given pixel is part of an ‘urban core’ if its observed density is above

the 95
th percentile of the distribution of counterfactual densities computed for that pixel.

Note that, to define urban cores, we redistribute urban buildings across all urban areas

rather than only within their own urban area. While counterfactuals generated from redis-

tributions within urban areas are useful to define centres as significant peaks of building

density, they are not useful for our purpose. Even tiny urban areas may have statistically sig-

nificant centres despite low building density. On the other hand, a large homogeneously-built

urban area may lack a statistically significant peak. Instead, we want to define statistically

significant peaks of building densities that can be compared across all urban areas.

4. An anatomy of French urban areas

We now describe more fully the output of our baseline delineation approach. Our approach

defines 7,223 urban areas that represents 11 % of all pixels (or 12 % of all buildable pixels)
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Table 4: Descriptive statistics on pixel built area

Type of urban area Min. 25th Med. Mean 75th 95th Max.

Panel A: All urban areas (7,223)
Population 0 271 781 6,810 1,930 10,562 10,932,880
Area 0.04 0.92 2.7 8.9 6 23 3,616
Population density 0 208 331 382 489 892 3,825

Panel B: Urban areas with a core (695)
Population 0 5,674 10,563 60,127 26,148 176,300 10,932,880
Area 0.04 14 21 60 42 197 3,616
Population density 0 368 504 553 687 1,098 3,023

Panel C: Urban areas without a core (6,528)
Population 0 233 671 1,134 1,437 3,872 22,746
Area 0.04 0.76 2.3 3.4 4.7 10 61
Density 0 197 314 364 465 856 3,825

Panel D: INSEE urban units (2,231)
Population 606 3,300 4,817 22,493 8,846 57,809 10,730,549
Area 1.5 20 33 57 140 346 2,854
Population density 7 116 183 250 286 679 3,760

Notes: Population is from the 2013 census; area in km2; population density is the number of
inhabitants per km2.

in mainland France. Total urban area population is 49,188,740 or 75% of the population of

mainland France. Descriptive statistics for all urban areas are reported in panel a of table

4. Because our approach defines a large number of urban areas, they tend to be small in

their large majority. Population at the 95
th percentile of the distribution of urban areas is

still only 10,562.14 While our approach classifies only a small minority of parcels as urban,

it also appears that it only takes a modest concentration of buildings to generate statistically

significant excess builtup density.15

Panels b and c of table 4 report similar descriptive statistics but distinguish between urban

areas with a core and those without. The contrast between the two groups of urban areas is

striking. There are only 695 urban areas with a core vs. 6,528 urban areas without a core.

However, urban areas with a core have a much higher population. They host on average

60,127 inhabitants instead of 1,134 for urban areas without a core. Overall, urban areas with a

14Our approach delineates a small number of urban areas without residents. These are mainly isolated
airports and nuclear power plants. Although devoid of residents that call these ‘urban areas’ home during
the nights, some of these buildings or groups of buildings host lots of workers and passengers during the day.

15
47.9% of 36,248 French municipalities in mainland France have at leat one urban pixel.
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core host 64 % of the French population and occupy 7.7% of the French metropolitan territory,

while urban areas without a core account for 4.1 % of the French metropolitan territory and

11 % of the French population. Our distinction between urban areas with and without a core

does a particularly good job at distinguishing the upper tail of French urban areas from the

others.

Figure 6 is a map of the urban areas delineated by our approach. Unsurprisingly, the

largest French cities are all clearly apparent. We also observe a high density of urban pixels

along the coasts, and, perhaps more surprisingly, along major rivers. The third main feature

of this map is that urban pixels are much less prevalent in the mountainous areas of the

country.

The four panels of figure 7 represent close-ups on the regions of Paris, Lille, Marseille, and

Grenoble.16 Starting with Paris in panel a, the urban area of Paris looks highly monocentric

and centred on the municipality of Paris. The urban area branches out in four directions

following the river Seine and its two main tributaries, Oise and Marne. There are also many

small urban areas that surround the urban area of Paris. We finally note that the ‘core’ area

of Paris covers a large majority of its urban area. Not only is building density in the urban

area of Paris significantly higher than that in the rest of the country but it is also significantly

higher than that in the rest of urban France. This feature is also true for all large French urban

areas.

The Lille urban area, represented in panel b of figure 7, is morphologically extremely

different from Paris. It aggregates several large municipalities including Lille itself, Roubaix,

Tourcoing, Douai, Lens, Valenciennes or Arras (not to mention a Belgian part for which we do

not have data). These municipalities are tightly integrated and, with the exception of Arras

and Valenciennes, they also belong to the same contiguous core.

The Marseille region in panel c is a good example of a difficult natural geography with

the Mediterranean Sea to the South, a large lagoon to its west and a mountain immediately

north of the city. The core areas are centered around Marseille itself, Vitrolles next to the Berre

lagoon, and Aix-en-Provence. Several relatively large distinct urban areas exist in the same

region such as Avignon and Salon-de-Provence to the north or Toulon to the east. Finally,

16Paris is the largest urban area in France. Lille and Marseille are also among the largest four. Grenoble is a
smaller city which we used above to illustrate our treatment of the data. As made clear below, these four cities
also differ in interesting ways for our purpose.
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Figure 6: Urban areas in France

Notes: Urban areas in light blue (light grey). Urban cores in dark blue (dark grey).
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Figure 7: Urban areas in four regions

Panel a: Paris and the Ile-de-France region Panel b: Lille and the North East

Panel c: Marseille and the South East Panel d: Grenoble and the Alpine region

Notes: Urban areas in yellow (light grey). Urban cores in red (dark grey).

Grenoble in panel d is much more compact as it is surrounded by mountains. The urban

area of Grenoble is also Y-shaped by its two rivers, the Isère and the Drac. We conclude that

despite extremely different geographies and underlying morphologies, our approach is able

to robustly isolate large urban areas.

5. Comparing our delineation with INSEE’s urban units

In this section, we compare the outcome of our delineation approach to the official delineation

performed by the French statistical institute (insee). We also use this comparison to introduce
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our formal metrics and tests to compare delineations.

