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Abstract

The academic literature contains literally hundreds of variables that seem to predict
the cross-section of expected returns. This so-called ‘anomaly zoo’ has caused many to
question whether researchers are using the right tests for statistical significance. But,
here’s the thing: even if a researcher is using the right tests, he will still be drawing the
wrong conclusions from his analysis if he is starting out with the wrong priors—i.e., if
he is starting out with incorrect beliefs about the ex ante probability of discovering a
tradable anomaly prior to seeing any test results.

So, what are the right priors to start out with? What is the correct anomaly baserate?
We propose a new statistical approach to answer this question. The key insight

is that, under certain conditions, there’s a one-to-one mapping between the ex ante
probability of discovering a tradable anomaly and the best-fit tuning parameter in a
penalized regression. When we apply our new statistical approach to the cross-section
of monthly returns, we find that the anomaly baserate has fluctuated substantially since
the start of our sample in May 1973. The ex ante probability of discovering a tradable
anomaly was much higher in 2003 than in 1990. As a proof of concept, we construct a
trading strategy that invests in previously discovered predictors and show that adjusting
this strategy to account for the prevailing anomaly baserate boosts its performance.
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1 Introduction
Imagine you are a financial economist sitting at your weekly research seminar. This week’s
speaker is describing a new variable, Xn, that seems to predict the cross-section of expected
returns. He has regressed the excess returns of each stock, Rn, on lagged values of Xn:

Rn = µ̂+ β̂ ·Xn + ε̂n for stocks n = 1, . . . , N + 1. (1)

The speaker has standardized his new variable, Xn, to have zero mean and unit variance. So,
in the regression specification above, µ̂ is the mean excess return in the current month, β̂
is an estimated slope coefficient, and ε̂n is the regression residual for the nth stock. On the
current slide, he is showing an estimated β̂ > 0 that is statistically significant at the 5% level.

On one hand, this could be an interesting finding. Predictive regressions and trading-
strategy returns are two sides of the same coin (Fama, 1976; Pedersen, 2015). You can
interpret the estimated β̂ in Equation (1) as the realized return to a zero-cost portfolio that
is long stocks with high Xn values last month and short stocks with low Xn values:

β̂
def
= Cov[Rn, Xn]

Var[Xn]
= 1

N
·∑n (Rn − µ̂) · (Xn − 0). (2)

Thus, an estimated β̂ > 0 implies both that stocks with high predictor values last month,
(Xn − 0) > 0, tended to have high excess returns this month, (Rn − µ̂) > 0, and also that it
was profitable to trade on Xn in the previous month. And, since traders should immediately
exploit (and thereby eliminate) such an arbitrage opportunity, a positive estimate for the
slope coefficient could present a puzzle. It might suggest a gap in our economic understanding.

But, on the other hand, the seminar speaker’s estimated slope coefficient is just that. . . an
estimate. An estimated β̂ > 0 implies that it was profitable to trade on Xn in the previous
month; but, what you really want to know is whether it will be profitable to trade on Xn in the
future. This subtle change in verb tense makes a world of difference. “With the combination
of unreported tests, lack of adjustment for multiple tests, and direct and indirect p-hacking,
many of the results being published will fail to hold up in the future (Harvey, 2017).” Thus,
even if the seminar speaker estimates a positive and significant slope coefficient, Xn might
not represent a tradable anomaly. The estimated β̂ > 0 might just be a fluke, a chance event.

You need to figure out the probability thatXn represents a tradable anomaly going forward
given the speaker’s statistically significant estimate using historical data, Pr[ anom | signif ].
That’s the inference problem you face. And, Bayes’ theorem gives the recipe for solving it:

Pr[ anom | signif ] =
(

Pr[ signif | anom ]
Pr[ signif ]

)
× Pr[ anom ]. (3)
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Equation (3) says you can compute the probability thatXn is a tradable anomaly in the future
given the speaker’s statistically significant in-sample estimate, Pr[ anom | signif ], by multi-
plying the ex-ante probability that Xn is a tradable anomaly, Pr[ anom ], times the relative
increase in this baserate due to the speaker’s statistically significant estimate,

(Pr[ signif | anom ]
Pr[ signif ]

)
.

The current paper is motivated by two observations about the inference problem you face
as an audience member in this seminar. The first is that financial econometrics is almost
entirely concerned with the first term on the right-hand side of Equation (3),

(Pr[ signif | anom ]
Pr[ signif ]

)
.

This ‘Bayes factor’ captures the weight of evidence presented by the speaker. If his results
are extremely compelling, then the Bayes factor will be much larger than one. Your posterior
beliefs walking out of the seminar room will be large relative to your prior beliefs walking in,
Pr[ anom | signif ]

Pr[ anom ]
� 1. By contrast, if the speaker’s results are weak, then the Bayes factor will be

close to one. Sitting through the seminar will not change your priors much, Pr[ anom | signif ]
Pr[ anom ]

≈ 1.
When your colleagues ask the speaker ‘How did you cluster your standard errors?’ and ‘Which
p-value cutoff did you use?’, it is this term that they are inquiring about.

The second observation is that the Bayes factor is not the only term on the right-hand
side of Equation (3). The Bayes factor represents a proportional gain. So, your prior beliefs
walking into the seminar room, Pr[ anom ], are going to have a huge impact on your posterior
beliefs walking out. If you entered the room with a wildly inaccurate prior, then you will
draw the wrong conclusions from the speaker’s analysis even if the speaker himself uses all of
the right econometric techniques. And, in the same way that there are good reasons to worry
about researchers applying the wrong Bayes factor, there are good reasons to worry about
researchers using the wrong priors. Before the seminar even started, you already knew that
a couple of your colleagues would leave the seminar room skeptical of the speaker’s results
no matter what he said. Likewise, you also already knew which of your colleagues would be
most receptive to the speaker’s findings. Both sets of priors cannot be right.

