
Drug Diffusion through Peer Networks:

The Influence of Industry Payments

Leila Agha∗ Dan Zeltzer†

July 2, 2019
PRELIMINARY

Abstract

Medical drug and device companies invest over $8 billion annually in payments to

physicians and hospitals; many of these payments are targeted at encouraging use of

new drugs. Drug detailing efforts of pharmaceutical companies leverage peer influence

within existing provider networks to broaden their reach beyond the directly targeted

physicians. Using matched physician data from Medicare Part D and Open Payments,

we investigate the influence of pharmaceutical payments on the prescription of new

anticoagulant drugs. First, we show that pharmaceutical payments target physicians

who share patients with many different providers and thus may influence a broader

network of peers. Within a difference in differences framework, we find a physician’s

own prescription of new anticoagulant drugs increases following a pharmaceutical pay-

ment, relative to the physician-specific baseline prescribing rate for that drug. The

effect scales with the size of the payment, with large payments such as speaking and

consulting fees spurring larger increases in prescribing than small payments for food.

Peers of targeted physicians also increase their prescribing of the new drug after the

targeted physician receives a large payment, introducing entirely new patients to the

drug class. We find no evidence that drug detailing leads to curtailed prescription

volume for patients at high risk of dangerous side effects or low potential benefit of

anticoagulation.
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1 Introduction

Drug and medical device companies invest over $8 billion annually in payments to physicians

and hospitals; many of these payments support advertising efforts encouraging providers to

adopt new clinical products. Recent evidence suggests these efforts impact prescription

behavior, and an ongoing public debate centers on the influence of drug manufacturers’

promotional efforts (Sinkinson and Starc, 2015), and particularly payments to physicians

(e.g., Campbell et al., 2007; Navathe and David, 2009; David et al., 2010; DeJong et al.,

2016; Grennan et al., 2018). While pharmaceutical companies’ engagements with physicians

may educate doctors about new drugs, such engagement may also increase the volume of

higher cost, brand name products marketed by industry, not necessarily in the best interest

of patients.1

Large detailing payments reportedly target thought leaders, i.e. physicians who may

be highly influential on the practice of their peer providers. Supported by a burgeoning

commercial intelligence industry that identifies, profiles, and tracks Key Opinion Leaders

in different locations and therapy areas, pharmaceutical marketing increasingly leverages

indirect influence. In this paper, we consider the impact of pharmaceutical detailing efforts

on local prescription patterns by studying how payments impact drug diffusion through the

peer network of targeted doctors.

Peer influence in technology adoption has been documented in other contexts (e.g.,

Bandiera and Rasul, 2006; Tucker, 2008; Duflo et al., 2008; Conley and Udry, 2010; Oster

and Thornton, 2012). However, absent experimental variation, research into peer influence

faces a significant hurdle, which is that local clustering may be the result of common shocks

or correlated preferences, and not the direct result of peer effects. To isolate peer effects from

these competing explanations, we exploit quasi-experimental variation in promotional pay-

ments and in-kind transfers physicians receive from pharmaceutical companies. This study’s

contribution is twofold: it provides both a lens for understanding the role of information

diffusion through local physician networks and a more complete accounting of the impact of

pharmaceutical companies’ promotional efforts through spillovers.

To study prescription behavior and the influence of pharmaceutical payments, we use

Medicare Part D administrative claims data. We focus on prescriptions of anticoagulants

(commonly referred to as “blood thinners”), a widely utilized therapeutic class to which

several new drugs were introduced during or shortly before our sample period. Branded

Novel Oral Anticoagulants (NOACs) cost roughly 20 times more than a common off-patent

1E.g., Thomas, Katie et al., “Detailing Financial Links of Doctors and Drug Makers”, The New York
Times, September 30, 2014; Elliot, Carl, “The Drug Pushers,” The Atlantic, April 2016.
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incumbent anticoagulant. The new drugs improved upon the incumbent product (Warfarin)

by not requiring routine coagulation monitoring for dose adjustment.2 On the other hand, for

much of the study period, specific antidotes needed to reverse the NOACs effect in the event

of a major bleed were not yet FDA approved, whereas the incumbent drug was reversible.

The net benefit of NOACs compared to the older therapy were ambiguous, and likely varied

across patients.

We match prescription data with two other data sources: (i) the universe of payments

and value transfers to US physicians by drug manufacturers and distributors, and (ii) data on

physician networks, where physicians are considered connected if they share patients. Com-

bined, these data provide a unique opportunity to study spillovers in prescription behavior

and the effects of industry payments for two reasons. First, shared-patient relationships are

not transitive. Namely, the peer groups of physicians who share patients with each other do

not generally overlap. Thus, we observe physician-level variation in the exposure to peers

who received pharmaceutical payments. Second, the longitudinal nature of the data allows us

to study how doctor’s prescription volume changes after they are exposed to pharmaceutical

payments.

Analyzing this novel matched database, we confirm earlier findings showing payments

and prescriptions are positively correlated. Furthermore, we show that while a large fraction

of practicing physicians receive small payments associated with detailing visits by marketing

salespersons, relatively few, more specialized physicians, receive large payments that are as-

sociated with speaking, consulting, and other services. Nonetheless, large payments account

for two thirds of the total dollar volume transferred. Consistent with influencer marketing

tactics, large payments are disproportionately made to physicians with a large number of

peers, even controlling for other observed characteristics.

To identify peer effects separately from unobserved factors that may be correlated across

referring physicians, such as correlated physician tastes or patient demand, we exploit vari-

ation in both the timing of payments to physicians and their peer group composition. Using

a difference-in-differences framework, we estimate the impact of payments on the physician

receiving the payments as well as the paid physician’s peers.

Directly receiving a payment is associated with increases in prescription volume, with

larger effect sizes tracking larger payment sizes. Small payments for food lead to 0.06 ad-

ditional prescribed beneficiaries per quarter in our sample, an 8 percent increase over the

average prescription volume. Payments for consulting and compensation for services lead to

2Price data for Eliquis, Xarelto, Pradaxa and warfarin from goodrx.com. NOACs Eliquis, Xarelto,
Pradaxa are currently priced at $400 to $600 for a one month supply; incumbent Warfarin is priced around
$18 and is available at Walmart for $4.
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0.37 additional prescribed beneficiaries per quarter, a 50 percent increase over the average

prescription volume.

Consulting or compensation payments are also associated with a significant increase in

prescription volume of the paid physician’s peers. Following a payment, each peer of the

direct recipient increases prescription volume on average by 0.02 additional beneficiaries

per quarter. This effect on each peer is roughly 1/3 the estimated effect size of directly

receiving a food payment, and 1/20 the size of an own payment of the same magnitude. But

while spillover effects are smaller than the direct effect of payments, given that the physicians

targeted with these large payments have more than 60 peers on average, the overall estimated

impact of a large payment on all first-degree peers eclipses the estimated impact of a large

payment on the paid physician’s own patient volume.

We find that the estimated peer effects are not solely the result of refilling prescriptions

originally written by other doctors. Both direct recipients of large payments and their peers

initiate more NOAC prescriptions in patients with no prior prescription for anticoagulants—

of any kind, by any physician—in the previous year.

To quantify the direct and indirect effects of payments on overall prescription volumes,

we use the estimated model and the existing network structure, and compare actual and

counterfactual prescription volumes given alternative payment scenarios. Relative to a coun-

terfactual with no payments, we estimate that in 2014–2016, pharmaceutical payments have

increased NOAC prescription volumes by 16 percent. About a quarter of this increase is due

to spillovers to peers of recipients, mainly spillovers of large compensation payments. These

results, which take into account the actual network structure and distribution of payments,

imply that the impact of pharmaceutical payments on the adoption of new drugs is ampli-

fied through peer effects and that drug manufacturers and distributors ability to influence

medical practice is greater than one would have estimated neglecting peer spillovers.

These patterns of payment influence on prescriptions further suggest that pharmaceuti-

cal detailing payments may contribute to regional variation in the adoption of new health

technologies. Prior research has documented significant local clustering of treatment pat-

terns (Agha and Molitor, 2018; Cutler et al., 2013; Skinner and Staiger, 2015; Moen et al.,

2016; MacLeod and Currie, 2018). We show that pharmaceutical companies’ drug detailing

efforts not only increase the mean adoption but also its variance. Because payments are not

evenly distributed across space, but rather are concentrated in areas where initial adoption

is already high, they contribute to the divergence of practice across locations, at least in the

intermediate stages of the drug life cycle that we observe.

The welfare implications of pharmaceutical influence are not immediately obvious. If

detailing payments propagate useful information to physicians, they could improve prescrip-
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tion safety and value. Because NOACs are relatively new and guidelines for their use are

still evolving, it is difficult to assess the appropriateness of individual use in many cases.

Nonetheless, for the subset of patients with atrial fibrillation, a common condition treated

with anticoagulants, evidence-based risk scores exist that identify patients facing a high risk

of dangerous bleeding side-effects if anticoagulated (Gage et al., 2001; Pisters et al., 2010; Lip

et al., 2011). And while in each specific case physicians may have reasons to conclude that

benefits outweigh the potential risks, by calculating these risk scores for our entire cohort,

we can test how payments increase prescriptions among low and high benefit patients on

average. We find that the increases in prescription volume associated with payments accrue

similarly across all subgroups, including in cases where evidence-based guidelines suggest

anticoagulant prescriptions have high expected risk. This finding suggests that detailing

efforts did not improve anticoagulant prescription safety and appropriateness. While not

conclusive, it calls into question the welfare gains from detailing.

Taken together, our results suggest that peer effects may amplify the influence of manu-

facturers and reinforce geographic variation in practice patterns. Therefore, spillover effects

should be acknowledged when considering the nature of competition in the markets for

new medical technologies and in the marketing strategies associated with promoting such

products. Our paper contributes to several literatures. Most directly, it is related to the lit-

eratures studying the effects of pharmaceutical marketing and detailing (David et al., 2010;

DeJong et al., 2016; Larkin et al., 2017; Shapiro, 2018; Sinkinson and Starc, 2018; Grennan

et al., 2018), physician networks (Barnett et al., 2012; Agha et al., 2018), the adoption of

new technologies in medicine, and the study of peer effects, learning, and geographic vari-

ation therein (Skinner, 2011; Oster and Thornton, 2012; Cutler et al., 2019; Chan, 2018).