INSEE’s urban units and a first informal comparison

insee provides a delineation of urban areas which, like our approach, relies on a morpho-

logical zoning. insee ‘urban units’ (unités urbaines) are contiguous aggregates of French

municipalities characterised by an aggregate population of more than 2,000 inhabitants living

in a continuously builtup area with no more than 200 metres between any two buildings.17

Panel d of table 4 above provides some descriptive statistics for insee urban units. We

first note that there are 2,231 insee urban units while our approach delineates 7,223 urban

areas. The much greater number of urban areas in our delineation occurs because even fairly

small settlements can exhibit statistically significant building density, whereas insee imposes

a lower bound of 2,000 inhabitants.

Then, the comparison between panels a and d of table 4 further shows that insee urban

units have a much higher population. insee urban units also have a greater physical extent.

This difference in physical extent is even greater than the difference in population so that the

population density of insee urban units is a third lower relative to our urban areas at the

mean. Altogether and despite their much smaller number, the 2,231 insee urban units cover

22% of the French territory instead of 11% for urban areas in our baseline delineation.

When we focus the comparison on the 695 urban areas with a core, we find that, relative to

insee urban units, our approach selects larger settlements in terms of population though their

physical extent remains smaller for most quantiles. This is a general difference between insee

urban units and our urban areas. Even for the same cities our delineation is less physically

expansive. To illustrate this further, figure 8 in Appendix C duplicates figure 7 above for

the same four regions of Paris, Lille, Marseille, and Grenoble but also represents insee urban

units. Despite the different morphologies of these urban areas, everywhere we can observe

the greater physical extent of insee urban units.

17
insee also defines functional metropolitan areas using commuting patterns, which it names urban areas

(aires urbaines) instead of metropolitan areas. These areas are built around a core urban unit with at least 10,000

workers and iteratively aggregate other municipalities provided they send at least 40% of their workers to the
core or to another municipality aggregated to the core. References to alternative approaches are given in the
introduction.
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Urban Jaccard indices

We now introduce indices to assess the extent to which spatial units on two given maps co-

incide. The indices essentially measure the intersection (or overlap) of urban pixels between

two maps relative to their union. These indices are variants of Jaccard indices (Jaccard, 1902),

which we also refer to as similarity indices.

We start with Jaccard indices that measure the extent to which urban pixels overlap on

two different maps. We refer to these indices as urban Jaccard similarity. Denote the set of

urban pixels on map j ∈ {1,2} as U j and its cardinal as
∣∣U j
∣∣. The urban Jaccard similarity is

computed as:

J12
U ≡

∣∣U1 ∩U2
∣∣

|U1 ∪U2|
. (2)

This index measures the proportion of pixels that are urban in the two maps among pixels

that are urban on either of the two maps. It varies between zero, when there is no intersection

among urban pixels on the two maps, and one, when all urban pixels on the two maps are

confounded. Note that the calculation of urban Jaccard similarity excludes pixels that are

rural in both maps.18

The index described in equation (2) is extremely flexible since it can be used to compare

any two binary classifications. In particular, we can assess the similarity between the official

insee map of urban units and either all urban pixels or only to urban pixels that belong to

an urban area with a core. In the first case with all urban pixels, we find JU = 0.319. If we

restrict the comparison of insee urban units to pixels that belong to the 695 urban areas with

a core in our delineation, we compute a Jaccard similarity of JU = 0.298.19

Two sources of discrepancy explain this imperfect overlap. First, recall that our approach

delineates many more urban areas than there are insee urban units when we consider all

urban areas and fewer when we consider only urban areas with a core. Overall, the value of

the urban Jaccard similarity decreases marginally when we restrict ourselves to urban areas

with a core. This restriction eliminates both many small areas that are urban with our delin-

18After defining Rj the set of rural pixels on map j, we could instead measure the overlap as (
∣∣U1 ∩U2

∣∣ +∣∣R1 ∩ R2
∣∣)/N where N is the total number of pixels on each map. It is easy to see that when there is no overlap

among urban pixels between the two maps, this index is equal to (N −
∣∣U1

∣∣− ∣∣U2
∣∣)/N. When

∣∣U1
∣∣ and

∣∣U2
∣∣

are both small, the index is close to one because of the strong overlap between rural pixels. We prefer to use a
Jaccard index defined by equation (2) which is more easily interpretable for our purpose.

19When comparing with urban pixels that belong to an urban area with a core we use a similar restriction in
the insee delineation and only consider 849 urban units with a core, as defined by insee.
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eation but are rural according to insee as well as many smaller insee urban units.20 Second,

as already noted, insee urban units are physically much larger than the ones delineated with

our approach.

As discussed above, an imperfect overlap between two maps leading to a Jaccard similarity

below one may have two different causes. Methodological differences in the approach used

to build these two maps provide a first obvious reason. As made clear above, our delineation

approach differs from insee’s. However, sampling could also explain differences between

our map and insee’s map of urban units. Two different sets of counterfactuals to generate

our delineation will only lead to the same results asymptotically. If many pixels are at the

margin of being urban, a Jaccard comparison using one map produced from one set of

100 counterfactuals for our delineation may be subject to sampling variation. To assess the

importance of sampling variation, we propose to construct confidence intervals for the index

proposed in equation (2).

We are in a situation where we wish to compare a map generated with the dartboard

approach proposed here and the official map of urban units proposed by insee. Because

there is no statistical variation for this second map (or if there is some, we do not know it),

we take this second map as exogenously given and we perform a one-sided test based on the

variation of the first map generated by our dartboard approach.

This test consists in the following. We replicate the delineation approach described in

section 3 100 times, which requires 100× 100 = 10,000 counterfactuals. This generates 100

delineations that classify each pixel as either rural or urban. For each delineation, we can then

compute the index described by equation (2). Finally, we take as reference the median value

of the Jaccard similarity and compute a confidence interval around this value. In summary,

this procedure amounts to bootstrapping our index relying on the same dartboard approach.

