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Abstract

I propose a new methodology to estimate macro elasticities in linear economies by ex-
ploiting regional data. The key identification assumption is that regions are heteroge-
neous in their sensitivities to aggregate macro shocks and policies. This assumption
is satisfied if regions differ in their fundamentals, such as their technology or their in-
tertemporal elasticity of substitution. First, I show that regardless of the heterogeneity
assumption, the macro elasticity is a function of the micro-global elasticities, which
measure how regions react to aggregate policies or shocks. Then, I combine typical
structural VAR approaches with various panel data methods, such as asymptotic prin-
cipal components, to show that heterogeneity makes it possible to recover the micro-
global elasticities. These are then used to construct an estimate of the macro elasticity.
Moreover, I show that the estimates are robust: they are consistent for a wide variety of
data-generating processes, including models with incomplete and complete markets,
sticky and flexible prices, and different market structures. Compared to existing ap-
proaches, I show that the methodology allows for weaker identification assumptions
and greater robustness. Finally, I present an empirical application to fiscal multipliers
in the U.S. Using state-level data for the period 1971 to 2008, I find a fiscal multiplier of
total spending (federal, state and local) that falls in the range 0.7-1.2.
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1 Introduction

Macro elasticities measure how an aggregate outcome, for example gross domestic product (GDP),
changes when there is a shift in an aggregate policy or a macro shock, such as aggregate government
spending. They are crucial to macroeconomics because, among other uses, they can help forecast the
depth of a crisis when a negative shock hits the economy, or they can help inform policy makers about
the usefulness of a given policy to offset such a shock. Currently, there are three approaches to estimat-
ing macro elasticities. The first is a pure aggregate time series method that is typically implemented
either as a structural VAR or as narrative techniques that use historical documents to identify a par-
ticular change in the variables of interest.1 The second is a panel data approach that estimates local
elasticities and uses them as restrictions in a macroeconomic model to infer the macro elasticity.2 The
third one relies exclusively on a model to obtain the macro elasticity through simulatedmethod of mo-
ments, calibration or indirect inference.3 Each of these has its own problems, which are well known:
the first, when it takes the form of a structural VAR, typically relies on assumptions about the ordering
of different shocks. When the narrative approach is taken instead, it is difficult to isolate the change in
the variables of interest from other confounding influences that might be happening simultaneously.
The second and the third approaches work only as long as we impose the correct model on the data.

This paper offers a new alternative for estimating macro elasticities. Although it draws on ideas
present in both the aggregate time series and the fully structural approaches, it is closest in spirit to the
panel data approach because of its reliance on regional variation.

The main reason to resort to a macroeconomic model in the panel data approach is that the elas-
ticities recovered in the regressions are local, in the sense that they do not account for the interactions
among regions. For example, in a monetary union, local demand in region n might depend on aggre-
gate demand, and thus policies that affect income or employment in other regions will have spillover
effects in region n through this channel. These spillovers across regions make it difficult to think about
how the empirical results obtained in partial equilibrium frameworks, or in small sub-populations,
would change if the policy were applied at the union level. The effects could disappear or be dramat-
ically attenuated. Consequently, it is very hard to estimate the macro elasticity using only these local
elasticities. Macroeconomic models address this problem because they incorporate all the ingredients
necessary to think about these interactions, and thus offer a guide to track these general equilibrium
effects.4 However, resorting to amacroeconomicmodel comes at a cost: differentmodels have different
channels built in for the spillovers, and thus deliver different macro elasticities. Hence, by choosing
one model (or a small set), we are left with model-specific estimates that are valid only if the correct
model was chosen.

1 See Ramey (2016) for a review ofmany examples of thesemethods. For fiscal multipliers in particular, Blanchard and Perotti
(2002) is an example of the structural VAR approach, and Ramey and Shapiro (1998) is an example of the narrative approach.

2 Sometimes the interest lies exclusively in the local elasticities, so there is no second step. Recent papers that deal with re-
gional interactions and the macroeconomy include, amongmany others: Hagedorn, Manovskii andMitman (2016), Serrato
andWingender (2016), Nakamura and Steinsson (2014), Beraja, Hurst and Ospina (2016), Mian and Sufi (2014), Chodorow-
Reich (2017), Wilson (2012), Acemoglu and Restrepo (2017), Beraja, Fuster, Hurst and Vavra (2018).

3 See, for example, Smets and Wouters (2007) and Uhlig (2010).
4 Sometimes the macro elasticity is derived by assuming no spillovers.
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This paper proposes a new approach to estimating the macro elasticity that avoids the problem
of model-specific estimates. The idea is to bypass the problem by estimating a different type of micro
elasticity than those just described. Instead of focusing on how a region reacts to a policy that is applied
regionally, this different type of elasticity measures how a region reacts to a policy that is applied
nationally. It is still a micro elasticity, but because it measures the reaction to a change that happens
“globally” in the system, I will refer to it, for convenience, as a “micro-global” elasticity. In a similar
fashion, I will refer to the local elasticities described previously as “micro-local” elasticities, because
they measure a change against a local policy. Since the micro-global elasticities measure a change
against a national policy, they incorporate all of the general equilibrium effects caused by the spillovers
across regions. These effects are absent from the micro-local elasticities, and this is why, in general, the
two can differ substantially. Based on this property, one can intuitively guess that the macro elasticity
should be tightly connected to the micro-global elasticities, since they effectively capture the general
equilibrium effects from the spillovers. I show this is correct: the macro elasticity is a function of the
micro-global elasticities. Hence, estimation of the micro-global elasticities gives the building blocks of
the macro elasticity.

To completely bypass the problem of model-specific estimates, the estimation of the micro-global
elasticities must not depend on a single model or small set of models. To achieve this, the method
imposes no restrictions on the micro-global elasticities. Instead, it uses the key structural equations in
which the micro-global elasticities appear and imposes restrictions on the way the variables can enter
the equations. For example, one of the key requirements is that the structural equations should display
sufficient heterogeneity in their coefficients. To illustrate, this implies that if there are K macro shocks,
their heterogeneous impact on different regions cannot display a linear relationship. The restrictions
are weak enough that there is a large class of macro models that satisfy them. As a consequence, the
estimates are shown to be robust: they are consistent for awide variety of data-generating processes, in-
cludingmodels with incomplete and complete markets, sticky and flexible prices, and different market
structures. In particular, they are robust to the channel of the spillovers. To continue with the example,
it does not matter whether the spillovers arise because the local demand of region n depends on ag-
gregate demand, on an aggregate price index, or on a combination of the two. The estimates obtained
encompass all of them; in fact, it is not possible, at least without further assumptions, to disentangle
the effects coming from the different channels.

Let me illustrate these ideas by focusing on the fiscal multiplier example, although what I say here
holds for other policies or macro shocks in general. In this case, the macro elasticity captures how
aggregate government spending affects aggregate GDP.5 Let Ỹnt denote the growth rate of output in
region n in period t, G̃t the growth rate of aggregate government spending, εG̃nt

the growth specific to
region n’s government spending, and ãt the growth rate of an unobserved aggregate TFP shock. Then,
a wide array of regional macro models display the following type of equilibrium equation for regional
output:6

(1) Ỹnt � β1nG̃t + β2nεG̃nt
+ λn ãt + εnt .

5Usually we measure this impact in dollar units instead, but this is inessential for the argument.
6 The same ideas apply if we interpret Ỹnt as the deviation of output in region n in period t from its non-stochastic steady
state, G̃t the equivalent of aggregate government spending, etc.
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In equation (1), β1n is the micro-global elasticity, since it measures how G̃t affects Ỹnt . In contrast,
β2n is the micro-local elasticity, because it measures how regional output reacts to regional spend-
ing. In these regional macroeconomic models, and in most macroeconomic models commonly used,
the macro-elasticity for aggregate spending, which is given by ηmacro �

∂Ỹt

∂G̃t
, is related to the β1n’s by

means of an aggregator, which is a rule that relates the regional variables to their aggregate coun-
terparts. In the particular case of fiscal multipliers, the aggregator comes from the GDP accounting
rules, which translates into a weighted average of the regions’ β1n : ηmacro �

1
N

∑N
n�1 (Yn/Y)∗ β1n , where

1
N

∑N
n�1 (Yn/Y)∗ � 1, and (Yn/Y)∗ represents the long-run average of the relative size of region n’s real

per capita GDP to the national real per capita GDP.
Hence, even if we could consistently estimate the micro-local elasticities, the β2n’s, they would not

answer the relevant macroeconomic questions we are asking, those for which the answer lies in the
micro-global elasticities, the β1n’s. As I show in a series of simple examples, the micro-local elasticities
can differ substantially from the micro-global ones.7 The difference is due to the spillovers across re-
gions, which generate general equilibrium effects that only the micro-global elasticities capture. More-
over, I show that equations like (1) arise for models in which markets are complete or incomplete,
with flexible or sticky prices, etc. The difference in all those cases only appears in the specific form of
β1n , β2n , λn . These elasticities are functions of the underlying parameters of the fundamentals of each
region (technology, preferences, etc.), and changing those fundamentals changes the expression for
β1n , β2n , λn , but not equation (1). Hence, recovering the β1n’s from (1) without using any information
on how they relate to the fundamentals gives an estimate of the macro elasticity that is valid under any
model with (1) as the equilibrium equation for regional output.

One of themain concerns with the estimation of (1) is that the aggregate TFP shock, ãt , is unobserv-
able, and both G̃t and εG̃nt

might be correlatedwith it. To fix ideas, suppose first that εnt is independent
of the right-hand side variables and, hence, ãt is the only concern. The approach in this paper treats
λ̃n and ãt as fixed-effects parameters to be estimated, imposing no restrictions on them. As a result,
the strategy can be labeled a fixed-effects one, both because it treats the unobserved macro shocks and
sensitivities as parameters to be estimated and because it delivers consistent estimates for the β1n’s
without imposing any restriction on the distribution of those shocks conditional on the observables
of the model. The strategy incorporates more information to equation (1) in the form of structural
equations for G̃t and εG̃nt

.8 Since the models that feature (1) as the equilibrium equation for regional
output are obtained by log-linearizing the equilibrium equations around a non-stochastic steady state,
whatever structural equations G̃t or εG̃nt

might have, these will be linear. This, in turn, means we are
working in the universe of simultaneous equations models (SEMs), or in a regional structural VAR
(RSVAR), when we consider dynamics along the time dimension.

The procedure uses the whole system of equations (every equation for every variable, period and
region) to build estimates of ãt ; call them ˆ̃at . For this, I rely on a combination of time series methods
used in the structural VAR literature alongwith different panel datamethods, such as interactive-effects
estimators and asymptotic principal components. The estimators of the micro-global and micro-local

7Needless to say, this does not mean the micro-local elasticities cannot be interesting per se.
8Nevertheless, some of the results rely only on properties of the reduced forms of G̃t and εG̃nt

.
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elasticities are then obtained by running (1) as a time series regression for every region separately, using
G̃t , εG̃nt

and ˆ̃at as regressors. If the ˆ̃at is precise enough, then controlling for it in (1)handles the concern
that G̃t or εG̃nt

may be correlated with the aggregate TFP shock. The inclusion of ˆ̃at as a control follows
the same logic as that of many studies using factor-augmented regressions; see for example Stock and
Watson (2002). Since all sensitivities are region-varying, all of the results are derived under N, T →∞.

Let me now try to put the strategy in perspective by relating it to two well-known approaches.
The first is the control function approach: in this paper ˆ̃at works as an extra regressor that breaks
the correlation between G̃t or εG̃nt

and the unobservable shocks affecting GDP in (1). The difference
lies in the way ˆ̃at is obtained which, as I mentioned before, relies on the whole system of equations.
Nonetheless, using ˆ̃at as a control is not the only way to think about the strategy. There is an equivalent
way that is related to instrumental variables (IV). We can readily tell that if we project the policies,
G̃t and εG̃nt

, on ˆ̃at , the residuals can be used as IVs in (1). And in principle, the estimation can be
implemented as the usual IV strategy, albeit with estimated instruments. However, the connection is
deeper than that. In some of the cases I will discuss, it is necessary to first estimate these IVs to get at
ˆ̃at . Hence, in those cases the system estimation of ãt is reversed: first we estimate the IVs and then we
use them to estimate ãt . Thus, we see that, in general, the system estimation of ãt can be equivalently
viewed as a system estimation of IVs for the policy variables. And controlling for ãt or using the IVs
are equivalent ways of thinking about the strategy. The main difference from the usual IV strategy is
that in this case the IVs are not observed and must be estimated. Indeed, I show examples in which
there is no observable variable that could serve as an IV.

The key to the strategy is getting at estimates of ãt . The crucial assumption that allows this is
the heterogeneous effects assumption. When regions are heterogeneous and ãt has a different impact
on different regions, we can combine results from the interactive-effects estimators and asymptotic
principal components to extract a flexible set of factors that capture the variation in ãt . Moreover, we can
do so without imposing any restriction on the unobserved macro shocks. It is useful to compare these
results to the case of homogeneity. Suppose in (1) that β1n � β1, β2n � β2 and λn � λ for every region,
and that the whole system of equations is also homogeneous. In this case, it is impossible to estimate ãt

with themethod in this paper, because itwasprecisely thedifferent impact of the same shock indifferent
regions that allowed its estimation. With an homogeneous impact, there is an infinity of equivalent
ways to attribute the changes in the observed variables to ãt , and all of them have different implications
for the elasticities. Furthermore, note that if one includes a time fixed effect in (1), the micro-global
elasticities are not identified, unless one is able to apply the approach in Hausman and Taylor (1981).9
In contrast, this is not a problem under heterogeneity: the IV implementation of the approach in this
paper can be viewed as a generalized version of Hausman and Taylor (1981) where the instrument is an
unobservable variable that can be estimated from within the system of equations. It is similar in that
the instrument comes from within the system, but it differs in that it is not observable (although it can
be estimated with the observables of the model). Hence, taking the IV view, the crucial difference from
the homogeneity case is that heterogeneity allows the estimation of unobservable instruments that can

9Notice that the micro-local elasticities are still identified regardless of these issues. But note that if the true dgp features
heterogeneity instead, the usual within estimator (least square dummy variable) is inconsistent, as the interactive effects are
no longer removed from the equation or effectively controlled for.
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serve identify the micro-global elasticities.
Even though the heterogeneous effects assumption is at the core of the strategy, the exclusion re-

strictions that are imposed in the system of equations are also relevant, because the estimation of the
unobserved macro shocks relies on the whole system of equations. As usual, how reasonable these
restrictions are should be evaluated on a case by case basis. In this paper, I focus on the fiscal mul-
tiplier application and, consequently, argue for restrictions that seem reasonable for it. This gives a
clear sense of the approach in action, which can then easily be replicated in relation to other questions.
Moreover, I show that the approach in this paper needs fewer exclusion restrictions in comparison to
the pure aggregate time series approach described previously, and thus has the potential to be more
robust than both the structural VAR approach or the narrative approach. Of course, this greater ro-
bustness comes at a cost. The data requirements for the approach in this paper are much higher, since
it requires regional variation for the estimation.

The other concern one might have in (1) is the correlation of the regressors with εnt , something I
have put on hold thus far. I will argue that the concern for G̃t is not justified in the usual questions
addressed by the typical macro models, but it is indeed valid for εG̃nt

. To address this concern, I will
assume that there is an observable instrument for εG̃nt

that, in spite of being orthogonal to εnt , might
be correlated with ãt . The system estimation described previously takes into account this observable
instrument and incorporates it into the strategy.

Finally, I offer a detailed application of this methodology to the case of fiscal multipliers in the US.
The fiscal multiplier is a key input to many policy decisions, for example, decisions about using fiscal
policy to combat a recession. Moreover, this is a natural setting for the methods in this paper because
the response to government spending stimulus is likely heterogeneous across states, depending on
their industrial composition, geography, demographics, etc. I apply the method to a panel of the 50 US
states andWashingtonDC, from 1971 to 2008, using total spending (federal, plus state, plus local) as the
policy variable. My results suggest a very precisely estimated fiscal multiplier of around 1, depending
on the specification used. Thus, it is not possible to rule out the possibility that government spending
crowds out/in private spending. However, given that the lower estimates of the multiplier fall in the
range of 0.7 − 0.9, the results do suggest that if there is crowding out, it is not severe. Moreover, I also
get multipliers in the range of 1.1 − 1.2, so, similarly, if there is crowding in, it is likely small.

The application also illustrates the importance of looking at the micro-global multipliers instead of
themicro-local ones. Themicro-globalmultipliers for the different states all lie in the range 0.15−1.92.10
In contrast, approximately 80% of states display a micro-local elasticity that falls below the micro-
global one, and a high fraction of those is statistically indistinguishable from zero. To illustrate, the
state of Nevada has a micro-global multiplier of 1.39 (significant at the 1% level) and a micro-local
multiplier of 0.09 (statistically indistinguishable from zero). Even more, if we were to instead use the
micro-local multipliers to compute the fiscal multiplier, we would get an estimate of 0.11 (statistically
indistinguishable from zero).

Related Literature This paper contributes to and benefits from several strands of themacroeconomics
and econometrics literature. First and foremost, it is closely related to the papers addressing local
10 These numbers change slightly depending on the specification, but the general picture remains.
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versus national multipliers. During the past several years, many papers have studied such multipliers
in relation to different shocks and policies from both theoretical and empirical perspectives. A non-
exhaustive list includes Nakamura and Steinsson (2014), Farhi and Werning (2016), Chodorow-Reich,
Feiveson, Liscow and Woolston (2012), Chodorow-Reich (2017), Mian and Sufi (2011), Mian, Rao and
Sufi (2013), Mian and Sufi (2014),Wilson (2012), Beraja, Hurst andOspina (2016), Hagedorn,Manovskii
and Mitman (2016), Acemoglu and Restrepo (2017), Beraja, Fuster, Hurst and Vavra (2018) and Serrato
and Wingender (2016). On the more theoretical side, Farhi and Werning (2016) provide solutions of
fiscal multipliers under a liquidity trap and under fixed exchange regimes (confirming the potential
for large multipliers during a liquidity trap) and provide formulas for local multipliers. In the same
vein, Beraja, Hurst and Ospina (2016) highlight the difference between local and aggregate elasticities,
and Nakamura and Steinsson (2014) distinguish between local government spending multipliers and
the usual closed economy aggregate fiscal multiplier. In this paper, I provide a framework that makes
a clear distinction between three types of elasticities, which I refer to as micro-local, micro-global and
macro. I argue that the macro elasticity we are usually interested in is a function of the micro-global
elasticities, something that, as a consequence, make them a crucial object of interest. This framework
also helps clarify some of the contributions of this literature, in which some of the distinctions were
made in terms of, as I call them here, micro-global elasticities versus themacro elasticity, or micro-local
elasticities versus the macro elasticity.

Among the more empirical papers, many estimate what I call micro-local elasticities and then use a
theoretical framework to fill in the general equilibrium effects that come from the spillovers in order to
arrive at the macro elasticity. Both the empirical strategies used to to recover the micro-local elasticities
and the theoretical tools used to estimate themacro elasticity dependon theparticular question at hand.
Thus there is significant variation across these strategies. For example, Nakamura and Steinsson (2014)
use an IV approach related to the difference in the response of regional spending to national military
buildups, whereas Serrato and Wingender (2016) exploit population revisions in census years due to
accumulated measurement error. Abstracting from these differences, in this paper I show the benefits
of departing from the usual homogeneous effects assumptions. I state assumptions under which we
can recover the micro-global elasticities that make up the macro elasticity. This allows us to overcome
the model-specific estimates problem by providing estimates that are consistent for a large class of
models, including many commonly used in the macroeconomics literature. A recent paper dealing
with robustness in macroeconomics, although for counterfactuals, is Beraja (2017).

The empirical strategy relies heavily on the literature on interactive fixed effects and dynamic fac-
tor models. There is a large literature on these topics, including, among many others, Ahn, Hoon Lee
and Schmidt (2001), Ahn, Lee and Schmidt (2013), Bai (2009), Ando and Bai (2015), Stock and Wat-
son (2002), Stock and Watson (2005), Connor and Korajczyk (1986), Holtz-Eakin, Newey and Rosen
(1988) and Pesaran (2006). In particular, in this paper the strategy builds on Bai (2009), Ando and Bai
(2015) and Pesaran (2006) and on typical structural VAR approaches. These papers, and the strategy
in this paper as well, are also closely related to dynamic factor models as in Stock and Watson (2002).
The contribution of this paper on this front is twofold. First, by analyzing various regional versions of
canonical macroeconomicmodels, it showswith clear emphasis which dimensions of this literature are
more relevant for the empirical macroeconomics questions analyzed here. Second, it shows how differ-
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ent approaches present in them can be combined to obtain an empirical strategy that addresses those
dimensions. In term of inference, results for many of these papers are developed in Mikusheva and
Anatolyev (2018). Gonçalves and Perron (2014) and Djogbenou, Gonçalves and Perron (2015) provide
valid bootstrapmethods formany approaches that rely on factor augmented regressions. In this paper,
I adapt their wild bootstrap to my setting. I also apply results from Bai and Ng (2002) to determine the
number of unobserved macro shocks.

The empirical application presented is closely related to the (macro) fiscal multipliers literature of,
among others, Ramey and Shapiro (1998), Ramey (2011), Ramey (2016), Blanchard and Perotti (2002),
Barro and Redlick (2011), Hall (2009), Ilzetzki, Mendoza and Végh (2013). See Ramey (2016) for a
detailed review of this literature. Most of these papers rely predominantly on (different) pure time
series approaches. Blanchard andPerotti (2002) illustrate the structural VAR approach, whereas Ramey
and Shapiro (1998) illustrate the narrative approach. In this paper, I showhow regional variation can be
combinedwith time series variation toweaken the identification assumptions. In terms of the empirical
results obtained, and with respect to the papers that are more directly comparable to this paper, I get
higher effects for government spending, with multipliers that are very precisely estimated. Smets and
Wouters (2007) and Uhlig (2010), among others, offer a more structural approach, and hence the same
ideas related to the robustness of the approach proposed here also apply. Farhi andWerning (2016) also
discuss differentmeasures of summary fiscalmultipliers and the connection among them, a framework
that I adopt to discuss my empirical results in Section 6. Parker (2011)’s discussion of the lack of a good
measure of the effects of fiscal policy during a recession also applies to the results in this paper, and a
future extension should address these issues.

Layout The remainder of the paper is organized as follows. In Section 2, I provide aminimal example
that gives an overview of all of the relevant results in the paper. Section 3 provides various canonical
regional models and shows that they give rise to regional equations of the form previously discussed.
Building on these insights, in Section 4 I define a large class of models in which estimation will take
place and provide a detailed description of all of the assumptions. In Section 5, I detail the empirical
strategy to recover the macro elasticities from the system of equations in a way that is valid under all
of the models in the class defined. Moreover, I show that the estimators proposed are consistent, and
I discuss the main identification assumptions. Section 6 presents an application to the case of fiscal
multipliers in the US. Section 7 concludes. All the proofs can be found in Appendix A. Appendix B
contains the figures and tables missing from the main text.

2 A Simple Regional Model

The purpose of this section is to survey the main results of the paper. To that end, I use a reduced form
model that lets me discuss them in a straightforward and simplified manner. Section 3 shows that the
intuitions discussed here carry over to more commonly used macro models.
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AMinimal Model

Suppose we have a continuum of regions i ∈ [0, 1] each with a supply and demand of a consumption
good, in logs, of the following sort:

(Demand) pd
it � −ρ

d
i yit + α1Yt + α2ξ1t + ud

it�
Suppl y

�
ps

it � ρ
s
i yit + β1st + β1εsit + β2ξ2t + us

it�
Market Clearin g

�
pd

it � ps
it � pit

where xit stands for log (Xit), pit is the (log of) price of the consumption good in region i in period t, yit

is the quantity of the consumption good, Yt B
´ 1
0 yit di, st is the policy variable of interest (for example,

a subsidy to suppliers of the good) that is common to all regions, εsit is the policy variable particular to
region i, ξ1t is an aggregate taste shock to demand and ξ2t is the aggregate TFP of suppliers. Neither
ξ1t nor ξ2t is observable. For convenience, I will refer to this model as the regional supply and demand
model.

The following proposition characterizes the equilibrium:

Proposition 1. Suppose that in the regional supply and demand model the us/d
it have zero mean, are independent

and have finite variances (σii ≤ M < ∞) for all i,11 and that ρs
i + ρ

d
i ∈ R,0 (∀i) and are Riemann integrable.

Then in equilibrium the following regional equation holds:

yit � η
i
MGst + ηi

MLεsit + δ
i
1ξ1t + δi

2ξ2t + εit ,(2)

where the εit ’s have zero mean, are independent and have finite variances (σii ≤ M < ∞) for all i and:

ηmacro B
∂Yt

∂st
�

ˆ 1

0
ηi

MGdi � −

´ 1
0

(
β1

ρs
i +ρ

d
i

)
di

[
1 −
´ 1
0

(
α1

ρs
i +ρ

d
i

)
di

](3)

ηi
MG B

∂yit

∂st
� −




*
,

β1
ρs

i + ρ
d
i

+
-
+ *

,
α1

ρs
i + ρ

d
i

+
-

´ 1
0

(
β1

ρs
i +ρ

d
i

)
di

[
1 −
´ 1
0

(
α1

ρs
i +ρ

d
i

)
di

]



(4)

ηi
ML B

∂yit

∂εsit

� − *
,

β1
ρs

i + ρ
d
i

+
-
.(5)

Three Elasticities at Play As Proposition 1 illustrates, there are three elasticities at play in themodels
we use for policy analysis. The first is the “micro-local” elasticity, ηi

ML. As (5) shows, thismeasures how
the regional dependent variable changes with the policy variable particular to region i, i.e. ∂yit

∂εsit
. The

second is the “micro-global,” which measures how the regional variables change with the aggregate
policy variable, ∂yit

∂st
. And the last, the macro elasticity, measures how the aggregate responds to the

11 The independence requirement in this condition could be weakened, but the main idea would be the same.
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change in the aggregate policy variable, ∂Yt
∂st

. That is, we have:

∂yit

∂εsit

� micro − local e lasticit y

∂yit

∂st
� micro − global e lasticit y

∂Yt

∂st
� macro elasticit y.

There are some important distinctions between these elasticities. First, as (3) makes clear, when our
interest lies inmacro elasticities, whatwewant to get at is ηi

MG, not η
i
ML. The reason is that the “building

blocks” of the macro elasticity are the ηi
MG of every region, not the ηi

ML. The link between ηi
MG and

ηmacro of (3) is a consequence of the aggregator in this model, which is given by Yt B
´ 1
0 yit di.

Second, even if what we want is ηi
MG, it might be the case that ηi

MG � ηi
ML. So why and when are

ηi
MG , η

i
ML? From (4) and (5), we see that when α1 � 0, the two coincide. That is, when there is no

interaction across regions, because Yt drops from the demand equation, the two elasticities coincide.
By contrast, when α1 , 0, the two elasticities differ. The reason is that the regional demand in this
case depends on Yt , and thus, for a given region i, conditions affecting markets from other regions
have spillover effects on its own market through this channel. When other markets expand, aggregate
demand increases, which increases demand in region i. As a consequence, we can conceptualize the
effect of an increase in st on yit as operating through two channels. There is a direct impact of the change
in region i, causing an increase in output, because suppliers in that region get a higher subsidy. But
there is also an indirect impact coming from the spillover effects through aggregate demand, because,
for the same reasons, other regions also see their own markets expand. The micro-global elasticity
captures both channels, the micro-local only the direct one.

In more general models, even in the absence of a direct aggregate like the one in this example, the
spillovers could operate through a common price, and in those cases we would also have ηi

MG , η
i
ML.

In this minimal model, the difference between the two elasticities amounts only to the second term in
(4) because there is only one such dependence. But if the regional demand (and/or supply) equations
hadmore dependencies on common prices or aggregates, the number of terms in the difference of ηi

MG
and ηi

ML would increase. For example, adding a dependence on the supply curve of an aggregate price
index, like Pt B

´ 1
0 pit di, would add a third term to (4). In this case ηi

MG would differ both because
of the spillovers transmitted through aggregate demand, and because of those transmitted through
the aggregate price index. These observations imply that the difference between ηi

MG and ηi
ML could

potentially be very large, and there is little guidance on how this difference would relate to ηi
ML. This is

the reason there is always great caution in extrapolating ηmacro from ηi
ML in studies that estimate ηi

ML.
Finally, note that if we recover ηi

MG, although this captures the direct and indirect effects coming
from the spillovers, it is impossible, without further assumptions, to attribute parts of it to the different
channels. They are all grouped together, and we can distinguish neither the number nor the nature of
the channels through which the spillovers operate.

Robustness Proposition 1 has important implications for robustness. It says that the specific form of
ηi

MG depends on all the “structural” parameters of the regional supply and demand model, such as,
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for example, ρd
i . It is also easy to see that other similar models that allow for more general patterns

will also display an equation similar to (2). For example, under the following variations, which except
for the last are generalizations, (2) would still hold:

1. Yt , st , ξ1t , ξ2t could enter both the supply and demand equations.

2. α1 , α2 , β1 , β2 need not be region-invariant.

3. The coefficients on st and εsit need not be the same.

4. Other aggregates like Pt B
´ 1
0 pit di could enter both equations.

5. Other prices being, in equilibrium, functions of the aggregates could enter both equations.

6. Yt could be absent from both equations.

Hence, the idea in this paper is to get an estimate of ηi
MG without relying on the structural form of (4).

To do this, we will use only the information contained in (2), where we must keep in mind that ξ1t and
ξ2t are unobserved. This will allow us to get an estimate of ηi

MG that is robust to any model generating
the data we observe, conditional on them having an equilibrium equation like (2). For example, in
this particular case, the estimate will be valid if the regional supply and demand model is the true
data-generating process, but also if the true process is one in which Yt enters both the supply and
demand equations, etc. Finally, with this estimate we can use (3), which holds across all these models,
to construct an estimate of ηmacro . Thus, in this manner, the estimate of ηmacro is robust to any of the
models that have equilibrium equations like (2) that share the same aggregator.

Therefore, to get an idea of the robustness of the procedure, the key is to understand which models
have an equilibrium equation like (2) that we can exploit. This is the subject of Section 4, where I build
on some of the more widely used macroeconomic models.