More broadly, this paper is also related to the extensive literature that studies the impact of

targeted intervention, diffusion, and learning in networks (Banerjee et al., 2013; Golub and

Sadler, 2017; Galeotti et al., 2017).

Understanding the scope of marketing efforts and their relationship to peer influence in

medicine is of particular importance for policy. While influencer marketing, viral market-

ing, and celebrity endorsement are common marketing strategies in consumer good markets

(Iyengar et al., 2011), information asymmetries characteristic of health care markets leave

large scope for over and under adoption of new technologies, with substantial consequences

for consumers. In principle, the same forces that may cause over-adoption of certain tech-

nologies can lead others to be under-adopted. Interactions between physicians could be

exploited to target interventions in order to beneficially expedite the diffusion of new clinical

practices. Although, the strength of spillovers may vary by context: Donohue et al. (2018)

estimated peer effects in prescription of first-in-class drugs among physicians in Pennsylva-
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nia, while Sacarny et al. (2019) found no peer effects on for CMS warning letters sent to

physicians discouraging overuse of antipsychotic drugs. These results underscore then need

for more empirical work in this area.

The rest of this paper proceeds as follows. Section 2 describes the data and contextual

information about the class of anticoagulants. Section 3 describes our empirical strategy.

Section 4 shows our main estimates of the influence of pharmaceutical payments on pre-

scription volume. Section 5 analyzes whether drug detailing promotes guideline-concordant

anticoagulant use for patients with atrial fibrillation. Section 6 presents counterfactual anal-

ysis that quantifies the impact of payments on the overall increase and spatial variation in

prescription volumes. Section 7 concludes.

2 Data and context

Our analysis focuses on anticoagulants (commonly referred to as “blood thinners”), studying

the diffusion of three new oral anticoagulant drugs (NOACs): apixaban (brand name Eliquis),

dabigatran (Pradaxa), and rivaroxaban (Xarelto). These drugs comprise a growing market

for alternatives to the older anticoagulant, coumadin (Warfarin), as shown in (Figure 1).

These three NOACs were introduced between 2010 and 2012, shortly before our sample

period begins in 2014.3

Anticoagulants are primarily used to prevent strokes and other clotting events in patients

with atrial fibrillation, deep vein thrombosis, and pulmonary embolism. These conditions

are both common and serious, estimated to cause 250,000 deaths per year in the United

States. The NOAC global market was $23 billion in 2013, and is projected to double by

2025.4

NOACs are considered non-inferior to existing anticoagulant drugs. Cited advantages of

NOACs relative to older anticoagulant drugs include improved safety, convenience of use,

fewer interactions with other drugs, a wider therapeutic window, and no need for laboratory

monitoring (Mekaj et al., 2015). These benefits come at a cost: NOACs were branded drugs,

priced at more than USD 500 per month, multiple times the price of off-patent Warfarin.5

3The FDA first approved Pradaxa on Oct 19, 2010; Xarelto on Jul 1, 2011; Eliquis on Dec 28, 2012. This
slight variation in the introduction of drugs means that we have a chance to observe slightly different stages
in the lifecycle of product introduction.

4Global Anticoagulants Market Expected to Reach USD 43 Billion By 2025. Allied Market Research Re-
port. https://www.alliedmarketresearch.com/press-release/anticoagulant-drugs-market.html.
Accessed July, 2019.

5Anticoagulants - prices and information, https://www.goodrx.com/anticoagulants. Accessed July, 2019.
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2.1 Data Sources

To estimate peer effects in the diffusion of new drugs, we combine multiple databases on pre-

scription, payments, and connections as follows. Physician prescription volumes are derived

from Medicare Part D administrative claims. Associated payments and in kind transfers

to physicians made by drug manufacturers are identified in the Open Payments database.

Physician shared-patients relationships are merged in from the Referral Patterns database.

Additional physician characteristics, including practice location and group-practice affilia-

tions are from Physician Compare.6

Prescriptions We analyze a 40% sample of Research Identifiable Medicare Part D claims

in 2014–2016 (CMS, 2013–2015). To track the adoption and use of new anticoagulant drugs,

we restrict attention to physicians of medical specialties that together include the majority

of NOAC prescribers: primary care and cardiology.7

For each physician from these specialties and each anticoagulant drug, we construct

a quarterly panel of the doctor’s prescription volume. We use this data to define three

outcome variables. Our primary outcome is the number of unique Medicare Part D benefi-

ciaries prescribed the drug in that quarter. Second, we construct a count of newly initiated

prescriptions, excluding prescription renewals or drug changes for patients already using

anticoagulants. We define newly prescribed patients as those who did not fill any type of

anticoagulant prescription for the prior 12 months.8 Finally, to measure the relative market

share of each drug at the physician level, we calculate the fraction of patients prescribed

each specific NOAC out of total anticoagulant prescriptions. This relative share variable is

defined only in quarters with at least one anticoagulant prescription.9

Peers To study peer effects in prescription decisions, we combine prescription information

with physician referral data from CMS Referral Patterns data (CMS, 2013). In these data,

two physicians have a shared patient if they both participated in the delivery of health services

6With the exception of the Medicare Part D Research Identifiable patient-level data, all data are publicly
available. All of these databases are maintained by the Centers of Medicare and Medicaid Services (CMS),
a federal agency within the US Department of Health and Human Services.

7We define as primary care the physicians whose primary specialty recorded in Physician Compare
database is one of: Family Practice, Internal Medicine, General Practice, and Geriatric Medicine. Car-
diologists are defined as physicians whose primary specialty is one of: Cardiology, Interventional Cardiology,
and Cardiac Surgery.

8For the purposes of this study, when we refer to anticoagulants as a class, we consider all prescriptions for
Warfarin, Xarelto, Eliquis, Pradaxa, and Savaysa, which comprise all the major prescription anticoagulants
over this time period.

9Because this measure is only available for physician-quarters with any AC prescriptions (the denominator
of the fraction), it corresponds to a smaller sample size (See Table 2).
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to the same Medicare patient within a 30 days period of one another. Two physicians are

defined to be peers if they have 11 or more shared Medicare Fee For Service patients within

a year. We treat this network as static, undirected, and unweighted. We define peers based

on the observed network of shared-patient peers in 2013, the year before our prescription

outcome data begins.

Survey analysis has validated that physicians with multiple shared patients are typically

familiar with each other (Barnett et al., 2011), suggesting peers thus defined may also influ-

ence each other’s practice. One channel for such influence is via observing peer prescription

behavior for shared patients.

Table A2 presents summary statistics on the distribution of the number of peers. The

mean physician in our sample share patients with 22.8 peers (median 13). Cardiac specialists,

whose practice is more specialized, have significantly more peers (mean 60.2, median 53)

than generalists (mean 17.1, median 11). More experienced physicians also tend to have

more peers.

Payments We combine data on NOAC drug prescriptions with data on associated pay-

ments and value transfers to physicians by drug manufacturers and distributors from the

Open Payments database (CMS, 2014–2015). This payment data covers the period from

July 1, 2013 through December 31, 2016. This database is maintained by CMS as part of

the Physician Financial Transparency Reports (Sunshine Act), a national disclosure program

created by the Affordable Care Act (ACA). Beginning in 2013, manufacturers are required

to submit data about all payments and other transfers of value made to physicians (which

we henceforth refer to as payments). The reports include the amount paid (or value of non-

monetary transfer, such as food or travel expenses), the associated drug(s), and the nature

of the transfer. We aggregate payments received to construct a panel of physician payment

amounts and payment types in each quarter and for each drug.

From 2014–2016, the reported payments total to $103 million for the three NOAC drugs

we study. Table 1 show the distribution of payment size by payment type. We group payment

types into three categories based on average payment size: (1) food, beverage, and education;

(2) consulting fees and compensation for services; (3) travel and lodging. Figure 2 shows the

average cumulative payments associated with each drug that were received by physicians of

different specialties.

The most common transfers are in the form of food, beverages, and educational ma-

terials purchased by salespeople when discussing new drugs with physicians. Our sample

includes 1.8 million transfers of this nature, most of them for food and beverages. These

small payments, averaging below US$40 per payment, are received by both generalists and
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specialists.

The largest category of payments by both average size per payment and total dollar

expenditure is compensation for services and consulting fees. We observe 30,000 of these large

payments, with each transaction averaging over US$2,200. These payments are concentrated

among a small fraction of physicians, most of whom are cardiac specialists.

Payments for Travel and Lodging are a third, smaller category. Our sample reports 18,00

travel transactions, accounting for only 5% of total detailing expenditures. Transfers in this

category are of intermediate value, averaging $260 per transaction. Consistent with their low

frequency, we generally do not have sufficient statistical power to estimate the relationship

between travel payments and prescription volume. For completeness, we control for travel

payments in all regressions.

Physician characteristics Finally, we use the Physician Compare data to identify the

physician’s primary specialty, experience (measured as years since medical school gradua-

tion), and group practice affiliations. The group practice affiliations form the basis of a

second measure of physician peer links, defined by physicians who share at least one group

practice. We use these to supplement our baseline measure of peer linkages defined by shared

patients.

2.2 Patterns of Pharmaceutical Payments, Prescriptions, and Num-

ber of Peers

Doctors who share patients with many peer providers are more likely to receive compensation

payments. Figure 3 sorts doctors by decile of peer linkages (“degree”) within each hospital

referral region (HRR) and specialty type. While physicians with relatively few peers are less

likely to receive food from pharmaceutical companies promoting one of our three NOACs,

there is little difference in the rate of food payment among the top four deciles of the

distribution for either cardiac specialists or primary care providers. By contrast, highly

connected physicians in the top deciles of the degree distribution are more likely to be

targeted with compensation payments than peers with the median number of connections, a

pattern we see for both cardiac specialists and primary care providers. Table A2 regression

results show that higher degree is associated with higher payments even after accounting for

other observed physician characteristics.10 This data is consistent with the possibility that

pharmaceutical companies target large payments to highly connected doctors, who may be

10We also studied alternative centrality measures, including eigenvector, closeness, and betweenness cen-
trality. Degree centrality appears to be the most robust predictor of payments.
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better positioned to amplify the payment’s impact.