We find extremely small standard errors around the Jaccard indices that we estimate. For

all urban pixels, we compute a standard error slightly below 0.0001 around our index JU =

0.319. For a single replication, the largest deviation relative to our reported value for this

index is only about 0.2% and thus only affects its third decimal. For all urban pixels that

belong to an urban area with a core, the standard error for our index JU = 0.298 is again

small, slightly above 0.0001.

20When we consider only urban pixels that belong to an urban area with a core, we reduce the numerator of
the Jaccard index in expression (2). We also reduce the denominator since we no longer consider some urban
pixels that are classified as part of an urban unit by insee. This second effect slightly dominates the first so that
the Jaccard similarity is marginally lower when we restrict ourselves to urban areas with a core.
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To explain such small standard errors, a first possibility could be that our classification of

individual pixels is very stable and not subject to sampling variation. While the random

distribution of nearly 34 million buildings across nearly 14 million pixels leads to fairly

large standard errors for the 95
th percentile of 100 draws for each individual pixel, most

of that variation may wash out through smoothing across neighbouring pixels. Another

possible explanation is that, despite smoothing, there may be a lot of variation at the level

of individual pixels with our approach. However, this variation may essentially cancel out

through the law of large numbers when computing the numerator of Jaccard indices.21

To distinguish between these two explanations, we assess the importance of sampling

for our delineation by computing the Jaccard similarity between pairs of our baseline delin-

eations, each obtained from 100 sets of counterfactual distributions. We find that the resulting

Jaccard similarity is always above 0.996 which indicates that our classification of individual

pixels is stable.

These small standard errors are reassuring. Recall there is no obvious kink or discontinuity

in the distribution of building density per pixel that would lead to a natural threshold to

classify pixels as urban.22 These is thus a sizeable proportion of ‘marginally urban’ pixels.

However, the variation caused by sampling is much smaller. We can thus achieve preci-

sion in our delineations despite some ambiguity with respect to what may be classified as

urban in the periphery of cities or with smaller settlements. This said, as we show below,

this ambiguity caused by marginally urban pixels implies that delineations are sensitive to

methodological choices and the exact criteria being used despite being robust to sampling.

In addition, these small standard errors also indicate that 100 sets of counterfactuals are

generally enough to achieve a high level of precision in our computations since the gains in

precision from using 100 times as many counterfactuals are minimal while the computational

costs of doing so are high.

25



Table 5: Descriptive statistics on pixel built area

Rank Urban Population Density INSEE urban INSEE Jaccard by
area unit population rank urban area

1 Paris 10,932,881 3,023 10,730,549 1 0.657
2 Lille 2,197,967 1,170 1,037,834 4 0.226
3 Lyon 1,777,944 1,115 1,627,937 2 0.485
4 Marseille 1,442,734 1,562 1,570,325 3 0.440
5 Nice 1,024,679 1,587 956,189 6 0.654
6 Toulouse 875,595 990 938,284 5 0.652
7 Bordeaux 831,453 1,004 893,384 7 0.466
8 Strasbourg 692,009 857 451,522 13 0.223
9 Nantes 587,495 1,136 628,718 8 0.534

10 Grenoble 520,445 1,234 518,495 10 0.483
11 Metz 498,052 873 292,007 22 0.319
12 Rouen 495,561 1,097 475,182 12 0.122
13 Toulon 486,616 1,524 570,591 9 0.354
14 Montpellier 460,796 1,216 421,031 15 0.493
15 Avignon 405,798 546 457,857 14 0.439
16 Mulhouse 344,118 882 252,001 26 0.405
17 Perpignan 342,646 656 201,282 33 0.325
18 Nancy 336,196 1,158 288,742 21 0.396
19 Saint-Etienne 329,258 1,107 379,791 16 0.334
20 Rennes 299,315 1,175 331,661 20 0.475

Notes: Population is from the 2013 census; area in km2; density is the number of inhabitants per km2.
Jaccard similarity by urban area as per equation (5)

City Jaccard indices

In table 5 we compare the population and ranking of the 20 largest urban areas with their

corresponding insee urban units. While we postpone the discussion of the last column of

this table, we can note that despite some differences in rankings, 16 of our top 20 urban areas

have their corresponding urban unit in insee’s top 20 ranking and the population counts are

surprisingly close for a large majority of urban areas. The main exception is the urban area of

Lille. With its population of 2.2 million, this is unambiguously the second largest urban area

21In particular, pixels which are at the margin of being urban may be classified by our approach as urban or
rural depending on sampling, while insee’s map mainly classifies these ‘marginal’ pixels as urban. Hence, at the
numerator of urban Jaccard indices, the cardinal of the subset of insee’s urban pixels that we also classifies as
urban may not be sensitive to sampling even though the exact subset is. In this case, note that the denominator
is also essentially constant.

22This is illustrated by figure 5 which shows a smooth cumulative distribution function for pixel building
density. While the 95

th percentile of counterfactual building distribution for the median pixels reassuringly falls
into its most concave region, there is no obvious kink that would provide a natural threshold to define which
pixels are urban.
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in France in our baseline delineation. According to insee, the urban unit of Lille ranks fourth

with only about 1 million inhabitants. This gap is consistent with our discussion of panel

b of figure 7 above. Our approach evidences a large continuous builtup area around Lille.

Instead, insee delineates four separate urban units. We also observe some differences for

Strasbourg, Metz and a number of smaller urban areas for which we systematically obtain a

greater population. This occurs because our approach often aggregates together areas that the

insee delineation treats as separate urban units. Hence, even though, our approach is more

conservative at the extensive margin relative to insee’s delineation, it also has a tendency to

aggregate more at the intensive margin.

More generally, while it is informative to measure to what extent the urban pixels on

two different maps overlap, it is also important to measure to what extent the spatial units

delineated on two different maps coincide. To understand the difference between these two

notions, consider the example of the urban area of Lille. As represented in panel b of figure

7, our approach delineates a large integrated urban area. According to insee’s delineation,

the urban unit of Lille is much smaller and is only one urban unit in a group of several

independent urban units located close to each other. Although many pixels are ‘urban’

according to both our delineation and insee’s, they are partitioned differently. We want to be

able to take this into account when making comparisons between maps.