As a working financial economist, you have seen many different speakers present evidence
on various other cross-sectional predictors over the course of your career. Some of these
predictors were in fact tradable anomalies. Others were not. When you walked into the seminar
room today, your prior beliefs about the anomaly baserate—i.e., the ex-ante probability that
Xn would represent a tradable anomaly—were informed by this past experience. The question
is: ‘How?’ What is the right way to convert your past experience with other predictors into
a working prior for next time around? This is a question of great practical importance. But,
it is also a question that is outside the scope of the existing academic literature. It requires
modeling the anomaly-discovery process rather than measurement/sampling error.

With these ideas in mind, we propose a way to estimate the prevailing anomaly baserate
by running penalized regressions and searching for the best-fit tuning parameter. Here is the
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intuition behind our statistical approach. We start by estimating a separate Ridge regression
for each previously discovered predictor in a given month. If the true slope coefficients for
different predictors are drawn from a common distribution each month, then the best-fit
tuning parameter in these Ridge regressions will be a decreasing function of the volatility of
this common prior distribution. So, we invert the best-fit tuning parameter for each predictor
to get a estimates of the prior volatility, take the average of these estimates each month, and
then use this time series to make out-of-sample forecasts for the anomaly baserate.

Statistical Approach. We begin by fleshing out the details of our statistical approach. The
standard way to estimate the slope coefficient, β̂, associated with Xn is to use an ordinary
least squares (OLS) regression. This means solving the optimization problem below:

min
β

{
1
N
·∑n

(
Rn − µ̂− β ·Xn

)2
}
. (4)

Notice that the solution to this optimization problem yields the expression for β̂ in Equation
(2) when Xn has zero mean and unit variance, 1

N+1
·∑n Xn = 0 and 1

N
·∑n X

2
n = 1.

But, several recent papers have traveled an alternative route (DeMiguel, Garlappi, Nogales,
and Uppal, 2009; Bryzgalova, 2017; Feng, Giglio, and Xiu, 2017; Freyberger, Neuhierl, and
Weber, 2017; Chinco, Clark-Joseph, and Ye, 2018; Kozak, Nagel, and Santosh, 2018). Instead
of using an OLS regression to estimate β̂, these papers use a penalized regression, which
means solving a modified version of the optimization problem in Equation (4):

min
β

{
1
N
·∑n

(
Rn − µ̂− β ·Xn

)2
+ λ · |β|q

}
. (5)

Above, λ ≥ 0 is known as the ‘tuning parameter’, and q ≥ 0 governs the shape of the penalty
function. If q = 0, then this penalized regression is the same as the Bayesian information
criteria (BIC; Schwarz, 1978). If q = 1, then it is the same as the LASSO (Tibshirani, 1996).
And, if q = 2, then it is the same as a Ridge regression (Hoerl and Kennard, 1970).

The key insight behind our statistical approach is that the modified optimization problem
in Equation (5) has an alternative Bayesian interpretation. The penalty function, λ · |β|q,
can be thought of as the effect of incorporating your prior beliefs about the distribution
of the true slope coefficient, β?. Think about β? as the excess return you would realize if
you held the same zero-cost portfolio described in Equation (2) next month. To see where
this Bayesian interpretation comes from, imagine that the cross-section of excess returns is
governed by the following data-generating process with ε?n

iid∼ Normal[0, N · se2]:

Rn = µ? + β? ·Xn + ε?n.

4



0%

1%

2%

3%

4%

5%

‘75 ‘80 ‘85 ‘90 ‘95 ‘00 ‘05 ‘10 ‘15

Figure 1. Forecasted v̄t. Average forecasted prior volatility each year. For each
predictor i discovered prior to month t, we first estimate the in-sample parameter
v̂i,t′ for all months t′ < t using the procedure described in Proposition 2.2. We then
make a one-month-ahead forecast for month t by fitting an AR(3) model to squared
values in months {t−60, . . . , t−1}. Finally, we combine the forecasts for all previously
discovered predictors to compute v̄t. Units: % per month. Sample Period: 1973-2015.

In this setting, if the true slope coefficient is also drawn from a normal distribution, β? ∼
Normal[0, σ2], then the log likelihood of the true slope coefficient taking on a particular value,
β? = β, given the observed data, {R1, . . . , RN+1} and {X1, . . . , XN+1}, can be written as

− log Pr[β] = 1
2·(N ·se2)

·∑n

(
Rn − µ̂− β ·Xn

)2
+ 1

2·σ2 ·
(
β − 0

)2
+ · · · (6)

where the “· · · ” represents constants that do not depend on the choice of β.
In other words, when q = 2 there is a direct one-for-one correspondence between the

functional form of the log likelihood in Equation (6) and the Ridge-regression optimization
problem specified in Equation (5). This match implies that using a Ridge regression is
equivalent to Bayesian updating when the true slope coefficient, β?, is drawn from a normal
distribution—i.e., when a researcher has Gaussian priors—and the tuning parameter is chosen
so that λ = se2/σ2. What is more, since the most likely estimate for the size of the cross-
sectional slope coefficient will also deliver the lowest prediction error, this match implies
that we can learn about the prior distribution for β?—i.e., about the prevailing anomaly
baserate—by finding the best-fit tuning parameter and then inverting the formula for λ to
obtain an estimate, v2, for the prior variance, σ2. We will write the forecasted value of this
estimator each month as v̄t. And, this forecast will represent our best guess about the anomaly
baserate based on our experience with other previously discovered predictors.

Estimation Results. We next apply this statistical approach to analyze the cross-section
of monthly returns from May 1973 to May 2015. Our analysis considers a collection of
83 different predictors found in the academic literature, i = 1, . . . , 83. We refer to the ith
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predictor as an anomaly in month t if it is expected to have absolute returns in excess of
some tradable threshold in month t. We recognize that the predictive power of some of these
variables might not stem from a market error. This is perfectly fine. It could just as well
come from some as-yet undiscovered risk factor. Our statistical approach works either way.
We refer to strong predictors as tradable anomalies for convenience.