Table 2 shows summary statistics by physician own and peer payment status. This

table restricts to our analysis sample for consistency with the subsequent regression results.

Specifically, we require that physicians who receive their first observed payment during our

sample period (January 1, 2014 through December 31, 2016) have two quarters of pre-

payment data and two quarters of post-payment data. We impose this restriction for own

compensation, own travel, and own food payments as well as peer compensation payments.

This restriction ensures that we have a balanced panel for at least 5 quarters around the

first payment event, which is important to accurately comparing doctor’s prescription volume

before and after the payment.

The table reports that 73% of doctors in our sample receive no payments directly. On

average, 27% of doctors receive food payments for each drug, and these doctors average

$148 in payments for the targeted drug over the 12 quarters of our sample. This total

transfer is typically spread across several transactions: physicians receiving food payments

are paid in 4 out of 12 quarters on average. By contrast, the 0.3% of physicians who receive

compensation payments for each drug are drawing much larger transfers from pharmaceutical

companies, averaging $38,167 per doctor cumulatively over 12 quarters. Physicians receiving

compensation payments average 6 quarters (out of 12) with compensation payments. Cardiac

specialists constitute the majority (81%) of recipients of compensation payments.

Even though only 0.3% of doctors in our sample receive compensation payments for a

given drug, these paid doctors are highly connected, so we find that 14.3% of doctors in

our sample are linked to a compensation paid physician for a given drug. Our econometric

approach relies on comparisons of physicians who are and are not linked to compensation-

paid peers to identify peer effects.

This table also illustrates that physicians directly and indirectly targeted with payments

use the targeted drug more intensely. Doctors whose peers receive compensation payments

prescribe each NOAC to 1.12 patients per quarter, on average, compared to 0.45 patients

per quarter for doctors whose peers do not receive compensation payments. We explore this

relationship in our regression analysis.

Note that the prescription volumes reported here cover only a modest fraction of doc-

tors’ overall patient panel. We observe prescriptions for a 40% sample of Medicare Part D

enrollees. The Kaiser Family Foundation reports that 70% of Medicare beneficiaries were

enrolled in Part D, suggesting our sample covers roughly 28% of Medicare beneficiaries.

Further, in the 2014 Medical Expenditure Panel Survey, 66% of NOAC prescriptions are

written to patients 65 years or older. Thus, roughly scaling our patient counts up to the full

population requires multiplying the patient volume by a factor of 5.4. For simplicity and
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because the scaling requires additional assumptions, e.g. that the impact of pharmaceutical

payments on prescribing patterns for non-Part D enrollees is similar, we report unscaled

results.

3 Identification and Estimation

The focus of our analysis is estimating spillover effects of pharmaceutical payments on peers

of targeted physicians. The main identification concern is endogeneity of peer prescriptions:

peers of paid physicians may have had higher prescription rates even in the absence of their

peer’s payment. To isolate the impact of peer payment, we use a difference-in-differences

approach exploiting variation in the timing of payments and the peer group of targeted

physicians.

3.1 Regression models of payment impact

We model prescription decisions as a function of payments, including both payments directly

made to the physician and payments to the index doctor’s peer. Let i = 1, . . . , N index

physician providers, t = 1, . . . , T index time in quarters, and d ∈ D index drugs. Let Yitd

denote the volume prescriptions of drug d made by i at period t, and . Let G denote the

network of relationships among providers based on having common patients (see Section 2

for definitions). That is, for each i, j, let sij = 1 if i and j shared patients and zero otherwise.

With slight abuse of notation, let Gi denote the group of direct peers of i in the network

G.11 Because peer relationships are non-transitive, j ∈ Gi does not imply Gj = Gi, i.e. peer

groups vary even among connected peers.

Our first approach is to graphically analyze prescription patterns before and after the first

payment. In each of our specifications, we separately model six types of payment exposure:

own food, own travel, own compensation, peer food, peer travel, peer compensation. We

compare prescription volume before and after the first payment made to each physician

and/or to this physician’s peers. We estimate the model:

Yitd = αid + βdts +X ′idtγ + Zidδr(i,t) + ZGi,dηr(i,t) + εidt, (1)

where i index doctors, t index time, s index medical specialties (PCP or specialist),

and d index drugs. The terms αid and βdts are doctor×drug and drug×quarter×specialty

fixed-effects, respectively. Xidt includes a vector of differential time trends. The vector

11We model the network as undirected and unweighted. Our model can easily be extended to incorporate
weights or directed links.
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Zid defines indicator variables for whether doctor i ever receives each of the three types of

payments (food, travel, compensation) for drug d; it is multiplied by δr(i,d,t) which are the

parameters describing how prescription volume changes relative to the quarter of the doctor’s

first payment. The vector ZGi,d defines indicator variables for whether doctor i has a peer

who ever receives each of the three payment types for drug d; ηr(i,d,t) are the parameters

describing how prescription volume changes relative to the quarter of the doctor’s first peer

payment.

The model pools all drugs together in the analysis, estimating a homogeneous effect of

payment for each drug. To flexibly capture the differential effect of various payment types

(e.g. small food and beverage payments vs. large speaking and consulting fees), we estimate

separate treatment effects for each type of own and peer payments.

For doctors who receive payments in quarters 3 or 4 of 2013, before the beginning of our

Part D sample, we include a separate time trend by payment type for each of these early

payment recipients. In addition, we show specifications both with and without differential

pre-trends by payment type for doctors who receive payments during our sample period.

To estimate specifications that allow for pre-trends, we first run a model that excludes the

pre-treatment quarter parameters from the δr(i,d,t) and ηr(i,d,t) terms; instead, the model

includes a differential linear pre-trend for each type of own and peer payment, as well as a

full vector of indicator variables for post-treatment quarters. As a second step, we residualize

the outcome variable by the estimated pre-trend, and estimate the full version of equation

1 with a full array of pre and post treatment quarter parameters. This final specification

allows us to directly remove the linear pre-trend from the post-period and graphically assess

the presence of non-linear trends in the pre-treatment period.

These regression models allow us to make a series of plots of the estimated impact of

pharmaceutical company payments on prescription volume. The graphical analysis displays

what happens in the quarters before and after the first payment. As described in the

summary statistics reported in Table 2, most paid doctors receive repeated payments of the

same type. As a result, the post period of these graphs should not be interpreted as the

effect of a single payment, but rather the accumulating effect of all payments received over

those quarters.12

To estimate the impact of each individual payment, we turn to a regression specification

12The pre-period is uncontaminated by early payments because the graph simply focuses on quarters
before and after the first observed payment of each type. All doctors identifying the pre- and post-payment
effects were required to have no observed earlier payments over at least 4 observable quarters before that
first payment. Our estimates of the effects of payments may be biased toward zero, as we cannot identify
the first payment over the doctor’s complete history, because our payment data set begins in Quarter 3 of
2013, after some payments have presumably been made.
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that uses the running sum of paid quarters as the key independent variable. Pitd denotes a

vector of variables that count the number of quarters up to time t with payments of each

type (food, travel, compensation) made to physician i for drug d.

Yitd = αid + βdts +X ′idtγ + Pidtδ + PGi,d,tη + εidt, (2)

The control variables in this new equation parallel those in equation 1, including the same set

of doctor×drug and drug×quarter×specialty fixed-effects. We continue to include differential

time trends for paid doctors: one set of time trends by payment type for doctors whose

first observed payment occurs before our Part D sample begins, and a second set of time

trends by payment type for doctors whose first observed payment occurs during our sample

period. The key independent variables of interest include the Pidt vector, which contains

three separate variables capturing the count of quarters to date with food payments, travel

payments, and consulting and compensation for services payments, respectively. In addition,

the PGi,d,t vector includes three separate variables capturing the count of peer-quarter pairs

that received food payments, travel payments, and consulting/compensation payments to

date. Both the Pidt and PGi,d,t variables are set to 0 for doctors who are never (own or peer)

paid, and for doctors who receive their first (own or peer) payment of this type in the two

quarters before our Part D sample begins.

We continue to include differential time trends by (own or peer) payment type for doctors

who receive payments in quarters 3 or 4 of 2013, before the beginning of our Part D sample.

In addition, this specification includes additively separable trends by (own and peer) payment

type for any doctor who is paid for the first time during our sample period, which will allow

for differential pre-trends for doctors paid during our sample.

Recall from the discussion in Section 2.2 that we also drop doctor-drug pairs from the

sample when we do not have at least 2 pre-payment quarters and 2 post-payment quarters

covered by the Part D sample. This restriction is imposed for all types of own payment (food,

travel, compensation) as well as for peer compensation payments. We make this restriction

so that we have enough data to contribute to pre/post comparison within each doctor for

our key payment types. This structure ensures that all doctors who contribute directly to

identification of payment impact (i.e. take on non-zero variables of the cumulative payment

counts) were unpaid for at least four quarters prior to the first payment.

We estimate several variants of equation 2. First, we consider three outcome measures

related to physician prescription volume for the targeted drug: the number of distinct ben-

eficiaries prescribed, the number of beneficiaries receiving the target drug as their first anti-

coagulant prescription, and the fraction of anticoagulant prescriptions written for the target
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drug.

We then test augmented specifications that differentiate three types of physician peer

relationships: those defined by shared patient ties, those defined by shared group practice

affiliation, and those that have both shared patient ties and are in the same group practice.

We use this model to explore how the impact of peer payment varies by the type of the tie.

Additional models test for whether there is a differential impact of the first payment of

a given type relative to subsequent payments, and whether the impact of pharmaceutical

payments varies with whether the drug prescription is guideline concordant.

3.2 Instrumental variable model of peer influence

As a supplement to the main specifications, we also estimate an instrumental variable (IV)

model to explore the possible mechanisms of peer effects. There are two key channels for

peer influence: indirect influence when a physician observes her peer’s prescription choice by

monitoring medications on a shared patient; and direct influence when a physician directly

communicates about a new drug with a peer physician. Our instrumental variable strategy

will attribute peer influence to the indirect mechanism, and allow us to estimate an upper

bound on the possible magnitude of indirect influence.

As a doctor observes greater peer adoption of a new drug, she may become more likely to

prescribe the drug herself. Our instrumental variable approach uses detailing payments to

a physician’s peers as an instrumental variable for peers’ average prescription volume. The

reduced form of this IV approach is similar to the preceding analysis, which studies the link

between peer payments and the doctor’s own prescription volume. The IV provides a way

to scale this relationship by attributing the effect to increases in the average prescription

volume of the doctor’s peers.