To do this, we must take a stand regarding the ‘identity’ of the spatial units across maps.

To return to the example of the region of Lille in panel b of figure 7, our approach delineates a

large urban area that we naturally, but perhaps loosely at this stage, call “Lille”. In the same

region, insee delineates several urban units, one of which it calls “Lille”. While we want

to measure the overlap between our Lille and insee’s Lille, how do we know these spatial

units are appropriately named? Our delineation of the urban area Lille also includes the city

of Valenciennes. Had we named our urban area “Valenciennes” instead of Lille, we would

want to compute the overlap of our large urban area (now called Valenciennes) with the

“Valenciennes” urban unit delineated by insee (an urban unit distinct from Lille and much

smaller than Lille in the insee delineation). Put differently, we need to know when a spatial

unit is the ‘same’ across two maps which delineate them differently.

To define the identity of the urban areas delineated by our approach, we proceed as follow.

We name each urban area after the municipality with the largest population it overlaps
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with.23 Hence, we name the large urban area at the extreme northern end of the country

“Lille” because Lille is, among all municipalities with which this urban area overlaps, the

municipality with the largest population (and it contains its centroid). This approach is

consistent with the naming convention of urban units by insee, which always uses the

municipality with the greatest population either as the unique name or as the first name

for its urban units.

More formally, for map j ∈ {1,2}, denote by U j
k the subset of pixels in urban area k ∈

{1,...,K}, where K is the number of different spatial units on the two maps. This quantity K

can be obtained by summing the number of spatial units on the first map and the number

of spatial units on the second map that are not defined on the first map. If spatial unit k is

absent from map j, obviously U j
k = ∅. Then, it is also the case that

{
U j

1,...,U j
K

}
is a partition

of U j. We can now define the city Jaccard (similarity) index:

JC =
∑k∈K

∣∣U1
k ∩U2

k

∣∣
|U1 ∪U2|

, (3)

after dropping the superindex from variables that compare map 1 and map 2 to lighten the

notations, that is noting this index JC instead of J12
C .

The key difference between the urban Jaccard similarity defined by equation (2) and the

city Jaccard similarity defined by equation (3) is the following. The urban Jaccard similarity

‘counts’ at the numerator all pixels that are urban in both maps while the city Jaccard simi-

larity only counts them when they are part of the same urban area. Hence, JC ≤ JU. More

specifically, we can readily observe from equations (2) and (3) that:

JC ≡ JU × P , where P ≡ ∑k∈K
∣∣U1

k ∩U2
k

∣∣
|U1 ∩U2|

. (4)

The city Jaccard similarity, which measures the overlap between urban pixels that belong to

same urban area(s), can thus be expressed as the product of the urban Jaccard index that

measures the overlap between urban pixels and the ratio P of the sum of the overlap by

spatial units to the overall overlap. This ratio can be interpreted as a measure of the quality

of the propensity of the two maps to aggregate urban pixels into the same units. Put slightly

differently, our narrow measure of overlap, the city Jaccard index JC, is equal to the product

of our broad measure of overlap, the urban Jaccard index JU, and an overlap quality factor,

P.
23In theory, we need a criterion for breaking ties in case two or more urban areas share the same largest

municipality. In practice, this never happens. These largest municipalities of urban areas are either fully
included into their urban area or only partially included with a rural remainder.
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Note that we can also define a Jaccard index for each individual urban area k:

Jk ≡
∣∣U1

k ∩U2
k

∣∣∣∣U1
k ∪U2

k

∣∣ , (5)

with Jk = 0 if urban area k is missing from either map. We can now show that the city Jaccard

similarity in equation (3) can be decomposed into the weighted sum of individual Jaccard

similarity Jk calculated for every spatial unit 1,...K. From equations (3) and (5), we can write:

JC = ∑
k∈K

sk Jk , where sk ≡
∣∣U1

k ∪U2
k

∣∣
|U1 ∪U2|

. (6)

Hence, the city Jaccard similarity is the weighted sum of the individual Jaccard similarity of

every spatial unit where the weights are the share of pixels sk that belong to this spatial unit

in either map relative to the number of urban pixels across both maps.

All these indices can be bootstrapped following the approached described above for the

bootstrapping of urban Jaccard indices.

For the comparison between the official insee map of 2,231 urban units and our preferred

delineation with all urban pixels of 7,223 urban areas, we obtain JC = 0.177. For the compar-

ison between the official insee map of urban units and our preferred delineation where we

restrict ourselves to 849 insee urban units with a core and 695 urban areas with a core, we

obtain JC = 0.182.

The main point to note is that these two indices are well below the values of 0.319 (all urban

pixels) and 0.298 (pixels that belong to urban areas with a core) for their corresponding urban

Jaccard indices obtained above. Using expression (4), this suggests a fairly low quality for the

propensity of the two maps to aggregate urban pixels into the same units, between 0.55 and

0.61.

Another way to understand those figures 0.177 and 0.182 for the city Jaccard similarities

is to return to expression (6), which shows that the city Jaccard index can be decomposed

into a sum of weighted individual Jaccard indices for urban areas. For the 20 largest urban

areas, the last column of table 5 reports their city Jaccard index. The results confirm our

visual impressions from earlier with a reasonably high Jaccard index for Paris of 0.657 and

a much lower value for Lille of 0.226 while the indices for Marseille and Grenoble are in

between these two cases at 0.440 and 0.483 respectively. For the largest 20 cities, the average

(weighted) city Jaccard similarity is 0.46. This is more than the overall value of either 0.177 or

0.182 for the overall city Jaccard similarity. In turn, this suggests that these low overall values
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arise because, at the lower end of the distribution, urban areas either overlap poorly or do

not overlap at all, in which case the Jaccard similarity for them is zero.24

When we compute standard errors for these city Jaccard indices using the same approach

as described above, we obtain again values that are small, about 0.0003 for both JC = 0.177

(all urban pixels) and JC = 0.182 (all urban pixels that belong to an urban area with a

core). We note nonetheless that these standard errors are about three times as large as those

computed for urban Jaccard indices. As mentioned above, city Jaccard indices are expected

to be more sensitive to sampling in the case of nearby groups of buildings which, depending

on sampling, may or may not belong to the same urban area. At the same time, we note that

this sensitivity remains minimal for any practical purpose in our case.