To get an estimate for Pr[ anom ] in month t, we first run univariate Ridge regressions
of excess returns on the lagged value of all I ≥ 2 predictors discovered before t, month by
month. We then take the best-fit tuning parameter for each predictor to get an estimate for
the variance of the true slope coefficients, v̂2

i , using the formula σ2 = se2
i /λi. If there are five

predictors discovered prior to month t, then we compute five different in-sample estimates
of v̂2

i,t in month t. Next, we fit a time-series process to past values of these predictor-specific
estimates to forecast the predictor variance in the following month, v̄2

i,t. We average these
I ≥ 2 forecasts for all previously-discovered predictors to arrive at v̄t, which we plot in
Figure 1. If we assume the true slope coefficients, β?i,t, are drawn from a common normal
distribution each month,1 we can use this estimate to form a prior how likely it is that a
newly discovered (I + 1)st predictor in period t will have returns larger than a threshold,
Pr[ |β?I+1,t| > threshold ] = 2 · Φ[− threshold/v̄t ], where Φ[·] represents the standard normal
CDF. Note that it is not essential for us to assume normality; we discuss each step of the
estimation process in more detail below.

Trading Strategy. Finally, we show how to use our forecasts for each predictor, v̄2
i,t, to

combine these predictors into a single trading strategy. As pointed out in Lewellen (2015),
there is substantial time-series variation in Fama-MacBeth slope coefficients for each predictor.
So, the question is: how should you interpret the evidence for each previously discovered
predictor given the prevailing anomaly baserate? We perform this exercise for two reasons.
First, this exercise represents a useful real-world application. Just think about hitting Ctrl+H

and replacing ‘seminar speaker’ with ‘quant researcher’ on the first two pages. Second, the
success of this predictor-combination strategy gives evidence that our statistical approach to
estimating the anomaly baserate is economically meaningful.

We start with a benchmark trading strategy that explicitly does not account for the
anomaly baserate. The strategy holds an equal-weighted portfolio of all previously discovered
predictors that have a forecasted return in month t higher than 1% per month. So, for
example, if there were 5 predictors discovered prior to month t with forecasted returns higher
than 1% per month, then the strategy would invest 1/5th of its assets in each of these 5

predictors. We use the 1% per month performance threshold to capture the idea that, in
order for a predictor to be tradable, it must generate excess returns high enough to cover its
1We discuss the economic motivation for this assumption in Section 2.1 below.
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implementation costs. This benchmark only generates returns of 0.29% per month net of the
1% performance threshold during our sample period and has an annualized out-of-sample
Sharpe ratio of 0.22.

We then adjust the benchmark strategy to account for the anomaly baserate. If the
forecasted v̄i′,t was small for all other predictors i′ 6= i in month t and the realized returns
for all predictors were drawn from a common distribution, then the ith predictor’s true
magnitude is likely small as well, β?i,t ≈ 0. In which case, we should be more reluctant to
trade on a large forecasted β̄i,t � 0. Following this logic, our baserate-adjusted strategy holds
an equal-weighted portfolio of all predictors that still have one-month-ahead return forecasts
higher than 1% per month after adjusting for the prevailing v̄t computed using all other
previously discovered predictors i′ 6= i. This strategy delivers excess returns of 0.68% per
month net of the 1% threshold and has an annualized out-of-sample Sharpe ratio of 0.50.

1.1 Related Literature
We add to a large and still growing literature on cross-sectional return predictability in high
dimensions. This literature is organized around three main topics.

Data Mining. The first topic is data mining (Lo and MacKinlay, 1990; Ferson, Sarkissian,
and Simin, 1999; Sullivan, Timmermann, and White, 1999; White, 2000). Publication requires
statistically significant results. So, there is an incentive for researchers to fiddle with a
regression specification until they achieve statistical significance. For some predictors, this
is impossible. But, for others, a little fiddling can flip results from marginally insignificant
to strongly significant. If this is more likely to happen with spurious predictors, then data
mining will increase the proportion of statistically significant predictors that are not tradable
anomalies. You should adjust the Bayes factor you are using so that your posteriors respond
less to statistically significant results.

And, there has been a recent string of influential papers on data mining in financial
economics (Barras, Scaillet, and Wermers, 2010; Bajgrowicz and Scaillet, 2012; McLean and
Pontiff, 2016; Harvey, Liu, and Zhu, 2016; Yan and Zheng, 2017; Harvey and Liu, 2018c,b,a;
Linnainmaa and Roberts, 2018). Many researchers have spent a lot of time thinking about
data mining. So, it is important to emphasize that this is not a paper about data mining. We
are doing something different. We are proposing a way for estimating the anomaly baserate,
Pr[ anom ], not for adjusting the Bayes factor,

(Pr[ signif | anom ]
Pr[ signif ]

)
. But, this is not an either/or

situation. You should use the above papers to adjust your Bayes factor for data mining
when interpreting the seminar speaker’s evidence. Then, you should apply this data-mining
adjusted Bayes factor to the prevailing anomaly baserate, which we show how to estimate in
this paper.
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Factor Structure. The second topic is the factor structure of predictors. Even if there are
many statistically significant predictors, it still might be possible to summarize the information
in all these predictors using a few well-chosen factors? The goal here is to simplify investors’
lives by collapsing the anomaly zoo down into a few manageable variables. Ideally, once you
condition on these variables, there would be no incremental value in considering any other
predictors when forecasting returns. And, researchers typically try to accomplish this goal
by applying some form of principal-component analysis (Kelly, Pruitt, and Su, 2017; Green,
Hand, and Zhang, 2017; Kelly, Pruitt, and Su, 2018; Lettau and Pelger, 2018).

If you are interested in forecasting returns, then it would be really useful to summarize the
information in the anomaly zoo with a few manageable variables. But, we are not primarily
interested in forecasting returns. Our goal is to learn whether a particular predictor is a
tradable anomaly; our goal is to learn about the underlying structure of the market. And,
forecasting an important outcome is not the same thing as learning about the underlying
structure. Summarizing the forecasting power in all statistically significant predictors with
a few well-chosen factors does not help you learn which individual predictors are tradable
anomalies. These are two very interesting but logically distinct goals. By analogy, I can
forecast who will be a good public speaker with a single summary variable: Were they a
member of the college debate team? But, this summary variable does not reveal anything
about the underlying structure of the brain, which makes speech possible.