Empirical Strategy Once we have understood which models share an equilibrium equation like (2),
the second question is how to estimate ηi

MG using (2) without a model-specific structure. Clearly, if
we ran a time series OLS regression for every region of yit on st and εsit , we would likely get biased
estimates of the elasticities, because it is reasonable to think that st , and/or εsit , is correlated with ξ1t

and ξ2t . On top of this, we could also have both regressors correlated with εit .
The first step in the empirical strategy is to think about the cause of the endogeneity of st and/or

εsit in (2), in order to be able to address it. Of course, for general setups, the reasons could be varied.
Nevertheless, in this paper, I will focus on situations in which the estimating equation of interest, like
(2), represents an equilibrium relationship from a macroeconomic model, in which forward looking
agents optimize their choices subject to resource constraints. And I will also think of st and εsit as
policy variables set by a policy maker, or decision process more generally (a legislature, for example).12
The endogeneity causes I will address are those in which the policy maker is reacting either directly to
yit (or some function of yit ’s) or to the unobserved macro shocks themselves (or to a signal of them, if
they are unobservable to the policy maker13).
12However, I am going to refer to the policy maker from now on for convenience.
13 I am always assuming they are unobserved to the econometrician.
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In the interest of clarity, letme show the simplest example in terms of estimation. And letme assume
as well that εit is i.i.d. To motivate the key equation, the cause for the endogeneity in this example is
that the policymaker is reacting to a signal of the unobservedmacro shocks. Suppose the policymaker
setting εsit chooses the spending to maximize E

�
q

�
εsit , ξ1t , ξ2t

��
ϕ1

it , ϕ
2
it

�
− c

�
εsit

�
, where q (.) and c (.)

are a benefit and cost function, respectively, and ϕk
it is a signal of ξkt , k � 1, 2. This problem captures

the idea that the benefit to the policy maker depends on the shocks hitting her region (which hit other
regions as well), but she does not observe them directly. Instead she observes a pair of signals. In
choosing εsit there is also a cost that can represent resources, lobbying, etc. In Section 5, I show that
there are assumptions on the signals and the functions such that the optimal choice satisfies:

(6) εsit � θ
ε
1iξ1t + θε2iξ2t + εs

it ,

where εs
it is i.i.d. across i and t and independent of the rest of the variables. Since the key for the

estimation is equation (6), reasons other than the one I used to motivate that equation are compatible
with the strategy as well.

The strategy can be implemented as a two-step procedure. First, using the method of asymptotic
principal components, it estimates ξ1t , ξ2t from (6) as the solution to the following problem:14

(
Ξ̂,

{
θ̂
ε
i

}N

i�1

)
� argmin(
Ξ,{θεi }N

i�1

) 1
NT

N∑
i�1

�
εsi − Ξθ

ε
i

�′ �
εsi − Ξθ

ε
i

�
(7)

s .t . :



Ξ
′
Ξ

T � I2

Θε
′

Θε dia gonal

where εsi �
�
εsi1 , ..., εsiT

�′
, Θε �

�
θε1 , ...., θ

ε
N

�′
, θεi �

�
θε1i , θ

ε
2i

�
, Ξ � (ξ1 , ξ2), ξk � (ξk1 , ..., ξkT)′. The

second step involves running a time series OLS regression of (2) for every region, using ξ̂1t and ξ̂2t

to control for ξ1t and ξ2t . Therefore, if we let βi �
�
ηi

MG , η
i
ML

�′
, Yi �

�
yi1 , ..., yiT

�′
, Xi �

�
s , εsi

�
, s �

(s1 , ..., sT) the estimator is given by:

(8) βi

�
Ξ̂

�
�

(
X
′

i MΞ̂Xi
)−1

X
′

i MΞ̂Yi ,

where MΞ � IT − Ξ
�
Ξ
′

Ξ
�−1
Ξ
′. In Section 5 I give conditions under which (8) is consistent.

As this simple example illustrates, the key that enables the estimation of ηi
MG is the heterogeneity

assumption, which allows precise enough estimates of ξ̂1t and ξ̂2t . Note that in the regional supply and
demandmodel, the only source of heterogeneity in the regional supply anddemand systemcomes from
the own-price elasticity of both curves. The rest of the structural parameters are homogenous across
regions. This suffices, though, to have an equilibrium equation like (2), in which all of the parameters
are heterogeneous. Ifmore parameters in the regional supply anddemand systemwere heterogeneous,
this feature would only be reinforced. And, as I show in Section 5, to generate enough heterogeneity
in (6), it suffices that the policy makers from different regions have different precisions in their signals.
14 The constraints in (7) are estimation restrictions, not assumptions about the underlying true processes for Ξ and Θε . See

Section 5 for further details.
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Thus, this heterogeneity in the structural equations that is key for the empirical strategy can arise with
only a “tiny” amount of heterogeneity in the fundamentals of the economy, and this is something that
Section 3 will show is true as well for the most widely used macro models.

Finally, note that, in principle, the linearitymight seemarbitrary in the regional supply anddemand
model, and indeed it is to someextent. However, Iwill apply these ideas in contextswhere the equations
come from a log-linear approximation of the equilibrium around a non-stochastic steady state. Hence,
the linearity in this context is less of a concern.

3 Regional Versions of Canonical Macroeconomic Models

In this section, I present two canonical examples of models widely used in the macroeconomics litera-
ture. The first model is a regional New Keynesian model, and the second one is a regional RBCmodel.
Since the application in Section 6 deals with government spending, the policy variable of interest here
is government spending. However, I also present results for variations of these and also look at another
policy, a subsidy to the production of consumption goods. Thus, the results are seen to be robust to a
very wide range of models and policies.

The goal is twofold. First, these examples show that the results of Section 2, which might have
seemed particular to a reduced form model, are actually very general. The examples in this section
feature much more complex dynamics, with expectations of how the economy will evolve in the fu-
ture playing a crucial role in determining the equilibrium today, and still behave, from an estimation
perspective, in a fashion similar to the regional supply and demand model of Section 2.

Second, these models help us build intuition about how the class of models used for estimation
should be defined. In particular, they offer a clear idea of what elements the regional structural system
needs to include. This last motive will become much more clear in the next section.

Thus, in a sense, this section works like a bridge between the regional supply and demand model
and the general setups considered in Section 4.

3.1 A Regional New Keynesian Model

Households Suppose there is a continuum of consumption goods cit with i ∈ [0, 1] and a represen-
tative agent who solves the following problem:

max
(cit )i∈[0,1] ,Lt ,Bt

E0



∞∑
t�0

βt *
,

C1−σ
t

1 − σ
−

L1+ϕ
t

1 + ϕ
+
-



s .t . :




´ 1
0 pit cit di + Bt � Bt−1 (1 + it−1) + ´ 10 Ωit di + Wt Lt − Tt

Bt (1 + it) ≥ −∑
∞

T�t+1 Et+1
�
Qt+1,T (ΩT + WT LT − TT)	

B−1 � 0, Ct �

[´ 1
0 c

ε−1
ε

it di
] ε
ε−1
,Ωt �

´ 1
0 Ωit di

where it is the nominal interest rate, Bt are the nominal bond holdings, pit is the price of good i in
period t, Lt is labor time, Wt is the nominal wage, Tt are lump sum taxes paid to the government and
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Ωit are the profits of firm producing good i in period t. Markets are complete but I omit in the notation
the arrow securities for clarity.

Firms Suppose there are N ∈ N regions ordered in the real line such that ∀i ∈ [ωn−1 , ωn) for n �

1, 2...,N , with ω0 � 0 and ωN � 1 and ωn − ωn−1 �
1
N , ∀n, lie in the same region. Let n denote an

arbitrary region. The only difference across regions lies in the production function that firms operating
in each region have access to. In particular, they produce according to:15

yint � ant l1−αn
int , αn ∈ (0, 1) .

Government The government demands:

git � Gt

( pit

Pt

)−ε
and finances

´ 1
0 pit git di with the lump-sum taxes Tt . Since markets are complete, the timing does not

matter.

Price Dynamics Prices may be sticky in this economy (as in Calvo (1983)). At any given period t and
in every region n, every firm faces a probability 1 − θ of being able to adjust its price. Thus, following
Uhlig (1996), in every region n ameasure [1 − θ] 1

N of producers change their prices and θ 1
N keep them

fixed. Also, the expected duration of a price is 1
1−θ . Finally, note that for the economy as a whole, in

every period a fraction 1 − θ of firms is resetting its price.

Aggregator The natural data counterpart of Ynt in these type of models is real per capita GDP. Thus,
the aggregator that links these regional per capita variables with the aggregate per capita one is:

(9) Yt �
∑

n

1
N

Ynt .

Equilibrium The next proposition characterizes the equilibrium in this economy. The whole deriva-
tion is given in Appendix A. Before looking into the statement, let us define for n � 1, ...,N :

Pn ,t B

(
N
ˆ ωn

ωn−1

p−(ε−1)it di
)− 1

ε−1

and let us denote by P∗n+1,t the index that would arise in this economy if prices were completely flexible.
With these definitions:

15 In contrast to the RBC model of the next section, I impose here that all i in [ωn−1 , ωn) share the same technology and
interpret the set [ωn−1 , ωn) as the region. This allows me to use well-knownmachinery to solve these kind of models (see,
for example, Woodford (2003)). Otherwise, however, the economic interpretation is the same.
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Proposition 2. The log-linearized equilibrium around a non-stochastic steady state with:

Pnt

Pnt−1
� Πn � 1 � Π∗n �

P∗nt

Pnt
,

Wt

Pnt
�

( W
Pn

)
∀n ∈ {1, ...,N} , pi � p j C pn ∀i , j ∈ [ωn−1 , ωn)

in the regional new Keynesian model with a central bank that implements monetary policy using a Taylor rule of
the form:

(10) ι̃t � vt + φππt + φyỸC
t

is characterized by the following equations:

πnt � λn

(
σ

(1 − G) −
1
ε

)
ỸC

t − λn
σG

(1 − G) G̃t + λnϕ *
,

N∑
n�1

Ln

Lt

( 1
1 − αn

) (
Ỹn ,t − ãn ,t

)+
-

+ λn

(
αn

1 − αn
+ 1
ε

)
Ỹnt −

λn

1 − αn
ãnt + βEt {πnt+1}

0 � −
σ

(1 − G)Et
[
ỸC

t+1

]
+ σG
(1 − G)Et

[
G̃t+1

]

+ σ
(1 − G) ỸC

t −
σG

(1 − G) G̃t − Et [πt+1] + vt + φππt + φyỸC
t

Ỹn ,t − Ỹn ,t−1 � ỸC
t − ỸC

t−1 − ε (πnt − πt)

where πnt � ln (Pnt) − ln (Pnt−1), λn B
�1−θ
θ

� �
1 − θβ

� (
1−αn

1−αn+εαn

)
, for any variable xt , x̃t B ln

� xt
x

�
, where

x is the value of xt in the non-stochastic steady state and ỸC
t �

∑N
n�1

1
N

(
Yn
Y

) ε−1
ε

Ỹn ,t .

The following result, which is a corollary of Proposition 12 in Section 4, gives sufficient conditions
underwhich thismodelwill feature an equilibrium regional equation like the equationwe encountered
in Section 2:

Corollary 1. Consider the stacked version of the equilibrium equations in the regional new Keynesian model:

*
,

~Kt+1

Et
[
~Pt+1

] +
-
� A *

,

~Kt
~Pt

+
-
+ΘΞt

where ~Kt B
(
Ỹ1t−1 , ..., ỸNt−1

)′
, ~Pt B

(
π1t , ..., πNt , Ỹ1t , ..., ỸNt

)′
, Ξt �

(
G̃t , vt , ãt , ε ãnt

)′
, with ãnt �

ãt + ε ãnt and ~K0 given. Suppose the following conditions hold:

1. A and Θ are bounded,

2. Et [Ξt+i] does not explode,16 and Et [Ξt+i] is a linear function of Ξt ,

3. A has exactly 2N eigenvalues outside the unit circle.

16 Condition (1c) in Blanchard and Kahn (1980).
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Then, the solution for Ỹnt is given by:17

Ỹnt � η
n
MGG̃t + c

′

n
~Kt + F

′

tλn + εnt ,(11)

where Ft � (vt , ãt) , εnt � ennε ãnt +
�
e
′

n1
� (∑N

j,n
en j

(e′n1)ε ã jt

)
, and

(12) ηmacro B
∂Ỹt

∂G̃t
�

N∑
n�1

ωiη
n
MG ,

with ωi B
1
N

(
Yn
Y

)
and

∑N
n�1 ωi � 1.

Corollary 1 is a nice result because, if we compare equations (11) and (12) with (2) and (3), we see
that although there are some important differences, we obtain an equilibrium regional equation with
a structure very similar to that of the cases analyzed in Section 2. I will discuss the differences in detail
in Sections 4 and 5 in light of how they matter for estimation and the definition of the class of models,
so I postpone the discussion for the moment and instead turn to another important example.

3.2 A Regional RBCModel

Households Suppose there is a continuum of regions i ∈ [0, 1] and a representative agent who solves
the following problem:

max
(cit ,lit )i∈[0,1] ,Bt

E0



∞∑
t�0

βt *.
,

C1−σ
t

1 − σ
−

ˆ 1

0

l1+ϕi
it

1 + ϕi
di+/

-



s .t . :




´ 1
0 pit cit di + Bt � Bt−1 (1 + it−1) + ´ 10 Ωit di +

´ 1
0 Wit lit di − Tt

Bt (1 + it) ≥ −∑
∞

T�t+1 Et+1
{
Qt+1,T

(
ΩT +

´ 1
0 WiT liT di − TT

)}

B−1 � 0, Ct �

[´ 1
0 c

ε−1
ε

it di
] ε
ε−1
,Ωt �

´ 1
0 Ωit di

where it is the nominal interest rate, Bt are the nominal bond holdings, pit is the price of good i in
period t, lit is labor time employed in region i, Wit is the nominal wage of region i, Tt are lump sum
taxes paid to the government andΩit are the profits of firm producing good i in period t. Markets are
complete, but I omit in the notation the arrow securities for clarity.

Firms There is a monopolist firm in each region i that has technology:

yit � ait l1−αi
it , αi ∈ (0, 1) .

Government The government demands:

git � Gt

( pit

Pt

)−ε
and finances

´ 1
0 pit git di with the lump-sum taxes Tt . Since markets are complete, the timing does not

matter.
17 The bold 1 denotes a column of ones.
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Aggregator Note that here the equivalent of (9) is given by:

Yt �

ˆ 1

0
yit di.

Equilibrium Before diving into the characterization of the equilibrium, let me provide a definition
that will prove useful in future results:

Definition 1. For any collection of random variables xt (i) , i ∈ [0, 1], the process xt (.) is purely regional if
xt (i) have zero mean, are independent and have finite variances (σii ≤ M < ∞) for all i.

The next proposition characterizes the equilibrium in this economy (as before, for any variable xt ,
x̃t B ln

� xt
x

�
where x is the value of xt in the non-stochastic steady state):

Proposition 3. Suppose that ãit � ãt + ε ãit where ε ãit , i ∈ [0, 1], form a purely regional process. Then, in
the log-linearized equilibrium, around a non-stochastic steady state with no inflation, regional output behaves
according to:

(13) Ỹit � η
i
MGG̃t + λi ãt + λεa

i ε ãit

where

ηmacro B
∂Ỹt

∂G̃t
�

ˆ 1

0
ωiη

i
MGdi(14)

with ωi B
(

Y i
Y

)
and
´ 1
0 ωi di � 1.

Hence, as with the regional New Keynesian model, Proposition 3 shows that we also obtain an
equilibrium regional equation for the RBC model with a structure very similar to that of the cases
analyzed in Section 2.

3.3 Extensions and Discussion

The previous two examples show that some of the most commonly used models in macroeconomics,
when we allow for heterogeneity in the fundamentals of different regions, have equilibrium regional
equations that are very similar to those encountered in Section 2.

There are some differences, though; some of themwill have consequences for the estimation frame-
work and will be discussed in later sections, but there is one that deserves to be treated now because it
is mainly an extension of the previous results. Both models in the previous subsections lack a region-
specific policy variable, i.e. they have no εG̃it

in them. The reason for this is that the models, as pre-
sented, are the minimal deviations from the usual employed versions, and the main takeaway was to
see how they would change when adding some heterogeneity. Now I want to go a step further and
include, for the case of government spending as well, the εG̃it

. I show the result for the RBC model:
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Proposition 4. Suppose the economy is given by the one in Proposition 3 with the difference that G̃it � G̃t +εG̃it
,

where εG̃it
, i ∈ [0, 1], form a purely regional process and the technology of each firm is now given by yit � ait lit

under perfect competition. Then, in the log-linearized equilibrium, regional output behaves according to:

(15) Ỹit � η
i
MGG̃t + ηi

MLεG̃it
+ λi ãt + λεa

i ε ãit

where

ηmacro B
∂Ỹt

∂G̃t
�

ˆ 1

0
ωiη

i
MGdi(16)

with ωi B
(

Y i
Y

)
and
´ 1
0 ωi di � 1.

Hence, note that Proposition 4 has the same structure as the simple model we went over in Section
2. The purpose of the next proposition is again to speak to the robustness of these equations and show
that if government spending also serves a purpose in the production of consumption goods, the same
results go through. We can think of it as government spending capturing some kind of infrastructure
spending that enhances the productivity of firms:

Proposition 5. Suppose the economy is given by the one in Proposition 4 with the difference that the technology
is now given by yit � ait G

ρi
it lit . Then, in the log-linearized equilibrium, regional output behaves according to:

(17) Ỹit � η
i
MGG̃t + ηi

MLεG̃it
+ λi ãt + λεa

i ε ãit

where

ηmacro B
∂Ỹt

∂G̃t
�

ˆ 1

0
ωiη

i
MGdi(18)

with ωi B
(

Y i
Y

)
and
´ 1
0 ωi di � 1.

Now I turn to other extensions. These show that the qualitative results obtained do not depend
on the exact policy analyzed, i.e., the policy of government spending, although Proposition 5 already
hinted at this. The next proposition shows that the same qualitative results arise if we instead look at
a subsidy to the production of goods in the regional new Keynesian model:

Proposition 6. Suppose that in the regional new Keynesian model there is no government spending on con-
sumption goods, but the government subsidizes their production. In particular, assume that each firm in region
n receives a subsidy, which is common to every firm in region n, proportional to its payroll of the form:

[1 − snt]Wt lit .

Then, Proposition 2 holds with:

πn ,t � λn

(
σ −

1
ε

)
ỸC

t + λn s̃n ,t + λnϕ *
,

N∑
n�1

Ln

L

( 1
1 − αn

) (
Ỹn ,t − ãn ,t

)+
-

+ λn

(
αn

1 − αn
+ 1
ε

)
Ỹn ,t −

λn

1 − αn
ãn ,t + βEt

�
πn ,t+1

	

σEt
[
ỸC

t+1

]
� σỸC

t − Et [πt+1] + vt + φππt + φyỸC
t

Ỹn ,t − Ỹn ,t−1 � ỸC
t − ỸC

t−1 − ε (πnt − πt) .
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I omit here the parallel result of Corollary 1 because it is straightforward to see that it still holds in
this case. With the subsidy instead of government spending, we would obtain equations like (11) and
(12).

The next proposition analyzes what happens in the regional RBC model:

Proposition 7. Suppose that in the regional RBC model, there is no government spending on consumption
goods, but the government subsidizes their production. In particular, assume that each firm receives a subsidy
proportional to its payroll of the form:

[1 − sit]Wit lit

where s̃it � s̃t + ε s̃it , and the ε s̃it , i ∈ [0, 1] form a purely regional process. Then, Proposition 3 holds with:

(19) Ỹit � η
i
MG s̃t + ηi

MLε s̃it + λi ãt + λεa
i ε ãit

where

ηmacro B
∂Ỹt

∂s̃t
�

ˆ 1

0
ωiη

i
MGdi ,

with ωi B
(

Y i
Y

)
and
´ 1
0 ωi di � 1.

Finally, the following result shows that equations of these type are unrelated to the market com-
pleteness of the models analyzed thus far:

Proposition 8. Suppose there are N regions, each with a representative agent with preferences over a tradable
consumption good, Cnt , and labor, Lnt , given by:

E0



∞∑
t�0

βt *
,

C1−σc
n

nt

1 − σc
n
−

L1+ϕn
nt

1 + ϕn

+
-


.

There is a representative firm in every region n that produces, under constant returns to scale, the tradable
consumption good according to Ynt � ant Lnt where ãit � ãt + ε ãit . Suppose the government spends Gt and
finances this spendingwith lump sum taxes of 1

N Gt to every region, so that it holds a balanced budget in every state
and period. Although there is a common market across regions for the tradable consumption good, labor markets
are region-specific, and thus each representative agent earnsWnt for every unit of Lnt supplied. Moreover, assume
themarket incompleteness takes the extreme form of financial autarky, i.e., each representative agent has the budget
constraint of Cnt � Wnt Lnt − Tnt .

Then, in equilibrium:
Ỹnt � η

n
MGG̃t + λn ãt + εnt ,

where

ηmacro B
∂Ỹt

∂G̃t
�

∑
n

ωnη
n
MG ,

with ωn B
1
N

Yn
Y and

∑
n ωn � 1.
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4 General Data Generating Processes

In this section, I present two general classes of models under which estimation will be carried out in
the next section. Note that the two main models from Section 3 have an important difference in terms
of their state variables. The regional RBC model had no state variables in the equilibrium equation,
whereas the regional New Keynesian model had the vector of

(
Ỹ1t−1 , ..., ỸNt−1

)
as state variables. The

idea in this section is to encompass all of these cases. However, allowing for region-specific state vari-
ables ismuchmore complicated in terms of estimation, and requires specific assumptions. In particular,
since the number of regressors grows with the number of observations, some constraints on how this
can happen are required in order to be able to prove the consistency of the estimators proposed. Be-
cause of this, I split the exposition in two. First, I define a class that includes general economies in
which regions are only allowed to have common state variables (which could be lagged aggregates, for
instance). For example, the RBCmodel has this structure. After this, I focus on the more involved class
that allows the regional state variables. I first present the assumptions needed to specify the classes.

4.1 Assumptions

In this subsection, I will state some assumptions that will prove useful in the definitions of the classes
and in the estimation results of next. However, I rarely apply all of these assumptions together, so it is
best to lookat this subsection as a collectionof assumptions thatwill beused repeatedly in theupcoming
results, but with different results based in different combinations. I present the main assumptions in
this manner not only for the sake of organization, but also to allow readers to skip this section if they
wish without losing conceptual clarity.

In this paper, all asymptotic results are obtained under T,N →∞. In the first class of models, this
takes the form of a simultaneous limit, so all paths are allowed. In the second class, I consider paths of
the form N

T −→
N,T→∞

ρ ∈ (0, 1). See the discussion in the proof of Proposition 13 for further details.
Suppose we have a model:

(20) Yn � Xnβ
(N)
n + L(N)

n γ(N)
n + Fλ(N)

n + εn

where Yn � (Yn1 , ...,YnT)′, Xn � (Xn1 , ...,XnP) with Xn j �
�
Xn j1 , ...,Xn jT

�′
, Ln � (Ln1 , ..., LnN) with

Ln j �
�
Ln j1 , ..., Ln jT

�
, F � (F1 , ..., FK) � �

F
′

1 , ..., F
′

T

�′
with Fk � (Fk1 , ..., FkT)′ and Ft � (F1t , ..., FKt)′, and

εn � (εn1 , ..., εnT)′. Letme also define Z(N)
n B

(
Xn , L

(N)
n

)
, δ(N)

n B
(
β(N)′

n , γ(N)′
n

) ′
andXn B

(
Xn , L

(N)
n , F

)
.

To fix ideas, think of Xn as a fixed number of regressors (where typically those of interest, like the policy
variable st , lie), L(N)

n as an extra set of regressors that are allowed to grow in numberwith N (the specific
role of these will become clear when I define the last class of models), and F as the unobserved macro
shocks or macro factors, like vt in (10) (the monetary policy shock in the context of a new Keynesian
model). The pair {F, εn} is unobserved for every n while the tuple

{
Yn ,Xn , L

(N)
n

}
is observed for every

region.
Then we have:

Assumption 1. ∃ unt , θnt such that:
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(1.1) εn � un +
∑J

j�1 ω jn where ω jn � ~ω jn
�
ω̌ j1 , ..., ω̌ jT

�′
with ~ω jn a scalar and ω̌ jt �

1
N

∑N
k�1 φk w jkt .

Moreover, ∃C < ∞ such that for all N and T:
(1.2) E [unt] � 0,E

[|unt |16
]
< C, ∀n , t

(1.3) E �
unt u js

�
� τn j,ts with

�
τn j,ts

�
≤

�
τn j

�
for some τn j for all (t , s) and 1

N
∑N

n , j�1
�
τn j

�
< C; and�

τn j,ts
�
≤ |κts | for some κts for all

�
n , j

�
and 1

T
∑T

t ,s�1 |κts | < C; and 1
NT

∑
n , j,t ,s�1 |τn j,ts | < C.

(1.4) For every (t , s), E
[����

1
√

N

∑N
n�1 (uns unt − E [uns unt])����

4]
< C.

(1.5) T−2N−1
∑

t ,s ,u ,v
∑

n , j
�
cov

�
uns unt , u ju u jv

��
< C and T−1N−2

∑
t ,s

∑
n , j,k ,l

�
cov

�
unt u jt , uksu uls

��
<

C.
(1.6) unt is independent of X js , L

(N)
js , Fs , λ j for all n , t , j, s .

(1.7) E �
w jnt

�
� 0,E

[�
w jnt

�16]
< C, ∀n , t and w jnt independent of X js , L

(N)
js , Fs , λ j for all n , t , j, s .

Assumption 1 allows the error term unt to be heteroskedastic and weakly correlated across time
and in the cross-section. It also allows for heteroskedasticities. A completely cross-sectional and time
independent unt satisfies conditions (1.3) − (1.5).
Assumption 2. There are K macro shocks that satisfy E

[‖Ft ‖16
]
< ∞ and:

1
T

T∑
t�1

Ft F
′

t
p
→ ΣF

as T →∞ with ΣF a positive definite matrix.

Assumption 2, like Assumption 3, is necessary for the number of unobserved macro shocks to be
K.

Assumption 3. The macro shocks matrix of loadings, Λ �

[
λ(N)
1 , ..., λ(N)

N

] ′
, satisfies E

[


λ
(N)
n





16]

< ∞ and:

1
N
Λ
′

Λ
p
→ ΣΛ

as N →∞ with ΣΛ a positive definite matrix.

The next assumptions concern the observable regressors. In them, I denote as F0 the true unob-
served macro shocks, which generate the data in (20), and by F the parameters matrix used to estimate
F0. Thus, equation (20) now holds with F0 instead of F.

Assumption 4. The regressors satisfy E
[‖Xnt ‖16

]
< C,E

[�
Lntp

�16]
< C, {Xnt , unt} is a stationary ergodic

sequence, P+N+K
T −→

N,T→∞
ρ ∈ (0, 1) and:

(21)


Z(N)′
n MF0Z(N)

n

T



is a positive definite matrix and Op (1), where MF B IT − F
�
F
′

F
�−1 F

′, and MF0 equals MF evaluated at the

true macro shocks F0. Moreover, E
{�

tr
�
D−2

��2}
� E

{(∑
u

�
ιTn ,u

�−2)2}
≤ M < ∞, ∀T, n where ιTn ,u are the

eigenvalues of (1/T)X′nXn .
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The assumption that (21) is positive definite (p.d.) is just the usual invertibility condition onewould
assume in model (20) if the unobserved macro shocks in F0 were observable. This assumption means
that when F is evaluated at the true macro shocks, the regressors in our model are not spanned by
them. Some of the results in the following sections will treat cases in which regressors L(N)

n are absent.
In those cases, it is understood that Assumption 4 holds for Xnt alone and there is no restriction on the
path of N, T →∞.

Moreover, I will always assume:

Assumption 5. The slopes in model (20) satisfy:
β0(N)

n ∈ Bn ⊆ B (r, x) , r < ∞, ∀n and ∀N for some x

γ(N)0
n ∈ G

(N)
n ⊆ B (r (N) , h) , with r (N) � O

(
N−

1
2
)
for some h,

where B (l ,m) is an open ball with center m and radius l. Moreover, β0(N)
np and 1

N
∑N

n�1 β
0(N)
np converge as N →∞

for every p.

Also, I will sometimes assume:

Assumption 6. The matrix:

(22) inf
F∈F

1
N

N∑
n�1

En

is positive definite, where:

F B

{
F : F

′

F
T

� IK

}
En B Bn − C

′

nAg
nCn

Bn B
(
λnλ

′

n

) ′
⊗ IT

Cn B


λ
′

n ⊗
*
,

(MFZn)′
√

T
+
-



An B

(
Z
′

n MFZn

T

)
and Ag

n is a generalized inverse of An .

Assumption 6 is part of a set of sufficient conditions to consistently estimate the space spanned by
the true unobserved macro shocks in single-equation interactive-effects estimators. See, for example,
Bai (2009) and Ando and Bai (2015).

4.2 Common State Variables Class (CSVC), Regional State Variables Class (RSVC), Sub-
classes and Examples

In this subsection, I introduce the classes of models that we will use for estimation in Section 5. Let
me start with the CSVC. As the name makes clear, in this class, only models that feature common state
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variables across regions are allowed. For the definition, I will denote as M an arbitrary model. That is,
M stands for the market structure, preferences, technologies of production, trading rules, equilibrium
concepts, etc. Making explicit all these characteristics would not only be very tedious, but also would
likely restrict the applicability of the results in unexpected ways, so I choose to leave them implicit.

The definition of the class is the following:

Definition 2. A model M belongs to the CSVC iff:

1. In equilibrium, regional output (its first log-difference, or its deviation from the non-stochastic steady state)
can be written as (20), and Assumptions 1 through 5 are satisfied.

2. The regional state variables are common to all regions.

As we saw in Section 3, there are many commonly used models in which regional output (its de-
viation from the non-stochastic steady state) can be written as (20) in equilibrium. And this is true for
different policies as well, such as government spending or regional subsidies. The first condition in
the definition makes sure that Assumptions 1 through 5 are satisfied in the models considered in the
class. The second condition implies that the size of the vector L(N)

n does not depend on N .
The following proposition is useful to fix ideas. It shows that the discrete region version of the

regional RBC model of Subsection 3.2 belongs to the CSVC.18

Proposition 9. Suppose that in the regional RBC model of Subsection 3.2 there are N equidistant regions,
obtained by imposing ϕi � ϕn , αi � αn , ait � ant for all i ∈

� n−1
N , n

N

�
, and that the following conditions hold

for all N and T:

1. ϕn , αn , ε, σ,G are bounded,

2. ∆ log
�
εait

�
are i.i.d. with mean zero and variance σ2 < ∞,

3.
(

ε(1+ϕi)(αi+ϕi)ε+1−αi

)
∆ log

�
εait

�
satisfies conditions (1.2) and (1.6) of Assumption 1,

4. The sequences 1
N

∑N
i�1

(
Y i
YC

) ε−1
ε

( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)
, 1

N
∑N

i�1

(
Y i
YC

) ε−1
ε (1−αi)εσG

(1−G){(αi+ϕi)ε+1−αi} ,
1
N

∑N
i�1

(
Y i
YC

)2( ε−1ε ) (
ε(1+ϕi)(αi+ϕi)ε+1−αi

)2
, 1

N
∑N

i�1

(
Y i
YC

) ε−1
ε

(
ε(1+ϕi)(αi+ϕi)ε+1−αi

)
, 1

N
∑N

i�1

( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)
,

1,
1
N

∑N
i�1

(1−αi)εσG
(1−G){(αi+ϕi)ε+1−αi} , converge,

5. ∆ log (at) satisfies Assumption 2,

6. ∆ log (Gt) satisfies Assumption 4.