In Appendix D, we propose alternative Jaccard indices that measure the tendency of pairs

of pixels to belong to the same urban areas. Like with individual pixels, we can measure the

tendency of pairs of pixels to be similarly classified as urban (a direct counterpart to JU above)

as well as the tendency of pairs of pixels to belong to a given urban area (a direct counterpart

to JC above). Because pairs of pixels can be measured as part of the same area over two

different maps without having to define the identity of these areas, this also allows us to

define a less conservative measure of similarity across cities. For instance, a pair of points

where both points belong to ‘Valenciennes’ will be counted as part of the similarity between

insee’s delineation which treats Valenciennes as separate from Lille and our delineation

which integrates Valenciennes with Lille. Because these indices are more involved and their

interpretation less straightforward, we only report and discuss them in Appendix D.

The role of base units

The imperfect overlap between our preferred delineation and insee’s delineation of urban

units may be caused, at least in part, by the fact that insee aggregates entire municipalities.

Although French municipalities are ‘small’, they are still much larger than our base units,

pixels of 200 metres by 200 metres. On average, a French municipality corresponds to nearly

400 pixels (or 16 square kilometers). To assess the effect of the difference in the size of the

underlying base units, we consider a variant of our delineation where we ‘discretise’ urban

areas ex post. Starting from our baseline delineation, we classify an entire municipality as

urban if 50% or more of its component pixels are urban. If not, we classify this municipality

24Recall that we compare either 7,223 urban areas and 2,231 urban units or 695 urban areas and 849 urban
units when considering only areas with a core.
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as rural. This is similar in spirit to the approach used by insee.25 When comparing our

discretised delineation with insee urban units, we obtain an urban Jaccard index of 0.402

for all urban areas and 0.397 for all urban areas with a core. These values for the urban

Jaccard indices are higher than their respective values of 0.319 and 0.298 obtained above for

the comparison with our baseline delineation. This improvement in the overlap between

delineations is consistent with the notion that part of the difference between our delineation

and insee’s delineation of urban units is due to their use of much larger discrete units.26

This said, Jaccard similarity indices of about 0.40 instead of about 0.30 are still indicative

of large differences between the two delineations. Recall that our approach is generally more

conservative than insee’s and delineates physically less expansive urban areas. Our discreti-

sation with a 50% threshold will improve the similarity with insee’s delineation in some

cases when a municipality is ‘rounded up’. However, this discretisation will also worsen

the similarity with insee’s delineation when municipalities that insee classifies as urban but

which, with our delineation, contain less than 50% of urban pixels and are thus ‘rounded

down’. It turns out that we can improve the overlap with insee’s delineation with a lower

discretisation threshold. If we classify as urban any municipality for which 20% or more of

its pixels are urban, the urban Jaccard index for the comparison with insee’s delineation rises

further to 0.562 when considering all urban pixels or to 0.553 when considering all pixels part

of an urban area with a core. While the overlap between our delineation and insee’s is still

imperfect, these changes to the Jaccard indices caused by the discretisation of municipalities

make it clear that the size of the underlying units to be aggregated plays an important role

when delineating urban areas. This 20% threshold appears to maximise the similarity with

insee’s delineation. Alternative thresholds of 25, 15, and 10% yield marginally lower Jaccard

indices relative to a 20% threshold.

Another possible explanation for the limited overlap between our delineation and insee’s

delineation of urban units may lie in our use of a 95% statistical threshold, which may lead to

25A municipality is classified by insee as part of an urban area if it is at least 50% urban (according to its own
definition of urban of course). We nonetheless keep in mind that insee allows for distinct urban units to be
adjacent whereas we always integrate adjacent urban municipalities into a single urban area.

26We focus here on differences arising from the size of the underlying units but this is obviously not the only
source of discrepancy between the two delineations. In particular, we measure density using builtup volumes,
while insee relies on the distance between buildings, essentially a footprint criteria. When we implement our
delineation using builtup footprint instead of volume to measure density, we compute a Jaccard similarity with
insee’s delineation of 0.35 for all urban pixels and 0.54 for pixels that belong to an urban area with a core.
These higher values are due to the more expansive physical extent of our delineation using builtup footprints
as shown below.
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a stricter definition of what is urban with our approach relative to insee’s. It is true that if we

take an even more restrictive threshold of 99%, the Jaccard similarity between our delineation

and insee’s falls from 0.319 to 0.241. However, taking a much less conservative statistical

threshold of 75% only increases the Jaccard similarity to 0.342.

Taking a less conservative threshold has three effects on our delineation. First, it leads to

an expansion of the largest urban areas that are also delineated by insee. This contributes

to improving the similarity between the two maps since our urban areas are physically less

extensive than those delineated by insee with a threshold of 95%. However, a lower statistical

threshold also leads to the expansion of urban areas that are not part of insee’s delineation

and to the delineation of new urban areas that are also absent from insee’s delineation. These

two effects lead to a worsening of the Jaccard similarity between the two maps. Overall, the

first effect dominates, but only modestly. The lack of similarity between our delineation and

insee’s is thus not due to using a 95% threshold to define statistical significance.

As discussed above, a second important difference between our delineation and insee’s

urban units is the greater propensity of our approach to aggregate builtup areas that are close

to each other into a single urban area as, for instance, in the case of Lille. Discretising our

delineation will in general have ambiguous effect on this difference. Using high thresholds

to classify entire municipalities as urban can lead our approach to split hitherto integrated

urban areas into separate urban areas. This occurs when two groups of urban pixels are

joined by urban pixels that are part of a municipality that our discretisation classifies as rural.

Using low thresholds may instead worsen this aggregation problem as municipalities now

classified as urban may bridge between hitherto separate urban areas.