Penalized Regressions. Finally, many recent papers have used penalized-regression proce-
dures to solve asset-pricing problems (DeMiguel, Garlappi, Nogales, and Uppal, 2009; Bryz-
galova, 2017; Feng, Giglio, and Xiu, 2017; Freyberger, Neuhierl, and Weber, 2017; Ledoit and
Wolf, 2017; Chinco, Clark-Joseph, and Ye, 2018; Kozak, Nagel, and Santosh, 2018). These
papers impose penalty functions for reasons related to both of the topics mentioned above.
For example, the primary reason for imposing a penalty function in Freyberger, Neuhierl,
and Weber (2017) and Chinco, Clark-Joseph, and Ye (2018) is to rule out weak predictors.
Whereas, Bryzgalova (2017) and Kozak, Nagel, and Santosh (2018) mainly impose a penalty
function to look for an economically motivated factor structure. Other papers motivate their
analysis with some combination of these two concerns.

We are using a penalized-regression with an entirely different goal in mind: estimating the
anomaly baserate. If there were only one or two predictors to choose from, then you would not
need to use a penalized regression in these earlier papers. By contrast, it is important to use
the correct anomaly baserate regardless of the number of candidate predictors. Thus, while
we are using the same toolkit, we are using this toolkit to solve a different kind of problem,
a kind of problem that exists even in the absence of the anomaly zoo. To our knowledge,
this is the first instance where insights from machine learning are being used to shape our
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understanding of a more fundamental asset-pricing problem, a problem that would exist even
in a low-dimensional setting.

2 Statistical Approach
Let’s return to the inference problem described on the opening two pages. You are a financial
economist sitting at your weekly research seminar. The seminar speaker is showing that
it was profitable to trade on a new variable, Xn, in the past. You want to figure out how
likely it is that it will be profitable to trade on Xn in the future. To do this correctly, you
need to start out with the right anomaly baserate and then appropriately update this prior
given the seminar speaker’s evidence. Your financial-econometrics training tells you how to
appropriately update your prior beliefs. This section describes our statistical approach to
estimating the anomaly baserate. You have seen evidence on I ≥ 2 cross-sectional predictors
in past seminars. Some of these predictors turned out to be tradable anomalies; others were
spurious. You want to use your past experience with these other predictors to inform your
ex-ante beliefs about what to expect from the current seminar speaker’s presentation.

2.1 Inference Problem
We begin by defining the inference problem you face in more detail.

Statistical Framework. Suppose there are N + 1 stocks in the market, which are indexed
by n = 1, . . . , N + 1. And, let Rn denote the excess return of stock n in the current month.
In the analysis below, we are going to use the convention that you have already seen the
first I ≥ 2 predictors. And, you want to use this information to construct a prior for use in
evaluating the seminar speaker’s evidence about the (I + 1)st predictor.

Assume that each stock’s excess return this month is related to lagged values of the ith
predictor as follows:

Rn = µ? + β?i ·Xn,i + ε?n,i for predictors i = 1, . . . , I + 1. (7)

In the data-generating process above, Xn,i is the lagged value of the ith predictor for stock n,
the parameter µ? is the average excess return in the current month, the parameter β?i denotes
the true slope coefficient associated with the ith predictor, and ε?n,i

iid∼ Normal[0, N · se2
i ]

denotes the residual excess return for stock n. In other words, ε?n,i represents the portion of
stock n’s excess return that is not explained by the ith predictor. These residuals might come
from either of two sources: idiosyncratic shocks that are fundamentally random or the effects
of other cross-sectional predictors i′ 6= i. Note that these other cross-sectional predictors may
be as-yet undiscovered—i.e., it might be the case that i′ /∈ {1, . . . , I + 1}.
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There are two technical details that are worth mentioning about the data-generating
process defined in Equation (7). First, we define Var[ε?n,i] = N · se2

i rather than just se2
i so

that the parameter se i represents the standard error when using only the ith predictor to
explain the cross-section of excess returns. Lower values of se2

i mean that the ith predictor
does a better job of fitting the observed data in sample. And, you can estimate se i using an
OLS regression:

N · ŝe2
i = 1

N−1
·∑n

(
Rn − µ̂− β̂i ·Xn,i

)2
.

Second, we normalize the lagged values of each predictor to have zero mean and unit
variance, 1

N+1
·∑nXn,i = 0 and 1

N
·∑n (Xn,i − 0)2 = 1. This normalization ensures that

our estimates of β̂i are comparable across predictors. To see why this is important, consider
the following example. Suppose that the first predictor corresponds to a portfolio that is
long/short the top/bottom deciles while the second predictor corresponds to a portfolio
that is long/short the top/bottom quintiles. The first predictor will have a variance of
Var[Xn,1] = 1

10
· (+1)2 + 1

10
· (−1)2 = 1/5; whereas, the second predictor will have a variance

of Var[Xn,2] = 1
5
· (+1)2 + 1

5
· (−1)2 = 2/5. Thus, since β̂i

def
=

Cov[Rn, Xn,i]

Var[Xn,i]
, we should expect

that β̂1 > β̂2 even if both predictors have equal predictive power.

Discovery Process. You want to inform your beliefs about the current seminar speaker’s
predictor based on your experience with I ≥ 2 other predictors that you have seen in past
research seminars, then it must be the case that these (I + 1) variables all share something in
common. If each predictor were its own special butterfly, then none of your past experience
with the first I predictors would be helpful when constructing priors for use with the (I+1)st
predictor. But, how exactly should we expect the (I + 1) cross-sectional predictors to be
related? The answer is far from obvious.

It seems unlikely that there is a single, concise, unified explanation for why each variable
Xn,i does or does not predict the cross-section of expected returns. They are all so different.
Cross-sectional predictability might be the result of any number of different limits-to-arbitrage
models (Barberis and Thaler, 2003; Gromb and Vayanos, 2010). There is no shortage of risk-
based explanations to choose from either (Fama and French, 1996). And, different predictors
can also be based on entirely different data sources. Some predictors only involve past
market data (e.g., medium-term momentum; Jegadeesh and Titman, 1993). Others use only
accounting data (e.g., investment growth; Titman, Wei, and Xie, 2004). Why would there
be a single explanation for the predictability associated with both medium-term momentum
and investment growth?