The IV framework continues to exploit the panel data structure for identifying variation.

The key endogenous variable of interest is the doctor’s peers’ average prescription volume

for the targeted drug in the previous quarter.13 We use peer’s lagged payments of each type

at t − 1 and t − 2 as instrumental variables for average peer prescription volume at t − 1.

The first and second stage equations are as follows:

YGi,d,t−1 = η̃1PGi,d,t−1 + η̃2PGi,d,t−2 + δ̃0Pi,d,t−0 + δ̃1Pi,d,t−1 +X ′idtγ̃ + α̃id + β̃dts + uit (3a)

Yidt = θŶGi,d,t−1 + δ0Pi,d,t−0 + δ1Pi,d,t−1 +X ′idtγ + αid + βdtsvidt (3b)

Where YGi,d,t is the mean prescriptions of each drug d by i’s peers at t, and PGi,d,t is a vector

13We use this lag structure because learning about a peer’s prescription choice is not likely to happen
instantaneously, but will presumably require time for patients to seek care from a second doctor.
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of excluded instruments calculating the cumulative sum of the number of peer-quarter pairs

with prior payments of each type (food, travel, compensation) for the targeted drug. We

continue to control for the doctor’s own payments of each type. Xidt echoes the trends

included in equation 2: differential time trends for each category of own and peer payment,

and differential trends for doctors whose first payment comes before the beginning of our

study period. We estimate the model using two stage least squares.

To interpret this model as the causal effect of peers’ average prescription volume on the

focal doctor requires a strong exogeneity assumption: peer payments are uncorrelated with

unobservable variables affecting focal doctor’s own prescriptions (E[vidtPGi,d,t−2] = 0). This

imposes the assumption that there is no “direct” effect of a peer’s payment on a doctor’s

own prescription volume except through the channel of increases in peer prescriptions. For

example, if a paid doctor began proselytizing to his peers about the targeted drug, and this

proselytizing had an independent effect on his peers’ prescription decisions, then the instru-

mental variable specification would overstate the importance of changes in peer prescriptions

for doctors’ own prescription decisions.

Because the IV exogeneity assumption could plausibly be violated, we consider this an

upper bound estimate on the magnitude of the indirect learning channel. When interpreting

this estimate as an upper bound, we are assuming that any other channels (such as prosely-

tizing) that lead peer payments to change the focal doctor’s own prescription patterns would

also have the effect of increasing the focal doctor’s prescription volume.

3.3 Discussion of econometric approach

These specifications address several threats to identification of peer effects that arise with

data on groups (Manski, 1993) or with cross sectional, rather than longitudinal data on

networks (Bramoullé et al., 2009). The problem with group peer relationships (e.g., all

physicians affiliated with a hospital) is that being in the same group is mostly a transitive

relation, and therefore there is little variation in the reference groups of similar agents.14 In

contrast, physician shared-patient networks are intransitive (the global clustering coefficient

is 0.37, meaning only a third of connected triples are fully connected), and so even similar

physician often interact with different sets of peers.

Longitudinal data contribute variation in the timing of payments. Our strategy uses both

the across-doctor variation in peer groups and the within doctor variation in the timing of

payment to identify treatment effects. Through the inclusion of doctor×drug fixed effects,

the framework accounts for the possibility that payments are associated with unobserved

14Unless groups partially overlap, see De Giorgi et al. (2010).
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time-invariant physician characteristics. For example, if pharmaceutical transfers target

doctors who were already high volume prescribers, this would not bias our findings.

Threats to identification could arise with this approach if payments coincide with changes

in prescription volume for the targeted drug, which would have occurred even in the absence

of payment. One benefit of focusing on the peers of targeted doctors is that these peers

have not been directly selected by the pharmaceutical company, making it more plausible

that they would otherwise experience parallel trends to other doctors of the same specialty

and eventual payment status. We assess the plausibility of the parallel trends assumption

through graphical analysis of pre-trends prior to the first payment.

4 Results

4.1 Event study graphs

We begin by estimating equation 1 to explore the relationship between peer payment and

prescription volume. Figure 4 graphs explore the stability of pre-trends prior to first payment.

These graphs plot the event-time coefficients from a regression where the outcome is quarterly

prescription volume, calculated at the physician level. Quarter 0 indicates the first observed

quarter in which the physician receives a payment of the indicated type.

In Figure 4 Panel (a), we show results from a specification that does not account for

differential pre-trends by the doctor’s eventual payment status. These graphs illustrate that

paid doctors are indeed on a trend of increasing use even prior to their first payment; this

pattern holds up for doctors who are targeted with compensation and food payments, as

well as for doctors whose peers receive compensation. Accounting for these pre-trends, we

see a trend break with accelerating growth in prescription volume after the first payment.

Figure 4 Panel (b) displays the same results in a more flexible specification that allows

for differential pre-trends, as described in Section 3.1. The quarters prior to the doctor’s

first payment now show a flat pattern of prescription volume, implying that there is no

acceleration in targeted drug prescribing before the first payment.

Note that the scale of the y-axis varies across each subplot. Own compensation has the

largest impact on subsequent prescriptions, with prescription volume rising by approximately

0.4 following the doctor’s first compensation payment. Prescriptions also rise after the first

food payment, reaching roughly 0.03 additional prescribed patients per quarter in the first

quarter following the food transfer. Finally, after a peer physician receives a compensation

payment, the targeted doctor’s peers increase their prescription of the new drug by 0.01 to

0.02 additional prescribed patients per quarter.
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Prescription volume deviates further from the trend as more quarters elapse following the

first payment. This pattern is especially salient following the first food and peer compensa-

tion payments. Recall that many doctors are exposed to repeated shocks of the same type;

the growth in the post-period could represent either a gradual adjustment of prescriptions

to the payment received in quarter 0, or it could simply reflect the accumulating impact of

subsequent payments.

4.2 Baseline regression results

To unpack the individual impact of each payment, we turn to regression results reported

in Table 3. These results are from direct estimates of equation 2. The key independent

variables in this regression count the number of quarters to date in which the doctor received

a payment of each type.

Table 3 Column 1 reports that doctors increase the quarterly number of prescribed bene-

ficiaries by 0.37 for each additional quarter with a compensation payment. Smaller transfers

have smaller estimated effects; each quarter with a compensation payment increases a doc-

tor’s own prescribing by 0.06 additional prescribed beneficiaries per quarter. Having a peer

doctor receive a compensation payment associated with a modest increase in own prescription

volume of 0.02 additional beneficiaries per month.

Recall that our baseline definition of peer affiliation is based on patient-sharing patterns.

In the regression specification reported in column 2, we consider group practice peer relation-

ships as well. We distinguish three types of peer relationships: doctors who share patients,

doctors who share both patients and a group practice affiliation, and doctors who only share

a group practice affiliation. The results suggest that doctors who share patients with a

compensation-paid peer will increase their prescribing volume by 0.020 per quarter, while

doctors who not only share patients but also a group practice affiliation with a compensation-

paid peer will increase their prescribing volume by 0.014.15 This difference between the two

peer types is not statistically significant. Doctors who only share a group practice affiliation

(but do not have shared patients) with the compensation-paid peer increase their prescrip-

tion volume of the targeted drug by 0.014 patients per quarter. Taken together, these results

suggest that compensation payments increase drug prescription volume of both peer types;

our results are not driven solely by doctors who share a group practice.

Part of the peer effects we estimate may be driven by prescription refills, for example when

a primary care physician orders a refill of a prescription that was initiated by a compensated

cardiologist. As the primary care physician becomes more familiar with the new drug, she

150.014 is the sum of the ”Shared patients” and the ”Group practice and shared patient” coefficients
reported in Table 3 column 2.
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may also choose to initiate new prescriptions with the drug. To estimate the effects of

payments on prescriptions to new patients, we exclude prescription refills by restricting our

sample to patients who have no prior prescription for anticoagulants (by any physician) in

the previous year (Table 3, column 3). Between 8–10% of the effect of payment on total

prescription volume is driven by prescriptions written for patients with no prior anticoagulant

use. This result includes peers of payment recipients, suggesting the spillover effects of

payments on peers also spur prescriptions of the targeted drug to new patients.

Next, we turn to a third outcome measure: the fraction of anticoagulant prescriptions

that were written for the targeted drug. This outcome measure will allow us to test whether

the increases in prescription volume measured in the prior specifications were driven by an

increase in the total volume of anticoagulant prescriptions, or alternatively whether within

the set of anticoagulant prescriptions, doctors are shifting patients towards the targeted

drug. This outcome is only defined for the 68% of doctor-drug-quarters from our full sample

that have non-zero anticoagulant prescriptions during the quarter.

Results from this specification are reported in Table 3 columns 5 and 6. Own food

payments and peer compensation payments are associated with a significant increase in

market share of the targeted drug. Estimates for the effects of own compensation payments

on drug market share are not statistically significant but point estimates are consistent with

an increase in market share following direct payments.

4.3 Instrumental variable estimation of peer effects

There are two mechanisms by which having a peer targeted with a pharmaceutical payment

may raise a doctor’s prescribing, holding constant any own payments received. First, the

physician network we study is linked through shared patients. When a patient sees two

different physicians within a short time window, each physician has an opportunity to learn

about the other physician’s practice patterns. Seeing a colleague prescribe a new drug may

provide a positive signal about the value and applications of the new product, increasing the

odds that a doctor adopts the new drug and prescribes it himself.

The second mechanism by which a paid physician may influence his peers is through

direct “proselytizing” about the new drug. Based on our conversations with physicians and

consultants with expertise in drug detailing, we hypothesize that this mechanism is less

important, particularly given the social and institutional distance between most physicians

who share patients. This hypothesis is further bolstered by our finding that estimated peer

effects do not exert a stronger influence among physicians who practice at the same location,

holding fixed the volume of shared patients between two doctors.
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In this section, we focus on the first learning mechanism and estimate the impact of an

increase in peers’ prescription volume for a new drug on a doctor’s own prescription volume.