Recall that the city Jaccard index when comparing insee’s delineation of urban units with

our baseline delineation is JC = 0.177 when considering all urban areas and JC = 0.182

when considering only pixels that are part of an urban area with a core. When we discretise

our delineation using a threshold of 50% of urban pixels for municipalities, the city Jaccard

indices remain mostly unchanged at 0.171 and 0.173, respectively. When we use a lower

threshold of 20%, the Jaccard indices are again barely affected at 0.182 and 0.186, respectively.

Returning to equation (4), city Jaccard indices JC can be decomposed into the product of

their corresponding urban Jaccard indices JU and an overlap quality factor. As discussed

above, the municipal discretisation of our preferred delineation index leads to higher urban

Jaccard indices. Since the city Jaccard indices are essentially the same, it must be that the

discretisation of our preferred delineation worsens the overlap quality factor. In turn this oc-
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curs because our discretisation tends, on average, to aggregate urban pixels into fewer urban

areas. In ‘dense’ regions like around Lille or Marseille, the discretisation of municipalities

magnifies the tendency of our approach to delineate large single urban areas while insee

defines many adjacent urban units (as illustrated for instance by figure 8 in Appendix C).27

6. Other comparisons

Urban areas defined with builtup volume vs. footprint

While our preferred approach to measure building density relies on cubic metres of building,

an obvious alternative is to measure building density with squared metres of building foot-

print. Using builtup areas is perhaps closer to the definition used by insee to define urban

units as well as other morphological definitions used elsewhere.

Table 6 in Appendix B duplicates table 4 and report descriptive statistics for the urban

areas delineated with this alternative definition. Figure 9 in Appendix C duplicates the four

maps of figures 7 but also overlays these alternative urban areas over those defined using our

preferred approach.

Our most important result here is that measuring building density with builtup areas

instead of builtup volumes leads to more urban areas that are physically larger. Overall, with

density measured with buildup area, urban areas take 15 % of all pixels (instead of 11% with

volumes) and host 80% of the French metropolitan population (instead of 75%). This greater

physical extent of urban areas when using building footprints instead of building volumes is

unsurprising since taller buildings tend to be located at the centre of urban areas. Peripheral

areas with fewer and shorter buildings may thus still exhibit excess building density when

measuring their footprint but not when using their volume. We thus end up with physically

larger urban areas and more of them when using building footprint instead of building

volume.

We can assess the difference between the volume- and footprint-based delineations more

systematically using Jaccard indices as above. When we compare the two delineations using

all urban pixels on both, we find JU = 0.79. We note that this figure for the Jaccard similarity is

also essentially equal to the ratio of urban pixels across both delineations. Consistent with the

visual impression of the four illustrations of figure 9, this indicates that urban pixels when

27For instance, with a 20% threshold, the urban area of Marseille is now joined with Toulon to the east and
Lille is joined with Saint Omer to the west.
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using a volume-based definition of building density are essentially a subset of the urban

pixels defined when using a footprint-based definition of building density. When we restrict

ourselves to urban pixels that are part of urban areas with a core, we obtain roughly similar

results with JU = 0.76, which is consistent with the interpretation just given.

Turning to city Jaccard indices we compute JC = 0.49 for all urban pixels and JC = 0.58 for

pixels part of an urban area with a core. The difference between the urban and the city Jaccard

indices arises because the greater extent of urban pixels with a footprint-based definition also

leads to more aggregated urban areas. This is most obvious in the case of Lille illustrated in

panel b of figure 9. When using building footprint to measure building density, the urban

area of Lille aggregates more than 10 urban areas, including Arras with more than 100,000

inhabitants, that are delineated as independent urban areas using a volume-based definition

of building density. As a result, the city Jaccard JLille is only 0.58. While this value is lower

than the Jaccard index of 0.84 we find for Paris, Lille is not a pathological case. For instance,

we find values of 0.61 for Nantes or Avignon and even 0.51 for Rennes.

Because a footprint-based definition of urban density leads to physically larger urban

areas, we expect it to lead to a map of urban areas that is closer to the official delineation

of urban units by insee. We can verify that this is the case since the urban Jaccard index

for these two delineations is JU = 0.350 for all urban pixels and the city Jaccard index is

JC = 0.196. Recall that when we compare our baseline delineation that defines building

density with builtup volumes, we find lower indices of 0.319 and 0.177 respectively.28

It is easy to see that the statistical approach to measure the significance of Jaccard indices

described above readily generalises to comparisons between two maps produced by variants

of our approach to perform a two-sided test. In this case, we can replicate each of the two

maps using the bootstrap methodology just described. This generates 100 pairs of maps

and we can compute a Jaccard index for each of these pairs and deduce again a confidence

interval. Again, the standard errors computed from our simulations for this comparison are

tiny, again of the order of 0.0001. As mentioned before, any two delineations we obtain from

different sets of 100 counterfactual distribution of buildings overlap extremely closely when

we use volume criteria to measure builtup density. The same result unsurprisingly holds for

any two delineations that rely on the footprint of buildings. Hence sampling typically affects

at most the third digit of the indices reported above.

28When, in our delineation, we only consider urban pixels that belong to an urban area with a core we obtain
JU = 0.540 and JC = 0.199 instead of 0.298 and 0.182 for our volume-based definition.
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Urban areas defined using different thresholds

Our final comparison regards the effect of the statistical thresholds we use to define excess

building density. Until now, we have focused on a standard 95% threshold for statistical

significance.

To assess how this choice of threshold affects our delineation, we also replicate our ap-

proach with a 75% significance threshold and with a 99% significance threshold. When

comparing our baseline delineation with a 95% threshold to the same delineation using a

75% threshold for statistical significance, we compute an urban Jaccard index of 0.719 for all

urban pixels and 0.673 for pixels that belong to an urban area with a core. By construction,

any pixel that is urban with a threshold of 95% for statistical significance is also urban with

a threshold of 75%. In this special case, the urban Jaccard index thus represents the share

of pixels that are classified as urban with a 95% threshold among those that are classified as

urban with a 75% threshold.