So, rather than modeling the reason why each individual variable either does or does not
predict the cross-section of expected returns, we instead assume that the strength of each
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predictor is drawn from a common distribution:

β?i
iid∼ Normal[0, σ2]. (8)

In other words, we represent the required commonality across predictors with a statistical
model for the anomaly discovery process. The key assumption embedded in Equation (8) is
that there is a single parameter σ2 governing the range of strengths for the predictors that
financial economists discover. It is not essential to assume normality and independence across
predictors; we show how to relax them in Appendix B. The mean-zero assumption is also
not crucial, and in our empirical analysis we will be using predictors with both positive and
negative βis.

The motivation for this assumption is that, even if the economic mechanism for why
Xn,i and Xn,i′ predict the cross-section of expected returns are completely different, these
variables were still discovered by financial economists using a similar mental toolkit. We have
all attended the same PhD programs. We have taken the same courses. We have all been
trained by the same advisors. We have all been given access to the same data sources. So,
while some researchers are better at searching for new predictors than others, everyone’s
search process is constrained by the same inputs. Notice that even though the economic
rationales for using medium-term momentum and investment growth to predict the cross-
section of expected returns are quite different, Sheridan Titman was a co-author on both
papers. And, it seems plausible that the strength of these predictors is governed by a common
distribution.

The idea of trying to estimate the volatility of cross-sectional predictors in spite of the
fact that the economic mechanism behind each predictor is quite different is similar in spirit
to the idea of estimating stock-market volatility (Andersen, Bollerslev, Diebold, and Labys,
2003) or an uncertainty index (Baker, Bloom, and Davis, 2016). We certainly do not think
that there is a single unified explanation for all stock-market fluctuations. And, almost by
definition, uncertainty can rise for any number of reasons. If your first reaction to reading
this subsection was that it would be really interesting to have a more detailed prior-volatility
model, then we are in complete agreement. However, to the best of our knowledge, we are
first to point out the need for one. We view this as a key contribution of the paper. So, we
think it is best to start with something simple.

Inference Problem. If the strength of the ith predictor is drawn from the distribution in
Equation (8), then the parameter σ controls the typical size of cross-sectional predictors in
the market. A larger value of σ means that researchers are more likely to discover strong
predictors. But, what constitutes a tradable anomaly? When exactly is a predictor strong
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enough to be considered tradable? We call the ith predictor a tradable anomaly if its true
predictive power exceeds some minimum performance threshold, 1

[
β?i > threshold

]
for some

threshold ≥ 0. There are multiple ways to think about this minimum performance threshold.
You can think of it as coming from trading costs (Novy-Marx and Velikov, 2015). Or, you
can think about it more broadly as any form of implementation costs. If you are running a
trading desk, then how strong does a predictor need to be before you start redeploying scarce
resources so that you can start trading on it?

In our empirical analysis, we will typically set threshold = 1% per month for a trading
strategy that is long/short the top/bottom deciles. But, the exact point estimate is not
critically important. All that matters is that there is some threshold determining whether
or not a predictor is a tradable anomaly. This assumption implies that calibrating your
expectations for what today’s seminar speaker will say about the (I + 1)st predictor is
tantamount to learning about the prevailing value for σ.

Proposition 2.1 (Inference Problem). Suppose that there exists some threshold > 0. The
anomaly baserate for use with the (I + 1)st predictor is given by

Pr[ |β?I+1| > threshold ] = 2 · Φ[− threshold/σ ]

where Φ[·] represents the standard normal CDF.

Suppose the seminar speaker is presenting evidence that the (I + 1)st candidate predictor
is very strong, |β̂I+1| � threshold . If your past experience with the other I ≥ 2 predictors
tells you that σ � 0, then this result is quite plausible. It is quite common for a researcher
to draw a β?i far from zero. That is what it means for σ � 0. By contrast, if your past
experience suggests that σ ≈ 0, then the seminar speaker’s result will strike you as highly
implausible. You will rationally discount the seminar speaker’s evidence, not because he did
anything wrong, but because you think his result is very unlikely to begin with. If you believe
that σ ≈ 0, then you believe that tradable anomalies are quite rare. In fact, if your past
experience dictates that σ = 0, then you will not even bother showing up to the seminar this
week. There is nothing that the seminar speaking could possibly say to convince you that
β?I+1 6= 0. This is known as having ‘dogmatic priors’.

2.2 Econometric Estimator
Having defined the inference problem, we now describe how to generate an estimator for σ,
which we will denote by v, based on your past experience with I > 1 other predictors by
searching for the best-fit tuning parameter in a penalized regression.
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Ridge Regression. We study a penalized-regression procedure known as the Ridge regres-
sion (Hoerl and Kennard, 1970). A Ridge regression combines a standard OLS regression
with a quadratic penalty that shrinks OLS-regression coefficients towards zero. Estimating
the slope coefficient β̂i[λ] for the ith predictor using a Ridge regression means solving the
following optimization problem:

β̂i[λ]
def
= arg min

β

{
1
N
·∑n

(
Rn − µ̂− β ·Xn,i

)2
+ λ · β2

}
. (9)

Above, λ · β2 represents the quadratic penalty, and λ ≥ 0 is known as the ‘tuning parameter’.
To create an estimate for the prior volatility that you should use when learning about the

(I+1)st predictor, we first estimate separate Ridge regressions for each predictor i ∈ {1, . . . , I}
that you have had past experience with. And, because we do this separately for each predictor,
it is possible to analytically solve for the resulting Ridge-regression slope coefficient:

β̂i[λ] =
(

1
1+λ

)
· β̂i. (10)

The formula above indicates that when λ = 0, the penalty function disappears and the
results of a Ridge regression coincide with those of a standard OLS regression, β̂i = β̂i[0].
But, for all choices of λ > 0, the quadratic penalty in Equation (9) will shrink the standard
OLS-regression coefficient toward zero, with larger choices of λ resulting in more shrinkage.