In this specification, the pharmaceutical detailing payment to a physician’s peers is an in-

strumental variable for peer prescribing volume. As discussed in Section 3, we instrument

for the average prescription volume across each physician’s direct peers in period t−1, using

as instruments average peer payments in periods t − 1 and t − 2. We then trace out the

influence of peer prescriptions on own prescribing.

If we assume there is no proselytizing, then these instrumental variable estimates of peer

effects may generalize to settings where peer prescription decisions are not driven by phar-

maceutical payments. Since we cannot rule out the proselytizing channel, we will interpret

our instrumental variable estimates as an upper bound on the magnitude of peer effects

we would expect in settings where an increase in peer prescription volume for a new drug

is not accompanied by proselytizing that may be specifically inspired or motivated by the

pharmaceutical payment.

Using peer payments as an instrumental variable for peer prescription volume helps us

isolate the impact of payment from correlations between each physician’s prescriptions and

his peers’ prescriptions that may be driven by common shocks. The instrumental variable

analysis continues to exploit the panel structure of our data to isolate deviations from a

doctor’s baseline use of a new drug that occur shortly after a new peer payment shock.

As before, we control for differential trends in prescription volume for physicians that may

differ depending on whether the physician had a paid peer, and whether the physician himself

received a food, travel, or compensation payment. We also continue to control for physician-

drug fixed effects, and quarter-drug-specialty fixed effects.

First-stage estimates suggest that an additional compensation payment to a doctor’s

peers two or more quarters ago raises the average quarterly peer prescription volume by

0.024 beneficiaries per quarter and an additional payment to a doctor’s peers one quarter ago

raises quarterly peer prescription volume by 0.04 beneficiaries per quarter (both statistically

significant at the 1% level; Table 4). This effect is much smaller than the estimated impact

of a large payment on the targeted doctor himself, reflecting the fact that we are averaging

prescriptions across all doctors’ peers, only one of whom was hit with the payment shock.

This averaged impact reflects a combination of the direct impact of a large payment on

the targeted physician, as well as any ripple effects due to peer linkages between the paid

physicians’ peers and other peers.

Our second-stage regression estimates show that if a doctor’s peers’ prescription volume

for a new anticoagulant drug increases by 1 beneficiary per quarter on average, the doctor’s

own prescription volume will increase by 0.33 prescriptions per quarter. This result suggests
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that physician peer effects driven by indirect observation of peer practice patterns may

play an important role in the diffusion of new drugs. Should this finding be driven by

indirect observation of peer prescription choice (rather than proselytizing), it suggests that

the prescription increases may ripple out beyond first-degree peer connections.

4.4 Robustness and heterogeneity analysis

In this section we explore alternative specifications and probe whether the estimated effects

of physician payments are heterogeneous across the sequence of payments or the type of

doctor targeted.

First, we test an alternative regression approach that relies on matching compensation

paid physicians to unpaid physicians who have similar observable characteristics. We con-

struct the matched sample of paid and unpaid physicians as follows. First, we sample all

physicians who received compensation payments at any point during the period 2014–2016.

We henceforth refer to these physicians as targets. Second, we match each target with simi-

lar physicians who did not receive compensation payments, based on the following criteria.

We match exactly on specialty, the targeted drug, and location (HRR). We match coarsely

(by quartiles) on experience, number of shared-patient peers, and number of group-practice

peers. We also drop a small number of matches who share a group-practice with the target,

so all our matches are from the same area as the target but not from the same practice.

We then sample all shared-patient peers of targets and their matches. We exclude peers

of targets or matches who have an additional peer (i.e. not the target or the match) who

received compensation payments. Therefore, the resulting sample has two disjoint sets of

physicians, who are peers of either a paid physician or a matched unpaid one, and who have

no other paid peers. These peers may themselves be recipients of compensation payments.

Descriptive statistics for the matched sample are shown in Table A6. Results from

the matching estimation are reported in Table 5. Columns 1, 3, and 5 do not re-weight

the matched sample in the case that a single paid physician matches to multiple unpaid

physicians. Columns 2, 4, and 6 reweight the sample so that the group of all peers of

a target physician and the group of all peers of its matches each have an equal weight.

Reweighting increases the standard errors, but does not substantively change our estimated

effect of peer compensation payments. As in our baseline results, we continue to find that

the focal doctor increases his prescription volume of the targeted drug by 0.02 patients per

quarter for each additional compensation payment targeted at the focal doctor’s peers.

In Appendix Table A4, we test whether the first observed payment has a differential

impact relative to subsequent payments. Recall that because we observe only a censored
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history of pharmaceutical payments, we cannot definitively identify each doctor’s first pay-

ment. Instead we tag the earliest payment observed in our sample period as the “first”, and

we require that doctors identifying our main regression coefficients had no payments for a

minimum of four preceding quarters.

Point estimates suggest that a doctor’s first compensation payment and first food pay-

ment have slightly smaller estimated impact than subsequent payments. The first time a

doctor’s peer receives a compensation payment it has a nearly zero estimated impact on

the doctor’s prescription volume, although this estimate is noisy and not statistically distin-

guishable from the impact of subsequent payments.

Similar results for the effects on payments on prescriptions are obtained when we estimate

the effects separately by medical specialty, or by drug, as reported in Appendix Table A7.

Own and peer payments both lead to a larger increase in prescription volume for cardiolo-

gists. This pattern is consistent with the fact that cardiologists write more prescriptions for

anticoagulants in general, and so have more scope to increase their use of targeted drugs.

We also test the influence of payments on each drug separately. Point estimates suggest

that own and peer payments increase prescription volume for each of the three NOACs under

study. The effect of peer compensation payments on the quarterly number of prescribed

patients is similar for Xarelto (0.025) and Eliquis (0.023), and smaller for Pradaxa (0.009),

although these comparisons are imprecise.

5 Welfare Implications

A highly contested question is how pharmaceutical detailing payments impact patient wel-

fare. On the one hand, there are concerns that payments may lead physicians to over-

prescribe high cost drugs. On the other hand, pharmaceutical companies argue that detail-

ing improves welfare by educating physicians about new drugs, and providing them with

up-to-date information to support better practice.

To address this question in our context, we analyzed how the increase in NOAC pre-

scriptions following associated pharmaceutical payments varies by clinical appropriateness.

Because guidelines are not available to cover all patient indications for anticoagulation, we

narrow our focus to patients with atrial fibrillation, which is a common reason for anticoag-

ulation. There are two popular risk scores to assess the risks and benefits of anticoagulation

for patients with atrial fibrillation: the HAS-BLED and CHADS scores.16 Note that current

16For quick reference guide to clinical scoring for atrial fibrillation, see MDCalc https:

//www.mdcalc.com/has-bled-score-major-bleeding-risk and https://www.mdcalc.com/

chads2-score-atrial-fibrillation-stroke-risk. Accessed July, 2019.
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guidelines provide little guidance on selecting among the various anticoagulant drugs; rather,

they focus on determining whether the patient is appropriate for anticoagulation at all.17

Studying these clinical risk scores for atrial fibrillation introduces two further challenges.

First, insurance claims data do not cover all of the clinical information required to recon-

struct the guideline precisely, such as lab measurements (e.g. INR). Second, the guidelines

themselves do not provide sharp recommendations on whether or not to prescribe anticoag-

ulation.18 Given these hurdles, our analysis of clinical appropriateness should be interpreted

as suggestive.

The HAS-BLED score (Pisters et al., 2010; Lip et al., 2011) estimates risk of bleeding

for patients on anticoagulation, the major safety concern that should be weighed against the

stroke reduction benefits of the drug. While this score does not fully determine prescription

value for each individual case, it does contain validated information about risk, and we use

it to assess the prescription decisions in the aggregate.

For this analysis, we use the CMS Chronic Condition Warehouse data file to identify

patients with diagnosed atrial fibrillation. As before, we count up the number of unique

beneficiaries prescribed anticoagulation by each doctor in each quarter, but for this analysis

we restrict the prescription count to include only patients with diagnosed atrial fibrillation.

Within this sample, we construct an estimate of the HAS BLED risk score for each

prescribed patient, so that we can designate the patient as being at low or high risk of

bleeding. We can observe four of the nine clinical characteristics included in the HAS-BLED

score to construct our estimate: patient age > 65, hypertension history, renal disease, and

stroke history.19 The guideline is scored simply: one point per risk factor. Patients scoring

0 to 1 are considered low risk; 2 points corresponds to moderate risk; 3 or more points

corresponds to high risk.

Because we do not observe all the factors that underlie this guideline, we interpret our

results as follows. Patients who have three or more risk factors are designated high risk. We

call the rest of our sample “low risk”; it is important to note that our “low risk” sample will

17For further discussion, see UpToDate R© Nonvalvular atrial fibrillation: Antico-
agulant therapy to prevent thromboembolism, https://www.uptodate.com/contents/

nonvalvular-atrial-fibrillation-anticoagulant-therapy-to-prevent-thromboembolism, Accessed
July, 2019.

18For example, the HAS-BLED score recommendations provided on MDCalc.com are worded as “anticoag-
ulation should be considered” [strongest recommendation], “anticoagulation can be considered” [moderate],
or “alternatives to anticoagulation should be considered” [weakest].

19Even among our observed patient characteristics, our definitions do not exactly align with the definitions
used in the guideline. For example, hypertension is only considered if it is uncontrolled, and the patient has
> 60 mmHg systolic pressure. A similarly precise definitions is used for renal disease. Patient characteristics
included in the full HAS-BLED score but not observable in our data include: liver disease, prior major
bleeding or predisposition to bleeding, labile INR, medication use predisposing to bleeding (including aspirin
and NSAIDS which are not prescription drugs), and alcohol use (at least 8 drinks per week).
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include some high risk patients for whom we do not observe their risk factors. On average,

doctors in our sample prescribe anticoagulants to 2.8 high risk patients per quarter and 2.0

low risk patients per quarter. If doctors were to increase their adherence to the HAS-BLED

guideline, we would expect fewer prescriptions written to patients at high risk of bleeding.

Results are reported in Table A5. In panel A, we pool patients together regardless of

which anticoagulant they receive (Xarelto, Pradaxa, Eliquis, Savaysa, or Warfarin). Recall

that the guidelines are not specific to any particular type of anticoagulant, so it is plausible

that if detailing efforts educate physicians about appropriate use, these benefits might spill

over to all prescribed drugs in the class. We estimate a modified version of equation 2 that

includes doctor fixed effects and specialty by quarter fixed effects to accommodate the new

sample structure (which is no longer drug-specific).