Then, the regional RBC model of Subsection 3.2 belongs to the CSVC.
18 Condition 2 in Proposition 9 could be weakened to allow for weak cross-sectional dependence, but this would come at

the expense of a less clean statement (and proof). Since we are interested only in illustrating examples of specific models
included under the classes in consideration, I stick with the stronger assumptions. Moreover, for the same reason I rarely
focus on giving a minimal, non-redundant, set of assumptions.
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Using the same machinery we have used thus far, it is easy to see that versions of the regional RBC
model with additional macro shocks, such as the production subsidy shock discussed earlier, will also
fit in the CSVC. This suggests that indeed the CSVC is a very large class, and that we can go further
in characterizing it. Of course, for estimation purposes, as long as the dgp belongs to the class, our
estimator will be robust to any model in it. But having a clearer idea of what belongs to the class and
what does not is useful. The next result, instead of showing that a particular model (or a number of
particular models) belongs to the CSVC, characterizes an appealing subclass of the CSVC.

Before stating the result, let me define:

Definition 3. X̃t is a generalized symmetric aggregator (gsa) of the vector
(
X̃1t , ..., X̃Nt

)
iff:

X̃t �

N∑
n�1

fn
(
X1t , ...,XNt

)
X̃nt ,

with
∑N

n�1 fn
(
X1t , ...,XNt

)
� 1.

Note that the CES aggregator that appeared in both the regional new Keynesian model and the
regional RBC is a gsa.19 Let me also define:

Definition 4. X̃t is a simple aggregator of the vector
(
X̃1t , ..., X̃Nt

)
iff X̃t �

1
N

∑N
n�1 X̃nt .

The result then is the following:

Proposition 10. Suppose we have a regional model M with equilibrium equations given by:

Et
[
~Yt+1

]
� A~Yt +Θ~Gt

where ~Xt B
(
X̃1t , ..., X̃Nt

) ′
for an arbitrary vector ~Xt , and interactions across regions come only through simple

aggregators, either directly or through common prices, i.e.:

A �

*...
,

a11 + b1 1
N · · · b1 1

N
...

. . .
...

bN
1
N · · · aNN + bN

1
N

+///
-

,Θ �

*...
,

θ11 + ν1 1
N · · · ν1 1

N
...

. . .
...

νN
1
N · · · θNN + νN

1
N

+///
-

.

Suppose as well that for all N :20

1. aii , bi , θii , vi are bounded for all i, aii , 0 for all i,

19 In general, an aggregator of the form:

Yt � f −1 *.
,

N∑
n�1

f (Ynt)+/
-

�⇒ Ỹt �

N∑
n�1

f
′
(
Ynt

)
Ynt

f ′
(
Yt

)
Yt

Ỹnt

is a gsa if
∑N

n�1
f
′
(
Ynt

)
Ynt

f ′
(
Yt

)
Yt

� 1.
20Note that we can easily choose parameters such that A is diagonally dominant both by rows and by columns; hence,

condition 3 is easily satisfiable for many matrices with a structure like A. See, for example, Varah (1975).
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2. 1 + 1
N

∑N
h�1 a−1hh bh , 0,

3. All eigenvalues of A lie outside the unit circle,

4. ~Gt is a vector such that G̃nt � G̃t + εG̃nt
with G̃t and εG̃nt

martingale difference sequences with εGn � 1,

5. εG̃nt
are i.i.d. with mean zero and variance σ2 < ∞,

6. 1
N

∑N
i�1

[
a−1nnνn − a−1j j θ j j

a−1nn bn

1+ 1
N

∑N
h�1 a−1hh bh

−

(
a−1nn bn

1+ 1
N

∑N
h�1 a−1hh bh

) (
1
N

∑N
h�1 a−1hhνh

)]2
, 1

N
∑N

h�1 a−1hh bh ,
1
N

∑N
h�1 a−1hhνh ,

and 1
N

∑N
h�1 a−1hhθhh converge,

7. G̃t and εG̃nt
satisfy Assumption 4.

Then, M belongs to the CSVC.

The following is a straightforward corollary. It says that in the subclass we just analyzed, the equi-
librium equation for regional output takes a very simple form:

Corollary 2. Suppose the conditions for Proposition 10 hold, then:

Ỹnt � γnG̃t + βnεG̃Nt
+ op (1)

1
N

N∑
n�1

γn � ηmacro .

In what follows, I will denote as 1 the column vector of ones. The following result characterizes an
even bigger subclass:21

Proposition 11. Part (1): Suppose we have a regional model M with equilibrium equations given by:

*
,

~Kt+1

Et
[
~Pt+1

] +
-
� A *

,

~Kt
~Pt

+
-
+ΘΞt

where ~Kt B
(
K̃1t , ..., K̃ Jt

)′
, ~Pt B

(
P̃11t , ..., P̃1Nt , ..., P̃R1t , ..., P̃RNt

)′
,
(
P̃11t , ..., P̃1Nt

)
�

(
Ỹ1t , ..., ỸNt

)
,

Ξt �
(̃
st , ..., s̃t−q , ε s̃nt , ε s̃nt−2 , ξ1t , ..., ξ1t−q , ξ2t , ..., ξ2t−q , εξn

1t

)′
and ~K0 given. Suppose for all N the following

conditions hold:

1. A and Θ are bounded,

2. Et [Ξt+i] does not explode,22 and Et [Ξt+i] is a linear function of Ξt ,

3. A has exactly N ∗ R eigenvalues outside the unit circle,

21 I restrict the number of macro shocks to 2 and the number of lags on some variables. This is all without loss of generality
and just for notational simplicity.

22 Condition (1c) in Blanchard and Kahn (1980).
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Then the solution for Ỹnt is given by:

Ỹnt � a(N)′
n ~st + b(N)′

n ~εsnt + c(N)′
n

~Kt + F
′

tλ
(N)
n + unt

Ft �
�
ξ1t , ..., ξ1t−q , ξ2t , ..., ξ2t−q

�

~st �
�
s̃t , s̃t−1 , ..., s̃t−q

�

~εsnt �
�
εsnt , εsnt−1

�

unt � e(N)
nn εξn

1t
+

(
c(N)′

n , d(N)′
n , e(N)′

n

)
1




∑N
j,n

*
,

c(N)
n j(

c(N)′
n ,d(N)′

n ,e(N)′
n

)
1

+
-
εs jt

+
∑N

j,n
*
,

d(N)
n j(

c(N)′
n ,d(N)′

n ,e(N)′
n

)
1

+
-
εs jt−1

+
∑N

j,n
*
,

e(N)
n j(

c(N)′
n ,d(N)′

n ,e(N)′
n

)
1

+
-
ε
ξ

j
1t




Part (2): Suppose as well that for all N :23

1. ∆ log (εsnt ) and ∆ log
(
ε
ξ

j
1t

)
are i.i.d. with mean zero and variance σ2 < ∞,

2. a(N)
n , b(N)

n , c(N)
n , λ(N)

n and their cross-sectional averages converge, and
(
c(N)′

n , d(N)′
n , e(N)′

n

)
1 is bounded,

3. Ft satisfies Assumption 2 and λ(N)
n satisfies Assumption 3,

4. ~st , ~εsnt and ~Kt satisfy Assumption 4.

Then, M belongs to the CSVC.

Somethingworth pointing out is thatmodels with Kt � Yt−1, i.e., having lagged aggregate variables
as the state variables common to every region, are included in Proposition 11.

Now I turn to the RSVC. The main difference is that now regional state variables are allowed:

Definition 5. A model M belongs to the RSVC iff:

1. In equilibrium, regional output (its first log-difference, or its deviation from the non-stochastic steady state)
can be written as (20), and Assumptions 1 through 5 are satisfied.

2. The number of regional state variables is N .

As next section will make evident, all the results regarding estimation and related to the RSVC
would still hold under the assumption that the number of regional state variables is O (N), adjusting
T accordingly. But since our examples deal mainly with the case in which this number is N , that is the
case I analyze. The following proposition is the generalization of Proposition 11 to the RSVC:

23As before, the first condition could be weakened but at the expense of less clean notation. The same applies to the second
condition. Conceptually there is nothing lost in specifying the result like this.
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Proposition 12. Part (1): Suppose we have a regional model M with equilibrium equations given by:

*
,

~Kt+1

Et
[
~Pt+1

] +
-
� A *

,

~Kt
~Pt

+
-
+ΘΞt

where ~Kt B
(
K̃1t , ..., K̃Nt

)′
, ~Pt B

(
P̃11t , ..., P̃1Nt , ..., P̃R1t , ..., P̃RNt

)′
,
(
P̃11t , ..., P̃1Nt

)
�

(
Ỹ1t , ..., ỸNt

)
,

Ξt �
(̃
st , ..., s̃t−q , ε s̃nt , ε s̃nt−2 , ξ1t , ..., ξ1t−q , ξ2t , ..., ξ2t−q , εξn

1t

)′
and ~K0 given. Suppose for all N the following

conditions hold:

1. A and Θ are bounded,

2. Et [Ξt+i] does not explode,24 and Et [Ξt+i] is a linear function of Ξt ,

3. A has exactly N ∗ R eigenvalues outside the unit circle,

Then the solution for Ỹnt is given by:

Ỹnt � a(N)′
n ~st + b(N)′

n ~εsnt + c(N)′
n

~Kt + F
′

tλ
(N)
n + unt

Ft �
�
ξ1t , ..., ξ1t−q , ξ2t , ..., ξ2t−q

�

~st �
�
s̃t , s̃t−1 , ..., s̃t−q

�

~εsnt �
�
εsnt , εsnt−1

�

unt � e(N)
nn εξn

1t
+

(
c(N)′

n , d(N)′
n , e(N)′

n

)
1




∑N
j,n

*
,

c(N)
n j(

c(N)′
n ,d(N)′

n ,e(N)′
n

)
1

+
-
εs jt

+
∑N

j,n
*
,

d(N)
n j(

c(N)′
n ,d(N)′

n ,e(N)′
n

)
1

+
-
εs jt−1

+
∑N

j,n
*
,

e(N)
n j(

c(N)′
n ,d(N)′

n ,e(N)′
n

)
1

+
-
ε
ξ

j
1t




Part (2): Suppose as well that for all N :25

1. ∆ log (εsnt ) and ∆ log
(
ε
ξ

j
1t

)
are i.i.d. with mean zero and variance σ2 < ∞,

2. a(N)
n , b(N)

n , λ(N)
n and their cross-sectional averages converge, 


c(N)

n



 � O

(
N−

1
2
)
and

(
c(N)′

n , d(N)′
n , e(N)′

n

)
1

is bounded,

3. Ft satisfies Assumption 2 and λ(N)
n satisfies Assumption 3,

4. ~st , ~εsnt and ~Kt satisfy Assumption 4.

Then, M belongs to the RSVC.

24 Condition (1c) in Blanchard and Kahn (1980).
25As before, the first condition could be weakened but at the expense of less clean notation. The same applies to the second

condition. Conceptually, there is nothing lost in specifying the result like this.
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At first glance, it might seem annoying tomake a clear distinction between the CSVC and the RSVC.
The reason for this, which is the topic of next section, is that when the dgp belongs to the RSVC, we
need to be very careful when proving the consistency of the estimators considered, because the number
of regressors increases with the cross-sectional dimension.

Proposition 12 implies that if the regional new Keynesian model of subsection 3.1 satisfies the as-
sumptions of the proposition, then that model belongs to the RSVC.

Moreover, note that in Proposition 12, and as in the new Keynesian model of subsection 3.1, we can
have K̃nt � Ỹnt−1 as the state variable for region n. As wementioned before, we can also allow for more
than one state variable per region on average, but I stick with this version here for conceptual clarity.

Finally, note that making the trivial adjustments needed on the statements, we have that CSVC ⊆
RSVC.

5 Estimation and Asymptotic Results

The purpose of this section is to describe estimators that allow the recovery of themicro-global elastici-
ties from the regional equations, andwith them the estimation of themacro elasticities. The estimation
framework combines the equilibrium equations from the previous section with a structural equation
for each of the endogenous variables.

In any of the different specifications, the procedure is always to first obtain estimators of the unob-
servedmacro shocks from thewhole system of equations, and then to use these estimates as controls in
the regional equations of interest. Throughout these results, I assume that the number of unobserved
macro shocks is known. In the last subsection, I discuss what to do when the number is unknown.
Moreover, for every specification I show the consistency of the estimators. I discuss inference in Sub-
section 5.6.

The ultimate goal, then, is to recover themicro-global elasticities in a way that is consistent with the
class of models specified in the previous section. Although one could pursue the following theory for
general classes as the classes presented, it is worthwhile to be specific and to stay close to the examples
we have seen so far. The reason is that the specification of the remaining equations of the system is nat-
urally linked to the identification concerns we have in these contexts, and by allowing more generality,
we distance ourselves from these concerns. However, the definition of the classes helps show clearly
where we stand in terms of generality and how the methods can be extended.

Hence, I now focus particularly onmodels inwhich the key regressors represent policy variables set
by a policymaker,26 examples ofwhichwere covered in Section 3. To that end, letme start by classifying
the different variables in (20) in terms of our needs and the role they play. As part of the regressors
Xn , we have the common policy variable, st , and the region-specific policy variable, εsnt . In the context
of the fiscal multipliers examples, like those in Section 3, these were G̃t and εG̃nt

. The regressors in
L(N)

n capture different specifications for the state variables, like the complete vector of lagged regional
output growth from the regional NewKeynesianmodel. I beginwithout these variables. In Ft we have

26 The policy variable could be the result of the decision of a policy maker, legislature, etc. For convenience, I will refer to the
policy as being set by a policy maker.
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the unobserved macro shocks, and εnt captures a region-specific idiosyncratic shock, which in some
of the models we reviewed represented region-specific TFP shocks. Remember that all these variables
represented growth rates. If rewrite (20) with this simpler notation, we get:

(23) Ynt � η
n
MGst + ηn

MLεsnt + Ftλn + εY
nt .

Context of (23) Because of the interaction between λn and Ft , models like (23) belong to the realm of
interactive-effects models. Let me briefly put these models in context to clarify the scope of the results,
and let me assume, for clarity, that Ft and λn are scalars. The usual fixed-effects model is a particular
case of interactive-effects models, and would, instead, display those terms additively, as in λn + Ft .
The interactive-effects model, in turn, is a particular case of a more general linear panel data model in
which all parameters are allowed to vary with n and t, as in:

(24) Ynt � η
nt
MGst + ηnt

MLεsnt + αnt + εY
nt .

Unfortunately, model (24) is not estimable since the number of parameters to estimate is greater than
the number of observations, and consequently, some restrictions need to be imposed to estimate the
model. In this sense, model (24) is too general. In principle, it’s not clear where to get these restrictions.
Nonetheless, the results discussed in previous sections say that we can use macroeconomic theory to
guide this choice: the most commonly used macro models lead to model (23), in which αnt � λnFt . In
particular, theory, at least for macroeconomics, seems to disfavor the usual additive-effects model, in
which αnt � λn + Ft . This is because, as the results in Section 3 show, there seem to be two reasonable
cases. We either have economies with heterogeneity as in (23), in which αnt � λnFt and the elasticities
of the observable variables are region-varying. Alternatively, we have economies with homogeneity,
for which these elasticities are region-invariant but αnt � Ft , as in:27

(25) Ynt � ηMGst + ηMLεsnt + αt + εY
nt .

The intuition behind this is that one cannot choose where the model displays the heterogeneity: if the
aggregate unobserved macro shock, Ft , has an heterogeneous impact on different regions, then so too
must st .

AMenu of Empirical Strategies In what follows, I present four different ways of adding the remain-
ing equations to (23) in order to have a complete simultaneous equation model. Even though I present
the results progressively, addingmore threats to identification aswemove forward, each stage could by
itself represent the right assumptions in different applications. Hence, one way to look at the different
specifications in this section is as a menu of different empirical strategies, with some of them being
better suited for a particular application than the rest.28 In Section 6, I offer an application of these
methods to the case of fiscal multipliers, and there I discuss the strategies in this section in light of
the particular problems we typically think of when analyzing government spending. Thus, although I
27 In (25) a grand-mean can be included in αt .
28Moreover, the application need not be, in principle, restricted to measuring the effects of policy variables, and could, for

example, be used to analyze the effects of aggregate macro shocks as well.
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sometimes use the example of fiscal multipliers to motivate the various strategies, as well as examples
from Section 3, the intention in this section is to show many possible strategies and assumptions that
make it possible to recover the micro-global elasticities, without regarding any of them as the most
reasonable.

Roadmap The ultimate goal of our estimation procedure is to recover ηn
MG from (23). The problems

we have to address to do so are that the regressors, st and εsnt , might be correlated with Ft and/or εY
nt .

The following points summarize the main ideas:

• The four specifications will allow arbitrary correlations of st and εsnt with Ft .

• The four specifications will treat cases in which st is uncorrelated, at least asymptotically (when
N →∞), with εnt . The reason for this is that themost likely cause for the econometric endogeneity
of st is that the policy maker might be responding to some index of economic performance in
choosing st . As long as this index is “well-diversified” in the sense that there is no particular
region that monopolizes this response, st will become uncorrelated with εY

nt as N →∞.

• For εsnt , correlationwith εY
nt needs to be taken into account. Hence, the three strategies will move

progressively on this front, starting from an assumption of uncorrelatedness and finishing with
assumptions that resemble those of st , in which the structural equation for εsnt depends directly
on Ynt .

My purpose here is to show all of the results as simply as possible. This means, in particular, that
my purpose is not to show the results with the minimal necessary set of assumptions for them to go
through. Instead, I often choose to make stronger assumptions in order to be able to use a simpler
notation in the statements and proofs.

5.1 Case 0: εsnt ⊥ εnt Without Model Selection

Letme start with a case that leads to the easiest scenario, in terms of getting at the estimator. The title of
this subsection points out that it won’t be necessary to apply a model selection technique under these
assumptions, although I will do so in the next subsection.

Denoting as F0
t the unobserved macro shocks entering (23), the assumption in terms of reduced

forms is:

Assumption 7. The reduced forms of st and εsnt satisfy:

st � θ
s′F0

t + us
t(26)

εsnt � θ
ε′
n F0

t + ε
s
nt(27)

εs
nt ⊥ ε

Y
nt .(28)

In the next subsection, I will present a structural system that gives rise to these reduced forms and
makes them appealing. First, however, I will explain how the estimation works.
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The general idea for estimation under the system given by (23), (26), (27) and (28) is straightfor-
ward. Under some normalization restrictions, we can estimate the unobserved macro shocks entering
(27) with themethod of asymptotic principal components. With these estimates thenwe can run a time
series OLS regression of (23), controlling for the unobserved macro shocks, to obtain the regional elas-
ticities. Although our setup has particular features that are different, this general idea is the same as in
many strategies that rely on factor-augmented regressions; see for example Stock and Watson (2002).

Now I present the estimation in detail. For the moment, the total number of unobserved macro
shocks, K, is treated as known. Later in this section, I will discuss what to do when this is not the case.
The first step is getting an estimate of F0. This is the solution to the following problem:

(
F̂,

{
θ̂
ε
n

}N

n�1

)
� argmin
(F,{θεn}N

n�1)
1

NT

N∑
n�1

(εsn − Fθεn)
′ (εsn − Fθεn)(29)

s .t . :



F
′
F

T � IK

Θε
′

Θε dia gonal

where εsn �
�
εsn1 , ..., εsnT

�′
and Θε �

�
θε1 , ...., θ

ε
N

�′
. The constraints in (29) are estimation restrictions,

not assumptions about the underlying true processes for F0 andΘε; see, for example, Stock andWatson
(2002), Bai and Ng (2002) and Bai (2009). With these estimates, the regional elasticities are obtained as:

(30) βn

�
F̂

�
�

(
X
′

n MF̂Xn
)−1

X
′

n MF̂Yn ,

where MA � IT − A
�
A
′

A
�−1 A

′, for an arbitrary T × h matrix A.

Identification in Detail and General Discussion As the proof of the consistency of the estimators
makes clear, (29) will in general recover only a rotation of F0. This means that we will not recover the
exact unobserved macro shocks, but just K linear combinations of them. This is acceptable because we
only need to control for their variation in (23) to recover the regional elasticities.

As something that will arise repeatedly in the following subsections, identification is essentially
achieved because of the system estimation coupled with the heterogeneity assumption that allows the
recovery of the unobservedmacro shocks. In this casewe have (28), which alsomakes things easier, but,
as wewill see in the following cases, in the absence of this assumption, and if we observe an instrument
for εsnt , we can still combine these ideas with the instrument to estimate the regional elasticities.

I now give an example of a model that delivers the reduced forms of the previous subsection. To
start, suppose Ft represents economic variables that are unobserved to the policy maker, but to which
she wants to react nonetheless. In particular, suppose Ft is comprised of the monetary policy shock,
vt , and the TFP shock, at , as the models of Section 3 displayed. Suppose as well, for simplicity, that
these are independent shocks. Let me focus first in εsnt . Suppose εsnt is set by the policy maker as the
solution to:

(31) max
εsnt

E
�
q (εsnt , at , vt)�ϕa

nt , ϕ
v
nt

�
− c (εsnt )
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Here, q (εsnt , at , vt) represents the benefit to the policy maker of choosing εsnt for given shocks at and
vt . Since the shocks are unobserved by her, she uses the signals:

ϕa
nt � at + ua

nt(32)

ϕv
nt � vt + uv

nt ,(33)

where ua
nt and uv

nt are independentnoise shocks, to compute the expectedbenefitE
�
q (εsnt , at , vt)�ϕa

nt , ϕ
v
nt

�
.

c (εsnt ) captures the cost for the policy maker of choosing εsnt . The following result characterizes the
solution to (31) for a case that is simple to compute:

Lemma 1. Suppose in problem (31) we have:
q (εsnt , at , vt) � εsnt at + εsnt vt

c (εsnt ) � 1
2
ε2snt

and also:

at ∼ N
(
µa ,n , σ

2
a ,n

)
vt ∼ N

(
µv ,n , σ

2
v ,n

)
ua

nt ∼ N
(
0, σ2ua ,n

)
uv

nt ∼ N
(
0, σ2uv ,n

)
Then, if, for simplicity, µa ,n � µv ,n � 0 , the solution is given by:

(34) εsnt �
τua ,n

τua ,n + τa ,n
at +

τuv ,n

τuv ,n + τv ,n
vt + εs

nt

where:

τ−1x ,n � σ2x ,n , for x � a , v , ua , uv

εs
nt �

τua ,n

τua ,n + τa ,n
ua

nt +
τuv ,n

τuv ,n + τv ,n
uv

nt .

Suppose as well that st is set in the same fashion; a very simple corollary to Lemma 1 derives the
same result for st :

Corollary 3. Suppose, analogously to problem (31), st is the solution to:

max
st

E
�
q (st , at , vt)�ϕa

st , ϕ
v
st

�
− c (st)

where:

q (st , at , vt) � st at + st vt

c (st) � 1
2

s2t

ϕa
st � at + ua

st

ϕv
st � vt + uv

st

32



and also:

at ∼ N
(
µa ,s , σ

2
a ,s

)
vt ∼ N

(
µv ,s , σ

2
v ,s

)
ua

st ∼ N
(
0, σ2ua ,s

)
uv

st ∼ N
(
0, σ2uv ,s

)
Then, if, for simplicity, µa ,s � µv ,s � 0, the solution is given by:

(35) st �
τua ,s

τua ,s + τa ,s
at +

τuv ,s

τuv ,s + τv ,s
vt + us

t

where:

τ−1x ,s � σ
2
x ,s , for x � a , v , ua , uv

us
t �

τua ,s

τua ,s + τa ,s
ua

st +
τuv ,s

τuv ,s + τv ,s
uv

st .

As the previous results show, the reduced forms in thismodel fit into the framework of the previous
subsection.

Moreover, the estimation described makes clear that variations of this model also fit the purpose
of recovering the regional elasticities. For example, if we added a cost-shifter common to all regions in
the cost functions, all the results would still hold. We would be recovering, in (29), more unobserved
shocks than needed, but this would not be a problem because we would still be controlling for the
variation of F0

t , which is what we need.

Asymptotic Results The following proposition shows that (30) is consistent under different specifi-
cations of (23). Almost all of the results in this paper will be obtained under the simultaneous limit of
N, T →∞; when this is not the case, I will make it explicit. Also, I will use the notation in (20) because
it is more compact. For the same reason, I will denote the true loadings in (34) as θε0k �

�
θε01k , ..., θ

ε0
Nk

�′
.

Proposition 13. Suppose the system of equations is given by (23), (26) and (27), and F̂ is the solution in (29).
Suppose as well that:

1. the errors in (23) and in (27) satisfy Assumption 1 with w jnt independent for all n and t and identically
distributed across t,

2. F0 satisfies Assumption 2,

3. their loadings in (27) satisfy Assumption 3 and θε
′

k 1 � 0 ∀k,

4. all the regressors and the errors satisfy Assumption 4.

Then:

(36)




β̂

(N)
n

�
F̂

�
− β(N)

n




 � op (1) .
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Moreover, if (23) is replaced by (20) for a model that belongs to the RSVC, we also have:

(37)








*
,
β̂
(N)
n

�
F̂

�

γ̂(N)
n

�
F̂

� +
-
− *

,

β(N)
n

γ(N)
n

+
-








� op (1) .

5.2 Case 1: εsnt ⊥ εnt With Model Selection

The previous case is nice because it has the property that the unobserved macro shocks extracted from
(34) have two key features. The first is that they include all of the unobservedmacro shocks wewant to
control for in (23). The second is that they do not include all of the unobserved macro shocks entering
(35). As soon as we start looking at systems in which the policy maker is reacting to the outcome
variable of interest, output in this case, this will no longer be true. This, in turn, means that if (34) has
the same unobserved macro shocks as (35), we will not be able to include all of them in (23) because
of perfect multicollinearity. The case in this subsection will show precisely this, and it will also show
how we can work around this inconvenience.

Denote by F0
t the vector of unobserved macro shocks entering equation (23), by FS

t the vector of
unobserved macro shocks present in the entire system of equations, with K being the total number of
them, and by FS\0

t the vector of unobserved macro shocks that belong to FS
t but not to F0

t .
Let me first state the assumption we will use in terms of reduced forms, and then I will discuss its

main points and what structural equations can lead to them:

Assumption 8. The reduced forms of st and εsnt satisfy:

st � θ
s′FS

t(38)

εsnt � θ
ε′
n FS

t + εs
nt(39)

εs
nt ⊥ ε

Y
nt(40)

To describe how the estimation works under (23), (38), (39) and (40), first note that again, under
(40), if we could get precise estimates of F0

t , we could run (23) as a time series OLS regression for every
region separately to obtain consistent estimates of ηn

MG and ηn
ML. As before, the problem is how to

get at those estimates, and, furthermore, ensuring we have the correct restrictions for these estimates
to be “precise enough,” so that the estimators of ηn

MG and ηn
ML are indeed consistent. But there is an

added complication here as I mentioned before. Even though we can estimate the unobserved macro
shocks entering (39) by the method of asymptotic principal components (under some normalization
restrictions), this procedure gives us an estimate of the whole vector F̂S

t . Because of (38), we cannot
include all of those in (23) due to perfect multicollinearity. Thus, it might seem that we need to be able
to tell apart F0

t from FS
t . In fact, however, it suffices to distinguish a subset of FS

t that contains F0
t , because

doing so controls for the variation in F0
t , which is what we need, avoiding the perfect multicollinearity

problem. We select this subset by checkingwhich of all possible subsets gives a smaller sum of squared
residuals in (23).

I now present in detail the procedure. I assume for the moment that K, the total number of unob-
servedmacro shocks, is known. Thefirst step is getting an estimate of F̂S. As in the previous subsection,

34



this is the solution to problem (29). For the second part, denote as F̂(k) an arbitrary subset of K − 2 es-
timated macro shocks, and define:

(41) F B
{
F̂(1) , ..., F̂(K∗)} ,

where:

(42) K∗ B *
,

K
K − 2

+
-
�

K!
(K − 2)!2! .

The estimator is the same as that in the previous section, with the difference that there is now a model
selection step before the computation the estimator that selects the “best” subset from F . Thus, we can
write the estimator as:

(43) βn

�
F̂∗

�
�

(
X
′

n MF̂∗Xn
)−1

X
′

n MF̂∗Yn

where F̂∗ is obtained as:

F̂∗ B argmin
F∈F

1
NT

N∑
n�1

�
Yn − Xnβn (F)

�′
MF

�
Yn − Xnβn (F)

�
(44)

and MA � IT − A
�
A
′

A
�−1 A

′, for an arbitrary T × h matrix A.

Remark 1. This procedure could, in principle, be highly taxing, computationally, when the combinatorial possi-
bilities for the subsets increases. In our applications, it is rare to have more than 6 or 7 unobserved macro shocks,
however, so this is not a problem.29

Remark 2. Note that (44) puts this procedure in the realm of model selection techniques. Hence, in principle, all
the problems associated with the (lack of) uniform consistency of the estimators will be present here. See Section
1 in Leeb and Pötscher (2008) for a nice discussion of these issues.

Identification in Detail and General Discussion As the previous equations make clear, the subsets
need to have K − 2 unobserved macro shocks, and as we will see in the next subsection, this also needs
to be true for (23). That is, F0

t can have at most K − 2 shocks from FS
t . The reason the subsets need

to have K − 2 is that otherwise the objective function in (44) is flat: if F0
t had K − 1, then (44) would

converge to the same value for any subset of K − 1 macro shocks. Note that F0
t can have, at most, K − 1

shocks for the system to be well defined in the sense that otherwise, even if all the unobserved macro
shocks were observed by the econometrician, (23)would not be a proper regression equation because
of perfect multicollinearity. Thus, we see that we need one more layer for this method to work.

The key identification condition, which we will require for consistency, is related to the reduced
form (39). In addition to Assumptions 2 and 3, we will require:
29Note, further, that this is independent of the sample size. Even if one had, for example, county-level data in the US on a

monthly basis for a large number of years, something that would allow estimation of a high number of unobserved macro
shocks, it is unlikely that the applicationwould require such estimation, at least theoretically. The reason is that it is usually
very hard to think of more than a dozen candidates in a given application. Nonetheless, with a very large sample size,
we could test more precisely the number of them present in the sample, and, ultimately, we could empirically guide the
choice. I will elaborate more on these issues later in this section.
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Assumption 9. ΣFΣθ is a block diagonal matrix on the included
�
F0

t

�
and excluded

(
FS\0

t

)
unobserved macro

shocks, with each block a diagonalizable matrix.

The importance of Assumption 9 is that it implies (44)will select, asymptotically, a subset that cor-
rectly captures the variation in F0

t . However, it also implies that this variationwill be captured by linear
combinations of the elements in F0

t , rather than by F0
t itself. To have a better idea of this assumption,

it is useful to think about a sufficient condition for it, which is to ask for ΣF and Σθ to themselves be
block diagonal on included and excluded unobserved macro shocks. Suppose the loadings as well as
the shocks have mean zero to make the discussion easier. This condition then says that the included
shocks are allowed to be correlated among them, but should be orthogonal to the excluded ones, and
vice versa. And, in terms of loadings, it says that observing how the policy maker reacts to an included
shock in principle should give no information on how she would react to an excluded one, although it
could give information on how she would react to another included one (and vice versa).

I nowdiscusswhich structural equations can give rise to (38), (39) and (40). Stating the assumptions
in terms of reduced forms is nice in that we can capture different structural systems at once. However,
knowing which systems exactly map into the assumptions made is important for understanding the
scope of the method. It will also help us understand what the condition on ΣFΣθ is about. The idea is
that both st and εsnt are responding to an economic performance index. In particular, suppose:

st � θ
s′
F FS

t + θs
yYt(45)

εsnt � θ
ε′

nFFS
t + θεn yYt + εsn

t(46)

where some of the entries in the vectors θs′
F or θε

′

nF could be zero so that F0
t could appear in the reduced

forms because of the dependence of (42) and (46) on Yt . The restrictions discussed before now translate
into restrictions on θεn y and θε

′

nF. In general, there are many choices that satisfy them.