Bayesian Interpretation. The key insight motivating our statistical approach is that there
is a Bayesian interpretation for the shrinkage imposed by λ. You can interpret it as the effect
of incorporating your prior beliefs about the distribution of the true coefficient β? when these
coefficient values are also drawn from a normal distribution. The negative log likelihood
of the true slope coefficient taking on a particular value, β?i = β, given the realized data,
{R1, . . . , RN+1} and {X1,i, . . . , XN+1,i}, corresponds to

− log Pr[β] = 1
2·(N ·se2

i )
·∑n

(
Rn − µ̂− β ·Xn,i

)2
+ 1

2·σ2 · (β − 0)2 + · · ·

= 1
2·se2

i
·
{

1
N
·∑n

(
Rn − µ̂− β ·Xn,i

)2
+

se2
i

σ2 · β2
}

+ · · ·
(11)

where the “· · · ” represents constants that do not depend on the choice of β.
Thus, estimating a Ridge regression—i.e., solving the optimization problem in Equation

(9)—is the same as finding the most likely estimate for β?i given your prior beliefs and the
observed data—i.e., minimizing the negative posterior log likelihood in Equation (11)—when
using the appropriate tuning parameter:

λi = se2
i /σ

2.
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And, since the fully Bayesian estimate will have the lowest prediction error on average, it
stands to reason that we can use each of the I > 1 predictors that you have had past experience
with to learn about the true value of σ by searching for the best-fit tuning parameter λ. Note
that it is also possible to estimate the mean as well as the variance of the prior distribution
for β?. We focus on the prior variance because there is no ex-ante reason to suspect the
mean to vary over time since predictors have no preferred sign. And, in unreported results,
we confirm that this intuition holds true in the data.

Empirical/Objective Bayes. The idea of using frequentist statistics describing past out-
comes to inform your prior beliefs for use in future Bayesian analysis goes by the name of
‘empirical Bayes’ (Robbins, 1956) or ‘objective Bayesian analysis’ (Berger, 2006) in the statis-
tics literature. For other applications of these ideas in the finance literature, see Frost and
Savarino (1986), Karolyi (1993), and Harvey and Liu (2018a). We use the Ridge regression
in our main analysis because we are assuming in our stylized model of the anomaly-discovery
process that the true predictor strengths are drawn from a normal distribution (see Equa-
tion 8). Using a different penalized-regression procedure would mean making a different
assumption about the distribution of predictor strengths. For example, Park and Casella
(2008) shows that using the LASSO is tantamount to adopting a Laplace prior. But, the
basic insight underpinning both empirical and objective Bayesian thinking is the same. “Any
sensible estimator is Bayesian for some prior (Diaconis and Skyrms, 2017).”

In-Sample Overfitting. How exactly should you go about constructing an estimator for
σ, though? One approach you could take would be to choose the tuning parameter λi > 0

that best fits the data you have observed for each cross-sectional predictor and then invert
the formula λi = se2

i /σ
2 to solve for σ. Let Erri[λ] denote the Ridge regression’s in-sample

prediction error when using a particular value of λ given the realized cross-section of excess
returns in particular month and lagged values of the ith predictor, {R1, . . . , RN+1} and
{X1,i, . . . , XN+1,i}:

Erri[λ]
def
= E

[ (
Rn − µ̂− β̂i[λ] ·Xn,i

)2
]
. (12)

This error is often called ‘training error’ (Hastie, Tibshirani, and Friedman, 2001).
The lemma below shows that this approach is too naïve. No matter what the true value

of σ2 is, the training error associated with the Ridge regression will always be minimized by
setting λi = 0. In other words, an OLS regression will always outperform a Ridge regression
in sample according to this metric.

Lemma 2.2 (In-Sample Overfitting). Let E[·] denote an expectations operator evaluated with
respect to realizations of β?i . If ṽ2

i denotes the parameter estimate with the minimum in-sample
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prediction error for the ith predictor,

ṽ2
i

def
= arg min

v2>0

{
Erri[se

2
i /v

2]
}
,

then we have that E[ṽ2
i ] =∞ regardless of which σ2 > 0 was used to generate the data.

Minimizing the training error requires you to fine-tune the slope coefficient to explain
variation in excess returns coming from in-sample noise. And, this is easiest when there is
no penalty for doing so—i.e., when λi = 0; or equivalently, when ṽ2

i =∞. Put another way,
the ratio λi = se2

i /σ
2 governs the relative likelihood that a statistically significant estimate

for the slope coefficient, |β̂i| � 0, is due to in-sample overfitting rather than the existence of
an honest-to-goodness tradable anomaly, β?i 6= 0. But, the estimator ṽ2

i does not reflect this
comparison. It only reveals whether the in-sample fit is good; it does not tell you anything
about the origins of this good performance.

Econometric Estimator. If we want a consistent estimator for σ2, then we need to adjust
the metric used in Lemma (2.2) so that it does not reward in-sample overfitting. One way
to do this would be to look at out-of-sample prediction errors—i.e., to estimate σ2 via cross-
validation (Stone, 1974). But, since we specified a data-generating process in the previous
subsection, we can actually do better. We can directly adjust the training error for the
expected amount of in-sample overfitting given σ2. Large values of σ2 will result in lots of
in-sample overfitting, so these choices should receive a large penalty. Whereas, values of σ2

that are close to zero will result in very little in-sample overfitting, so these choices should
only be penalized a little.

Proposition 2.2 (Econometric Estimator). Let E[·] denote an expectations operator evalu-
ated with respect to realizations of β?i . If v2

i denotes the parameter estimate with the minimum
in-sample prediction error subject to an overfitting penalty for the ith predictor,

v2
i

def
= arg min

v2>0

{
Erri[se

2
i /v

2] + 2 ·
(

1
1+se2

i /v
2

)
· se2

i

}
, (13)

then for all σ2 > 0 we have that E[v2
i ] = σ2.