Point estimates suggest that own food, own compensation, and peer compensation pay-

ments are all estimated to increase prescription volume for both high and low risk patients,

although the estimates are generally noisy. The only category of payment that is associated

with a statistically significant increase in prescription volume within these subgroups is a

doctor’s own food payments. Food payments increase the number of high risk patients pre-

scribed anticoagulants by 0.048 and increase the number of low risk patients prescribed by

0.034; these both amount to a 1.7% increase from the mean prescription volume.

In Table A5 panel B, we disaggregate the data by drug to test whether drug detailing ef-

forts increase guideline-concordant prescribing for the targeted drug, which we would expect

if any physician education that occurred with the detailing was drug-specific. Again, we find

no significant evidence that doctors are decreasing their prescribing to high-risk patients.

In Appendix Table A5, we perform another analysis of guideline concordance that in-

corporates compliance with the CHADS2 guideline (Gage et al., 2001, 2004). Unlike the

HAS-BLED score that assesses patient risk for serious bleeding side effects, the CHADS2

score assesses the patient’s potential benefits from anticoagulation due to reduced stroke

risk. In this case, we can approximate each of the five factors of the guideline in claims

records: congestive heart failure, hypertension history, age, diabetes mellitus history, and

stroke or transient ischemic attack symptoms.20 We dichotomize the CHADS2 score, follow-

ing a threshold used in the clinical guideline. Patients with three or more risk factors are

at high risk of stroke and anticoagulation is recommended; patients with fewer risk factors

may still benefit from anticoagulation, but the recommendation is not as strong.

We use the CHADS2 score in combination with our approximated HAS BLED score to

divide patients into three categories: low value (low CHADS2 benefit and high HAS BLED

20We cannot observe stroke symptoms in claims data, but we do measure patients with history of strokes
or transient ischemic attacks.
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risk), medium value (low CHADS2 benefit and low HAS-BLED risk, or high CHADS2 benefit

and high HAS-BLED risk), or high value (high CHADS2 benefit and low HAS-BLED risk).

If pharmaceutical detailing led doctors to more guideline-concordant practice patterns, we

might expect declining use in the low value population and increasing use in the high value

population. Empirically, we see no strong patterns of differential response by category of

value.

We acknowledge that the scores we use do not determine the optimal treatment choice

for each case, because they miss potentially relevant clinical information. But our results

suggest that payments increase average prescription volume for high-risk and for low-value

patients. We argue that such findings are hard to reconcile with the idea that payments

strictly improve physician’s information set; at least in some cases, it appears that payments

induce low-value prescribing.

6 The Overall Impact of Payments on Prescription Vol-

ume and Spatial Distribution

To evaluate the impact of pharmaceutical payments on prescription volumes, we use the

estimated model as a quantification framework to perform several counterfactual analyses.

We consider two questions. First, what is overall contribution of payments to prescription

volumes? Second, what part of this impact occurs directly, through payment effects on

recipient, versus indirectly, through payment effects on peers? To address these questions,

we combine the estimated unit-effects of payments of different types with information on

the number of payments, their timing, and the network position of recipients. Considering

all these factors is important: for example we estimate that on average, each compensation

payment results not only in 0.37 additional prescriptions by the direct recipient, but also

in 0.02 additional prescriptions by each of the dozens of peers recipients of such payments

have. Therefore, summing these indirect effects of payments leads to substantially higher

estimates of the overall effects of compensation payments on prescription volumes.

For this analysis we use estimates from equation (2). We keep the observed network

structure and physician characteristics as in the data. We then compare the fitted values

using three alternative payment schemes: (1) the actual payments, (2) only direct payment

effect (zeroing out any peer-payment effects) and (3) no payments. In all cases, we keep

separate time trends for payment recipients, which we think of as capturing unobserved

heterogeneity in payment targeting rather than the effects of payments. Excluding these

trends would increase the estimated effects of payments.
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Figures 5–7 show the result of this analysis. The contribution of payments accumulates

over time (Figure 5). We estimate that by the end of our sample period, payments increased

average prescription volume by 0.11 beneficiaries over a baseline of 0.70, a 16 percent increase.

The effect is slightly greater for more recently patented drugs, which have more payments

associated with them. About a quarter of the total effect of payments is due to their indirect

effect, through recipient peers (Figure 6).

Further decomposing this effect by payment types (Table 7) reveals that food payments,

by far the most common (see Table 1), have the greatest overall effect on prescribing lev-

els. Among the three types of peer effects studied (from compensation, food, and travel

payments), spillovers from compensation payments have the largest effect on aggregate pre-

scribing, despite the fact that they are relatively infrequent.

The second question we consider is whether changes in prescription behavior induced

by pharmaceutical payments contribute to geographic variation in the adoption of NOACs.

To the extent that payments are autocorrelated and focus on already high adoption areas,

payments may augment geographic disparity in technology adoption. On the other hand,

payments may reduce variation if they raise adoption in lower-adoption areas.

Figure 8 shows that payments are in fact higher in areas with higher initial adoption,

as documented at the beginning of our sample. While we cannot rule out that some of the

baseline differences reflect earlier payments or other differences in regional demand for new

drugs, this evidence suggests that payments increase, rather than decrease, spatial disparity

in the adoption of NOACs.

Our counterfactual analysis is also consistent with this pattern: Figure 9, which is based

on our model estimates, shows that HRR-level estimated increase in prescription during

2014–2016 is positively associated with baseline prescription levels. Appendix figure A2

shows that for each of the studied drugs, payment effect appear not only to increase overall

prescription levels, but also increase the dispersion of prescriptions across areas. This evi-

dence suggests that pharmaceutical payments may play a role in increasing spatial variation

in the adoption of new drugs.

7 Conclusion

This study estimated the spillover effects of pharmaceutical payments on prescriptions of

new anticoagulant drugs. We used rich administrative data on physician prescriptions, the

universe of payments to physicians from pharmaceutical companies, and networks of patient

sharing. The research design exploits variation in both the timing of payments and differences

between physician in the reference group of peers. We use difference in differences to evaluate
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the response of prescription behavior to both own and peer payments.

Event study results show a significant and persistent increase in prescription of new

drugs following the receipt of payments associated with these drugs, with larger payments

for consulting and compensation for services having a greater effect on prescriptions than

small payments for food and beverages. Payments not only affect prescriptions made by

their direct recipients, but also have spillover effects—they lead to increased prescriptions

by recipients’ peers. Such effects reflect not only renewing prescriptions of patients with

previous anticoagulant prescriptions, but also new prescriptions to patients with no prior

anticoagulant prescriptions in the previous year.

This work leaves several open questions. We do not test whether these peer effects arise

when prescription patterns change for reasons other than pharmaceutical payments. We

also do not explore how peer effects vary depending on which physician is initially targeted.

Finally, we also provided only preliminary evidence regarding the nature of competition

among pharmaceutical companies, and the potential interactions between multiple different

payments. These remain important avenues for future research.

Summed over all peers, spillover effects on the peers of directly targeted doctors account

for about a quarter of the overall estimated impact of payments on prescription volumes.

Our results suggest that learning from peers is an important channel through which phar-

maceutical payments impact clinical practice, and perhaps also an important channel for

adoption of new technologies in medicine more generally.
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Figure 1: NOAC Prescription Volume over Time
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Notes: For the three NOACs we study, the figure shows the prescribed beneficiaries per quarter in our
sample. The FDA first approved Pradaxa in 2010; Xarelto in 2011; Eliquis in 2012.

Source: authors’ calculations based on 2014–2016 Medicare Part D data

Table 1: Summary Statistics for Different Types of Pharmaceutical Payment

Payment Type
Assigned
Category

Total
Number of
Payments

Mean
Payment

Size

Median
Payment

Size

Payment
Total

Amount (USD)

Consulting Fee Compensation 2, 247 2, 370 2, 000 5, 325, 818

Compensation for services Compensation 27, 426 2, 275 2, 400 62, 397, 361

Travel and Lodging Travel 18, 076 260 112 4, 695, 838

Education Food 30, 208 36 9 1, 095, 886

Food and Beverage Food 1, 759, 889 17 13 29, 295, 620

Notes: NOAC-Related Payments to sampled physicians, 2014–2016. Rows are shown in descending
order of mean payment size, which guided the grouping into the three categories, which are labeled in
short: Compensation, Travel, and Food.

Source: authors’ calculations based on 2014–2016 Open Payments data
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Figure 2: Average Number of Payments per Physician, by Type of Payment and Medical
Specialty
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Notes: Average cumulative number of payments associated with each drug that were made to sampled
primary care physicians and cardiac specialists.

Source: authors’ calculations based on Open Payments and Physician Compare data.
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Figure 3: Average Number of Payments by Recipient Degree
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Notes: For each specialty and type of payment, the figure shows the average number of payments by
deciles of the recipient’s number of peers. Deciles are calculated separately for each HRR and specialty.
Vertical axes scales vary across plots.

Source: author’s calculations based on Open Payments Physician Compare and Referral Patterns data
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Table 2: Summary Statistics by Payment Status

Own Payments Peer Payments

None
Food or
Travel

Compensation
None,

Food, or
Travel

Compensation
All

Physicians

Prescribed patients (per qtr) .320 1.117 5.945 0.452 1.124 0.548

Newly prescribed patients (per qtr) 0.024 0.081 0.388 0.033 0.085 0.040

Target NOAC/all AC (%) 13.7 20.2 35.6 15.2 19.7 15.8

Percent cardiologists 8.0 21.9 81.2 9.3 27.8 12.0

N of shared-patient peers 16.5 28.1 62.0 15.4 46.0 19.7

Total own pharma payments ($) 0 148 38,166 103 344 137.8

N of quarters with food payment 0 4.118 8.368 0.979 2.018 1.127

N of quarters with compensation 0 0 5.074 0.001 0.034 0.013

N of peer-quarters with compensation 0.6856 1.449 2.481 0 6.266 0.895

Percent of observations 72.9 26.8 0.3 85.7 14.3 100

N of doctors 135,425 70,348 973 154,529 41,443 166,422

N of doctor-drug-quarter observations 3,985,728 1,467,756 14,052 4,686,384 781,152 5,467,536

N of observations for fraction outcome* 2,515,420 1,196,775 13,065 3,130,170 595,090 3,725,260

Notes: Summary statistics are based on our sample of 5,467,536 physician-drug-quarter observations,
166,422 physicians, 12% are cardiologists. A subset of 3,725,260 observations with anticoagulant pre-
scriptions is used for calculating the Target drug/all Anticuagulant volume measure.