Asymptotic Results The following proposition shows that (43) is consistent under (23). For the
following proposition, let (k)∗ denote a subset of unobserved macro shocks that includes F0 and (k) an
arbitrary subset.

Proposition 14. Suppose the system of equations is given by (23), (38) and (39). Suppose as well that:

1. the number of unobserved macro shocks entering (23) is at most K − 2,

2. the errors in (23) and in (39) satisfy Assumption 1 with w jnt independent for all n and t and identically
distributed across t,

3. the regressors Xn satisfy Assumption 4,

4. FS satisfy Assumption 2,

5. θε satisfy Assumption 3 and θε
′

k 1 � θε
′

k ηML � 0 ∀k, ‖λn‖ ≤ M,

6. Assumption 9 holds,
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7. if (k) , (k)∗, E
[
u(k)′

n M[Xn :FSH(k)]u(k)
n

]
> O (T) > 0,30 where u(k)

n � F0λn − P
�
F0λn

� �
Xn : FSH(k)��

is

a projection error, and û(k)2
nt stationary with absolutely summable autocovariances, where û(k)

n � F0λn −

P̂
�
F0λn

� �
Xn : FSH(k)��

.

Then:

(47)




β̂

(N)
n

�
F̂∗

�
− β(N)

n




 � op (1) .

5.3 Case 2: Instrument for εsnt

This case is the first to analyze a situation in which εsnt is not only correlated with F in (23) but also
potentially correlated with εY

nt . The main assumption in this case is that we observe an instrument εZnt

for εsnt . In principle, onemight think that εZnt should be orthogonal to F on top of εY
nt . As the previous

cases show, this need not be true to obtain consistent estimators, since we are also controlling for F̂.
Controlling for F̂ is necessary because here too it is crucial in order to recover the elasticities on st . This
case also has the nice feature that there is no need for a model selection step as in Case 1.

The main assumption here will be:

Assumption 10. The reduced forms of st and εsnt satisfy:

st � θ
s′FS

t(48)

εsnt � θ
ε′
n Fεt + θεZ

n εZnt + εs
nt(49)

εZnt ⊥ ε
Y
nt .(50)

Here Fεt is used to denote a proper subset of FS
t . The first main difference from the previous case is

that εs
nt is not required to be orthogonal to εY

nt . Second, although the reduced form for εsnt is allowed
to depend on the whole vector FS

t , this, at least in part, has to be mediated by the instrument εZnt .
Moreover, note that the instrument is allowed to be correlated with all the unobserved macro shocks;
it just has to be orthogonal to εY

nt .
The general idea here is to again use the whole system to get at the estimates F̂0

t but combine these
estimates with εZnt in order to address the correlation of εsnt with εY

nt . In detail, this means that the
estimates of the unobserved macro shocks come from:(

F̂,
(
θ̂
ε′

n , θ̂
εZ
n

)N

n�1

)
B argmin(

F,
(
θε
′

n , θ
εZ
n

)N

n�1

) 1
NT

N∑
n�1

�
εsn − Fθεn − θ

εZ
n εZn

�′ �
εsn − Fθεn − θ

εZ
n εZn

�
(51)

s .t . :



F
′
F

T � IK

Θε
′

Θε dia gonal

where Θε �
�
θε1 , ...., θ

ε
N

�′
.With the estimates F̂ from (51), the regional elasticities are estimated as:

(52) βn

�
F̂

�
�

(
X
′

n MF̂Xn
)−1

X
′

n MF̂Yn ,

30 The O (T) term should be O(k) (T) to make clear that O(k) (T) is an O (T) term that depends on the subset (k), but we omit
the (k) in the superscript for a cleaner notation.
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where, in the regressors Xn , εsnt is replaced by εZnt . That is, in this case in (23), the regressors Xn �

(st , εZnt ). See Ando and Bai (2015) for a detailed analysis of (51).

Identification in Detail and General Discussion As (51) makes clear, the key to identification is that
F0

t should be a subset of Fεt . If we are in the general framework of Case 1, where a reduced form like
(39) ultimately applies, if F0

t is not a subset of Fεt we are back in Case 1 and need to apply the ideas of
the model selection technique.

Furthermore, let me note that (51) allows εZn to be correlated with Fεt . That is, the idea that an
instrument for εsnt should be uncorrelated with εY

nt and F0
t is too strict. The crucial property we need

is orthogonality with respect to εY
nt .

This case is suitable for scenarios in which the econometrician observes an intermediate cause for
at least one of the unobservedmacro shocks, provided the conditions described before are met. Let me
give an illustrative example with a structural system that gives rise to (48), (49) and (50). The following
result illustrates an extension of the environment in Subsection 5.1:

Corollary 4. Suppose the environment is the same as in Lemma 1 and Corollary 3 with the difference that now
in setting εsnt the policy maker is also trying to target the signal received for vt by the policy maker setting st , so
that now the problem is:

max
εsnt

E
[

q
�
εsnt , at , vt , uv

st
��
ϕa

nt , ϕ
v
nt , ϕ

uv
s

nt

]
− c (εsnt )

where:

q
�
εsnt , at , vt , uv

st
�
� εsnt at + εsnt vt + εsnt u

v
st

ϕ
uv

s
nt � uv

st + uuv
s

nt

uv
st ∼ N

(
0, σ2uv ,s

)
uuv

s
nt ∼ N

(
0, σ2

uuv
s ,n

)
,

where as before uuv
s

nt is an independent noise shock. The rest of the assumptions are maintained.
Then, the solution to this problem is given by:

(53) εsnt �
τua ,n

τua ,n + τa ,n
at +

τuv ,n

τuv ,n + τv ,n
vt +

τuuv
s ,n

τuuv
s ,n + τuv ,s

ϕ
uv

s
nt + ε

s
nt

where:

τ−1
uuv

s ,n
� σ2

uuv
s ,n
, τ−1uv ,s � σ

2
uv ,s

εs
nt �

τua ,n

τua ,n + τa ,n
ua

nt +
τuv ,n

τuv ,n + τv ,n
uv

nt .

As Corollary 4 shows with (53), if the signal ϕuv
s

nt is observed by the econometrician, we are in the
territory of (48), (49) and (50).
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Asymptotic Results The following proposition shows that (52) is consistent:

Proposition 15. Suppose the system of equations is given by (23), (48) and (49). Suppose as well that:

1. the errors in (23) after replacing the reduced form (49) and the errors in (49) satisfy assumption 1 with
w jnt independent for all n and t and identically distributed across t,

2. the regressors Xn satisfy Assumption 4,

3. FS satisfies Assumption 2 and Fεt spans F0
t ,

4. θε satisfy Assumption 3 and θε
′

k 1 � θε
′

k ηML � 0 ∀k.

5. Assumption 6 holds for (49).

Then:

(54)




β̂

(N)
n

�
F̂

�
− β(N)

n




 � op (1) .

Moreover, if (23) is replaced by (20) for a model that belongs to the RSVC, we also have:

(55)
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5.4 Case 3: Instrument for εsnt and True SEMs

Up to this point, almost all of the scenarios analyzed have allowed st to suffer from simultaneous equa-
tion bias. However, the region-specific policy εsnt suffered only from omitted variables bias. Hence, it
makes sense to ask what happens in the event that εsnt suffers from true simultaneous equation bias as
well. As in the previous subsection, we continue to assume there is an observed instrument εZnt , and
thus we increase the threat to identification but maintain the presence of an instrument. As we will
see shortly, the complexity of the procedure is greatly increased when dealing with this type of bias as
well.

The case in this subsection treats explicitly the situation in which the endogeneity of εsnt is due to
the policy maker responding directly to Ynt . As the first case illustrated, the previous methods can
accommodate situations in which the response is with respect to some index of economic performance
for the economy as a whole, like Yt . Responding to Ynt implies that εsnt will necessary have εY

nt in its
reduced form for any sample size, and thus complicates matters further.

As I mentioned in the introduction to this section, different specifications of the ones seen so far
might be suitable for different applications. Responding to Ynt is a version of the main concern we typ-
ically have when thinking about fiscal multipliers: if the fiscal authority is responding to the economic
performance of the region to which belongs, then Ynt and εsnt are simultaneously determined, and it is
difficult to understand what causal effect, if any, one is recovering by running regressions that involve
spending and output.

To recover the regional elasticities in this case, wewill apply both panel data methods related to the
single-equation interactive-effects estimators and strategies related to the typical SVAR approaches in
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pure time series models. However, the requirements in terms of the time series methods will be lower
than the usual applied ones, and thus one way to see the whole framework is as the advantage that
regional variation brings to the usual methods, in the sense of lowering the identification assumptions
we need to make in terms of ordering of shocks, short-run restrictions, long-run restrictions, etc.

Since the procedure is a bit more involved than in the previous cases, I conduct the analysis with a
much more specific notation. However, once the main point is understood, it is straightforward to see
how it generalizes. Suppose then that the whole system of equations now becomes:

Ynt � β1n st + β2nεsnt + δ1nF1t + δ2nF2t + ωY
nt(56)

st � θsYYt + θsZZt + us
t(57)

εsnt � θYn
(
Ynt − Yt

)
+ θZnεZnt + θus n us

t + ω
s
nt(58)

Zt � κs st + κYYt + uZ
t(59)

εZnt � κ0nF1t + κ1nF2t + κus ,n us
t + κuZ ,n uZ

t + ωZ
nt(60)

where as usual xt B
1
N

∑
n xnt for an arbitrary variable xnt . In the system (56)-(60), Zt denotes the

common component of the instrument εZnt . The idea here is that we observe not only the region-
specific instrument εZnt but also the region-invariant component Zt . However, the system (56)-(60)
implies that Zt cannot be used as an instrument for st . That is, the point of being explicit about Zt

in the system is to rule out this possibility. Furthermore, the presence of (60) illustrates that εZnt is
allowed to be correlated with all of the unobserved macro shocks. The key requirement I will impose
is that ωZ

nt ⊥ ω
Y
nt . Thus, although εZnt may be orthogonal to ωY

nt , both the common component Zt , and
εZnt may be highly endogenous with respect to the unobserved macro shocks; Zt is allowed to depend
explicitly on st and Yt , and st on Yt and Zt .

To further illustrate these points, note that the system in (56)-(60) displays, at the aggregate level, a
familiar simultaneous equation model, a SVAR without lags (for the moment):

Yt � β1st + δ1F1t + δ2F2t + β2εst + ωY
t(61)

st � θsYYt + θsZZt + us
t(62)

Zt � κYYt + κs st + uZ
t .(63)

Note that if we wanted to identify this upper layer of (56)-(60) given by (61)-(63) with, for example,
short-run restrictions, we would need two more such restrictions. The restriction we have comes from
the exclusion ofZt from (61), and such an exclusion, as usual, should be argued on the basis of economic
theory. In this paper, I will argue for it in Section 6 on the basis of themodels of Section 3 and the nature
of the variable Zt I use. If one could argue, for example, for κY � κs � 0, the system (61)-(63) would
be identified because we would have an instrument for st in our hands, Zt . And with Zt and εZnt we
could instrument both st and εsnt in (56) to recover the regional elasticities of interest. Hence, one of
the purposes of this case is to show that even without arguing for any extra exclusion restrictions in
(61)-(63), the whole system in (56)-(60) can be used to recover the regional elasticities of interest. That
is, we can use every equation of every variable, for every region and period, to do so.

Moreover, letmenote here that as (61) illustrates, (56) gives amicrofoundationof an “aggregateGDP
shock”: is amixture of the unobservedmacro shocks entering (56), as in uY

t B δ1F1t +δ2F2t +β2εst +ωY
t .
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I present first the main assumptions used here and then I will present the procedure in detail. The
assumptions are:

Assumption 11. In the regional system given by (56)-(60):

us
t ⊥ uZ

t ⊥ F1t , F2t(64)

ωZ
nt ⊥ ω

Y
nt .(65)

Note that (64) is just the usual assumption made in a SVAR context, that is, that the unobserved
macro shocks of different variables are orthogonal to each other. (65) is the assumption I already men-
tioned.

Like every strategy presented in this paper, the estimation works by first using the whole system
of equations to obtain an estimate of the unobserved macro shocks, and then running equation (56) to
obtain the regional elasticities of interest. For maximum clarity, I present the estimation in a series of
steps. I then explain the intuition and general idea:

1. Using Ynt and εZnt we solve:

(
F̂,

(
φ̂

y′

n , φ̂
y
Zn

)N

n�1

)
B argmin(

F,
(
φ

y′
n , φ

y
Zn

)N

n�1

) 1
NT

N∑
n�1

�
Yn − Fφy

n − φ
y
ZnεZn

�′ �
Yn − Fφy

n − φ
y
ZnεZn

�
(66)

s .t . :



F
′
F

T � IK

Φy′Φy dia gonal

where Φy �
�
φ

y
1 , ...., φ

y
N

�′
.

2. Using εsnt and εZnt we solve:

(
ûs ,

(
φ̂
ε
n , φ̂

ε
Zn , φ̂

ε
Ωn

)N

n�1

)
B argmin(

us ,
�
φεn , φ

ε
Zn , φ

ε
Ωn

�N
n�1

) 1
NT

N∑
n�1

T∑
t�1

(
εsnt − φ

ε
n us

t − φ
ε
ZnεZnt − φ

ε
Ωn F̂

′

t φ̂
y
n

)2(67)

s .t . :



us ′us

T � 1

Φε
′

Φε dia gonal

where Φε �
�
φε1 , ...., φ

ε
N

�′
.

3. Using ûs
t to instrument st in (61) we get the estimate of the residuals r̂t , where rt � δ1F1t + δ2F2t +

β2εst + ωY
t .

4. Using ûs
t to instrument st , and r̂t to instrument Yt , we get the estimate ûZ

t of the residuals from
(63).
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5. Regressing F̂kt on ûZ
t for k � 1, 2, 3, 4, we get the estimate of the residuals, which we denote by

F̂R
kt .

6. We obtain the estimates of the micro-global elasticities as the OLS coefficient on st of:

(68) β̂n �

(
X
′

nXn
)−1

X
′

nYn

with Xnt �
�
st , εZnt , F̂

RC
1t , F̂

RC
2t , F̂

RC
3t

�′
where F̂RC

kt , k � 1, 2, 3, is an arbitrary linear combinationwith
strictly positive weights of F̂R

1t , F̂
R
2t , F̂

R
3t , F̂

R
4t .

Identification inDetail andGeneralDiscussion Letme first elaborate on the general idea of (68) that
will make all of the steps in the estimation straightforward. One way to look at them is the following:
the first step gives as an estimate of ~Ft �

�
Ft , us

t , u
Z
t

�
. However, since there are no restrictions on Σ~F or

on the equivalent matrix for the loadings, step 1 actually gives four linear combinations of ~Ft . That is,
it does not give us the true ~Ft but a rotation of itself. Using all of them in a regional OLS time series
regression of Ynt on st and εZnt is again not possible because of perfect multicollinearity in the limit.
Note that if this were not the case, using the rotation that controls for the variation of all of themwould
be fine, since this is all whatwe need to recover the parameters that interest us. Nonetheless, if we could
separate

�
Ft , us

t

�
from ~Ft , we could control for that separation in the regression of Ynt on st and εZnt ,

which is what we actually need. Thus, steps 2 to 5 are designed to achieve just that, i.e., are designed
to use the information in all the equations to separate

�
Ft , us

t

�
from ~Ft . Finally, step 6 computes the

regional elasticities using the instrument and the separated unobserved macro shocks.
I now discuss the key identification assumptions by diving into each step in great detail. This will

also help clarify every part of the estimation. As I already mentioned, step 1 gives the estimate of a
rotation of ~Ft . Note once again that if we were able to pull apart the unobserved macro shocks at this
point, we could jump immediately to step 6. Since this is not possible unfortunately, we must transit
through 2-5. Note that in addition to this rotation, step 1 also gives a consistent estimate of F̂

′

t φ̂
y
n , which

will be crucial for pulling apart the unobserved macro shocks.
The second step uses this F̂

′

t φ̂
y
n as a regressor in another single-equation interactive effects estima-

tion, along with the instrument εZnt , with the goal of getting at an estimate of us
t . Here is where the

first key assumption comes in. For this step to work, we need, as always, Assumption (6) to hold. This
means in particular that for an arbitrary candidate us , with us ′us

T � IK , in (67), the residuals of regress-
ing F̂

′

t φ̂
y
n on the candidate us should display sufficient regional heterogeneity. Thus, in our case this is

satisfied because of a key assumption that is coded in the exclusion restrictions of system (56)-(60). We
can describe it in this manner: the reason εsnt is endogenous in (56), and the reason its reduced form
depends on all of the unobserved macro shocks, is that εsnt responds to Ynt , and thus its correlation
with the right-hand side variables of (56) comes exclusively from this interaction. That is, if we were to
assume that εsnt responds not only to Ynt but also to all of the unobserved macro shocks, this assump-
tion would be violated. The intuition of the exclusion restriction is that εsnt is correlated with F1t and
F2t not because the policy maker cares about those shocks (as in some of the examples in the previous
cases), but because it wants to target Ynt , and through this behavior εsnt ends up being correlated with
F1t and F2t . Of course, as usual, the plausibility of this exclusion restriction should be judged in each
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application. Nonetheless, for the fiscal spending application of this paper, it seems to satisfy our usual
main concern that the policy maker is responding to economic activity and this response drives the
correlation of spending with the unobserved macro shocks.

Steps 3 and 4 are just the usual IV treatment of exclusion restrictions, short-run restrictions, in
“world ordering” of SVARs. The goal of these steps is to reach ûZ

t . As I mentioned before, if it weren’t
for steps 1 and 2, we would need more exclusion restrictions in the system to get at ûZ

t .
Step 5 is just the actual separation of uZ

t from ~Ft . There is nothing special about this step apart from
the separation. Step 6 merely computes the actual estimator.

Note that assumption 11 is also important and used in all of the steps just described: for example,
in Step 5 to separate the unobservedmacro shocks, and in steps 1 and 2 to compute the single-equation
interactive-effects estimators. Moreover, see Ando and Bai (2015) for a detailed analysis of problems
like (66) and (67).

Asymptotic Results The following proposition shows that (68) is consistent. I refer to ωx
nt , for x �

Y, s , Z, as unobserved regional shocks.

Proposition 16. Suppose the system of equations is given by (56)-(60). Suppose as well that:

1. ωx
nt is independent of all of the unobserved macro shocks, unobserved regional shocks and coefficients in

the system, and identically distributed across t with E
�
ωx

nt

�
� 0 and E

[�
ωx

nt

�16]
< C for x � Y, s , Z,

2. Assumption 11 holds,

3. the regressors Xn satisfy Assumption 4,

4. ~F satisfies Assumption 2,

5. the loadings on the reduced form of Ynt − Yt satisfy Assumption 3, θYn � θY , and
∑N

n�1 θus n �∑N
n�1 θus n

β2n
1−δYβ2n

�
∑N

n�1 θZn xn �
∑N

n�1 θZn
β2n

1−δYβ2n
xn � 0, xn � κ0n , κ1n , κus ,n , κuZ ,n ,

6. εZnt and the unobserved macro shocks in ~Ft satisfy Assumptions 4 and 6,

7. Ωnt , εZnt and the unobserved macro shock us
t satisfy Assumptions 4 and 6, whereΩnt is the inner product

of the unobserved macro shocks and their loadings in the reduced form of Ynt − Yt .

Then the estimator in (68) satisfies:

(69)




β̂

(N)
n − β(N)

n




 � op (1) .

5.5 Monte Carlo Simulations

In this subsection, I present results on Monte Carlo simulations to assess the performance of the dif-
ferent estimators for different sample sizes. Except for case 0, I present simulations for all of them. For
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cases 1 and 2, I generate data according to:

ynt � η
n
MGst + ηn

MLεsnt + δ
n
1 ξ1t + δn

2 ξ2t + unt(70)

st � ξ1t + ξ2t + ξ3t + ξ4t(71)

εZnt � κ1nξ1t + κ2nξ2t + κ3nξ3t + κ4nξ4t + vnt(72)

and:

εsnt �




θ1nξ1t + θ2nξ2t + θ3nξ3t + θ4nξ4t + ωnt (Case 1)
θ1nξ1t + θ2nξ2t + θ3nξ3t + θ4nεZnt + 0.5unt + ωnt (Case 2)

where: ξkt ∼ N (0, 1), δ1n ∼ 0.9 + N (0, 1), δ2n ∼ 1.3 + N (0, 1), ηn
MG ∼ 0.8 + N (0, 1), ηn

ML ∼ 0.3 + N (0, 1),
unt ∼ N (0, 1), vnt ∼ N (0, 1), ωnt ∼ N (0, 1), κ′s and θ’s ∼ N (0, σ) for varying σ′s (0.5, 1, 1.5, ...).

For case 3, I simulate the model (56)-(60) with Fkt ∼ N (0, 1), us
t ∼ N

�
0, 94

�
, uZ

t ∼ N (0, 1), γ ∼
U[−0.1,0.1], δ1n ∼ U[0, 14 ] + γ, δ2n ∼ 0.2 + U[0,0.4] + γ, β1n ∼ 0.8 + U[− 1

4 ,
1
4 ] + γ, β2n ∼ 0.1 + U[− 1

8 ,
1
8 ] + 1

4γ,
ωY

nt ∼ U[− 1
2 ,

1
2 ], ωZ

nt ∼ N (0, 1), ωs
nt ∼ U[− 1

2 ,
1
2 ], κ′n s ∼ N (0, 1), θY � 0.3, θZn ∼ U[− 1

4 ,
1
4 ], θus n ∼ U[− 1

2 ,
1
2 ],

κs � 1.54, κY � 0.7, θsY � 0.4 and θsZ � 2.1.
The results for the simulations at different sample sizes are presented in figures 1 through 9. All the

figures show the results we would obtain if we were to instead run a simple OLS time series regression
for each region to gain a sense of the magnitude of the bias.

Figures 1 through 3 show the results for the macro elasticity. As the three figures show, the esti-
mators perform very well even in a case like this, in which, as the OLS points illustrate, there is a huge
underlying bias.

Since we are also interested in the micro-global elasticities, Figures 8 and 9, in Appendix B, show
the analog of Figures 1 through 3 for these elasticities in cases 1 and 2. As expected, the standard
errors are much higher for the micro-global elasticities than for the macro elasticity, since in the latter
we are pulling together all of the micro-global elasticities. However, Figures 8 and 9 also show a good
performance of the estimators even in small samples.

5.6 Further Issues: EndogeneityCauses, IdentificationAssumptions, Inference andChoos-
ing K

Endogeneity Causes and Identification Assumptions Before turning into the empirical application,
I want to spend a few paragraphs explaining different aspects of the identification assumptions. Al-
though I have not emphasized them so far, it is important to keep them in mind.

For context, let me reiterate that the first and perhapsmost important assumption is the heterogene-
ity of regions, which is reflected, for example, in Assumption 3.

However, another important assumption is condition (1.6) in Assumption 1. Condition (1.6) says
that the errors in our econometric model are independent of the regressors and the unobserved macro
shocks. This assumption could easily be weakened to absence of correlation among them. In terms of
the regional RBC model of Subsection 3.2, for example, this means that the deviation from the tech-
nology shock is uncorrelatedwith aggregate government spending andwith the aggregate technology
shock.
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Figure 1: This figure shows the Monte Carlo simulations for the macro elasticity in Case 1.

Although there are many ways this assumption could be violated,31 two particular concerns arise
naturally in our framework. The first is an omitted variables concern, and the second is a reverse
causation concern. I now discuss each in turn and give examples and intuition of when condition (1.6)
holds.

With respect to the omitted variables concern, and given thatwe are thinking about a region-specific
error in the presence of region-invariant regressors, the most natural starting point to think about this
may be to consider that there is a variable, let’s call it ζt , that is affecting both unt and u jt , and also
st . This makes unt and u jt comove, and it also makes the pairs (unt , s̃t) and �

u jt , s̃t
�
comove as well.

But then this means that we can think of ζt as an extra unobserved macro shock: in our setup, the
macro shocks are allowed to be correlated among themselves and with the regressors, in particular
the aggregate policy variable, which is the one that interests us. Thus, the most natural way to think
about the identification assumption being violated suggests that with a large enough K we can guard
ourselves against these type of violations.

Before turning to the second concern, let me discuss a setup under which this first concern can be
addressed in an even starker way. For classes of models that assume a continuum of regions, thanks
to Al-Najjar (1995), we know that for an L2 − bounded process εnt , n ∈ [0, 1], if the process is weakly

31 See Andrews (2005).
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Figure 2: This figure shows the Monte Carlo simulations for the macro elasticity in Case 2.

measurable, it can be (essentially) decomposed as the sum of an aggregate process and an idiosyncratic
process.32 The aggregate process takes the form of gnt �

∑
∞

κ�1 ακntζκt , where the ζκt form a countable
set of orthonormal33 random variables, and the idiosyncratic process is a process hnt , which is orthog-
onal to any random variable in L2. In particular, they are orthogonal to the ζκt ’s. We also know that
for any ϑ > 0, any bounded aggregate process can be written as the sum of a finitely generated process
gϑnt �

∑K(ϑ)
κ�1 ακntζκt , and a residual process wnt � gnt − gϑnt , with

´
[0,1] ‖wnt ‖ dn < ϑ. Thus, combining

these two results, we have that any weakly measurable process can be written as the sum of an aggre-
gate process with a finite number of ζκt ’s and a residual ȟnt � wnt + hnt , where hnt is idiosyncratic and´
[0,1] ‖wnt ‖ dn < ϑ.34

Thus, with a sufficiently large number of ζκt ’s, ȟnt will be almost uncorrelated across regions. Fur-
thermore, we can always include a constant among the regressors; thus, without loss of generality, we
can assume the unobserved macro shocks have zero means and then ȟnt will satisfy condition (1.6).35

32As the author points out in the paper, the weakly measurability condition is a very weak one; see Al-Najjar (1995) for more
details.

33 Taking as the inner product of two random variables the expected value of their product.
34All three results can be found in Al-Najjar (1995): the decomposition result is part of the Main Theorem, the finite approx-

imation is Proposition 1, and the third observation is given right after the Main Theorem.
35Of course, for this to be true, we are also assuming that the policy variables can be correlated with, at most, a finite number
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Figure 3: This figure shows the Monte Carlo simulations for the macro elasticity in Case 3.

Note also that in many of the cases reviewed in the previous subsection, the cross-correlation of the
ȟnt ’s thatmight remain, even after accounting formany of the unobservedmacro shocks, does not need
to be addressed in terms of the single-equation interactive-effects methods. When it does, it seems that
a good approximationwouldmake this cross-sectional correlationmoderately low, allowing us to safe-
guard the consistency of the estimators.

In the previous subsection, I also analyzed situations in which the main threat to identification
comes from reverse causation, but another potential source of a violation of econometric endogeneity is
current expectations of the future. That is, on top of having reverse feedback from current variables, we
can have current expectations of future variables breaking the identification assumption. In principle,
dealingwith this concernwould require again a detailed study, but a fewpoints can bemade that follow
from what I have already shown and thus can be made without further investment. The following
proposition shows a class of economies for which the procedure of case 3 can be applied:

of unobserved macro shocks.
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Proposition 17. Suppose we have a regional model M with equilibrium equations given by:
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Suppose as well that for all N :

1. All eigenvalues of A lie outside the unit circle,

2. ~ξt is a vector martingale difference sequence.

Then, there are restrictions on the matrices A andΘ and on the processes in ~ξt such that the estimator in Propo-
sition 16 is consistent.

Thus, Proposition 17 shows that the methods we have already covered could be useful in these
situations as well. Of course, a more general study of these is required to make more general claims.
Furthermore, it would be interesting to see if and how the methods presented in this paper can help in
situations in which part of the policy changes are anticipated by economic agents.36
36 See Ramey (2016) for a review of these problems and the solutions adopted in different applications.
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Another key condition in Assumption 1 says that the errors can be a composite of the usual unex-
plained shock plus terms that satisfy 1

N
∑N

n�1 unt � op (1). Similarly to the comment at the beginning
of this subsection, the most natural way to think about this condition being violated points to adding
an extra macro shock to Ft . In other words, for this condition to fail, we need enough cross-sectional
correlation among the region’s unt , even after differencing all the common region-invariant variables
that might be driving that correlation. For example, in the models of Section 3, it is necessary that,
even after controlling for ãt , the aggregate TFP shock, and other potential macro shocks, the ε ãnt ’s still
display enough cross-sectional correlation for 1

N
∑N

n�1 unt , op (1). That is, and to give an examplewith
only two shocks, even in the case that ε ãnt � δ1n ãt + δ2nζt + unt , we would still need unt to be highly
cross-sectionally correlated.

Finally, I give a big-picture overview of the methods discussed that will also help me relate them
to the usual fixed-effects strategies. I focus the discussion on the third empirical strategy for the sake
of concreteness, although what I say here holds for the other strategies as well.

As in all of them, the key of the strategy is to get estimates of F1t , F2t , us
t , u

Z
t .37 There is no restriction

on the processes of those unobservedmacro shocks, so in this sensewe can label the strategy as a “fixed
effects” one. We can do so both because we treat the unobserved macro shocks as parameters to be
estimated and because we obtain consistent estimates for the ηn

MG’s without imposing any restriction
on the distribution of those unobserved shocks conditional on the observables of themodel (st , εsnt , ...).

How is this possible? The superficial reason is obvious: we have managed to get our hands in an
instrument, ûZ

t , or, equivalently, on controls for F1t , F2t , us
t (the F̂1t , F̂2t , ûs

t ).38 If we take the instrument
view, note that the typical IV strategy consists of picking one observable as the candidate instrument
and arguing for the exclusion restriction.39 One way to think about this is that we are arguing for a
particular configuration of the SEM. Conditional on this configuration, we are then able to recover the
coefficients of interest. In (56)-(60) the logic is the same, with the important difference that the sys-
tem implies that there are no observables that we could use as instruments for st . In this sense, the
assumptions made are weaker than usual. How, then, could we get an instrument if there are no ob-
servables that serve such a purpose? Although (56)-(60) implies there are no observable instruments, it
also implies there are functions of observable variables that can serve as instruments, or put differently,
(56)-(60) implies that:

(a) there are unobservable variables that can serve as instruments,

(b) we can use the observables to estimate those unobservables.

The unobservables that serve as instruments are clear; for example, in this case, uZ
t plays that role.

What allows the use of observables to estimate those unobservables is the structure assumed for the
unobserved heterogeneity of the form Ωnt � αnξt , i.e., as the interaction of a purely cross-sectional

37Of course, when εsnt is correlated not only with the unobserved macro shocks, but also with ωY
nt , observing εZnt is also

crucial. But this is a well understood feature, so I will focus here exclusively on the logic behind getting at estimates of
F1t , F2t , us

t , u
Z
t .

38 To be precise, we are only getting at an estimate of the space spanned by F1t and F2t , but this is enough to control for their
variation.