Our value of 0.719 for the urban Jaccard index corresponds to 15.5% of urban pixels

with the 75% threshold and 11% of urban pixels with the 95% threshold. This figure of

0.719 is also consistent with a simple heuristic derived from figure 5. This figure indicates

that the 75
th percentile of the counterfactual distribution of building density for the median

pixel corresponds also to the 84
th percentile of the actual distribution of smoothed building

density, while the 95
th percentile of the counterfactuals for the median pixel is around the

88
th percentile of the actual distribution.29 As a first approximation, figure 5 thus implies that

with a 75% threshold, 16% of pixels are urban (instead of 15.5% with our exact delineation),

while with a 95% threshold about 12% of pixels are classified as urban (instead of 11% with

our exact delineation) leading to an approximate Jaccard index of about 0.75, close to the

exact figure of 0.719.

Turning to the comparison between delineations obtained with the 95 and 99% threshold

for statistical significance, we find an urban Jaccard index of 0.594 when considering all urban

pixels and 0.527 when considering only urban pixels part of a urban area with a core. These

values are less consistent than previously with the figures implied by figure 5. In this figure,

the 99
th percentile of the counterfactual distribution of building density for the median pixel

corresponds to about the 91
st percentile of the distribution of actual buildup density. The

29This is only an approximation since, as described in table 3, each pixel faces a different value for any given
threshold of statistical significance depending on its location, particularly its location relative to non-buildable
pixels and coasts and borders.
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approximation based on figure 5 thus suggests that 9% of pixels are urban with the 99
th

percentile instead of 12% with the 95
th percentile. This thus implies an approximate similarity

of about 0.75 instead of the value of 0.594 that we compute for the urban Jaccard index.

This discrepancy mainly occurs because our exact delineation classifies only 6.6% of pixels

as urban when using a 99% threshold for each pixel instead of the 9% urban pixels implied by

the use for all pixels of the 99
th percentile for the median pixel. In turn, this difference arises

because the approximation based on the percentiles for the median pixels does not work very

well for pixels that are close to the sea and rivers and thus have a lower significance threshold

relative to the median pixel due to their closeness to non-buildable pixels. As shown by

figure 6, many of these pixels are classified as urban with a 95% threshold. These pixels are

then often rural with a 99% threshold. This difference illustrates the need for pixel-specific

counterfactual distributions and thresholds instead of using a representative pixel.

For both the 75-95 and the 95-99 comparisons, the city Jaccard indices take lower values

of 0.426 and 0.325, respectively. These lower values are unsurprising. Recall again that by

equation (4) city Jaccard indices can be expressed as the product of urban Jaccard indices

and an overlap quality factor. Considering a different threshold not only leads to a different

proportion of urban pixels but it also leads to a different aggregation into urban areas, that

is a lower overlap quality factor. For instance, while Marseille and Toulon are delineated as

separate urban areas with a 95% threshold, they are part of the same integrated urban area

with a 75% threshold. On the other hand, Lille and Valenciennes are part of the same urban

area with a 95% threshold but get separately delineated with a 99% threshold.

7. Conclusions

We propose a new approach to define urban areas. It relies on the most basic components of

cities, individual buildings. Using a dartboard methodology, our approach naturally defines

‘urban’ as statistically significant excess building density. The main strength of our approach

is to avoid (or at least minimise) the use of arbitrary criteria to define what is urban and

what is rural. We rely instead on either optimality criteria or standard statistical thresholds.

We also develop new formal tools to compare statistically different delineations on different

maps.

While less than 1% of the French territory is covered by buildings, our preferred approach

classifies about 11% of mainland France as urban and 75% of the French population is

36



urbanised. Our approach delineates 7,223 urban areas, most of which are tiny. When we

only consider urban areas with a core, that is urban areas with at least one pixel with excess

building density relative to all urban pixels, the number of urban areas falls to 695. These

urban areas cover less than 8% of the French territory but still host 64% of the population.

While some parts of the country such as the centres of large cities are obviously ‘urban’,

others are clearly rural. However, building density in France (just like nearly everywhere)

declines slowly as one moves away from the centre of cities or as one considers smaller

settlements. Hence, there is no natural discontinuity in building density. At the same time,

any attempt to partition the country into urban and rural needs to draw the line somewhere.

Thus, minor differences in the delineation approach will lead to differences in the delineation

of urban areas. For instance, defining building density with their footprint instead of their

volume leads us to delineate more and physically larger urban areas that occupy 15% of the

French territory instead of 11%. On the other hand, these ‘ambiguous areas’ host only about

5% of the French population.

Our statistical tests allow us to make comparisons across maps. They indicate that the

bounds around our preferred delineations are extremely tight. While the choices made in the

delineation approach matter, sampling issues do not.

When we compare our preferred delineation with the official delineation of the French

statistical institute (insee), we find that our approach tends to delineate either more urban

areas (when we consider all of them) or fewer (when we restrict ourselves to urban cores)

than the 2,231 urban units delineated by insee. We also find that our approach delineates

physically smaller urban areas but, at the same time, has a stronger tendency to aggregate

neighbouring urban centres. In part, insee’s urban units are larger because they sum munic-

ipalities whereas our approach builds from tiny pixels. This granularity allows us to detect

patterns that were previously harder to detect. For instance, we find that excess building

density tends to follow major rivers and not only coastal areas (Rappaport and Sachs, 2003).

Consistent with this finding, we also find that small urban areas locate close to rivers and

large urban areas expand along their main rivers.