Source: authors’ calculations based on Medicare Part D, Open Payments, Physician Compare, and
Referral Patterns data.
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Figure 4: Event Study: The Impact of Payments on Prescription Volume
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(b) After Detrending
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Notes: Event study coefficients estimated from equation (1), showing the response of physicians to own and
peer payments of different types. The facets show coefficients for different payment types—own food, own
compensation, and peer compensation—that were all jointly estimated using 5,467,536 doctor-drug-quarter
observations. Panel (a) shows estimates without detrending, with a dashed line fitted to the pretrend. Panel
(b) shows estimates after detrending. Quarter 0 indicates the quarter of the first payment of each type.
Shaded areas show 95 percent confidence intervals. Note that facets vertical axes have different scales.
Source: authors’ calculations
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Table 3: The Influence of Own and Peer Payments on Prescription Volumes

Dependent Variable:

Number of
Prescribed
Patients

Newly
Prescribed
Patients

Fraction of
Anticoagulant
Prescriptions

(1) (2) (3) (4) (5) (6)

Own Compensation Payment 0.3704 0.3701 0.0283 0.0283 0.0095 0.0094

(0.1158) (0.1159) (0.0160) (0.0160) (0.0058) (0.0058)

Own Food Payment 0.0589 0.0587 0.0049 0.0048 0.004 0.0038

(0.0037) (0.0038) (0.0006) (0.0006) (0.0007) (0.0007)

Peer Compensation, by Type of Affiliation:

Shared Patients 0.0184 0.0199 0.0020 0.0019 0.0019 0.0023

(0.0060) (0.0060) (0.0009) (0.0010) (0.0009) (0.0010)

Group Practice and Shared Patients -0.0057 0.0003 -0.0011

(0.0145) (0.0020) (0.0017)

Group Practice without Shared Patients 0.0137 0.0022 0.0001

(0.0045) (0.0006) (0.0012)

Mean dep. var. 0.548 0.548 0.041 0.041 0.159 0.159

N (Doctor×Drug×Quarter) 5,467,536 5,467,536 5,467,536 5,467,536 3,725,260 3,725,260

Notes: Estimates of equation (1) for all drugs combined. Physician-drug and specialty-drug-quarter
fixed-effects, controls for all other types of payments, and payment-type-specific linear time trends were
included in all specifications. The dependent variables capture different (own) prescription volume mea-
sures: Number of Prescribed Patients is the number of unique Medicare beneficiaries the physicians
prescribed the drug to in each quarter. Newly Prescribed Patients restricts to patient with no anti-
coagulant prescriptions (in Part D, by any physician) in the previous year. Fraction of anticoagulant
prescription is the fraction of the count of the drug prescriptions out of the count of all anticoagulant
prescriptions by the physician, in quarters with any such prescriptions (thus the smaller sample size).
Food and Compensation payments are the cumulative number of payments for food and beverages and
for speaking and consulting. Own denotes payments to the prescribing physician. Shared Patients de-
notes payments made to physicians who share patients with the prescribing physician. Group Practice
denotes payments made to physicians who are affiliated with the same group practice as the prescribing
physician. See Section 2 for exact definitions and data sources.

Source: authors’ calculations
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Table 4: Peer Effects in Prescription Behavior: Fixed-Effects IV Estimates

A. 1st Stage:

Dependent Variable:

Peer Prescription [t-1]

(1) (2)

Peer Compensation Payment [t-1] 0.0427 0.0405

(0.0032) (0.0037)

Peer Food Payment [t-1] -0.0025 -0.0016

(0.0015) (0.0019)

Peer Compensation Payment [t-2] -0.0185 -0.0164

(0.0033) (0.0039)

Peer Food Payment [t-2] 0.0188 0.0161

(0.0016) (0.0020)

N (Doctor×Drug×Quarter) 4,556,280 3,102,501

B. 2nd Stage:

Dependent Variable:

Number of
Prescribed
Patients [t]

Newly
Prescribed
Patients [t]

Fraction of
Anticoagulant

Prescriptions [t]

(3) (4) (5)

Peer Prescription [t-1] 0.3260 0.0068 0.0429

(0.0345) (0.0106) (0.0114)

Own Compensation Payment 0.6777 0.1043 0.0227

(0.0303) (0.0093) (0.0086)

Own Food Payment 0.0494 0.0076 0.0036

(0.0026) (0.0008) (0.0008)

Own Compensation Payment [t-1] -0.3734 -0.0886 -0.0175

(0.0317) (0.0098) (0.0089)

Own Food Payment [t-1] 0.0051 -0.0031 -0.0003

(0.0027) (0.0008) (0.0008)

N (Doctor×Drug×Quarter) 4,556,280 4,556,280 3,102,501

Notes: Generalized method of moments estimates of the instrumental variable model in equations 3a
and 3b. Column (1) shows the first stage results of the second stage results in Columns (3) and (4).
Column (2) shows the first stage results of the second stage results in Column (5). The panel data
used for the IV regressions is slightly shorter due to the inclusion of lagged variables.

Source: authors’ calculations
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Table 5: Matching Estimates of the Impact of Payments on Prescriptions

Dependent Variable:

Number of
Prescribed
Patients

Newly
Prescribed
Patients

Fraction of
Anticoagulant
Prescriptions

(1) (2) (3) (4) (5) (6)

Own Compensation 0.3782 0.7201 0.0195 0.0226 0.0035 0.0311

(0.1337) (0.2552) (0.0179) (0.0244) (0.0059) (0.0143)

Own Food 0.0711 0.0709 0.0053 0.0023 0.0040 0.0011

(0.0062) (0.0152) (0.0009) (0.0023) (0.0009) (0.0028)

Peer Compensation 0.0241 0.0223 0.0024 0.0038 0.0019 0.0024

(0.0068) (0.0121) (0.0010) (0.0017) (0.0009) (0.0019)

Weighted N Y N Y N Y

N (Doctor×Drug×Quarter) 2,164,884 2,164,884 2,164,884 2,164,884 1,592,856 1,592,856

Notes: Estimation results using a sample of peers of recipients of compensation payments and matched
non-recipients of such payments. Matching was performed exactly on specialty and drug and coarsely
on group practice network degree, shared-patient network degree, and years of experience. See text
for details and Table A6 for descriptive statistics of the sample. Weighted regressions use probability
weights assigning equal weight to peers of recipients and non-recipients. Physician-drug and specialty-
drug-quarter fixed-effects, controls for all other types of payments, and payment-type-specific linear
time trends were included in all specifications.

Source: authors’ calculations
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Figure 5: Counterfactual Prescription Volumes with Different Payment Effects
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Source: authors’ calculations using Open Payments data and model estimates
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Figure 6: Payment Contribution to Overall Adoption, Direct versus Indirect Effects
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Notes: For each drug, the bar shows the break-down of the estimated contribution of direct and indirect
effects of payments on total prescription volume in 2014–2016.

Source: authors’ calculations using Open Payments data and model estimates
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Figure 7: Payment Contribution to Overall Adoption, by Type and Recipient of Payment
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Notes: For each drug, the bar shows the break-down of the estimated contribution of direct and indirect
effects of payments of different types on total prescription volume in 2014–2016.

Source: authors’ calculations using Open Payments data and model estimates
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Figure 8: HRR-Level Average Payment over Baseline Prescription Volume
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Notes: Each point represents one HRR-drug cell. The scatter plot shows the average payment size over
the actual prescription volume in the first quarter of the sample. The lines are linear regression fit,
separately for each drug.

Source: authors’ calculations using Open Payments data and model estimates
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Figure 9: HRR-Level Estimated Payment Impact over Baseline Prescription Volume
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Notes: Each point represents one HRR-drug. The scatter plot shows the estimated overall increase in
prescription volumes over the actual prescription volume in the first quarter of the sample. The lines
are linear regression fit, separately for each drug.

Source: authors’ calculations using Open Payments data and model estimates
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Figure A1: Cumulative Fraction of Paid Physicians, by Type of Payment and Medical Spe-
cialty
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Notes: The average cumulative number of payments associated with each drug that were made to
primary care physicians and cardiac specialists during the study sample period.

Source: authors’ calculations based on Open Payments and Physician Compare data
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Table A1: Payment and Recipient’s Number of Peers

Dependent variable:

Payment Type

Food Travel Compensation Total Value

(1) (2) (3) (4)

Number of Peers 0.0999∗∗∗ 0.0279∗∗∗ 0.0372∗∗∗ 0.0222∗∗∗

(0.0017) (0.0019) (0.0019) (0.0018)

N (Physician×Drug) 484,815 484,815 484,815 484,815

R Sqr. 0.1060 0.0073 0.0114 0.0063

Notes: Number of peers refers to shared-patient peers. Variables were scaled to have mean zero and
s.d. of 1. All regressions included controls for drug, physician gender, experience (10-year bins, top
coded at 40+), and specialty. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Source: authors’ calculations based on Referral Patterns and Open Payments data
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Table A3: The Impact of Payments of Different Types on Prescription Volumes

Dependent Variable:

Number of
Prescribed
Patients

Newly
Prescribed
Patients

Fraction of
Anticoagulant
Prescriptions

(1) (2) (3)

Own Compensation 0.3704 0.0283 0.0095
(0.1158) (0.0160) (0.0058)

Own Travel -0.0277 -0.0158 0.0132
(0.1559) (0.0205) (0.0067)

Own Food 0.0589 0.0049 0.004
(0.0037) (0.0006) (0.0007)

Peer Compensation 0.0184 0.0020 0.0019
(0.0060) (0.0009) (0.0009)

Peer Travel 0.0115 -0.0012 0.0007
(0.0063) (0.0010) (0.0009)

Peer Food -0.0004 0.0002 0.0005
(0.0013) (0.0002) (0.0004)