Note that this econometric estimator follows from the same basic intuition as many other
information-theoretic model-selection criteria, such as the Akaike information criterion (AIC
Akaike, 1974), which minimize a mean squared-error loss function plus an additional penalty
proportional to the number of degrees of freedom, df, in the model times the noise variance,
Var[εn,i]. In fact, one way to derive the penalty function in Equation (13) is to note that the
effective degrees of freedom in a univariate Ridge regression is given by 1/(1 +λ). Thus, since
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i /v

2] + 2 ·
(

1
1+se2

i /v
2

)
· se2i

Figure 2. Numerical Simulation. Results for 1,000 simulations of a market with
N + 1 = 1,000 stocks. For each simulation, we generate a new realization of the
cross-section of excess returns using the parameters µ? = 0, β?i

iid∼ Normal[0, σ2], and
ε?n,i

iid∼ Normal[0, N ·1.00%2]. Solid lines: value of the objective function within the curly
braces in Equation (13) averaged across all simulation at each value of v2 ∈ (0, 16].
Different lines correspond to different values of σ2 ∈ {0.25%, 1.00%, 4.00%}. Large dot:
v2 values that minimize each curve, which correspond to the output of the estimator
defined in Proposition 2.2. x-axis: input to objective function, v2 > 0, on a log scale.

Var[εn,i] = N ·se2
i , the Akaike penalty function, 2 ·(df /N)×Var[εn,i], reduces to the one above

when λi = se2
i /σ

2. By the same logic, Stone (1977) shows that using Equation (13) to estimate
σ2 will deliver estimates that are asymptotically equivalent to those of cross-validation.

Numerical Simulation. Before taking it to the data, we first verify the econometric estima-
tor from Proposition 2.2’s performance using numerical simulations. We study three different
anomaly-discovery regimes, σ2 ∈ {0.25%, 1.00%, 4.00%}. σ2 = 4.00% denotes a regime where
tradable anomalies are likely; σ2 = 0.25% denotes a regime where tradable anomalies are
unlikely; and, σ2 = 1.00% denotes a regime somewhere in between. For each regime, we run
1,000 simulations of a market with N + 1 = 1,000 stocks. For each simulation, we generate a
cross-section of excess returns using the data-generating process in Equation (7) with param-
eters µ? = 0 and se2

i = 1.00%. The solid lines in Figure 2 report the value of the objective
function within the curly braces in Equation (13) at each input parameter v2 > 0 averaged
across all simulation. The figure shows that, when we simulate data using a particular value
of σ2, the objective function in Proposition 2.2 is minimized at this value, which means that
our econometric estimator is able to recover the parameter value from simulated data.

Forecasting vs. Learning. We have just outlined a univariate approach to estimating σ2. In
essence, we are asking: ‘How can we separately use the information in each of the first I > 1

predictors to learn about σ2?’ We are not looking for the best combination of predictors. But,
that is not to say looking for the best combination of predictors is wrong. It just depends on
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what you are after. Taming the factor zoo (Feng, Giglio, and Xiu, 2017) will mean different
things to different people.

If all you care about is making good forecasts, then taming the factor zoo will mean looking
for the best combination of predictors. You should use something like principle-component
analysis to collapse the information in all I > 1 predictors down into a single forecasting
variable (Kelly, Pruitt, and Su, 2017). But, if you want to use these same I > 1 predictors to
learn about the market’s underlying structure, then you do not want to combine predictors.
This would throw away valuable information and make it harder for you to learn.

Consider an example. Driving a car is a complicated activity; there are lots of different
factors involved. It has taken quite a while for engineers to teach a computer how to do it.2 But,
it is nevertheless easy to forecast who will be a safe driver. You can collapse all the information
in the zoo of driving-related factors into a single variable: IsTeenager ∈ {True,False} (Jonah,
1986). If you are an insurance underwriter trying to forecast future claims, this single variable
effectively tames the factor zoo. But, if you are a Google engineer, it does not. You cannot
create a self-driving car by not installing a 17-year-old operating system.

3 Estimation Results
Having described our new statistical approach, we next apply this approach to recover an
estimate for σ each month. We use data the cross-section of excess returns each month, and
we study a collection of 83 different predictors that were published in the academic literature
some time after May 1973.

3.1 Data Description
We begin by describing the data and variables used in our analysis.

Data Sources. We study the cross-section of monthly returns from May 1973 to May 2015
for each U.S. stock traded on either the NYSE, Amex, or NASDAQ. These data comes from
the Center for Research in Security Prices (CRSP) monthly stock file. To make sure that
our results are not being driven by small illiquid stocks, we exclude any stock with a price
below $1 at the end of the previous month. We use balance-sheet data from the Standard
and Poor’s Compustat database. All items are taken from the fiscal year ending in calendar
year y− 1 for estimation starting in June of year y until May of year y+ 1 predicting returns
from July of year y until June of year y + 1. To alleviate a potential survivorship bias due
to back-filling, we require that a firm has at least two years of Compustat data for it to be
included in our sample. Let Nt denote the number of stocks in our sample in month t.
2Wired. 12/13/2018. The Wired Guide to Self-Driving Cars.
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Return Predictors. We use a collection of 83 different cross-sectional predictors that were
first documented in the academic literature sometime on or after May 1973. We list each
predictor along with its publication date in Tables 1a, 1b, and 1c. Let It denote the set of
predictors discovered prior to month t:

It def
=
{
i ∈ I : publication date for ith predictor < t

}
.

And, let It
def
= |It| denote the number of predictors discovered prior to month t. So, for example,

looking at the first four rows of Table 1a, we have IApr73 = 0, IMay73 = 1, . . . , IMay77 = 1,
IJun77 = 2, . . . , IMay79 = 2, and IJun79 = 4.

Slope Coefficients. We compute the realized returns to a zero-cost strategy based on each
previously predictor i ∈ It by running a separate cross-sectional OLS-regression in each
month after normalizing the predictor to have zero mean and unit variance:

Rn,t = µ̂t + β̂i,t ·Xn,i,t−1 + ε̂n,i,t.

Rn,t is the excess return of the nth stock in month t, µ̂t is the cross-sectional average excess
return for all stocks in our sample during month t, Xn,i,t−1 is the value of the ith predictor
for stock n in the previous month, β̂i,t is the OLS-regression coefficient for the ith predictor
in month t, and ε̂n,i,t is the regression residual.