39Weak instruments are of course a concern, but one that comes, conceptually, later in the strategy.
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heterogeneity term and a purely time series one. This structure is what allows the interactive-effects
methods to construct estimates like F̂1t , i.e., to “extract” the unobservable controls or instruments from
the observables of the model. The justification for the particular structure of Ωnt , in turn, comes from
macroeconomic theory: ifwe focus onmodelswithheterogeneous agents, regions, etc., we arenaturally
led to structural equations in which part of the variation we see in the observable variables is driven
by unobserved macro shocks (shocks to the Taylor rule, aggregate TFP shocks, etc) that have different
effects in different agents, regions, etc. Moreover, as I explained in detail in Section 1, this is a particular
case of a more general panel data model in which all parameters are allowed to vary. However, as I
argued there, such a model is too general in the sense that is not estimable.

Does the unobservability of the instruments imply that this strategy is more robust than the usual
IV strategies? No, because in both cases we rely on a particular configuration of the SEM or class of
SEMs, and thus a model misspecification would break down the strategy in both cases. However, it
does imply that even if no instrument is observed, we can in some cases recover an unobserved one.

The same comments apply when we think about using F̂1t , F̂2t , ûs
t as controls, i.e., we usually have

to argue that these are all the “good” controls we need, after picking some observable candidates,
whereas in (56)-(60) there are no observables that could serve this purpose. Hence, this view of the
strategy is akin to the control function approach.

This discussion also means that part of the understanding that we get in the usual empirical strate-
gies from having an observable instrument, for example due to its mechanics, here is washed away by
the “anonymity” of the relevant variables. Probably the best that can be offered in this case is a hint of
what these the unobserved macro shocks estimates could be representing.

Now, in amore subtle comparison, what is the relationshipwith the usual additive effects? Additive
effects are a particular case of interactive effects. Since we are interested in recovering the coefficient on
a region-invariant variable like st , the interesting comparison is to the presence of additive time fixed
effects. Having an additive effect in (56)-(60) would imply that, for example, δ1n � 1. The assumptions
in our empirical strategy allow this, so all of the analysis we have done applies to this situation as
well. This means that we can still get consistent estimators F̂1t , F̂2t , ûs

t to recover ηn
MG. Alternatively,

we can contrast this to the approach in Hausman and Taylor (1981): ûZ
t serves as an instrument for

st , so if we were to estimate the first equation in (56)-(60) with time dummies, and thus get estimates
of ηn

MG −
1
N

∑N
n�1 η

n
MG, we could then use the residuals to run 2SLS using ûZ

t as an instrument for st

to recover 1
N

∑N
n�1 η

n
MG. With 1

N
∑N

n�1 η
n
MG and ηn

MG −
1
N

∑N
n�1 η

n
MG we can reconstruct the ηn

MG’s by
summing the former to the latter. Thus, the approach is similar to Hausman and Taylor (1981) in the
sense that the instrument comes from within the system, but it differs in that it is not observable.

Inference Now, turning to inference, I briefly describe two alternative ways of thinking about what
does itmeans to let N →∞ in these setups, because thiswill turn out to be important for understanding
the discussion of inference.

The specification so far treats the regions in the sample as the entire population, because, for ex-
ample, if we use data on the 50 US states, the most natural way to think about that sample is that one
has the whole population of the states.40 In particular, this means that the usual standard errors will
40 This is not business as usual in econometrics, and recent papers such as Abadie, Athey, Imbens and Wooldridge (2014)
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overestimate the true amount of noise. It also means that when we carry the thought experiment of
N → ∞, to prove the consistency of the estimators, we can think of it as making the grid finer; for
example, using counties instead of states, etc. I will refer to this as the “refining grid metaphor.” How-
ever, we can also think of N as being a sample from a very large population, which is the usual practice
in econometrics. I will refer to this as the “infinite population metaphor.” In this case, increasing N
simply means increasing the sample size. For this second case, a future extension of these methods
would be to apply the results in Mikusheva and Anatolyev (2018) to our specifications.

Nonetheless, eachof these approaches requires its ownstudy, so although they are important, I leave
them to future work. Instead, in this paper I use the Bootstrap to get the standard errors. The bootstrap
methods applied here in principle require a theoretical justification for some of the cases described
in the previous subsections. Again, this is beyond the scope of this paper, so I adapt the methods in
Gonçalves andPerron (2014) andDjogbenou,Gonçalves andPerron (2015). These are basedonageneral
residual-based bootstrap for factor-augmented regression models, like those we have covered so far.
The particular implementation shown in those papers, and applied here as well, is a multi-step wild
bootstrap scheme. As Horowitz (2001) shows, in the context of a heteroskedastic regression model,
the numerical performance of the wild bootstrap is much more accurate, especially in small samples,
than that of a paired or nonparametric bootstrap. However, since the multi-step wild bootstrap is less
comparable across cases for the methods proposed in this paper, I also provide results using a simple
nonparametric bootstrap in which regions are resampled at random, with replacement. Because of
this resampling, the nonparametric bootstrap has a better fit with the infinite population metaphor. In
contrast, the wild bootstrap has a better fit with the refining grid metaphor, since it maintains fixed the
panel dimension.

Choosing K The different specifications covered so far offer different possibilities for estimating the
number of unobserved macro shocks. Nonetheless, the idea is always to apply the results in Bai and
Ng (2002) to one of the reduced forms of the models. For example, for case 0 we can apply it to the
reduced form of εsnt and use the estimated number of unobservedmacro shocks to extract that amount
from it. In case 3 we can use the reduced form of Ynt to do this, etc.

6 Fiscal Multipliers in the US

In this section, I offer a detailed application of the procedure proposed in this paper to the case of fiscal
multipliers in the US. I use a balanced panel of the 50 US states plus Washington, DC from 1971 to
2008. In Subsection 6.1 I detail the equations and variables to be used in the application. In Subsection
6.2, I describe the data I use and their sources. I then showmymain results in Subsection 6.3 and offer
a discussion comparing these to other numbers obtained in the literature. Finally, in Subsection 6.4,
I show additional results and conduct robustness checks to increase the confidence in the estimates
obtained.

deal with these situations.
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6.1 Recovering Fiscal Multipliers from Regional GDP Regressions

All of the variables used are in real per capita terms. The main equation of interest, following the
examples in the previous section, is:

(74) Ynt � η
n
MGGt + ηn

MLεGnt + Ftλn + εY
nt .

In equation (74), the dependent variable, Ynt , is the real per capitaGDPgrowth rate of state n in period t.
Gt is the average of the growth rates of real per capita spending in every state, and εGnt is the deviation
of state n from Gt . Ft is a vector of K unobserved macro shocks hitting state n, and εnt contains all the
other shocks hitting state n.41 I estimate variations of (74) including lags of both spending and GDP; I
detail the exact equation in each case.

In the context of the menu of strategies discussed in the previous section, this application is usually
thought to lie somewhere between cases 1 to 3. Hence, these are the cases for which I show results
later in this section. The main obstacle to analyzing government spending is that this policy could be
simultaneously determined with output, for example, increasing during recessions to ameliorate their
depth. If we focus exclusively on this aspect, we should observe small (or negative) multipliers when
doing naïve OLS regressions, because this property would generate a negative bias in the estimates.
As I show later in this section, this is indeed what we get.

The main difference among these three cases lies between the third one, which allows regional
spending to respond to regional GDP, and the first two which do not. Consequently, the third one is
more robust. However, since it’s much more involved than the first two, the cost in terms of power
is higher. Moreover, to the extent that regional spending captures motivations that are further away
from the typical stabilization motives of the federal government, this concern is smaller for regional
spending.

Nonetheless, as the examples in Section 3 show, the estimators used are consistent for models with
price rigidities, flexible prices, different market structures, etc. Being agnostic about these important
issues is a key advantage of the results to follow.

In the cases that need a special numerical procedure, those with single-equation interactive-effects
estimators, I use the strategy described in Bai (2009) and Ando and Bai (2015).

The aggregator of the models that justify (74) is used to aggregate the micro-global elasticities:

(75) η̂macro �

∑
n

1
N

Yn

Y
η̂n

MG .

See Section 3 for details.
To convert the macro elasticity into the typical fiscal multiplier used in the literature, I multiply (75)

by the average ratio of GDP to government spending in the period 1971-2008, which is 3.16.
For inference I use a wild bootstrap and a nonparametric bootstrap. Since in every regression I

control for the lag of the dependent variable, and because these variables aremeasured in growth rates,
autocorrelation is not a concern. Therefore, for thewild bootstrap I apply themethods ofGonçalves and
41 I refer to Ynt , loosely, as “state n’s GDP” and to Gt as “aggregate government spending,” but please keep in mind that

every regression uses real per capita variables.
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Perron (2014). In contrast, heteroskedasticity is likely a concern, but the wild bootstrap is especially
designed to handle it. For comparison purposes, I also report results using a simple nonparametric
bootstrap. See Section 5 for details.

Finally, I briefly discuss the meaning of ηn
MG in (74). As Farhi and Werning (2016) clearly explain,

what we are getting in (74) is a summary fiscal multiplier.42 The intuition of why this is an interesting
measure is that since all spending must be financed to get a given amount of response in output, we
need to look at the response in output vis-à-vis the total spending required to achieve that change.
Nonetheless, note that our strategies also allow the computation of the impulse responses themselves.
For example, in case 3 we are getting an estimate of us

t that could be used for these purposes.

6.2 Data Description and Sources

To construct Ynt , I started by collecting data on Gross State Product (GSP) by state from the BEA web-
site.43

For Gt I collected data on federal, state and local spending. The federal spending for the period
1981-2008 was obtained from the CFFR44, and for the period 1971-1980 from the ICPSR.45 2010 is the
last year available for the CFFR, and to my knowledge there is still not a reliable source of data for
federal spending past that point that is also completely consistent with the previous series. Thus, I
choose to work with the sample from 1971 to 2008. I exclude 2009 and 2010 because of the crisis. For
the state and local spending, as well as revenues, the period 1971-2008 was obtained from the Census
Bureau.46 Data prior to 1971 are available, but there is nomatch of the federal spending for those years.
Thus, the main shortcoming in terms of limiting the sample size in this study comes from the limited
availability of federal spending figures by state. The measure of total spending by state is obtained by
adding spending on the federal, state and local levels and subtracting the revenues from the federal
government of each state. Since a large number of state and local expenses, like education, are financed
to some degree by federal programs, subtracting the money states and local governments get from the
federal government helps to minimize the double-counting problem.

The population of every state comes from the Census Bureau.47 The price index comes from the
BEA and is the GDP chain-type price index.48

42 The fiscalmultiplier is usually defined in dollar units instead of elasticities as in (74), but this is inessential for this particular
discussion. Inmy empirical results in the next subsections, Iwill report the typical fiscalmultiplier instead of the elasticities
because this is the common practice in the literature.

43U.S. Bureau of Economic Analysis, “ANNUAL GROSS DOMESTIC PRODUCT (GDP) BY STATE,”
https://www.bea.gov/itable/iTable.cfm?ReqID=70&step=1#reqid=70&step=1&isuri=1&7003=200&7001=1200&7002=1&7090=70.

44U.S. Census Bureau, “CONSOLIDATED FEDERAL FUNDS REPORT,” https://www.census.gov/govs/cffr/.
45Anton, Thomas. FEDERAL BUDGET OUTLAYS, 1971-1980 [UNITED STATES]. Compiled by University of Michigan,

Intergovernmental Fiscal Analysis Project. ICPSR ed. Ann Arbor, MI: Inter-university Consortium for Political and Social
Research [producer and distributor], 1984. http://doi.org/10.3886/ICPSR08199.v1

46U.S. Census Bureau, Annual Surveys of State and Local Government Finances (1992-2015) andU.S. Census Bureau, Annual
Survey of State Government Finances and Census of Governments (1971-1991).

47 I provide only the citation for Massachusetts since all the others are similar: “U.S. Bureau of the Census,
Resident Population in Massachusetts [MAPOP], retrieved from FRED, Federal Reserve Bank of St. Louis;
https://fred.stlouisfed.org/series/MAPOP.”

48U.S. Bureau of Economic Analysis, Gross domestic product (chain-type price index) [A191RG3A086NBEA], retrieved from
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For εZnt I use declarations of natural disasters by the federal government: upon a natural disaster
inside state n, the state has the option to apply for federal funds, arguing that its own funds are not
enough to dealwith the disaster. If the president declares it a natural disaster, federal funds are released
to the state.49 Since the declarations might be correlated with the actual disasters that could be hitting
the states, I also control for thenumber ofdisasters in the regressions. However, becausenot all disasters
are available, I control for the number of severe storms (tornado, hail and damaging wind). The data
on declarations were obtained from FEMA50 and the data on severe storms from the SPC.51

Finally, I exclude 4 states because they have yearly variations of above 20% in their GSP, which
translate into unreliably large micro-global multipliers, and a very small population: North Dakota
(0.23% of the US population), South Dakota (0.27%), Wyoming (0.18%) and Alaska (0.23%).

6.3 Main Results

Table 1 contains the main results obtained.52 Column 1 is a simple time series OLS regression of Yt on
a constant, Gt , Gt−1, Gt−2 and Yt−1. This is just a benchmark to compare the different specifications.
Note that if none of the threats to identification discussed earlier were present, we could just run an
aggregate time series OLS regression, as Column 1 shows. Columns 2 − 4 estimate (74) for cases 1, 2
and 3, respectively. Since the model selection techniques of Bai and Ng (2002) applied to Ynt and εGnt

point to a number of unobservedmacro shocks from 3 to 5, 5 is the number I use for most of the results;
however, I also showwhat happens when we vary the number of estimated unobservedmacro shocks.

A consistent pattern emerges from these numbers. The “naïve” column 1 shows a huge negative
bias in the estimates, consistent with the main concern we have when looking at fiscal multipliers: if
spending increases when the economy is doing poorly, a naïve OLS regression should pick this up this
as small or even negative coefficients for government spending. The three strategies in columns 2 − 4
show a reversal to zero of the contemporaneous spending. They also show a very precisely estimated
positive fiscal multiplier for lagged spending. Columns 2 and 4 show a small and non-significant
estimate for the second lag of spending, whereas column 3 shows a negative coefficient significant
at the 5% level (with a p-value of 0.048). This fact is not robust, though, as Table 2 shows. Varying
the number of estimated unobserved macro shocks changes the point estimates for the second lag; in
contrast, the coefficient on the first lag is very stable across all specifications. Moreover, Table 9 shows
that only the first lag is significant when we instead apply the nonparametric bootstrap. To further
investigate the effect of the first lag, Table 3 shows the results for case 2 under different specifications
using only Gt−1. As the table shows, we now get estimates in the range 0.82 − 1.2, all significant at the
1% level. Hence, the results point towards a positive and precisely estimated fiscal multiplier of lagged
spending. Of course, there could still be some bias in these estimates as well, and it might be the case

FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/A191RG3A086NBEA.
49 See https://www.fema.gov.
50 https://www.fema.gov. This product uses the Federal Emergency Management Agency’s API, but is not endorsed by

FEMA.
51 https://www.spc.noaa.gov/.
52All of the tables and figures that are not present in the main text can be found in Appendix B.
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Dep. Variable: Real GDP Per Capita Growth
(1) (2) (3) (4)
OLS Model Selection Instrument SEM

Gt
-1.08*** -0.07 0.02 0.01
(0.38) (0.17) (0.14) (0.59)

Gt−1
0.28 0.65*** 0.80*** 0.69***
(0.48) (0.10) (0.11) (0.29)

Gt−2
0.38 0.08 -0.34** 0.03
(0.39) (0.08) (0.17) (0.24)

State Time Trend X X X

Time Fixed E f f ect
Interactive FE X X X

Number o f IE 0 5 5 5
Observations 37 1,739 1,739 1,739
Period 1971-2008 1971-2008 1971-2008 1971-2008
Number of Regions - 47 47 47

Table 1: This table presents estimates of the fiscal multiplier. Column 1 is a simple time series OLS regression

of Yt on a constant, Gt , Gt−1, Gt−2 and Yt−1. Columns 2 to 4 estimate (74) for cases 1, 2 and 3, respectively. All

of the regressions control for Ynt−1. I exclude 4 states because they have yearly variations of above 20% in their

GSP, which translate into unreliably large micro-global multipliers, and a very small population: North Dakota

(0.23% of the US population), South Dakota (0.27%), Wyoming (0.18%) and Alaska (0.23%). Standard errors are

in parentheses and are obtained with the wild bootstrap; see Section 5 for details. The coefficients with ∗∗∗ are

significant at the 1% confidence level; with ∗∗ are significant at the 5% confidence level; andwith ∗ are significant

at the 10% confidence level.

that we are just approximating more closely the true effect. In the next subsection, I perform further
robustness checks that reinforce these conclusions.

Thus, afirst questionofwhether thefiscalmultiplier is positive ornegative is answeredaffirmatively,
and with very precise estimates. However, these results do not allow a strong answer to the question
of whether the fiscal multiplier is above or below 1. The estimates point to a multiplier somewhere
between 0.7 − 1.2. Therefore, it is not possible to discard the possibility that government spending
crowds out/in private spending. However, the estimates on the lower end fall in the range of 0.7− 0.9,
suggesting that if there is crowding out, it is not severe; and, similarly, the estimates on the higher end
fall in the range of 1.1 − 1.2, so if there is crowding in, it does not seem to be high.

Moreover, given the similarity of the estimates across the different cases, it does not seem possible
to favor one strategy over the rest. In principle, as we argued in the first subsection, case 3 is the most
robust of the three. This little difference could, in principle, be due to the fact that the simultaneous
equation bias that regional spending might be suffering from in cases 1 and 2 is not strong enough
for the estimates on aggregate spending to show large differences. Nonetheless, note that there is a

55



Dep. Variable: Real GDP Per Capita Growth
(1) (2) (3) (4)
OLS Instrument Instrument Instrument

Gt
-1.08*** 0.34*** 0.22** 0.02
(0.38) (0.10) (0.11) (0.14)

Gt−1
0.28 0.70*** 0.72*** 0.80***
(0.48) (0.07) (0.07) (0.11)

Gt−2
0.38 0.24** 0.28** -0.34**
(0.39) (0.12) (0.11) (0.17)

State Time Trend X X X

Time Fixed E f f ect
Interactive FE X X X

Number o f IE 0 3 4 5
Observations 37 1,739 1,739 1,739
Period 1971-2008 1971-2008 1971-2008 1971-2008
Number of Regions - 47 47 47

Table 2: This table presents estimates of the fiscalmultiplier. Column 1 is a simple time seriesOLS regression of

Yt on a constant, Gt , Gt−1, Gt−2 and Yt−1. Columns 2 to 4 estimate (74) for case 2. All of the regressions control

for Ynt−1. I exclude 4 states because they have yearly variations of above 20% in their GSP, which translate

into unreliably large micro-global multipliers, and a very small population: North Dakota (0.23% of the US

population), South Dakota (0.27%), Wyoming (0.18%) and Alaska (0.23%). Standard errors are in parentheses

and are obtained with the wild bootstrap; see Section 5 for details. The coefficients with ∗∗∗ are significant at

the 1% confidence level; with ∗∗ are significant at the 5% confidence level; and with ∗ are significant at the 10%

confidence level.

significant precision loss in case 3. Thus, the fact the there is not a significant difference could also be
due to power loss, and if maybe we had a sample with a large enough N and T, we might we able to
see sharper differences among them. This is the main disadvantage of case 3 in samples of this size.

Figure 4 shows on a heat map the micro-global multipliers that lie behind the fiscal multiplier of
case 2 using only Gt−1 and controlling for Ynt−1. The fiscal multiplier in this case is 0.79 (0.09) and the 4
excluded states are fixed at that level. As the figure shows, the results seem to be coherent in the sense
that states next to each other tend to have similar micro-global multipliers. Furthermore, the Far West,
Southwest and Great Lakes are the regions with the highest multipliers, while most of the Mideast
and New England is populated with states of low multipliers. It is worth noting that this pattern is
also robust across specifications (unreported to save space): the particular values of the micro-global
multipliers change, but states next to each other tend to have similar multipliers, and the geographical
distribution of high and low multipliers remains the same.

Before turning to thenext subsection, letme reflect on these results and compare themwithprevious
results in the literature. Ramey (2016) provides a thorough review of the literature on fiscalmultipliers.
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Dep. Variable: Real GDP Per Capita Growth
(1) (2) (3) (4) (5)
OLS Instrument Instrument Instrument Instrument

Gt−1
-0.19 0.89*** 0.82*** 1.13*** 1.20***
(0.35) (0.12) (0.07) (0.06) (0.11)

State Time Trend X X

Time Fixed E f f ect X X

Interactive FE X X X X

Number o f IE 0 5 5 5 5
Observations 37 1,739 1,739 1,739 1,739
Period 1971-2008 1971-2008 1971-2008 1971-2008 1971-2008
Number of Regions - 47 47 47 47

Table 3: This table presents estimates of the fiscal multiplier. Column 1 is a simple time series OLS regression

of Yt on a constant, Gt−1 and Yt−1. Columns 2 to 5 estimate (74) for case 2 for the different specifications

detailed in the checkboxes. All of the regressions control for Ynt−1. I exclude 4 states because they have yearly

variations of above 20% in their GSP, which translate into unreliably large micro-global multipliers, and a very

small population: North Dakota (0.23% of the US population), South Dakota (0.27%), Wyoming (0.18%) and

Alaska (0.23%). Standard errors are in parentheses and are obtained with the wild bootstrap; see Section 5 for

details. The coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are significant at the 5%

confidence level; and with ∗ are significant at the 10% confidence level.

For our estimates, a common theme when carrying out the comparison is that it is hard to find studies
that use similar time periods, and many use quarterly data instead of annual data. With this caveat in
mind, there are some papers that get higher multipliers (for samples beginning in 1947 or 1960), but
most of the studies find lower estimates. Maybe the easiest papers to compare against are those of Barro
and Redlick (2011) and Hall (2009), because the equations they estimate are similar. In comparison to
the estimates in these papers, here I get higher and more precise effects of government spending. One
of the common features of those two papers is that the estimates of the spending variables are not
significant for time periods close to those used here. Although the comparison is more difficult in the
case of Blanchard andPerotti (2002), because the comparable summary fiscalmultiplier is not provided,
it is safe to say that the estimates here are larger. As Ramey (2016) points out, computing the summary
fiscal multipliers from impulse responses in various papers usually gives estimates below 1, evenwhen
the peak output response against the initial government spending effect is above 1.

6.4 Additional Results and Robustness Checks

Robustness Checks I now present various robustness checks and present also other specifications
that might be of interest to see how the strategies presented in this paper perform. The nonparametric
bootstrap is inprinciple better for comparingacross cases, given that themethodology is the sameacross

57



Figure 4: This figure shows a heat map of the micro-global multipliers that lie behind the fiscal multiplier of

case 1.

the three cases. However, the wild bootstrap probably provides a better approximation for the sample
size we have in this application; consequently, to clearly show the differences across cases, some of the
results presented here rely on the nonparametric bootstrap, and the rest rely on the wild bootstrap. I
indicate in each tablewhich one is used. The general picture that emerges from these robustness checks
in this respect is that thewild bootstrap tends to deliver lower standard errors, and that case 3 is the one
with the least precise estimates, as expected. Nonetheless, the main message remains the same: the
results point towards a positive effect of lagged fiscal stimulus, and we can neither confirm nor reject
a multiplier above 1.

In Table 4, I show what happens when one explicitly accounts for time fixed effects. The results
show very little difference from the results we obtained before. In Table 5, I leave the time fixed effects
but now remove the state time trends. As the table shows, this increases the estimates by somemargin,
both of contemporaneous spending and of lagged spending. In Table 6, I remove both the time fixed
effects and the state time trends, and there we see again slightly higher estimates but in the range we
obtained before.

In Table 7, for case 2, I show what happens when we vary the amount of estimated unobserved
macro shocks in columns 1 through 6. As the table shows, the estimates increase when we reach 4 and
5 unobserved macro shocks. Moreover, it shows that the difference between using 1 or 2 unobserved
macro shocks and using 4 or 5 can increase the multiplier by 50%. This table also shows the results of
including the lead of spending in column 7, which comeswith a point estimate of 0.08 (0.16). However,
as I discussed in Section 5, a detailed study of anticipation in the context of the methods presented in
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Figure 5: This figure shows the lagged micro-global multipliers of case 2 using only Gt−1 with their 90%

confidence intervals. All of the regressions control for Ynt−1. I exclude 4 states because they have yearly varia-

tions of above 20% in their GSP, which translate into unreliably large micro-global multipliers, and a very small

population: North Dakota (0.23% of the US population), South Dakota (0.27%), Wyoming (0.18%) and Alaska

(0.23%).

this paper would be needed to completely discard foresight problems in the estimates. Figure 10 plots
this last column to convey a better sense of the estimates.

In Table 8, I showwhat happenswhenwe go from 1 to 5 unobservedmacro shocks for case 3 and the
three spending variables. Here againwe observe a considerable difference between using, for example,
1 unobserved macro shock and using 5. Moreover, note here how much precision is lost in case 3 in
comparison to the other cases, just as we observed in the main results, a consequence of being a much
more involved estimator. This is one of the drawbacks of this case, especially in samples like this one
in which neither N nor T is very large.

Finally, a comment on the strength of the instrument used. Case 1 can’t be affected by a weak
instrument problem because it does not rely on one, but cases 2 and 3 can. And, in principle, it is
hard to know how to diagnose weak instruments in these setups given how non-standard they are. A
thorough treatment of this issue would probably need its own study. However, if we look at the first
stage F values for case 2, even forgetting about the fact that the unobservedmacro shocks are generated
regressors, there are many states for which this value is below 5. This suggests that strategies 2 and 3
may be suffering from a weak instruments problem.
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Figure 6: This figure shows the lagged micro-local multipliers of case 2 using only Gt−1 with their 90% confi-

dence intervals. All of the regressions control for Ynt−1. I exclude 4 states because they have yearly variations of

above 20% in their GSP, which translate into unreliably large micro-global multipliers, and a very small popula-

tion: North Dakota (0.23% of the US population), South Dakota (0.27%), Wyoming (0.18%) and Alaska (0.23%).

This potential weak instruments problem, alongwith the relatively small N and T and the potential
anticipation problems, are the threemain concerns of this empirical application. Nonetheless, themain
takeaways from these results are consistent across all of the specifications: contemporaneous aggregate
spending does not seem to play an important role, and lagged spending appears to have a positive
impact with a multiplier in the range 0.65 − 1.23.

Additional Results Although Figure 4 shows the geographical distribution of the micro-global mul-
tipliers, it does not show the precision of the estimates. Moreover, it is interesting to compare these
estimates to themicro-local multipliers to see if the theoretical differences we have pointed out actually
show up in them. Figures 5 and 6 show the micro-global and micro-local multipliers of case 1, using
only Gt−1, in ascending order. Figure 7 shows a scatter of these estimates against each other along
with a 45-degree line. I use case 1 because of the potential weak instruments problem described in
the previous subsection, and thus these results should be taken cautiously. As the figures show, the
estimated micro-global multipliers are much higher than the micro-local ones for a large fraction of
states. Furthermore, although there are many states with similar values for both, there are many that
have micro-global multipliers of around 1, along with negative micro-local multipliers. For example,
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Figure 7: This figure plots the estimates in Figure 5 against those in Figure 6, along with a 45-degree line.

Massachusetts has a micro-global multiplier of 0.80 (0.35) and a micro-local multiplier of −0.65 (0.72).
Of course, bias could be a part of this disparity, but, more likely, there are other aspects that could

help explain the difference. First, since the micro-global multipliers capture the effect of spillovers
across regions, it is reasonable to expect differences in them. This could be the explanation for some of
the states for which the disparity of bothmicro multipliers is rather small. For example, Minnesota has
a micro-global multiplier of 0.97 (0.34) and a micro-local multiplier of 1.15 (0.71). Nevertheless, since
the method in this paper does not allow us, without further assumptions, to attribute the difference to
a particular source of spillovers, we cannot be entirely sure.

However, states like Massachusetts display such a large disparity that it is probably caused by
more than spillover effects. To the extent that regional spending captures government spending that
is more tightly connected to state and local spending, we should probably observe lower micro-local
multipliers. The reason is that this spending is a closer substitute for private spending, since it is related
particularly to, for example, education and transportation. Moreover, we should also probably observe
lower local-multipliers for states with high debt to GSP ratios, since it is plausible to think that the
private sector in these states would react more violently to cutting private spending, because of the
anticipation of debt-related problems in the near future. In fact, Ilzetzki, Mendoza and Végh (2013)
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show evidence that this could also show up as negative multipliers for countries in a similar situation.
This explanation could also account for the negative micro-local multipliers we observe for some of the
states in our sample.

Finally, these figures also highlight the importance of relying on the micro-global elasticities for
computing the macro elasticity: if we were to instead use the micro-local multipliers, we would get an
estimate of 0.11 (statistically indistinguishable from zero), compared to the 0.79 (significant at the 1%
level) we get when we use the micro-global multipliers.

7 Conclusion

This paper proposed a newestimation framework to recovermacro elasticities, using regional data. The
procedure is robust to many macro models that might be generating the data. Examples of the models
considered are a regional new Keynesian model and a regional RBC model. Models with incomplete
and complete markets and under different market structures are included. The estimation procedure
delivers consistent estimates of the macro elasticities using as inputs the micro-global elasticities of
every region.

An application to the case of fiscal multipliers in the US is provided. Regional regressions with
state specific time-trends, time fixed effects and unobserved macro shocks are considered. The results
point to higher effects of government spending than previous estimates have suggested, and are shown
to hold under different specifications. Moreover, current spending does not seem to have an effect on
current GDP growth, with lagged spending capturing the whole effect.
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A Appendix: Proofs

Proposition 1

Proof. We have the following system of equations:

pd
it � −ρ

d
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Just by replacing the first and second equations in the last one:
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So let us define:
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supply and demand shocks. This, along with the definitions, completes the proof. �

Proposition 2

Proof. Wewill indicate how to derive thewhole log-linearized equilibrium. As always in thesemodels,
we have the two-step solution which gives:
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Now, moving on to pricing decisions, in every region the firms that get to reset their prices solve:
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53 See Acemoglu and Jensen (2012).
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where yit+k |t is the output of a firm i in period t + k that is stuck with p∗it since period t and Pt+k ,
Ct+k ,Gt+k and Qt ,t+k are taken as given. Note that since the problem that each firm reseting its price
in region n faces is the same, all such firms will set the same price, which I will call p∗nt from now on.
Thus:

∀n ∈ {1, ...,N} , p∗it � p∗nt ∀i ∈ [ωn−1 , ωn) .
Moreover, note that from yit+k |t � (Ct+k + Gt+k)

(
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this also implies that:
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The problem can be rewritten as:
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which is the usual result of resetting the price to a weighted average of future marginal costs.
This, in turn, implies that the price level dynamics are:
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which is the price index that would arise in this economy if θ → 0, i.e., if prices were flexible.54
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and thus note that with the same arguments as before, we see that p∗n ,t is the price index that would
arise in region n if prices were flexible. Hence, if we define:
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Now, on to the non-stochastic steady state. We look for a non-stochastic steady state with no infla-
tion, and symmetry inside each region. Thus we have that:
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Note that what we asked for inflation implies that in the non-stochastic steady state:

Πnt

Πt
�

PRnt

PRnt−1
� 1 �⇒ PRnt � PRnt−1 � PRn .