N (Doctor×Drug×Quarter) 5,467,536 5,467,536 3,725,260

Source: authors’ calculations
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Table A4: The Influence of Own and Peer Payments on Prescription Volumes, First versus
Later Payments

Dependent Variable:

Number of
Prescribed
Patients

Newly
Prescribed
Patients

Fraction of
Anticoagulant
Prescriptions

Own Payment

Compensation Count 0.3722 0.0202 0.0082
(0.1218) (0.0167) (0.0060)

Travel Count -0.0475 -0.0198 0.0126
(0.1675) (0.0211) (0.0072)

Food Count 0.0612 0.0047 0.0037
(0.0040) (0.0006) (0.0007)

Compensation First -0.0414 0.1061 0.0171
(0.2049) (0.0449) (0.0151)

Travel First 0.1615 0.0305 0.0041
(0.2178) (0.0491) (0.0134)

Food First -0.0278 0.0019 0.0045
(0.0061) (0.0014) (0.0015)

Peer Payment

Compensation Count 0.0199 0.0015 0.0018
(0.0063) (0.0010) (0.0009)

Travel Count 0.0123 -0.0010 0.0006
(0.0066) (0.0010) (0.0009)

Food Count -0.0004 0.0002 0.0005
(0.0014) (0.0002) (0.0004)

Compensation First -0.0222 0.0091 0.0004
(0.0130) (0.0033) (0.0026)

Travel First -0.0108 -0.0039 0.0026
(0.0111) (0.0024) (0.0020)

Food First 0.0023 -0.0003 -0.0020
(0.0035) (0.0008) (0.0016)

N (Doctor×Drug×Quarter) 5,467,536 5,467,536 3,725,260

Notes: Physician-drug and specialty-drug-quarter fixed-effects, controls for all other types of payments,
and payment-type-specific linear time trends were included in all specifications.

Source: author’s calculations
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Table A5: The Effect of Payments, by Prescription Value

A. The effect of payments on total AC use (NOAC and Warfarin)

Dependent variable:

Patients prescribed a specific anticoagulant

Prescription Value Bleeding Risk

Low Medium High Total Low High

(1) (2) (3) (4) (5) (6)

Own Compensation -0.0142 0.3738 -0.0014 0.3582 0.1058 0.2524

(0.0472) (0.1776) (0.0843) (0.2309) (0.1275) (0.1584)

Own Travel 0.0290 -0.3061 -0.1335 -0.4105 -0.2074 -0.2032

(0.0622) (0.1881) (0.1217) (0.2592) (0.1696) (0.1680)

Own Food 0.0074 0.0624 0.0120 0.0819 0.0336 0.0483

(0.0022) (0.0096) (0.0039) (0.0116) (0.0061) (0.0085)

Peer Compensation 0.0028 0.0230 0.0035 0.0293 0.0125 0.0168

(0.0031) (0.0147) (0.0063) (0.0175) (0.0086) (0.0136)

Peer Travel 0.0031 -0.0203 -0.0082 -0.0253 -0.0180 -0.0073

(0.0045) (0.0196) (0.0093) (0.0234) (0.0121) (0.0185)

Peer Food -0.0010 -0.0029 0.0025 -0.0014 0.0026 -0.0040

(0.0009) (0.0056) (0.0017) (0.0062) (0.0025) (0.0053)

Adj. R Sqr. 0.7628 0.7609 0.5403 0.7843 0.6400 0.8188

Mean Dep. Var. 0.3115 3.5161 0.9358 4.7635 1.9591 2.804

N 1,554,864 1,554,864 1,554,864 1,554,864 1,554,864 1,554,864

B. The effect of payments on specific NOAC use

Dependent variable:

Patients prescribed a specific NOAC

Prescription Value Bleeding Risk

Low Medium High Total Low High

(1) (2) (3) (4) (5) (6)

Own Compensation 0.0593 0.3228 0.1380 0.5201 0.2083 0.3117

(0.0373) (0.1336) (0.0551) (0.1688) (0.0966) (0.1129)

Own Travel -0.0087 0.0190 -0.1504 -0.1401 -0.0197 -0.1204

(0.0490) (0.1921) (0.0709) (0.2339) (0.1311) (0.1527)

Own Food 0.0057 0.0525 0.0084 0.0666 0.0250 0.0415

(0.0015) (0.0062) (0.0024) (0.0074) (0.0039) (0.0054)

Peer Compensation 0.0000 0.0092 0.0090 0.0183 0.0145 0.0037

(0.0024) (0.0091) (0.0039) (0.0112) (0.0061) (0.0080)

Peer Travel 0.0043 0.0118 -0.0014 0.0147 0.0018 0.0129

(0.0031) (0.0097) (0.0041) (0.0127) (0.0063) (0.0092)

Peer Food 0.0010 -0.0012 -0.0005 -0.0008 -0.0016 0.0008

(0.0010) (0.0029) (0.0009) (0.0034) (0.0015) (0.0028)

Adj. R Sqr. 0.4883 0.7013 0.5856 0.7485 0.7011 0.6556

N 3,689,520 3,689,520 3,689,520 3,689,520 3,689,520 3,689,520

Notes: Estimates of the impact of pharmaceutical payments on anticoagulant prescriptions by pre-
scription risk and net value, for the sample of patients diagnosed with atrial fibrillation (AFib) and
who received at least one anticoagulant prescription during the study period. Part A shows estimates
of the impact of payments on the number of patients per physician per quarter who are prescribed who
are prescribed any anticoagulant. Part B shows similar estimates, but where the analysis is done at
the specific NOAC, for all NOACs in our study. We partitioned patients into groups based on BLEED
score for bleeding risk (a severe side effect of NOAC use) and CHAD score which captures benefits of
anticoagulant prescriptions. Columns 1–3 show the results separately by value. High value are patients
with low risk and high benefits; medium value are patients with either high risk and high benefits or
low risk and low benefits; low value are patients with high risk and low benefits. Columns 4–5 show
results separately by risk.

Source: authors’ calculations
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Table A6: Matching Sample Descriptive Statistics

Paid Physician Unpaid Match

Experience (years) 25.2 25.9

Shared-Patient Peers (count) 53.2 48.1

Group-Practice Peers (count) 93.5 94.0

Male (fraction) 0.93 0.79

Physicians 1,127 10,964

Peers without additional paid peers 1,505 18,940

Notes: Paid Physician is a recipients of compensation payments during the sample period. Unpaid
Matched are non-compensated physicians, matched exactly on drug, specialty and HRR and coarsely
on experience and number of peers. Peers without additional paid peers are all peers of Paid Physicians
and Unpaid Matches that have no additional peer who received compensation payments.

Source: authors’ calculations

Table A7: Robustness: The Impact of Payments on Prescriptions

Independent Variables:

Specification
Own food,

count
Own compensation,

count
Peer compensation,

count
N

Baseline 0.059 0.371 0.022 5,467,536

(0.004) (0.116) (0.005)

Cardiologists only 0.119 0.393 0.049 653,580

(0.0153) (0.1417) (0.1590)

Primary care only 0.047 0.175 0.010 4,813,956

(0.003) (0.141) (0.004)

Xarelto only 0.033 0.438 0.025 1,797,300

(0.005) (0.167) (0.007)

Eliquis only 0.086 0.565 0.023 1,789,008

(0.006) (0.242) (0.011)

Pradaxa only 0.037 0.026 0.009 1,881,228

(0.008) (0.074) (0.006)

Notes: Estimates of (1), different sub-samples.

Source: authors’ calculations
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Figure A2: Payment Contribution to Geographic Variation
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Notes: The plots show the distribution of counterfactual (model-predicted) HRR average prescription
volume, for different payment scenarios: own and peer effect of payments, own effect only (with zero
peer effects), and no effect of payments. Each facet shows results for a different combination of drug
(columns); The top and bottom rows show results for the first and last quarter in the sample.

Source: authors’ calculations
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Table A8: The Impact of Payments of Different Types on Prescription Volumes:
Restricted Sample

Dependent Variable:

Number of
Prescribed
Patients

Newly
Prescribed
Patients

Fraction of
Anticoagulant
Prescriptions

(1) (2) (3)

Own Compensation 0.1553 0.0328 -0.0171
(0.1393) (0.0182) (0.0138)

Own Travel 0.1037 -0.0380 0.0295
(0.1963) (0.0211) (0.0194)

Own Food 0.0602 0.0050 0.0037
(0.0037) (0.0005) (0.0006)

Peer Compensation 0.0148 0.0008 0.0005
(0.0043) (0.0009) (0.0012)

Peer Travel -0.0101 -0.0042 -0.0013
(0.0043) (0.0014) (0.0018)

Peer Food 0.0004 0.0004 0.0008
(0.0009) (0.0001) (0.0003)

N (Doctor×Drug×Quarter) 4,189,392 4,189,392 2,685,826

Notes: Estimates of (1), on a sample including only physicians with no own or peer payments of any
type in the first three quarters.

Source: authors’ calculations
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Table A9: The Impact of Payments of Different Types on Prescription Volumes:
Restricted Sample

Dependent Variable:

Number of
Prescribed
Patients

Newly
Prescribed
Patients

Fraction of
Anticoagulant
Prescriptions

(1) (2) (3) (4) (5) (6)

Own Compensation Payment 0.1553 0.1556 0.0291 0.0289 -0.0090 -0.0085

(0.1393) (0.1391) (0.0181) (0.0181) (0.0160) (0.0160)

Own Food Payment 0.0593 0.0588 0.0050 0.0050 0.0043 0.0038

(0.0037) (0.0037) (0.0005) (0.0005) (0.0007) (0.0007)

Peer Compensation, by Type of Affiliation:

Shared Patients 0.0202 0.0054 0.0019 0.0010 0.0031 0.0027

(0.0060) (0.0063) (0.0011) (0.0013) (0.0013) (0.0016)

Group Practice and Shared Patients 0.0481 0.0035 0.0015

(0.0145) (0.0024) (0.0029)

Group Practice without Shared Patients 0.0059 0.0013 0.0002

(0.0038) (0.0006) (0.0014)

N (Doctor×Drug×Quarter) 4,189,392 4,189,392 4,189,392 4,189,392 2,685,826 2,685,826

Notes: Estimates of (1), on a sample including only physicians with no own or peer payments of any
type in the first three quarters.

Source: authors’ calculations
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