Obviously, the sort of approach we develop here could be used to delineate urban areas

in other countries. Our approach could also be extended to detect centres and subcentres

within cities by considering random redistributions of buildings within urban areas instead

of across them. We believe our approach could also be used for other classifications beyond

urban-rural and at other spatial scales. For instance, it could be used to assess the clustering
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of retails stores in certain areas of a city by creating counterfactual distributions of existing

stores instead of a counterfactual distributions of buildings. A variant of our approach which

randomly redistributes characteristics such as race or income across households could be

used to assess and describe social or racial segregation within cities.
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Appendix A. Further information about the data

bd carthage (ign, 2006). The data describe all bodies of water in France. The river network

is represented with lines and width categories (1: 0-15 metres, 2: 15-50 metres, 3: more than

50 metres). We reconstructed rivers by adding buffers around their lines (1: 10 metres, 2: 30

metres, 3: 50 metres). We then computed the water area for each pixel by summing sea, lakes,

and river areas. The fraction of the pixel that is covered by water can be larger than one in

extremely rare cases because of the overlap between river buffers and another body of water.

We cap this fraction to one.

bd alti (ign, 2015). The data report elevation continuously for the whole French territory

from measurements made at least every 75 metres. For each pixel, we compute average

elevation. We can also construct the slope at each location and compute the mean slope for

each pixel.

Localised Tax Revenues (insee, 2010). The French fiscal administration keeps a ledger of all

households and their address to administrate income and residential taxes. The addresses of

households are geolocalised by insee to assign households to pixels. We designed our pixels

to match these insee pixels. A minor limitation of localised population data is that people

living in retirement homes may have a fiscal address that differs from their actual residence.

The same problem occurs with students. Homeless people will be missing altogether.

41



Appendix B. Supplementary table

Table 6 duplicates table 4 when density is measured with footprint area instead of builtup

volumes.

Table 6: Descriptive statistics on pixel built area when measuring building density with footprint area

Type of urban area Min. 25th Med. Mean 75th 95th Max.

Panel A: All urban areas (8,482)
Population 0 323 688 6,186 1,534 8,071 11,250,140
Area 0.04 1.04 2.68 9.87 5.96 23.4 4,229
Population density 0 187 257 298 352 642 3,700

Panel B: Urban areas with a core (1,025)
Population 15 3,591 5,895 42,270 13,528 99,884 11,250,140
Area 0.04 11.6 18.4 58.9 37.3 203 4,229
Population density 1.82 272 347 388 458 730 2,616

Panel C: Urban areas without a core (7,457)
Population 0 284 576 829 1,065 2,407 13,776
Area 0.04 0.88 2.24 3.14 4.32 8.84 69.7
Population density 0 179 243 285 334 622 3,700

Notes: Population is from the 2013 census; area in km2; population density is the number of
inhabitants per km2.
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Appendix C. Supplementary maps

Figure 8: Comparing urban areas with insee urban units in four regions

Panel a: Paris and the Ile-de-France region Panel b: Lille and the North East

Panel c: Marseille and the South East Panel d: Grenoble and the Alpine region

Notes: Urban areas in light blue (light grey). Urban cores in dark blue (dark grey). Urban units in
mauve (very light grey).
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Figure 9: Comparing urban areas delineated with building density using volume vs. footprint area in
four regions

Panel a: Paris and the Ile-de-France region Panel b: Lille and the North East

Panel c: Marseille and the South East Panel d: Grenoble and the Alpine region

Notes: Urban areas in yellow (light grey). Urban cores in red (dark grey). Urban units in mauve (very
light grey). Urban areas defined using building footprint in yellow and their core in red.
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Appendix D. Paired Jaccard indices

We can propose another approach to the computation of Jaccard indices. This approach

relies on dealing with pairs of pixels instead of single pixels. We will refer extensively to

the number of pairs of pixels that can be formed from a given set of pixels. To be clear, if a set

has N pixels, the number of pairs is N (N − 1)/2. For a given map j ∈ {1,2}, we introduce

the set W j that includes all pairs of pixels such that the two pixels constituting each pair are

urban. Using counts of pairs of urban pixels, we can readily define the counterpart of the

urban Jaccard index proposed in equation (2). The paired urban Jaccard index is given by:

JUP ≡
∣∣W1 ∩W2

∣∣
|W1 ∪W2|

. (a1)

For a given map j ∈ {1,2}, denote by W j
k the subset of pairs within urban area k ∈ {1,...,K}.

After denoting Ki the number of urban areas in map i, we can also write the paired city

Jaccard index as:

JCP ≡
∑k∈K1 ∑k′∈K2

∣∣W1
k ∩W2

k′
∣∣

∑k∈K1

∣∣W1
k

∣∣+ ∑k′∈K2

∣∣W2
k′
∣∣−∑k∈K1 ∑k′∈K2

∣∣W1
k ∩W2

k′
∣∣ . (a2)

Note that the paired city Jaccard is not the exact counterpart of the city Jaccard index defined

in equation (3) since pairs of pixels that belong to the same spatial unit on both maps are

counted regardless of the identity of this spatial unit. This is an important advantage because

it allows us to bypass this issue of the identity of spatial units completely. Conceptually, the

paired city Jaccard index also captures something different from the simple city Jaccard index.

In a sense, the paired city Jaccard index is less conservative since it counts pairs that belong to

the same spatial units but these spatial units can be different across maps. To understand this

point, we return to the example of Lille which we delineate as one large urban area whereas

insee delineates several urban units in the same region. When we compute a simple Jaccard

index for this urban area, we only count the overlap between ‘our’ Lille and insee’s Lille.

With a paired Jaccard index, pairs where both pixels belong to Lille on our map and to, say,

Valenciennes on insee’s map will still be counted.

A more conservative possibility is to restrict the paired city Jaccard index to consider only

pairs that belong to the same unit:

JCP2 ≡
∑k∈K

∣∣W1
k ∩W2

k

∣∣
∑k∈K1

∣∣W1
k

∣∣+ ∑k′∈K2

∣∣W2
k′
∣∣−∑k∈K1 ∑k′∈K2

∣∣W1
k ∩W2

k′
∣∣ . (a3)
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This index is closer in spirit to the city Jaccard index described by expression (3) since it only

sums across pairs that belong to the same city. It suffers nonetheless from the same drawback

as the city Jaccard index in that it requires us to define again the identity of the units.

When assessing the similarity between our baseline delineation and insee’s delineation of

urban units through paired Jaccard indices, we find JUP = 0.240, JCP = 0.545, and JCP2 =

0.510.
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