I omit the whole derivation to save space because, having derived all the equilibrium equations, it is
straightforward. After manipulating the equilibrium equations, we arrive at:

1 �

N∑
n�1

1
N

(
Y

C
)− ε−1ε 

(
ε
ε−1

1
1−αn

a
−

1
1−αn

n

)−ε
(
ε
ε−1

1
1−αk

a
−

1
1−αk

k

)−ε


ε−1
ε

1+ε αn
1−αn

*...
,

Y
C

1+ε
αk

1−αk
1+ε αn

1−αn

(
pk

P

) (−ε) 1+ε αk
1−αk

1+ε αn
1−αn

+///
-

(ε−1)
ε

L �

N∑
n�1




1
N

1−αn

*..............
,

(
Y

C
) 1
ε



*
,

ε
ε−1

1
1−αn a

−
1

1−αn
n

+
-

−ε

*
,

ε
ε−1

1
1−αk

a
−

1
1−αk

k
+
-

−ε



−
1
ε

1+ε αn
1−αn

∗
*..
,
Y

C
1+ε

αk
1−αk

1+ε αn
1−αn

(
pk
P

) (−ε) 1+ε αk
1−αk

1+ε αn
1−αn

+//
-

−
1
ε

+//////////////
-

−ε

a−1n ,tY
C




1
1−αn

(
Y

C
− G

)σ(ε−1)
L
ϕ(ε−1)

�

N∑
n�1

1
N

*...............
,

ε
ε − 1

a
−

1
1−αn

n

1 − αn

*..............
,

Y
C

*..............
,

(
Y

C
) 1
ε



*
,

ε
ε−1

1
1−αn a

−
1

1−αn
n

+
-

−ε

*
,

ε
ε−1

1
1−αk

a
−

1
1−αk

k
+
-

−ε



−
1
ε

1+ε αn
1−αn

∗
*..
,
Y

C
1+ε

αk
1−αk

1+ε αn
1−αn

(
pk
P

) (−ε) 1+ε αk
1−αk

1+ε αn
1−αn

+//
-

−
1
ε

+//////////////
-

−ε

+//////////////
-

αn
1−αn +///////////////

-

−(ε−1)

which is a system of 3 equations in Y
C
, L and

(
pk
P

)
. We assume there are economies for which there is

a solution to this system. After solving for those three variables, we can recover the rest.
Now, we want to log-linearize around the previous non-stochastic steady state. Define ι̃t B ιt − ι ≈

it − i, where ι B ln
(
1 + i

)
. Define also πt B ln (Πt) � ln (Pt) − ln (Pt−1). After some computations
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with the equilibrium equations, we get the system:

L̃t �

N∑
n�1

Ln

Lt

( 1
1 − αn

) (
Ỹn ,t − ãn ,t

)
0 �

N∑
n�1

1
N

PRn
−(ε−1)

P̃Rn ,t

ỸC
t �

N∑
n�1

1
N

*
,

Yn

Y
C

+
-

ε−1
ε

Ỹn ,t

πnt � (1 − θ) �
lnP∗nt − lnPnt−1

	

σC̃t + ϕL̃t �

(̃Wt

Pt

)
C̃t �

1
(1 − G) ỸC

t −
G

(1 − G) G̃t(̃Wt

Pt

)
�

(̃ Wt

Pnt

)
+ 1
ε

ỸC
t −

1
ε

Ỹnt

ỸC
t � Ỹn ,t + εP̃Rnt

0 � Et

{
−

σ
(1 − G) ỸC

t+1 +
σG

(1 − G) G̃t+1 +
σ

(1 − G) ỸC
t −

σG
(1 − G) G̃t − πt+1 + ι̃t

}
�
ln

�
P∗nt

�
− ln (Pnt−1)� � �

1 − θβ
� ( 1 − αn

1 − αn + εαn

)
MCRe g

n ,t + πnt + θβEt
�
ln

�
P∗nt+1

�
− ln (Pnt)	

MCRe g
n ,t �

(̃ Wt

Pnt

)
+ αn

1 − αn
Ỹn ,t −

1
1 − αn

ãnt

P̃Rnt − P̃Rnt−1 � πnt − πt .

Andwehave to add to the system theTaylor rule ι̃t � vt+φππt+φyỸC
t . Ifwedefineλn B

�1−θ
θ

� �
1 − θβ

� (
1−αn

1−αn+εαn

)
and manipulate this system, we arrive at the equations in the main text. �

Corollary 1

Proof. The result is a particular case of Proposition 12 and, moreover, since it is based only on the first
part of that proposition, it is just a direct application of Blanchard and Kahn (1980). Moreover, (12)
follows directly from log-linearizing the aggregator. �

Proposition 3

Proof. The F.O.C.s of the RA in this case are given by:

Cσ
t lϕi

it �
Wit

Pt

1 � Et

{
β
(Ct+1

Ct

)−σ Pt

Pt+1
(1 + it)

}
.
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In every region, the firm solves:

max
pit

[
pit yit −Wit y

1
1−αi
it a

−
1

1−αi
it

]

s .t . : yit � (Ct + Gt)
( pit

Pt

)−ε
and the F.O.C. for this problem gives pit �

�
ε
ε−1

�
Wit

1
1−αi

y
αi

1−αi
it a

−
1

1−αi
it , which is the usual markup over

marginal cost.

LetmedefineYC
t B

[´ 1
0 y

ε−1
ε

it di
] ε
ε−1

� Ct+Gt .Andmoreover, sincePt Ct �
´ 1
0 pit cit di and

´
pit Gt

( pit
Pt

)−ε j
di �

Pt Gt , we have that PtYC
t �
´ 1
0 pit yit di. Also, yit � YC

t

( pit
Pt

)−ε
.

Now, for the non-stochastic steady state, the same steps as in Proposition 2 take to a single equation
in one unknown. I assume there are economies for which there is a solution to this equation. Moving
forward, now we want to log-linearize the equilibrium equations around the non-stochastic steady
state. After working with the equilibrium equations, we obtain the system:

(αi + ϕi

1 − αi
+ 1
ε

)
Ỹit �

(
1
ε
−

σ
(1 − G)

) ˆ 1

0
*
,

Y j

Y
C

+
-

ε−1
ε

Ỹjt dj + σG
(1 − G) G̃t +

(
1 + ϕi

1 − αi

)
ãit

and thus:

ˆ 1

0
*
,

Y i

Y
C

+
-

ε−1
ε

Ỹit di �

´ 1
0

(
Y i

Y
C

) ε−1
ε (1−αi)εσG

(1−G){(αi+ϕi)ε+1−αi} di


1 −
´ 1
0

(
Y i

Y
C

) ε−1
ε

( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)

di


G̃t

+
ˆ 1

0

(
Y i

Y
C

) ε−1
ε

(
ε(1+ϕi)(αi+ϕi)ε+1−αi

)

1 −
´ 1
0

(
Y i

Y
C

) ε−1
ε

( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)

di


ãit di

69



so we get:55

Ỹit �




(1−αi)εσG
(1−G){(αi+ϕi)ε+1−αi}

+
( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)

) ´ 1
0

(
Yi

YC

) ε−1ε (1−αi)εσG
(1−G){(αi+ϕi)ε+1−αi} di


1−
´ 1
0

(
Yi

YC

) ε−1ε ( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)

di





G̃t

+ *
,

ε
�
1 + ϕi

�
�
αi + ϕi

�
ε + 1 − αi

+
-

ãit

+ *
,

(1 − αi) {(1 − G) − εσ}��
αi + ϕi

�
ε + 1 − αi

	 (1 − G)
+
-

ˆ 1

0

(
Y i

Y
C

) ε−1
ε

(
ε(1+ϕi)(αi+ϕi)ε+1−αi

)

1 −
´ 1
0

(
Y i

Y
C

) ε−1
ε

( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)

di


ãit di.

Finally, using that ãit � ãt + ε ãit and given the assumptions on ε ãit (as in Proposition 1), we have that:

ˆ 1

0

(
Y i

Y
C

) ε−1
ε

(
ε(1+ϕi)(αi+ϕi)ε+1−αi

)

1 −
´ 1
0

(
Y i

Y
C

) ε−1
ε

( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)

di


ãit di �
ˆ 1

0

(
Y i

Y
C

) ε−1
ε

(
ε(1+ϕi)(αi+ϕi)ε+1−αi

)

1 −
´ 1
0

(
Y i

Y
C

) ε−1
ε

( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)

di


diãt .

Hence, defining:

ηi
MG B

(1 − αi) εσG
(1 − G) ��

αi + ϕi
�
ε + 1 − αi

	

+ *
,

(1 − αi) {(1 − G) − εσ}��
αi + ϕi

�
ε + 1 − αi

	 (1 − G)
+
-

*.......
,

´ 1
0

(
Y i

Y
C

) ε−1
ε (1−αi)εσG

(1−G){(αi+ϕi)ε+1−αi} di


1 −
´ 1
0

(
Y i

Y
C

) ε−1
ε

( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)

di


+///////
-

λi B *
,

ε
�
1 + ϕi

�
�
αi + ϕi

�
ε + 1 − αi

+
-

+ *
,

(1 − αi) {(1 − G) − εσ}��
αi + ϕi

�
ε + 1 − αi

	 (1 − G)
+
-

*.......
,

´ 1
0

(
Y i

Y
C

) ε−1
ε

(
ε(1+ϕi)(αi+ϕi)ε+1−αi

)
di


1 −
´ 1
0

(
Y i

Y
C

) ε−1
ε

( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)

di


+///////
-

λεa
i B

*
,

ε
�
1 + ϕi

�
�
αi + ϕi

�
ε + 1 − αi

+
-
,

55Of course, I assumed

1 −
´ 1
0

(
Y i

Y
C

) ε−1
ε

( (1−αi ){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)

di

, 0.
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where note that by direct computation:

ηmacro B
∂Ỹt

∂G̃t
�

ˆ 1

0
ωiη

i
MGdi

with ωi B
(

Y i
Y

)
and
´ 1
0 ωi di � 1. Thus, we have:

Ỹit � η
i
MGG̃t + λi ãt + λεa

i ε ãit

which completes the proof. �

Proposition 4

Proof. This result is just a special case of Proposition 5 with ρi � 0. �

Proposition 5

Proof. Under perfect competition and CRS:

max
pit

[
pit yit −Wit yit a−1it G−ρi

it

]

implies pit �
Wit

ait G
ρi
it
. Now, the non-stochastic steady state leads to a system of equations, as in Propo-

sitions 2 and 3, and I also assume here that there are economies for which there is a solution. I omit
this here to save space. Moving forward, after we log-linearize the equilibrium equations around the
non-stochastic steady state, we get:

ỹit �



1
ε

(
Gi

1−Gi

)
+ ρi + ϕiρi

ϕi +
1
ε

(
1

1−Gi

) 
G̃it + *.

,

1 + ϕi

ϕi +
1
ε

(
1

1−Gi

) +/
-

ãit −



σ − 1
ε

ϕi +
1
ε

(
1

1−Gi

) 

ˆ 1

0

(
c j

C

) ε−1
ε

(
1

1 − Gj

)
ỹ jt dj

+


σ − 1
ε

ϕi +
1
ε

(
1

1−Gi

) 

ˆ 1

0

(
c j

C

) ε−1
ε

(
Gj

1 − Gj

)
G̃ jt dj.

And, hence, with the same arguments that we made at the end of Proposition 3, we obtain equations
(17) and (18). �

Proposition 6

Proof. Instead of repeating the arguments in the proof of Proposition 2 for this case, we detail the steps
in which the proof changes. Using that proof, it is easy to see that given the subsidy, we now have:

(77) MCRe g
n ,t �

(̃ Wt

Pnt

)
+ αn

1 − αn
Ỹn ,t −

1
1 − αn

ãnt + s̃n ,t .

Then, it is easy to see that the pricing problem for firms resetting their prices does not change, and
in the derivation of the recursive structure for the reset price nothing changes, so we still have the
relationship:

πnt �

(1 − θ
θ

) �
1 − θβ

� ( 1 − αn

1 − αn + εαn

)
MCRe g

n ,t + βEt {πnt+1} .
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By replacing the new expression (77), we get the NKPC displayed in the text. Moreover, by setting
G � 0 in the Euler equation, we get the one displayed in the text. I still assume that there are economies
for which the equations of the non-stochastic steady state have a solution. �

Proposition 7

Proof. Instead of repeating the arguments in the proof of Proposition 3 for this case, we detail the steps
in which it needs to be adjusted. Given the subsidy, we now have:

W̃it

Pt
�

p̃it

Pt
− s̃it +

1
1 − αi

ãit −
αi

1 − αi
Ỹit .

And this implies now that:

σỸC
t + ϕi l̃it �

p̃it

Pt
− s̃it +

1
1 − αi

ãit −
αi

1 − αi
Ỹit

because there is no government spending. By following the same steps as before, we get the result in
the text. I still assume that there are economies for which the equation of the non-stochastic steady
state has a solution. �

Proposition 8

Proof. From the firm’s problem in every region, we get Wnt � ant . From the F.O.C. of representative
agent n, we get that:

(78) ant Lnt − Tnt � a
1
σc

n
nt L

−
ϕn
σc

n
nt .

Thus, (78) defines Ln in the non-stochastic steady state, which then allows us to compute the rest of the
variables. Then, after log-linearizing:

L̃nt �
*..
,

Yn
1
N G

+
a

1
σc

n
n L

−
ϕn
σc

n
nt

1
N G

ϕn

σc
n

+//
-

−1

G̃t −

*.
,

Yn
1
N G
−

a
1
σc

n
n L

−
ϕn
σc

n
nt

1
N G

1
σc

n

+/
-

*.
,

Yn
1
N G

+ a
1
σc

n
n L

−
ϕn
σc

n
nt

1
N G

ϕn
σc

n

+/
-

ãnt

and thus:

Ỹnt �
*..
,

Yn
1
N G

+
a

1
σc

n
n L

−
ϕn
σc

n
nt

1
N G

ϕn

σc
n

+//
-

−1

G̃t + ãt



1 −

*.
,

Yn
1
N G
−

a
1
σc

n
n L

−
ϕn
σc

n
nt

1
N G

1
σc

n
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-
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,
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1
N G

+ a
1
σc

n
n L

−
ϕn
σc

n
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1
N G

ϕn
σc

n

+/
-



+ ε ãnt



1 −

*.
,

Yn
1
N G
−

a
1
σc

n
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−
ϕn
σc

n
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N G

1
σc
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-
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1
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+ a
1
σc

n
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−
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n
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1
N G

ϕn
σc

n

+/
-



.
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Note that since G̃t �
1̃
N Gt , this also gives the response to a change in per capita aggregate spending.

Then, defining:

ηn
MG B

*..
,

Yn
1
N G

+
a

1
σc

n
n L

−
ϕn
σc

n
nt

1
N G

ϕn

σc
n

+//
-

−1

, λn B



1 −

*.
,

Yn
1
N G
−

a
1
σc

n
n L

−
ϕn
σc

n
nt

1
N G

1
σc

n

+/
-

*.
,

Yn
1
N G

+ a
1
σc

n
n L

−
ϕn
σc

n
nt

1
N G

ϕn
σc

n

+/
-



, εnt B ε ãnt



1 −

*.
,

Yn
1
N G
−

a
1
σc

n
n L

−
ϕn
σc

n
nt

1
N G

1
σc

n

+/
-

*.
,

Yn
1
N G

+ a
1
σc

n
n L

−
ϕn
σc

n
nt

1
N G

ϕn
σc

n

+/
-



,

shows the first part of the proposition.
Finally, real per capita GDP is given by Yt �

∑
n

1
N Ynt , and thus Ỹt �

∑
n

1
N

Ynt

Yt
Ỹnt , where

∑
n

1
N

Ynt

Yt
�

1. Defining ωn B
1
N

Ynt

Yt
completes the proof. �

Proposition 9

Proof. From the proof of Proposition 3, we know that in equilibrium:

Ỹit �




(1−αi)εσG
(1−G){(αi+ϕi)ε+1−αi}

+
( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)

) 1
N

∑N
i�1

(
Yi

YC

) ε−1ε (1−αi)εσG
(1−G){(αi+ϕi)ε+1−αi}


1− 1

N
∑N

i�1

(
Yi

YC

) ε−1ε ( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)




G̃t

+ *
,

ε
�
1 + ϕi

�
�
αi + ϕi

�
ε + 1 − αi

+
-

ãit

+ *
,

(1 − αi) {(1 − G) − εσ}��
αi + ϕi

�
ε + 1 − αi

	 (1 − G)
+
-
1
N

N∑
i�1

(
Y i

Y
C

) ε−1
ε

(
ε(1+ϕi)(αi+ϕi)ε+1−αi

)

1 − 1

N
∑N

i�1

(
Y i

Y
C

) ε−1
ε

( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)

ãit .
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And thus replacing the process for technology:

Ỹit �




(1−αi)εσG
(1−G){(αi+ϕi)ε+1−αi}

+
( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)

) 1
N

∑N
i�1

(
Yi

YC

) ε−1ε (1−αi)εσG
(1−G){(αi+ϕi)ε+1−αi}


1− 1

N
∑N

i�1

(
Yi

YC

) ε−1ε ( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)




G̃t

+

*.......
,

ε(1+ϕi)(αi+ϕi)ε+1−αi

+
( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)

)
1
N

∑N
i�1

(
Yi

YC

) ε−1ε (
ε(1+ϕi)(αi+ϕi)ε+1−αi

)

1− 1

N
∑N

i�1

(
Yi

YC

) ε−1ε ( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)

+///////
-

ãt

+ *
,

ε
�
1 + ϕi

�
�
αi + ϕi

�
ε + 1 − αi

+
-
ε ãit

+ *
,

(1 − αi) {(1 − G) − εσ}��
αi + ϕi

�
ε + 1 − αi

	 (1 − G)
+
-
1
N

N∑
i�1

(
Y i

Y
C

) ε−1
ε

(
ε(1+ϕi)(αi+ϕi)ε+1−αi

)

1 − 1

N
∑N

i�1

(
Y i

Y
C

) ε−1
ε

( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)

ε ãit .

For any variable xt let us denote:
∆x̃t � ∆ log (xt) .

Thus:

∆ log (Yit) �




(1−αi)εσG
(1−G){(αi+ϕi)ε+1−αi}

+
( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)

) 1
N

∑N
i�1

(
Yi

YC

) ε−1ε (1−αi)εσG
(1−G){(αi+ϕi)ε+1−αi}


1− 1

N
∑N

i�1

(
Yi

YC

) ε−1ε ( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)




∆ log (Gt)

+

*.......
,

ε(1+ϕi)(αi+ϕi)ε+1−αi

+
( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)

)
1
N

∑N
i�1

(
Yi

YC

) ε−1ε (
ε(1+ϕi)(αi+ϕi)ε+1−αi

)

1− 1

N
∑N

i�1

(
Yi

YC

) ε−1ε ( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)

+///////
-

∆ log (at)

+ *
,

ε
�
1 + ϕi

�
�
αi + ϕi

�
ε + 1 − αi

+
-
∆ log

�
εait

�

+ *
,

(1 − αi) {(1 − G) − εσ}��
αi + ϕi

�
ε + 1 − αi

	 (1 − G)
+
-
1
N

N∑
i�1

(
Y i

Y
C

) ε−1
ε

(
ε(1+ϕi)(αi+ϕi)ε+1−αi

)

1 − 1

N
∑N

i�1

(
Y i

Y
C

) ε−1
ε

( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)

∆ log
�
εait

�
.
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Moreover, note that:

Var

*.......
,

(
Y i

Y
C

) ε−1
ε

(
ε(1+ϕi)(αi+ϕi)ε+1−αi

)

1 − 1

N
∑N

i�1

(
Y i

Y
C

) ε−1
ε

( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)

∆ log
�
εait

�
+///////
-

�

*.......
,

(
Y i

Y
C

) ε−1
ε

(
ε(1+ϕi)(αi+ϕi)ε+1−αi

)

1 − 1

N
∑N

i�1

(
Y i

Y
C

) ε−1
ε

( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)

+///////
-

2

σ2

and:

1
N2

N∑
i�1

Var

*.......
,

(
Y i

Y
C

) ε−1
ε

(
ε(1+ϕi)(αi+ϕi)ε+1−αi

)

1 − 1

N
∑N

i�1

(
Y i

Y
C

) ε−1
ε

( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)

∆ log
�
εait

�
+///////
-

� σ2
1
N

1
N

∑N
i�1

(
Y i

Y
C

)2( ε−1ε ) (
ε(1+ϕi)(αi+ϕi)ε+1−αi

)2

1 − 1

N
∑N

i�1

(
Y i

Y
C

) ε−1
ε

( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)

2 � o (1)

where the last steps follow from the boundness and convergence assumptions made on the parameters
and the sequences, respectively. And thus given our assumption that∆ log

�
εait

�
is i.i.d. byChebychev’s

WLLN, we have:

1
N

N∑
i�1

(
Y i

Y
C

) ε−1
ε

(
ε(1+ϕi)(αi+ϕi)ε+1−αi

)

1 − 1

N
∑N

i�1

(
Y i

Y
C

) ε−1
ε

( (1−αi){(1−G)−εσ}{(αi+ϕi)ε+1−αi}(1−G)
)

∆ log
�
εait

�
� op (1) .

Finally, note that (22) is trivially p.d. since in this case we have only one macro shock. Moreover,
note that there are no state variables at all in this model. The rest of the assumptions directly imply
that this model belongs to the CSVC, which completes the proof. �

Proposition 10

Proof. Let us define:

v′ B
( 1

N
, ...,

1
N

)
u′ B (b1 , ..., bN)
Φ B A − uv′
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then:

uv′ �
*...
,

b1
...

bN

+///
-

( 1
N
, ...,

1
N

)
�

*...
,

b1 1
N · · · b1 1

N
...

. . .
...

bN
1
N · · · bN

1
N

+///
-

.

Now, using the Sherman-Morrison Formula, we get:

A−1 � Φ−1 −
( 1
1 + v′Φ−1u

)
Φ−1uv′Φ−1

�

*...
,

a−111 · · · 0
...

. . .
...

0 · · · a−1NN

+///
-

−

*......
,

a−211 b1 1
N

1+ 1
N

∑N
n�1 a−1nn bn

· · ·
a−1NN a−111 b1 1

N

1+ 1
N

∑N
n�1 a−1nn bn

...
. . .

...
a−111 a−1NN bN

1
N

1+ 1
N

∑N
n�1 a−1nn bn

· · ·
a−2NN bN

1
N

1+ 1
N

∑N
n�1 a−1nn bn

+//////
-

and thus:

A−1Θ �

*...
,

a−111 θ11 · · · 0
...

. . .
...

0 · · · a−1NNθNN

+///
-

+ 1
N

*...
,

a−111 ν1 · · · a−111 ν1
...

. . .
...

a−1NNνN · · · a−1NNνN

+///
-

−
1
N

*.....
,

a−111 θ11
a−111 b1

1+ 1
N

∑N
n�1 a−1nn bn

+
(

a−111 b1
1+ 1

N
∑N

n�1 a−1nn bn

)
1
N

∑N
n�1 a−1nnνn · · ·

...
. . .

a−111 θ11
a−1NN bN

1+ 1
N

∑N
n�1 a−1nn bn

+
(

a−1NN bN

1+ 1
N

∑N
n�1 a−1nn bn

)
1
N

∑N
n�1 a−1nnνn · · ·

+/////
-

.

Hence:

A−1Θ~Gt �
*...
,

a−111 θ11G̃1t
...

a−1NNθNN G̃Nt

+///
-

+
*...
,

a−111 ν1
(
1
N

∑N
n�1 G̃nt

)
...

a−1NNνN
(
1
N

∑N
n�1 G̃nt

) +///
-

−

*......
,

1
N

∑N
n�1

{
a−1nnθnn

a−111 b1
1+ 1

N
∑N

h�1 a−1hh bh
+

(
a−111 b1

1+ 1
N

∑N
h�1 a−1hh bh

) (
1
N

∑N
h�1 a−1hhνh

)}
G̃nt

...
1
N

∑N
n�1

{
a−1nnθnn

a−1NN bN

1+ 1
N

∑N
h�1 a−1hh bh

+
(

a−1NN bN

1+ 1
N

∑N
h�1 a−1hh bh

) (
1
N

∑N
h�1 a−1hhνh

)}
G̃nt

+//////
-

.

And thus because of Blanchard andKahn (1980) and the fact that ~Gt is amartingale difference sequence
of random vectors:

Ỹnt � −
*.
,

a−1nnθnn + a−1nnνn −
1
N

N∑
j�1




a−1j j θ j j
a−1nn bn

1 + 1
N

∑N
h�1 a−1hh bh

+ *
,

a−1nn bn

1 + 1
N

∑N
h�1 a−1hh bh

+
-

*
,
1
N

N∑
h�1

a−1hhνh+
-




+/
-

G̃t

− a−1nnθnnεG̃Nt
−

1
N

N∑
j�1


a−1nnνn − a−1j j θ j j

a−1nn bn

1 + 1
N

∑N
h�1 a−1hh bh

− *
,

a−1nn bn

1 + 1
N

∑N
h�1 a−1hh bh

+
-

*
,
1
N

N∑
h�1

a−1hhνh+
-


εG̃ jt

.
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Now, note that:

var




a−1nnνn − a−1j j θ j j

a−1nn bn

1 + 1
N

∑N
h�1 a−1hh bh

− *
,

a−1nn bn

1 + 1
N

∑N
h�1 a−1hh bh

+
-

*
,
1
N

N∑
h�1

a−1hhνh+
-


εG̃ jt




�


a−1nnνn − a−1j j θ j j

a−1nn bn

1 + 1
N

∑N
h�1 a−1hh bh

− *
,

a−1nn bn

1 + 1
N

∑N
h�1 a−1hh bh

+
-

*
,
1
N

N∑
h�1

a−1hhνh+
-



2

σ2.

And thus:

1
N2

N∑
i�1


a−1nnνn − a−1j j θ j j

a−1nn bn

1 + 1
N

∑N
h�1 a−1hh bh

− *
,

a−1nn bn

1 + 1
N

∑N
h�1 a−1hh bh

+
-

*
,
1
N

N∑
h�1

a−1hhνh+
-



2

σ2

�
1
N
σ2

1
N

N∑
i�1


a−1nnνn − a−1j j θ j j

a−1nn bn

1 + 1
N

∑N
h�1 a−1hh bh

− *
,

a−1nn bn

1 + 1
N

∑N
h�1 a−1hh bh

+
-

*
,
1
N

N∑
h�1

a−1hhνh+
-



2

� o (1) ,

where the last steps follow from the boundness and convergence assumptions made about the param-
eters and the sequences, respectively. And thus given our assumption that εG̃ jt

is i.i.d. by Chebychev’s
WLLN, we have:

1
N

N∑
j�1



a−1nnνn − a−1j j θ j j
a−1nn bn

1+ 1
N

∑N
h�1 a−1hh bh

−

(
a−1nn bn

1+ 1
N

∑N
h�1 a−1hh bh

) (
1
N

∑N
h�1 a−1hhνh

) 
εG̃ jt

� op (1) .

Moreover, note that there are no state variables at all in this model. The rest of the assumptions directly
imply that this model belongs to the CSVC, which completes the proof. �

Corollary 2

Proof. From the proof of Proposition 10, defining:

γn B −
*.
,

a−1nnθnn + a−1nnνn −
1
N

N∑
j�1




a−1j j θ j j
a−1nn bn

1 + 1
N

∑N
h�1 a−1hh bh

+ *
,

a−1nn bn

1 + 1
N

∑N
h�1 a−1hh bh

+
-

*
,
1
N

N∑
h�1

a−1hhνh+
-




+/
-

βn B −a−1nnθnn

completes the first part of the proof. The fact that ηmacro �
1
N

∑N
n�1 γn follows from the definition of a

simple aggregator. �

Proposition 11

Proof. The first part of the proof is just a direct application of Blanchard and Kahn (1980), so I refer the
reader to that paper for more details.
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For the second part, note that conditions 1 and 2 imply that:

(
c(N)′

n , d(N)′
n , e(N)′

n

)
1




∑N
j,n

*
,

c(N)
n j(

c(N)′
n ,d(N)′

n ,e(N)′
n

)
1

+
-
εs jt

+
∑N

j,n
*
,

d(N)
n j(

c(N)′
n ,d(N)′

n ,e(N)′
n

)
1

+
-
εs jt−1

+
∑N

j,n
*
,

e(N)
n j(

c(N)′
n ,d(N)′

n ,e(N)′
n

)
1

+
-
ε
ξ

j
1t




� op (1) .

The form of the solution plus condition 1 imply that Assumption 1 is satisfied. Finally, since the state
variables are common to all regions, the rest of the conditions directly imply that model M belongs to
the CSVC. �

Proposition 12

Proof. The proof is very similar to the that of Proposition 11. The first part is just a direct application
of Blanchard and Kahn (1980), so I refer the reader to that paper for more details. For the second part,
note that conditions 1 and 2 imply that:

(
c(N)′

n , d(N)′
n , e(N)′

n

)
1




∑N
j,n

*
,

c(N)
n j(

c(N)′
n ,d(N)′

n ,e(N)′
n

)
1

+
-
εs jt

+
∑N

j,n
*
,

d(N)
n j(

c(N)′
n ,d(N)′

n ,e(N)′
n

)
1

+
-
εs jt−1

+
∑N

j,n
*
,

e(N)
n j(

c(N)′
n ,d(N)′

n ,e(N)′
n

)
1

+
-
ε
ξ

j
1t




� op (1) .

The form of the solution plus condition 1 imply that Assumption 1 is satisfied. Finally, in this case we
have N regional state variables, so the rest of the conditions directly imply that model M belongs to the
RSVC. �

Lemma 1

Proof. Given the assumptions, we have that:

ϕa
nt � at + ua

nt ∼ N
(
µa ,n , σ

2
a ,n + σ2ua ,n

)
ϕv

nt � vt + uv
nt ∼ N

(
µv ,n , σ

2
v ,n + σ2uv ,n

)
and:

*..
,

at

ϕa
nt

ϕv
nt

+//
-
∼ N

*..
,



µa ,n
µa ,n
µv ,n


,



σ2a ,n σ2a ,n 0
σ2a ,n σ2a ,n + σ2ua ,n 0
0 0 σ2v ,n + σ2uv ,n



+//
-
.

Thus:

at

������
*
,

ϕa
nt

ϕv
nt

+
-
∼ N

�
φ,Ω

�
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where, applying the formulas for the Kalman Filter, we get φ � µa ,n + τua ,n
τua ,n+τa ,n

(
ϕa

nt − µa ,n

)
. So, if

µa ,n � µv ,n � 0:

E
�
at | ϕa

nt , ϕ
v
nt

�
�

τua ,n

τua ,n + τa ,n
ϕa

nt

E
�
vt | ϕa

nt , ϕ
v
nt

�
�

τuv ,n

τuv ,n + τv ,n
ϕv

nt .

So we get:

E
�
εsnt at + εsnt vt

�
ϕa

nt , ϕ
v
nt

�
− ε2snt

� εsnt

τua ,n

τua ,n + τa ,n
ϕa

nt + εsnt

τuv ,n

τuv ,n + τv ,n
ϕv

nt −
1
2
ε2snt

which has F.O.C.:
τua ,n

τua ,n + τa ,n
ϕa

nt +
τuv ,n

τuv ,n + τv ,n
ϕv

nt − εsnt � 0.

And thus:

εsnt �
τua ,n

τua ,n + τa ,n
ϕa

nt +
τuv ,n

τuv ,n + τv ,n
ϕv

nt

�
τua ,n

τua ,n + τa ,n
at +

τuv ,n

τuv ,n + τv ,n
vt +

τua ,n

τua ,n + τa ,n
ua

nt +
τuv ,n

τuv ,n + τv ,n
uv

nt

and thus defining:
εs

nt B
τua ,n

τua ,n + τa ,n
ua

nt +
τuv ,n

τuv ,n + τv ,n
uv

nt ,

we complete the proof. �

Corollary 3

Proof. The proof is exactly the same as that of Lemma 1 with the obvious parameters’ replacements, so
we do not duplicate it here. �

Now, in some of the proofs that follow, the following two Lemmas will be useful. For an arbitrary
matrix A, ‖A‖ denotes its Frobenius norm.

Lemma 2. Suppose we have a process xn with:

1
NT

N∑
n�1

T∑
t�1

x2
nt � Op (1)

and a process θn with:

θnt �
1
N

N∑
n�1

εnt ,

with εnt independent across n and t with E [εnt] � 0,E
[|εnt |8

]
≤ M < ∞ and identically distributed across t.

Then:
1

NT

N∑
n�1

x
′

nθn � op (1) .
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Proof. I keep the index n on θ first to work in a more general setup, and then I particularize to the
specific case of the statement. First note that:

������

1
NT

N∑
n�1

x
′

nθn

������
≤

1
NT

N∑
n�1

���x
′

nθn
��� ≤

√√√
1

NT

N∑
n�1

T∑
t�1

x2
nt

√√√
1

NT

N∑
n�1

T∑
t�1

θ2
nt .

Moreover:

V



1
NT

N∑
n�1

T∑
t�1

θ2
nt


� E



1
NT

N∑
n�1

T∑
t�1

θ2
nt



2

− *
,
E



1
NT

N∑
n�1

T∑
t�1

θ2
nt


+
-

2

≤



1
N2T2

N∑
n�1

T∑
t�1

N∑
j�1

T∑
s�1

√
Eθ4

nt

√
Eθ4

js


− *

,
E



1
NT

N∑
n�1

T∑
t�1

θ2
nt


+
-

2

� Eθ4
nt −

*
,
E



1
NT

N∑
n�1

T∑
t�1

θ2
nt


+
-

2

Thus, given that θnt � op (1), we know θ4
nt � op (1) and we also have uniform integrability:

E

[�
θ4

nt
�2]

� E
�
θ4

nt
2�
≤

1
N8

N∑
n , j,k ,i ,u ,p ,l ,r�1

√√√
Eε8ntEε

8
jtE (εktεit)4E �

εutεptεltεrt
�2

and thus, given that we are assuming bounded eighth moments: Eε8nt ≤ M < ∞, then E

[�
θ4

nt
�2]

< ∞.

Hence, θ4
nt converges to zero in probability, and being uniformly integrable this means it converges in

L1 and thus the mean converges to zero as well. Moreover:

E



1
NT

N∑
n�1

T∑
t�1

θ2
nt


�



1
NT

N∑
n�1

T∑
t�1

E
�
θ2

nt
�

� E
�
θ2

nt
�
.

And thus with the same arguments, we have that:

E



1
NT

N∑
n�1

T∑
t�1

θ2
nt


−→

N,T→∞
0.

So combining the previous results:

V



1
NT

N∑
n�1

T∑
t�1

θ2
nt


� Eθ4

nt︸︷︷︸
−→

N,T→∞
0

−

*...
,

E



1
NT

N∑
n�1

T∑
t�1

θ2
nt

︸                   ︷︷                   ︸
+///
-

2

−→
N,T→∞

0

−→
N,T→∞

0.

Which implies:
1

NT

N∑
n�1

T∑
t�1

θ2
nt � op (1) .
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And thus we conclude:

������

1
NT

N∑
n�1

x
′

nθn

������
≤

√√√
1

NT

N∑
n�1

T∑
t�1

x2
nt

√√√
1

NT

N∑
n�1

T∑
t�1

θ2
nt � Op (1) op (1) � op (1) .

�

Lemma 3. Suppose

θt �
1
N

N∑
n�1

εnt ,

with εnt independent across n and t with E [εnt] � 0,E
[|εnt |8

]
≤ M < ∞ and identically distributed across

t, E
�
x8

nt

�
≤ M, E

[‖Znt ‖16
]
≤ M, E

{(∑P
u�1

�
ιTnu

�−2)2}
≤ M, ∀T, n where ιTnu are the eigenvalues of Z

′

n Zn
T .

Then:

(79) 1
NT

N∑
n�1

x
′

nZn
(
Z
′

nZn
)−1

Z
′

nθ � op (1) .

Proof. To prove this result, first note that:

������

1
NT

N∑
n�1

x
′

nZn
(
Z
′

nZn
)−1

Z
′

nθ
������
≤ *

,
1
N

N∑
n�1







xn
√

T








8
+
-

1
8

*
,
1
N

N∑
n�1







Zn
√

T








16
+
-

1
8

*.
,

1
N

N∑
n�1









(
Z
′

nZn

T

)−1







4
+/
-

1
4 






θ
√

T







.
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Now, note that:

(81)






θ
√

T








2

�
1
T

T∑
t�1

θ2
t � op (1)

by Lemma 2. We also have:

E

������

1
NT4

N∑
n�1

‖xn‖8
������
≤

1
NT4

N∑
n�1

T∑
t�1

T∑
s�1

T∑
u�1

T∑
v�1

�
E

�
x8

nt
�
E

�
x8

ns
�
E

�
x8

nu
�
E

�
x8

nv
�� 1

4

so E
�
x8

nt

�
≤ M implies E ���

1
NT4

∑N
n�1 ‖xn‖8��� ≤ ~M < ∞ and thus:

(82) *
,

1
NT4

N∑
n�1

‖xn‖8+
-

1
8

� Op (1) .

Also:

E

������

1
NT8

N∑
n�1

‖Zn‖16
������
≤

1
NT8

N∑
n�1

T∑
t ,s ,u ,v ,w , f ,g ,h�1




E
[‖Znt ‖16

]
E

[‖Zns‖16
]
E

[‖Znu‖16
]
E

[‖Znv‖16
]

E
[‖Znw‖16

]
E

[�
Znv f

�16]
E

[�
Zn g

�16]
E

[‖Znh‖16
]




1
8

,
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so E
[‖Znt ‖16

]
≤ M < ∞ implies E ���

1
NT8

∑N
n�1 ‖Zn‖16��� ≤ ~M < ∞ and thus:

(83) *
,

1
NT8

N∑
n�1

‖Zn‖16+
-

1
8

� Op (1) .

Moreover:

E

�������

1
N

N∑
n�1









(
Z
′

nZn

T

)−1







4�������
�

1
N

N∑
n�1

E









(
Z
′

nZn

T

)−1







4

�
1
N

N∑
n�1

E

{�
tr

�
D−2

��2}
.

So E
{�

tr
�
D−2

��2}
� E

{(∑P
u�1

�
ιTnu

�−2)2}
≤ M < ∞, ∀T, n where ιTnu are the eigenvalues of Z

′

n Zn
T ,

implies:

(84) *.
,

N∑
n�1

1
N









(
Z
′

nZn

T

)−1







4
+/
-

1
4

� Op (1) .

Thus, (81), (82), (83), (84) and (80) imply:

������

1
NT

N∑
n�1

x
′

nZn
(
Z
′

nZn
)−1

Z
′

nθ
������
≤ op (1)

and thus (79) holds. �

Proposition 13

Proof. I show the second claim; the first one follows as a simple particular case. I sometimes choose
not to make explicit the index N in β̂(N)

n (or γ̂(N)
n , etc) and just write β̂n to make the reading easier, but

of course, it should always be kept in mind that these, alongside Zn , are indexed by N , because Ln and
γn change their dimensionality and also because δn is allowed to converge to a vector as N increases.
I denote as F0 the true unobserved macro shocks.

Let me also elaborate on the paths under which I am allowing N, T → ∞. I denote by Q the total
number of regressors in Xn and p the number of regressors in Xn . Clearly, Q � p + N + K. Clearly, for
(21) to be p.d., we need T ≥ Q. But it is also likely that for this to be true in the limit when N, T →∞, we
also need Q

T −→
N,T→∞

ρ ∈ (0, 1). Indeed, Bai and Yin (1993) prove that if Xn has i.i.d. entries with mean

zero, variance 1 andfinite fourthmoment, then Q
T −→

N,T→∞
1 implies λmin

a.s .
→ 0, where λmin is the smallest

eigenvalue of (1/T)XnX
′

n . Additionally, they show Q
T −→

N,T→∞
ρ ∈ (0, 1) implies λmin

a.s .
→

�
1 − √ρ

�2
> 0.

Similar results can be found in Silverstein (1985) forWishartmatrices. The setup in this paper, however,
does not match these assumptions, in particular the independence one. Nonetheless, we will assume
Q
T −→

N,T→∞
ρ ∈ (0, 1) when the regressors L(N)

n are present. Note that when they are not, Q is fixed with

respect to T,N , and we do not have to worry about this. Finally, note that Q
T −→

N,T→∞
ρ ∈ (0, 1) rules out

the case with T � Q + J for any fixed integer J, but we could have T � (1 + v)Q for a small v > 0. Thus,
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given that we already had the restriction T ≥ Q, assuming Q
T −→

N,T→∞
ρ ∈ (0, 1) does not seem like a big

compromise. When regressors L(N)
n are absent, we can take the simultaneous limit without restrictions.

I will derive the results assuming that the only thingwe observe is snt � st +εsnt , so wewill estimate
ŝt �

1
N

∑N
j�1 s jt and ε̂snt � snt − ŝt . If εsnt and st are observed, the related arguments can be put aside

and the proof is simplified. Under our assumptions:

ε̂snt � snt − ŝt � θ
ε′
n F0

t + ε
s
nt −

1
N

N∑
j�1
εs

jt � εsnt −
1
N

N∑
j�1
εs

jt

ŝt � θ
s′F0

t + us
t +

1
N

N∑
j�1
εs

jt � st +
1
N

N∑
j�1
εs

jt .

Now, for the estimation of the unobserved macro shocks, we have:

min
F: F′F

T �IK

1
NT

SNT (F) B 1
NT

N∑
n�1

ε̂
′

sn
MF ε̂sn −

1
NT

N∑
n�1

εs′
n MF0εs

n .

Now, note that:

1
NT

SNT (F) � 1
NT

N∑
n�1

*.
,
F0θεn + εs

n −
1
N

N∑
j�1
εs

j
+/
-

′

MF
*.
,
F0θεn + εs

n −
1
N

N∑
j�1
εs

j
+/
-
−

1
NT

N∑
n�1

εs′
n MF0εs

n

�
1

NT

N∑
n�1

θε
′

n F0′MFF0θεn + 2
NT

N∑
n�1

θε
′

n F0′MFε
s
n + 1

NT

N∑
n�1

εs′
n (MF −MF0) εs

n

−
2

NT

N∑
n�1

εs′
n MF

1
N

N∑
j�1
εs

j +
1
T

1
N

N∑
j�1
εs′

j MF
1
N

N∑
j�1
εs

j −
2

NT

N∑
n�1

θε
′

n F0′MF
1
N

N∑
j�1
εs

j .

Now, Lemma 3 and our assumptions imply:

sup
F
−

2
NT

N∑
n�1

εs′
n MF

1
N

N∑
j�1
εs

j + sup
F

1
T

1
N

N∑
j�1
εs′

j MF
1
N

N∑
j�1
εs

j − sup
F

2
NT

N∑
n�1

θε
′

n F0′MF
1
N

N∑
j�1
εs

j � op (1) .

Thus, this means we have:

1
NT

SNT (F) � 1
NT

N∑
n�1

θε
′

n F0′MFF0θεn + 2
NT

N∑
n�1

θε
′

n F0′MFε
s
n + 1

NT

N∑
n�1

εs′
n (MF −MF0) εs

n + op (1) .

Now, following the arguments in, for example, Stock and Watson (2002), Bai and Ng (2002) and Bai
(2009), we have that for (29): �

MF̂ −MF0
�2

�
�
PF0 − PF̂

�2
� op (1) .

Next, note that:

����
1
T

�
Yn − Xnβn − Lnγn

�′ �
MF0 −MF̂

� �
Yn − Xnβn − Lnγn

����� �
1
T

�
Yn − Xnβn − Lnγn

�2 ��
MF0 −MF̂

��
.
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Moreover, 1
T

�
Yn − Xnβn − Lnγn

�2
� Op (1) over bounded βn and γn . Thus:

1
T

�
Yn − Xnβn − Lnγn

�2 ��
MF0 −MF̂

��
� Op (1) op (1) � op (1) .

This implies, then:

(85)
����
1
T

�
Yn − Xnβn − Lnγn

�′ �
MF0 −MF̂

� �
Yn − Xnβn − Lnγn

����� ≤ op (1) .

Let me define:

β̃n , γ̃n B argmin
βn ,γn

1
T

�
Yn − Xnβn − Lnγn

�′
MF0

�
Yn − Xnβn − Lnγn

�
,

then (85) implies:

(86)








*
,

β̂n
γ̂n

+
-
− *

,

β̃n
γ̃n

+
-








� op (1) .

Furthermore, note that:

1
T

RS
�
β, γ

�
B

1
T

�
Yn − Xnβn − Lnγn

�′
MF0

�
Yn − Xnβn − Lnγn

�
−

1
T
ε
′

n MF0εn

�
1
T

�
Xn∆βn + Ln∆γn

�′
MF0

�
Xn∆βn + Ln∆γn

�
+ 2

T
�
Xn∆βn + Ln∆γn

�′
MF0 ε̃n

+ 1
T
ε̃
′

n MF0 ε̃n −
1
T
ε
′

n MF0εn .

where ε̃n � εn +
�
β2n − β1n

� (
1
N

∑N
j�1 ε

s
j

)
.

Note that:

sup
γ

2
T

����∆γ
(N)′
n L(N)′

n F0
(
F0′F0

)−1
F0′un

���� � sup
γ

2
������
∆γ(N)′

n
L(N)′

n F0

T

(
F0′F0

T

)−1 F0′un

T

������

≤ sup
γ

2

√
N 


∆γ

(N)
n





√

N









L(N)′
n F0

T

















(
F0′F0

T

)−1







√√√√√ K∑
j�1

*.
,

∑T
t�1 F0

jt unt

T
+/
-

2

� sup
γ

2
√

N 


∆γ
(N)
n






√√√√√√√ K∑
k�1

∑N
j�1

(∑T
t�1 Ln jt F0

kt
T

)2
N

Op (1) op (1) � op (1) ,

where:

E

����������

∑N
j�1

(∑T
t�1 Ln jt F0

kt
T

)2
N

����������

≤
1

NT2

N∑
j�1

T∑
t�1

T∑
s�1

(
E

[
L4

n jt

]
E

[�
F0

kt

�4]
E

[
L4

n js

]
E

[�
F0

ks

�4]) 1
4
,
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so the bounded moments condition in Assumption 4 implies E

��������

∑N
j�1

(∑T
t�1 Ln jt F0kt

T

)2
N

��������
≤ M < ∞ and thus

∑N
j�1

(∑T
t�1 Ln jt F0kt

T

)2
N � Op (1).

Also:

sup
γ

2
T

����∆γ
(N)′
n L(N)′

n un
���� ≤ sup

γ

2
T




∆γ
(N)
n









L(N)′

n un






� sup
γ

2
√

N 


∆γ
(N)
n






√√√√∑N
j�1

(∑T
t�1 Ln jt unt

T

)2
N

� sup
γ

2
√

N 


∆γ
(N)
n




 op (1) � op (1) ,

where:

E

�������

1
N

N∑
j�1

1
T

*
,

T∑
t�1

Ln jt unt+
-

2�������
≤

1
N

1
T

N∑
j�1

T∑
t�1

√
E

{
L4

n jt

}
E

�
u4

nt

	

and thus theboundedmoments conditionsonAssumptions 1 and4 implyE
����
1
N

∑N
j�1

1
T

�∑T
t�1 Ln jt unt

�2���� ≤

M < ∞ and thus 1
N

∑N
j�1

1
T

�∑T
t�1 Ln jt unt

�2
� Op (1) , which then implies:

∑N
j�1

(∑T
t�1 Ln jt unt

T

)2
N

� Op (1) 1T � op (1) .
With the same arguments, we can also show:

(87) 2
T
∆β

′

nX
′

n MF0un � op (1) .
The same computations show that the same is true if we replace unt with the rest of the terms in ε̃n

that are op (1) as in Lemma 3. The result for the terms involving β1n and β2n is obtained for bounded
values of these, as usual. Thus:

1
T

RS
�
β, γ

�
�

1
T

�
Xn∆βn + Ln∆γn

�′
MF0

�
Xn∆βn + Ln∆γn

�
+ op (1)

�
1
T
∆δ

′

nZ
′

n MF0Zn∆δn + op (1)

� ∆δ
′

n
Z
′

n MF0Zn

T
∆δn + op (1)

and by Assumption 4, Z
′

n MF0Zn

T is p.d. and thus:

(88) ∆δ
′

n
Z
′

n MF0Zn

T
∆δn ≥ 0

85



for all ∆δn . Moreover, note that:

(89) 1
T

RS
�
β0 , γ0

�
� 0

and also:

(90) ∆δ̃
′

n
Z
′

n MF0Zn

T
∆δ̃n + op (1) ≤ 1

T
RS

�
β0 , γ0

�

and thus (88), (89) and (90) imply:

∆δ̃
′

n
Z
′

n MF0Zn

T
∆δ̃n � op (1) .

Thus, together with Assumption 4, this implies:

(91) ∆δ̃n � op (1) .
Finally, (86) and (91) imply:








*
,

β̂n
γ̂n

+
-
− *

,

β0n
γ0n

+
-








� op (1) ,

which completes the proof. �

Proposition 14

Proof. As in Proposition 13, I assume that εsnt and st are not directly observed; if they are the proof is
simplified in that dimension. With the same arguments as in the proof of Proposition 13, (29) gives:

�
MF̂ −MFS

�2
�

�
PFS − PF̂

�2
� op (1) .

Moreover, we know (see, for example, Bai and Ng (2002) and Bai (2009)) that:

1
√

T

�
MF̂FS�

� op (1)

and, furthermore, there is an invertible matrix H∗ such that:

1
√

T

�
F̂ − FSH∗

�
� op (1) .

Thus, for each subset (k), we candefine, to easenotation, a selectionmatrixHSelec , withH(k) B H∗HSelec ,
such that:

1
√

T



F̂(k)

− FSH(k)


 � op (1) .
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Now, note that:

1
NT

N∑
n�1

�
Yn − X̂nβn − Fλn

�′ �
Yn − X̂nβn − Fλn

�

�
1

NT

N∑
n�1

�
Yn − Xnβn − Fλn +

�
β2n − β1n

�
ϕ

�′ �
Yn − Xnβn − Fλn +

�
β2n − β1n

�
ϕ

�

�
1

NT

N∑
n�1

�
Yn − Xnβn − Fλn

�′ �
Yn − Xnβn − Fλn

�
+ 2

NT

N∑
n�1

�
Yn − Xnβn − Fλn

�′ �
β2n − β1n

�
ϕ

+
ϕ
′

ϕ

T
1
N

N∑
n�1

�
β2n − β1n

�2

where ϕ are the op (1) terms of the measurement error, i.e., the terms by which st differs from ŝt , which
by the assumptions in this proposition on the errors of (39) are op (1). Moreover, by Lemma 3, we have
that:

2
�
β2n − β1n

� ϕ′
� 1

N
∑N

n�1
�
Yn − Xnβn − Fλn

��

T
+
ϕ
′

ϕ

T
1
N

N∑
n�1

�
β2n − β1n

�2
� op (1) ,

uniformly for bounded βn and λn . And thus:

1
NT

N∑
n�1

�
Yn − X̂nβn − Fλn

�′ �
Yn − X̂nβn − Fλn

�
�

1
NT

N∑
n�1

�
Yn − Xnβn − Fλn

�′ �
Yn − Xnβn − Fλn

�
+op (1) .

Now define:

NSSR (F) B 1
NT

N∑
n�1

�
Yn − Xnβn (F) − Fλn (F)�

′ �
Yn − Xnβn (F) − Fλn (F)�

�
1

NT

N∑
n�1

λ
′

nF0′M[Xn :F]F0λn + 1
NT

N∑
n�1

ε
′

n M[Xn :F]εn + 2
NT

N∑
n�1

λ
′

nF0′M[Xn :F]εn ,

where βn (F) , λn (F) are the OLS estimators when regressing Yn on [Xn : F], and M[Xn :F] is the usual
“residual maker”:

M[Xn :F] B IT − [Xn : F] ([Xn : F]′ [Xn : F])−1 [Xn : F]′ .
We will also denote:

P[Xn :F] B [Xn : F] ([Xn : F]′ [Xn : F])−1 [Xn : F]′

the corresponding projection matrix.
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Now, the first step is to prove:

1
NT

N∑
n�1

ε
′

n M[Xn :F̂(k)]εn
P
−→

N,T→∞

1
NT

N∑
n�1

ε
′

n M[Xn :FSH(k)]εn

2
NT

N∑
n�1

λ
′

nF0′M[Xn :F̂(k)]εn
P
−→

N,T→∞

2
NT

N∑
n�1

λ
′

nF0′M[Xn :FSH(k)]εn

1
NT

N∑
n�1

λ
′

nF0′M[Xn :F̂(k)]F0λn
P
−→

N,T→∞

1
NT

N∑
n�1

λ
′

nF0′M[Xn :FSH(k)]F0λn .

So for the last term we have that:

������

1
NT

N∑
n�1

λ
′

nF0′
(
M[Xn :F̂(k)] −M[Xn :FSH(k)]

)
F0λn

������
≤ ~λ

2 1
T

*
,

T∑
t�1

�
F0

t
�2+

-
*
,
1
N

N∑
n�1





M[Xn :F̂(k)] −M[Xn :FSH(k)]





2+
-

1
2

(92)

and thus:

E

������

1
T

T∑
t�1

�
F0

t
�2������

�
1
T

T∑
t�1

E

[�
F0

t
�2]

< ∞

where the inequality followsbecauseour assumptionsonmoments, in Subsection (4.1), implyE
[�

F0
t

�2]
≤

M < ∞. Thus 1
T
∑T

t�1
�
F0

t

�2
� Op (1). Moreover, by direct computation, note that:

1
N

N∑
n�1





M[Xn :F̂(k)] −M[Xn :FSH(k)]





2
�

1
N

N∑
n�1

*
,
2tr (IK−2) − 2tr *

,
Zn

(
Z
′

nZn

T

)−1 Z
′

n Ẑn

T

(
Ẑ
′

n Ẑn

T

)−1
Ẑ
′

n

T
+
-

+
-

� 2

P + K − 2 − 1

N

N∑
n�1

tr *
,

(
Z
′

nZn

T

)−1 Z
′

n Ẑn

T

(
Ẑ
′

n Ẑn

T

)−1
Ẑ
′

nZn

T
+
-



where to ease notation, we are denoting Zn � Zn
�
FSH(k)� and Ẑn � Zn

�
F̂(k)�. Now, after some compu-

tations, we get:

tr *
,

(
Z
′

nZn

T

)−1 Z
′

n Ẑn

T

(
Ẑ
′

n Ẑn

T

)−1
Ẑ
′

nZn

T
+
-

� tr (IP) + tr
�
bFSbF̂S

�
− tr *

,
bFS

(
F̂(k)′ F̂(k)

T

)−1
F̂(k)′

T
Xn~b2n+

-

− tr

bF̂S

(
H(k)′FS′FSH(k)

T

)−1
H(k)′FS′

T
Xn b2n



+ tr


(
H(k)′FS′FSH(k)

T

)−1
H(k)′FS′

T
Xn b2n

(
F̂(k)′ F̂(k)

T

)−1
F̂(k)′

T
Xn~b2n


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with:

bFS �

(
H(k)′FS′FSH(k)

T

)−1
H(k)′FS′

T
F̂(k)

bF̂S �

(
F̂(k)′ F̂(k)

T

)−1
F̂(k)′

T
FSH(k)

b2n �

(
X
′

n MFSH(k)Xn
)−1

X
′

n MFSH(k) F̂(k)

~b2n �

(
X
′

n MF̂(k)Xn
)−1

X
′

n MF̂(k)FSH(k).

Now, note that:

tr
�
bFSbF̂S

�
� tr



(
H(k)′FS′FSH(k)

T

)−1
H(k)′FS′ F̂(k)

T

(
F̂(k)′ F̂(k)

T

)−1
F̂(k)′FSH(k)

T



� tr


H(k)′FS′ F̂(k)
T

+ H(k)′FS′

√
T

{
F̂(k)
√

T
−

FSH(k)
√

T

}
F̂(k)′FSH(k)

T

(
H(k)′FS′FSH(k)

T

)−1
And from:

1
T




F̂(k)
− FSH(k)




2
� tr (IK−2) − tr

(
F̂(k)′FSH(k)

T

)
we get:

tr
�
bFSbF̂S

�
� tr

(
H(k)′FS′ F̂(k)

T

)
︸               ︷︷               ︸

P
−→

N,T→∞
tr(IK−2)�K−2.

+ tr



{
F̂(k)
√

T
−

FSH(k)
√

T

}
F̂(k)′FSH(k)

T

(
H(k)′FS′FSH(k)

T

)−1
H(k)′FS′

√
T



.

And note that:

������
tr




{
F̂(k)
√

T
−

FSH(k)
√

T

}
F̂(k)′FSH(k)

T

(
H(k)′FS′FSH(k)

T

)−1
H(k)′FS′

√
T




������

≤








{
F̂(k)
√

T
−

FSH(k)
√

T

}












F̂(k)′FSH(k)

T
















(
H(k)′FS′FSH(k)

T

)−1













H(k)′FS′

√
T







� op (1)Op (1)Op (1)Op (1) � op (1) .

Hence:

tr
�
bFSbF̂S

�
� tr

(
H(k)′FS′ F̂(k)

T

)
︸               ︷︷               ︸

P
−→

N,T→∞
tr(IK−2)�K−2

+ tr



{
F̂(k)
√

T
−

FSH(k)
√

T

}
F̂(k)′FSH(k)

T

(
H(k)′FS′FSH(k)

T

)−1
H(k)′FS′

√
T


︸                                                                               ︷︷                                                                               ︸

P
−→

N,T→∞
0

P
−→

N,T→∞
K − 2.
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Moreover:

������

1
N

N∑
n�1

tr *
,

bFS

(
F̂(k)′ F̂(k)

T

)−1
F̂(k)′

T
Xn~b2n+

-

������

≤







1
√

T
MF̂(k)FSH(k)













bFS

(
F̂(k)′ F̂(k)

T

)−1
F̂(k)′
√

T









1
N

N∑
n�1









1
√

T
Xn

(
X
′

n MF̂(k)Xn

T

)−1
1
√

T
X
′

n








� op (1) .

And:

������

1
N

N∑
n�1

tr *
,

bF̂S

(
H(k)′FS′FSH(k)

T

)−1
H(k)′FS′

T
Xn b2n+

-

������

≤








bF̂S

(
H(k)′FS′FSH(k)

T

)−1
H(k)′FS′

√
T









1
N

N∑
n�1







1
√

T
Xn b2n







� op (1) .

And also:

������

1
N

N∑
n�1

tr *
,

(
H(k)′FS′FSH(k)

T

)−1
H(k)′FS′

T
Xn b2n

(
F̂(k)′ F̂(k)

T

)−1
F̂(k)′

T
Xn~b2n+

-

������

≤
*.
,









(
H(k)′FS′FSH(k)

T

)−1
H(k)′FS′

√
T









2
1
N

N∑
n�1







1
√

T
Xn b2n








2+/
-

1
2

*.
,









(
F̂(k)′ F̂(k)

T

)−1
F̂(k)′
√

T









2
1
N

N∑
n�1







1
√

T
Xn~b2n








2+/
-

1
2

�
�
op (1)�

1
2

�
op (1)�

1
2 � op (1) .

Thus:

(93) 1
N

N∑
n�1





M[Xn :F̂(k)] −M[Xn :FSH(k)]





2
� op (1) ,

and then (92) implies:

1
NT

N∑
n�1

λ
′

nF0′M[Xn :F̂(k)]F0λn
P
−→

N,T→∞

1
NT

N∑
n�1

λ
′

nF0′M[Xn :FSH(k)]F0λn .

I omit the proof for the other two terms to save space, because it mimics the one I just showed. Thus,
we have that:

NSSR
(
F̂(k))

�
1

NT

N∑
n�1

λ
′

nF0′M[Xn :F̂(k)]F0λn + 1
NT

N∑
n�1

ε
′

n M[Xn :F̂(k)]εn + 2
NT

N∑
n�1

λ
′

nF0′M[Xn :F̂(k)]εn

P
−→

N,T→∞

1
NT

N∑
n�1

λ
′

nF0′M[Xn :FSH(k)]F0λn + 1
NT

N∑
n�1

ε
′

n M[Xn :FSH(k)]εn + 2
NT

N∑
n�1

λ
′

nF0′M[Xn :FSH(k)]εn

� NSSR
(
FSH(k)) .
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Now, note that the second term in NSSR
�
FSH(k)� evaluated at F̂(k) equals:

1
NT

N∑
n�1

ε
′

n M[Xn :FSH(k)]εn �
1

NT

N∑
n�1

ε
′

nεn −
1

NT

N∑
n�1

ε
′

nP[Xn :FSH(k)]εn .

Then, note that:

E



1
NT

N∑
n�1

ε
′

nεn


�



1
NT

N∑
n�1

T∑
t�1

E
�
ε2nt

�
�

1
NT

N∑
n�1

T∑
t�1

E
�
ε2nt

�
� E

�
ε2nt

�

and:

V



1
NT

N∑
n�1

ε
′

nεn


�

1
N2T2

N∑
n�1

T∑
t�1

V
�
ε2nt

�
�

1
NT

V
�
ε2nt

�
−→

N,T→∞
0,(94)

where the limit in (94) is an ordinary limit. Thus:

(95) 1
NT

N∑
n�1

ε
′

nεn
P
−→

N,T→∞
E

�
ε2nt

�
.

Now, for 1
NT

∑N
n�1 ε

′

nP[Xn :FSH(k)]εn note that:56

������

1
NT

N∑
n�1

ε
′

nZn
(
Z
′

nZn
)−1

Z
′

nεn

������

≤ *
,

1
NT4

N∑
n�1

‖Zn‖8+
-

1
8

*
,

1
NT4

N∑
n�1

‖εn‖8+
-

1
8

*.
,

N∑
n�1

1
N









(
Z
′

nZn

T

)−1







4
+/
-

1
4

√√√
1
N

N∑
n�1







Z′nεn

T








2

.

So, the second term:

E

������

1
NT4

N∑
n�1

‖εn‖8
������
≤

1
NT4

N∑
n�1

T∑
t�1

T∑
s�1

T∑
u�1

T∑
v�1

�
E

�
ε8nt

�
E

�
ε8ns

�
E

�
ε8nu

�
E

�
ε8nv

�� 1
4

so E
�
ε8nt

�
≤ M implies E ���

1
NT4

∑N
n�1 ‖εn‖8��� ≤ ~M < ∞ and thus:

*
,

1
NT4

N∑
n�1

‖εn‖8+
-

1
8

� Op (1) .

Moving now to the first term:

E

������

1
NT4

N∑
n�1

‖Zn‖8
������
≤

1
NT4

N∑
n�1

T∑
t�1

T∑
s�1

T∑
u�1

T∑
v�1

{
E

[‖Znt‖8
]
E

[‖Zns ‖8
]
E

[‖Znu‖8
]
E

[‖Znv‖8
] } 1

4

56Again, let us denote Zn � Zn
(
FSH(k)) .
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so E
[‖Znt ‖8

]
≤ M < ∞ implies E ���

1
NT4

∑N
n�1 ‖Zn‖8��� ≤ ~M < ∞ and thus

(
1

NT4
∑N

n�1 ‖Zn‖8
) 1

8
� Op (1) .

For the third term:

E

�������

1
N

N∑
n�1









(
Z
′

nZn

T

)−1







4�������
�

1
N

N∑
n�1

E









(
Z
′

nZn

T

)−1







4

�
1
N

N∑
n�1

E

{�
tr

�
D−2

��2}
So E

{�
tr

�
D−2

��2}
� E

{(∑P
u�1

�
ιTn ,u

�−2)2}
≤ M < ∞, ∀T, n where ιTnu are the eigenvalues of Z

′

n Zn
T im-

plies:

*.
,

N∑
n�1

1
N









(
Z
′

nZn

T

)−1







4
+/
-

1
4

� Op (1) .

Finally:

1
N

N∑
n�1







Z
′

nεn

T








2

�
1
N

1
T2

N∑
n�1




Z
′

nεn




2
�

1
N

1
T2

N∑
n�1

*..
,

√√√√ P∑
p�1

*
,

T∑
t�1

Zntpεnt+
-

2
+//
-

2

�

P∑
p�1

1
N

1
T2

N∑
n�1




T∑
t�1

Z2
ntpε

2
nt +

T∑
t�1

T∑
s,t

ZntpZnspεntεns



.

Thus:

E

������

1
N

N∑
n�1







Z
′

nεn
√

T








2������
� E




P∑
p�1

1
N

1
T

N∑
n�1




T∑
t�1

Z2
ntpε

2
nt +

T∑
t�1

T∑
s,t

ZntpZnspεntεns







≤

P∑
p�1

1
N

1
T

N∑
n�1

T∑
t�1

(
E

[
Z4

ntp

] ) 1
2 �
E

�
ε4nt

�� 1
2

and, hence, since E
[
Z4

ntp

]
,E

�
ε4nt

�
≤ M < ∞ because of our assumption of bounded eighth moments:

1
N

N∑
n�1







Z
′

nεn
√

T








2

� Op (1) .

And this implies:
1
√

T

1
N

N∑
n�1







Z
′

nεn
√

T








2

�
1
N

N∑
n�1







Z
′

nεn

T








2

� op (1) .

Putting all the pieces back together:

(96)
������

1
NT

N∑
n�1

ε
′

nZn
(
Z
′

nZn
)−1

Z
′

nεn

������
≤ Op (1)Op (1)Op (1) op (1) � op (1)

and thus:

(97) 1
NT

N∑
n�1

ε
′

nP[Xn :FSH(k)]εn
P
−→

N,T→∞
0.
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Thus, (95) and (97) imply:

(98) 1
NT

N∑
n�1

ε
′

n M[Xn :FSH(k)]εn
P
−→

N,T→∞
E

�
ε2nt

�
.

The previous computations assume there are no op (1) terms in εn , but Lemma (3) implies that these
terms vanish as well, and thus (98) still holds. Moreover, if the reduced forms come explicitly from
the system (45) and (45) and in εn one of the op (1) terms is, for example, a weighted average of εsnt ,
the regressors will have similar op (1) terms that will be correlated with εn , but again applying Lemma
(3), these terms vanish as well. In that case, we would have orthogonal regressors asymptotically, and,
although the last two conditions in Assumption 1 would not hold, the results would still go through.

Now for the third term in NSSR (.), we have that:

1
NT

N∑
n�1

λ
′

nF0′M[Xn :FSH(k)]εn �
1

NT

N∑
n�1

λ
′

nF0′εn −
1

NT

N∑
n�1

λ
′

nF0′P[Xn :FSH(k)]εn

and note that:

������

1
NT

N∑
n�1

λ
′

nF0′εn

������
≤ ~λ

1
N

N∑
n�1







F0′εn

T








and:

1
N

N∑
n�1







F0′εn

T







�

1
NT

N∑
n�1

√√√√K−2∑
k�1

*
,

T∑
t�1

F0
ktεnt+

-

2

�
1

NT

N∑
n�1

√√√


K−2∑
k�1

T∑
t�1

(
F0

kt

)2
ε2nt +

K−2∑
k�1

T∑
t�1

T∑
s,t

F0
ktεnt F0

stεst




and note that:

E

������

1
N

N∑
n�1







F0′εn
√

T








������
≤

1
N
√

T

N∑
n�1

√√√K−2∑
k�1

T∑
t�1

√
E

[(
F0

kt

)4]
E

�
ε4nt

�

and thus sinceE
[(

F0
kt

)4]
,E

�
ε4nt

�
≤ M < ∞becauseof our assumptionof boundedmoments 1

N
∑N

n�1






F0′εn
√

T





 �

Op (1) and thus it follows that 1
N

∑N
n�1






F0′εn

T




 � op (1) and then ���

1
NT

∑N
n�1 λ

′

nF0′εn
��� ≤ op (1), so:

1
NT

N∑
n�1

λ
′

nF0′εn
P
−→

N,T→∞
0.
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Moreover, we have that:57
������

1
NT

N∑
n�1

λ
′

nF0′P[Xn :FSH(k)]εn

������

≤ *
,

1
NT4

N∑
n�1

‖Zn‖8+
-

1
8

*
,

~λ

NT4

N∑
n�1

�
F0�8+

-

1
8

*.
,

N∑
n�1

1
N









(
Z
′

nZn

T

)−1







4
+/
-

1
4

√√√
1
N

N∑
n�1







Z′nεn

T








2

so the only new term here is ~λ
NT4

∑N
n�1

�
F0�8, and with the assumption on bounded moments in Sub-

section (4.1), and the same logic as before, we know that this term is Op (1), and thus using (96):

1
NT

N∑
n�1

λ
′

nF0′P[Xn :FSH(k)]εn
P
−→

N,T→∞
0.

Then, we have shown that:
1

NT

N∑
n�1

λ
′

nF0′M[Xn :FSH(k)]εn
P
−→

N,T→∞
0.

And again Lemma (3) implies that if we incorporate the op (1) terms in εn or the regressors, the same
computations go through.

Now, for the first term of NSRR (.), we next show that:

(99) 1
NT

N∑
n�1

λ
′

nF0′M[Xn :FSH(k)]F0λn � op (1) ⇐⇒ C

(
FSH(k))

3 F0.

We start by first showing that 1
NT

∑N
n�1 λ

′

nF0′M[Xn :FSH(k)]F0λn converges in probability. To that end, first
note that:

1
T

u(k)′
n M[Xn :FSH(k)]u(k)

n

is such that:

E

(����
1
T
λ
′

nF0′F0λn
����
2)
< ∞

E

(����
1
T
λ
′

nF0′P[Xn :FSH(k)]F0λn
����
2)
< ∞

implying that 1
T u(k)′

n M[Xn :FSH(k)]u(k)
n is uniform integrable. For the second term, note that:

E

(����
1
T
λ
′

nF0′P[Xn :FSH(k)]F0λn
����
2)
≤ (P + K − 2)~λ4 1

T2

T∑
t�1

T∑
s�1

√
E

[�
F0

t

�4]
E

[�
F0

s
�4]

so the assumption on bounded moments in Subsection (4.1) implies:

E

(����
1
T
λ
′

nF0′P[Xn :FSH(k)]F0λn
����
2)
≤ ~M < ∞

57Again, let us denote Zn � Zn
(
FSH(k)) .
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and thus 1
T λ

′

nF0′P[Xn :FSH(k)]F0λn is uniform integrable. Now, note that:

(100) E

(����
1
T
λ
′

nF0′F0λn
����
2)
≤ E

*.
,









λ
′

nF0′

√
T









4
+/
-

which by the previous argument is also uniform integrable. So given that 1
T u(k)′

n M[Xn :FSH(k)]u(k)
n is uni-

form integrable, now note that:

1
T
λ
′

nF0′F0λn
P
−→

N,T→∞
E

[(
F0′

t λn
)2]

1
T
λ
′

nF0′Zn
(
Z
′

nZn
)−1

Z
′

nF0λn
P
−→

N,T→∞
Q
′

ZF (QZZ)−1 QZF

and thus:
1
T
E

[
λ
′

nF0′F0λn
]
−→

N,T→∞
E

[(
F0′

t λn
)2]

1
T
E

[ 1
T
λ
′

nF0′Zn
(
Z
′

nZn
)−1

Z
′

nF0λn

]
−→

N,T→∞
E

[
Q
′

ZF (QZZ)−1 QZF
]

so:
E

[ 1
T
λ
′

nF0′P[Xn :FSH(k)]F0λn

]
−→

N,T→∞
E

[(
F0′

t λn
)2]
− E

[
Q
′

ZF (QZZ)−1 QZF
]
.

Now, we show that:

V *
,

1
NT

N∑
n�1

u(k)′
n M[Xn :FSH(k)]u(k)

n
+
-
−→

N,T→∞
0.

Note that:

V *
,

1
NT

N∑
n�1

u(k)′
n M[Xn :FSH(k)]u(k)

n
+
-

�
1

N2T2

N∑
n�1

V

{
λ
′

nF0′M[Xn :FSH(k)]F0λn

}
+

N (N − 1)
N2T2 cov

{
λ
′

nF0′M[Xn :FSH(k)]F0λn , λ
′

jF
0′M[X j :FSH(k)]F0λ j

}
and:

�����
N (N − 1)

N2T2 cov
{
λ
′

nF0′M[Xn :FSH(k)]F0λn , λ
′

jF
0′M[X j :FSH(k)]F0λ j

}�����

≤
N (N − 1)

N2

√√√√√√
E



*.
,

λ
′

nF0′M[Xn :FSH(k)]F0λn

T
− E



λ
′

nF0′M[Xn :FSH(k)]F0λn

T


+/
-

2
E [...]

and since û(k)2
nt is stationary with absolutely summable autocovariances:

E



*.
,

λ
′

nF0′M[Xn :FSH(k)]F0λn

T
− E



λ
′

nF0′M[Xn :FSH(k)]F0λn

T



+/
-

2
−→

N,T→∞
0
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and thus:

(101)
N (N − 1)

N2T2 cov
{
λ
′

nF0′M[Xn :FSH(k)]F0λn , λ
′

jF
0′M[X j :FSH(k)]F0λ j

}
−→

N,T→∞
0.

Moreover, note that:

V

{ 1
T
λ
′

nF0′M[Xn :FSH(k)]F0λn

}
� E

( [ 1
T
λ
′

nF0′M[Xn :FSH(k)]F0λn

]2)
−

(
E

[ 1
T
λ
′

nF0′M[Xn :FSH(k)]F0λn

])2
≤ E

( [ 1
T
λ
′

nF0′F0λn

]2)
≤ ~M < ∞(102)

where the inequality follows from (100). To recap we have shown:

V *
,

1
NT

N∑
n�1

u(k)′
n M[Xn :FSH(k)]u(k)

n
+
-

≤
1
N
~M︸︷︷︸

−→
N,T→∞

0

+
N (N − 1)

N2︸      ︷︷      ︸
−→

N,T→∞
1

cov



λ
′

nF0′M[Xn :FSH(k)]F0λn

T
,
λ
′

jF
0′M[X j :FSH(k)]F0λ j

T


︸                                                                  ︷︷                                                                  ︸

−→
N,T→∞

0

−→
N,T→∞

0.

Now thatwe know that 1
NT

∑N
n�1 λ

′

nF0′M[Xn :FSH(k)]F0λn converges in probability, we show that this limit
cannot be zero. First, note that:

E
*.
,

������

1
NT

N∑
n�1

λ
′

nF0′F0λn

������

2
+/
-

≤
1

N2T2

N∑
n�1

N∑
j�1

√√√√√√√√

T∑
t�1

T∑
s�1

√√√√√


K−2∑
u�1

K−2∑
v�1

K−2∑
x�1

K−2∑
w�1

(
~λ
)4 √√

*
,

√
E

[(
F0

kt

)4]
E

[�
F0

ut

�4]
+
-
(...)



...



...

which implies that 1
NT

∑N
n�1 λ

′

nF0′F0λn is uniformly integrable and thus since:

������

1
NT

N∑
n�1

λ
′

nF0′M[Xn :FSH(k)]F0λn

������
≤

������

1
NT

N∑
n�1

λ
′

nF0′F0λn

������

we have that 1
NT

∑N
n�1 λ

′

nF0′M[Xn :FSH(k)]F0λn is uniformly integrable as well. But this implies that since
1

NT
∑N

n�1 λ
′

nF0′M[Xn :FSH(k)]F0λn converges in probability, then it also converges in L1, and thus it implies

E

[
1

NT
∑N

n�1 λ
′

nF0′M[Xn :FSH(k)]F0λn

]
converges to the expected limit. We now show that this cannot be
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zero:58

E



1
NT

N∑
n�1

λ
′

nF0′M[Xn :FSH(k)]F0λn


�

1
NT

N∑
n�1

E

[
λ
′

nF0′M[Xn :FSH(k)]F0λn

]

�
1

NT

N∑
n�1

E

[
u(k)′

n M[Xn :FSH(k)]u(k)
n

]

>
1

NT

N∑
n�1

O (T)

�
O (T)

T
−→

N,T→∞
V (k) > 0.

Thus we know not only 1
N

∑N
n�1 λ

′

n

F0′M[Xn :FS(k)]F0

T λn ≥ 0 but also 1
N

∑N
n�1 λ

′

n

F0′M[Xn :FS(k)]F0

T λn
P9 0.

Then, putting all the pieces together, we have that:

(103) NSSR
(
F̂(k)) P

−→
N,T→∞




E
�
ε2nt

�
i f (k) � (k)∗

> E
�
ε2nt

�
+ V (k) i f (k) , (k)∗

.

This result means that:

(104)
�
MF0 −MF̂∗

�
� op (1) .

Now, using (104), with the same argument as those at the end of Proposition 13, we have that:





β̂
(N)
n

�
F̂∗

�
− β(N)

n




 � op (1) ,

which completes the proof. �

Corollary 4

Proof. The proof follows the exact same steps as Lemma 1, so I omit them here. �

Proposition 15

Proof. The first part of the proof is exactly the same as the one in Ando and Bai (2015). The only
modification needed is the use of Lemma (3) to show that the op (1) terms that come from the indirect
observability of st and εsnt vanish. This follows the same steps as the beginning of Proposition 13,
which uses Lemma (3), and thus we do not repeat it here. With a consistent estimator of the space
spanned by F0, the rest of the proof is identical to that of Proposition 13. �

Proposition 16

58 The O (T) term should be O(k) (T) to make clear that O(k) (T) is an O (T) term that depends on the subset (k), but we omit
the (k) in the superscript for a cleaner notation.
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Proof. The proof will follow the steps described in Subsection 5.4 in order to move forward in an or-
ganized manner. I will allow for a term like ϕn

1
N

∑N
j�1
~β2 jεs jt in (56), for some arbitrary weights ~β2 j , to

mimic some of the models in Section 3 more closely. Thus, the error term in (56) after the unobserved
macro shocks becomes ωY

nt + ϕn
1
N

∑N
j�1
~β2 jεs jt . This is just to make the proof a bit more general. Also,

I will assume
∑N

n�1 θZn
~β2n

1−δYβ2n
�

∑N
n�1 θus n

~β2n
1−δYβ2n

xn � 0, xn � κ0n , κ1n , κus ,n , κuZ ,n . Let me note that
this assumption, like the equivalent one for β2n in point 5 of the statement in this proposition, could be
weakened by requiring θZn and θus n to have mean zero and be independent across n; this is one place
where I choose to make a stronger assumption to make notation easier at no conceptual cost in terms
of the strategy. Moreover, I will also assume we only observe snt B st + εsnt , for a slightly more general
proof as well. This then implies ε̂snt � εsnt −

1
N

∑N
n�1 θZnωZ

nt −
1
N

∑N
n�1 ω

s
nt .

With the same arguments as in Propositions 13, 14 and 15, the first step in (66) gives:
�
M~F −MF̂

�
� op (1)(105)

���Ωnt − F̂
′

t φ̂
y
n

��� � op (1) .(106)

Now, in step 2 we can rewrite:

1
NT

N∑
n�1

T∑
t�1

(
ε̂snt − φ

ε
n us

t − φ
ε
ZnεZnt − φ

ε
Ωn F̂

′

t φ̂
y
n

)2
�

1
NT

N∑
n�1

T∑
t�1

*
,
εsnt −

1
N

N∑
n�1

θZnω
Z
nt −

1
N

N∑
n�1

ωs
nt − φ

ε
n us

t − φ
ε
ZnεZnt − φ

ε
Ωn

[
F̂
′

t φ̂
y
n −Ωnt +Ωnt

]+
-

2

�

1
NT

N∑
n�1

T∑
t�1

*
,
εsnt − φ

ε
n us

t − φ
ε
ZnεZnt − φ

ε
ΩnΩnt − φ

ε
Ωn

[
F̂
′

t φ̂
y
n −Ωnt

]
−

1
N

N∑
n�1

θZnω
Z
nt −

1
N

N∑
n�1

ωs
nt

+
-

2

.

Note that by (106) and our assumptions φε
Ωn

[
F̂
′

t φ̂
y
n −Ωnt

]
−

1
N

∑N
n�1 θZnωZ

nt −
1
N

∑N
n�1 ω

s
nt � op (1) for

bounded φε
Ωn . Using the same arguments as in Lemma 3 and Proposition 14, we get from (67):

(107) 1
√

T
‖ûs
− us h∗‖ � op (1) ,

for some non-zero constant h∗.
Moving forward, using (107) and standard arguments for the consistency of IV estimators (see, for

example, White (2001)), together with Lemma 3 to take into account the non-observability of st , steps
3 and 4 give: �

ûZ
t − uZ

t
�
� op (1) .

Applying the same machinery to step 5, and using Assumption 11, we have that:

(108)
�
MF̂RC −MF0

�
� op (1)

where F̂RC �
�
F̂RC
1 , F̂RC

2 , F̂RC
3

�
and F0 �

�
F1 , F2 , us

t

�
. And using (108) with the arguments of Proposition

13, we get (69). �
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Proposition 17

Proof. The first part of the results follows simply from direct computation. I do not give all the details
to save space, but note for example that we can compute the inverse of A as follows. Let us define:

v′ �
( 1

N
, ...,

1
N
, 0, 0, 0, ..., 0

)
u′ �

�
0, ..., 0, by , dy , δY , ..., δY

�

then:

uv′ �

*..................
,

0
...

0
by

dy

δY
...

δY

+//////////////////
-

( 1
N
, ...,

1
N
, 0, 0, 0, ..., 0

)
�

*..................
,

0 · · · 0 0 0 0 · · · 0
...

. . .
...

...
...

...
. . .

...

0 · · · 0 0 0 0 · · · 0
by

1
N · · · by

1
N 0 0 0 · · · 0

dy
1
N · · · dy

1
N 0 0 0 · · · 0

δY
1
N · · · δY

1
N 0 0 0 · · · 0

...
. . .

...
...

...
...

. . .
...

δY
1
N · · · δY

1
N 0 0 0 · · · 0

+//////////////////
-

.

Also:

Φ � A − uv′

�

*..................
,

1 · · · 0 b1 0 c11 · · · 0
...

. . .
...

...
...

...
. . .

...

0 · · · 1 bN 0 0 · · · cNN

0 · · · 0 1 bm 0 · · · 0
0 · · · 0 dg 1 0 · · · 0
−δY · · · 0 0 0 1 · · · 0
...

. . .
...

...
...

...
. . .

...

0 · · · −δY 0 0 0 · · · 1

+//////////////////
-

.

After some computations, we get:

Φ−1 �

*...................
,

1 − δY c11
1+δY c11

· · · 0 J1 Ĵ1 −
c11

1+δY c11
· · · 0

...
. . .

...
...

...
...

. . .
...

0 · · · 1 − δY cNN
1+δY cNN

JN ĴN 0 · · · −
cNN

1+δY cNN

0 · · · 0 1
1−bm dg

−
bm

1−bm dg
0 · · · 0

0 · · · 0 −
dg

1−bm dg
1

1−bm dg
0 · · · 0

δY
1

1+δY c11
· · · 0 ϕ1 ϕ̂1

1
1+δY c11

· · · 0
...

. . .
...

...
...

...
. . .

...

0 · · · δY
1

1+δY cNN
ϕN ϕ̂N 0 · · ·

1
1+δY cNN

+///////////////////
-

,
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where:

Jn � −bn
1

1 − bm dg
+ cnnδY bn

1
1 − bm dg

1
1 + δY cnn

Ĵn � bn
bm

1 − bm dg
− cnn

bm

1 − bm dg
δY bn

1
1 + δY cnn

ϕn � −δY bn
1

1 − bm dg

1
1 + δY cnn

ϕ̂n �
bm

1 − bm dg
δY bn

1
1 + δY cnn

.

Now, using the Sherman-Morrison Formula, we get A−1 (I omit the computations here to save space).
With this matrix, we can now use Blanchard and Kahn (1980) and compute the solution with the aid
of A−1Θ plus the assumptions in this proposition. After this, we can eliminate from the system the
equation for Gt and repeat these steps. Using the solution to these two systems, it is easy to see that
we can impose restrictions on A and Θ and in the processes ~ξt , for example requiring that εξn

t
be

independent for all n and t and identically distributed across t with E
[
εξ1t

]
� 0 and E

[���εξ1t
���
16]

< C,
for (68) to be consistent. �
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B Appendix: Simulations and Empirical Results

Figure 8: This figure shows the Monte Carlo simulations for the micro-global elasticity in Case 1.

Figure 9: This figure shows the Monte Carlo simulations for the micro-global elasticity in Case 2.
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Dep. Variable: Real GDP Per Capita Growth
(1) (2) (3) (4)
OLS Model Selection Instrument SEM

Gt
-1.08*** -0.08 -0.08 0.07
(0.38) (0.34) (0.319) (0.82)

Gt−1
0.28 0.69*** 0.77*** 0.69***
(0.48) (0.18) (0.18) (0.28)

Gt−2
0.38 -0.254 -0.23 0.04
(0.39) (0.344) (0.34) (0.30)

State Time Trend X X X

Time Fixed E f f ect X X X

Interactive FE X X X

Number o f IE 0 5 5 5
Observations 37 1,739 1,739 1,739
Period 1971-2008 1971-2008 1971-2008 1971-2008
Number of Regions - 47 47 47

Table 4: This table presents estimates of the fiscal multiplier. Column 1 is a simple time series OLS regression of Yt on a

constant, Gt , Gt−1, Gt−2 and Yt−1. Columns 2 to 4 estimate (74) for cases 1, 2 and 3, respectively. All of the regressions control

for Ynt−1. I exclude 4 states because they have yearly variations of above 20% in their GSP, which translate into unreliably large

micro-global multipliers, and a very small population: North Dakota (0.23% of the US population), South Dakota (0.27%),

Wyoming (0.18%) and Alaska (0.23%). Standard errors are in parentheses and are obtained with the nonparametric bootstrap;

see Section 5 for details. The coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are significant at the 5%

confidence level; and with ∗ are significant at the 10% confidence level.

Dep. Variable: Real GDP Per Capita Growth
(1) (2) (3) (4)
OLS Model Selection Instrument SEM

Gt
-0.85** 0.13* 0.63** 0.23
(0.40) (0.07) (0.33) (0.35)

Gt−1
0.65 0.80*** 0.86*** 1.01***
(0.48) (0.19) (0.22) (0.34)

Gt−2
0.58 0.01 -0.23 0.33
(0.40) (0.40) (0.60) (0.34)

State Time Trend
Time Fixed E f f ect X X X

Interactive FE X X X

Number o f IE 0 5 5 5
Observations 37 1,739 1,739 1,739
Period 1971-2008 1971-2008 1971-2008 1971-2008
Number of Regions - 47 47 47

Table 5: This table presents estimates of the fiscal multiplier. Column 1 is a simple time series OLS regression of Yt on Gt ,

Gt−1, Gt−2 and Yt−1. Columns 2 to 4 estimate (74) for cases 1, 2 and 3, respectively. All of the regressions control for Ynt−1.

I exclude 4 states because they have yearly variations of above 20% in their GSP, which translate into unreliably large micro-

global multipliers, and a very small population: North Dakota (0.23% of the US population), South Dakota (0.27%), Wyoming

(0.18%) andAlaska (0.23%). Standard errors are in parentheses and are obtainedwith the nonparametric bootstrap; see Section

5 for details. The coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are significant at the 5% confidence

level; and with ∗ are significant at the 10% confidence level.
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Dep. Variable: Real GDP Per Capita Growth
(1) (2) (3) (4)
OLS Model Selection Instrument SEM

Gt
-0.85** 0.14** 0.42 -0.10
(0.40) (0.07) (0.27) (0.48)

Gt−1
0.65 0.76*** 0.86*** 0.94***
(0.48) (0.17) (0.20) (0.38)

Gt−2
0.58 0.14 0.04 0.38
(0.40) (0.33) (0.37) (0.31)

State Time Trend
Time Fixed E f f ect
Interactive FE X X X

Number o f IE 0 5 5 5
Observations 37 1,739 1,739 1,739
Period 1971-2008 1971-2008 1971-2008 1971-2008
Number of Regions - 47 47 47

Table 6: This table presents estimates of the fiscal multiplier. Column 1 is a simple time series OLS regression of Yt on Gt ,

Gt−1, Gt−2 and Yt−1. Columns 2 to 4 estimate (74) for cases 1, 2 and 3, respectively. All of the regressions control for Ynt−1.

I exclude 4 states because they have yearly variations of above 20% in their GSP, which translate into unreliably large micro-

global multipliers, and a very small population: North Dakota (0.23% of the US population), South Dakota (0.27%), Wyoming

(0.18%) andAlaska (0.23%). Standard errors are in parentheses and are obtainedwith the nonparametric bootstrap; see Section

5 for details. The coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are significant at the 5% confidence

level; and with ∗ are significant at the 10% confidence level.

(1) (2) (3) (4) (5) (6) (7)
Inst. Inst. Inst. Inst. Inst. Inst. Inst.

Gt+1 - - - - - -
0.08
(0.15)

Gt - - - - - -
-0.01
(0.17)

Gt−1
0.93*** 0.88*** 0.83*** 0.75*** 1.23*** 1.20*** 0.85***
(0.07) (0.07) (0.07) (0.08) (0.11) (0.11) (0.14)

Gt−2 - - - - - -
-0.35
(0.21 )

STT X

TFE
IE X X X X X X

N◦ o f IE 0 1 2 3 4 5 5
Obs. 1,739 1,739 1,739 1,739 1,739 1,739 1,739
Period 1971-2008 1971-2008 1971-2008 1971-2008 1971-2008 1971-2008 1971-2008
Regions 47 47 47 47 47 47 47

Table 7: This table presents estimates of the fiscal multiplier. Columns 1 through 6 show what happens in case 2 when we

go from 0 to 5 IE, when using only Gt−1, and without using state time trends. Column 7 shows what happens in case 2 when

we include a lead. All of the regressions control for Ynt−1. I exclude 4 states because they have yearly variations of above 20%

in their GSP, which translate into unreliably large micro-global multipliers, and a very small population: North Dakota (0.23%

of the US population), South Dakota (0.27%), Wyoming (0.18%) and Alaska (0.23%). Standard errors are in parentheses and

are obtained with the wild bootstrap; see Section 5 for details. The coefficients with ∗∗∗ are significant at the 1% confidence

level; with ∗∗ are significant at the 5% confidence level; and with ∗ are significant at the 10% confidence level.
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Figure 10: This figure shows the point estimates from column 7 in Table 7, along with their 90% confidence

intervals.

(1) (2) (3) (4) (5)
SEM SEM SEM SEM SEM

Gt
-0.62*** 0.14 -0.08 0.18 0.01
(0.23) (0.61) (0.44) (0.72) (0.59)

Gt−1
0.25** 0.24 0.35** 0.29 0.69***
(0.13) (0.16) (0.16) (0.24) (0.29)

Gt−2
-0.05 0.28 0.28** 0.36** 0.03
(0.14) (0.20) (0.14) (0.20) (0.24)

State Time Trend X X X X X

Time Fixed E f f ect
Interactive FE X X X X X

Number o f IE 1 2 3 4 5
Observations 1,739 1,739 1,739 1,739 1,739
Period 1971-2008 1971-2008 1971-2008 1971-2008 1971-2008
Number of Regions 47 47 47 47 47

Table 8: This table presents estimates of the fiscal multiplier. Columns 1 through 5 show what happens in case 3 when

we go from 1 to 5 IE, when using Gt , Gt−1, Gt−2. All of the regressions control for Ynt−1. I exclude 4 states because they

have yearly variations of above 20% in their GSP, which translate into unreliably large micro-global multipliers, and a very

small population: North Dakota (0.23% of the US population), South Dakota (0.27%), Wyoming (0.18%) and Alaska (0.23%).

Standard errors are in parentheses and are obtained with the wild bootstrap; see Section 5 for details. The coefficients with ∗∗∗

are significant at the 1% confidence level; with ∗∗ are significant at the 5% confidence level; and with ∗ are significant at the

10% confidence level.
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Dep. Variable: Real GDP Per Capita Growth
(1) (2) (3) (4)
OLS Model Selection Instrument SEM

Gt
-1.08*** -0.07 0.02 0.01
(0.38) (0.28) (0.32) (0.71)

Gt−1
0.28 0.65*** 0.80*** 0.69***
(0.48) (0.15) (0.25) (0.32)

Gt−2
0.38 0.08 -0.34 0.03
(0.39) (0.11) (0.51) (0.35)

State Time Trend X X X

Time Fixed E f f ect
Interactive FE X X X

Number o f IE 0 5 5 5
Observations 37 1,739 1,739 1,739
Period 1971-2008 1971-2008 1971-2008 1971-2008
Number of Regions - 47 47 47

Table 9: This table presents estimates of the fiscal multiplier. Column 1 is a simple time series OLS regression of Yt on a

constant, Gt , Gt−1, Gt−2 and Yt−1. Columns 2 to 4 estimate (74) for cases 1, 2 and 3, respectively. All of the regressions control

for Ynt−1. I exclude 4 states because they have yearly variations of above 20% in their GSP, which translate into unreliably large

micro-global multipliers, and a very small population: North Dakota (0.23% of the US population), South Dakota (0.27%),

Wyoming (0.18%) and Alaska (0.23%). Standard errors are in parentheses and are obtained with the nonparametric bootstrap;

see Section 5 for details. The coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are significant at the 5%

confidence level; and with ∗ are significant at the 10% confidence level.
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