Table 2 provides summary statistics describing these realized returns. There are two
things about this table that are worth pointing out. First, contrarian predictors, such as the
long-term reversals captured by the predictor ‘Ret, 36-13’ in row five, will result in estimated
values that are negative on average. This is consistent with the modeling assumption that the
true β?i,t values are drawn from a mean-zero normal distribution. When we incorporate these
sorts of predictors in a trading strategy, we will always trade in the appropriate direction.

Second, our estimates for each predictor’s β̂i,t tend to be smaller than the ones reported
in the original papers. This is because researchers typically report the excess returns to
sorted high-minus-low portfolios, which is tantamount to running a cross-sectional regression
where Var[Xn,i,t−1] < 1. For example, going long the top 10% of stocks and short the bottom
10% of stocks corresponds to Var[Xn,i,t−1] = 1

10
· (+1)2 + 1

10
· (−1)2 = 1/5. And, since

β̂i,t = Cov[Rn,t, Xn,i,t−1]/Var[Xn,i,t−1], this approach would result in point estimates that are
five times larger than ours. We will adjust for this difference when we consider the effects of
implementation costs before combining predictors into a single strategy in Section 4 below.
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Name P. Date Description
1. BetaSq 1973-05 Rolling CAPM beta, squared
2. Earn/Share 1977-06 Earnings per share
3. Debt/Price 1979-06 Debt to price
4. Divd/Price 1979-06 Dividend to price
5. Mcap 1981-03 Market capitalization, prev. fiscal year
6. Earn/Price 1982-08 Earnings to price
7. Ret, 36-12 1985-07 Cum. return, months [−36, − 12)

8. AvgSpread 1986-12 Mean bid-ask spread
9. Assets/Mcap 1988-07 Assets to market cap
10. Levrg 1988-06 Leverage
11. Levrg/Price 1988-06 Leverage to price
12. Sales/Cash 1989-11 Sales to cash
13. LtCF 1989-11 Long-term cash flow
14. CurrRatio 1989-11 Current ratio
15. %∆CurrRatio 1989-11 Perc. change in current ratio
16. %∆QuickRatio 1989-11 Perc. change in quick ratio
17. %∆[Sales/Invtry] 1989-11 Perc. change in sales to inventory
18. QuickRatio 1989-11 Quick ratio
19. Sales/Invtry 1989-11 Sales to inventory
20. Sales/Recv 1989-11 Sales to receivables
21. Ret, 1-0 1990-07 Return, month [−1, 0)

22. Ret, 12-1 1990-07 Cum. return, months [−12, − 1)

23. BkVal 1992-06 Book value
24. MonthlyMcap 1992-06 Market cap, prev. month
25. Sales/Price 1992-06 Sales to price
26. %∆[Deprc/PP&E] 1992-09 Perc. change in depreciation to PP&E
27. D&A/Assets 1992-09 D&A to assets
28. Deprc/PP&E 1992-09 Depreciation to PP&E

Table 1a. List of Predictors. List of variables that predict the cross-section of
expected returns that have been documented in the academic literature sometime on
or after May 1973. Predictors are constructed using data from CRSP and Compu-
stat. Name: The name for the predictor used throughout this paper. P. Date: The
month of publication for the first academic paper about each predictor. Description:
A description of how predictor is constructed for each stock.
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Name P. Date Description
29. Ret, 6-1 1993-03 Cum. return, months [−6, − 1)

30. %∆Sales 1994-12 Perc. change in sales
31. OpAccr 1996-07 Operating accruals
32. CapitalTOver 1996-07 Capital turnover
33. RetOnEquity 1996-07 Return on equity
34. KaplanZingales 1997-02 Kaplan-Zingales index
35. %∆[∆Sales/∆Invtry] 1997-04 Perc. change in ∆Sales to ∆Inventory
36. %∆[∆Sales/∆Recv] 1997-04 Perc. change in ∆Sales to ∆Receivables
37. %∆[∆Sales/∆XG&A] 1997-04 Perc. change in ∆Sales to ∆XG&A
38. %∆[∆GrMgn/∆Sales] 1998-01 Perc. change in ∆Gross margin to ∆Sales
39. LagTOver 1998-09 Lagged turnover
40. Adj[BkVal/Mcap] 2000-02 Ind. adjusted book-to-market ratio
41. AdjMcap 2000-02 Ind. adjusted market cap
42. SdTOver 2001-01 Std. deviation of daily turnover
43. AdvertRate/Ret 2001-12 Advertising expense rate to returns
44. R&D/Mcap 2001-12 R&D to market cap
45. R&D/Sales 2001-12 R&D to sales
46. Advert/Mcap 2001-12 Advertising expense to market cap
47. ∆Invtry/Assets 2002-06 Inventory changes to assets
48. OpCF/Price 2004-04 Operating cash flow to price
49. Invmt/Lag[AvgInvmt] 2004-12 Investment to trailing 3 years average
50. NetOpAssets/Sales 2004-12 Net operating assets to lagged sales
51. %∆BkVal 2005-09 Perc. change in book value
52. %∆LtDebt 2005-09 Perc. change in long-term debt
53. Price-52WkHi 2005-11 Closeness to previous 52-week high
54. IdioVol 2006-02 Idiosyncratic volatility
55. TotVol 2006-02 Total volatility
56. ε%∆Mcap 2006-08 Residual perc. change in market cap

Table 1b. List of Predictors, Ctd. List of variables that predict the cross-section
of expected returns that have been documented in the academic literature sometime
on or after May 1973. Predictors are constructed using data from CRSP and Com-
pustat. Name: The name for the predictor used throughout this paper. P. Date: The
month of publication for the first academic paper about each predictor. Description:
A description of how predictor is constructed for each stock.
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Name P. Date Description
57. NetExtnlFin/Assets 2006-10 Net external financing to assets
58. Beta 2006-11 Rolling CAPM beta
59. NetPO/Price 2007-04 Net payouts to price
60. PO/Price 2007-04 Payouts to price
61. NetPO 2007-04 Net payout ratio
62. RetOnInvstCap 2007-06 Return on invested capital
63. %∆Shares 2008-04 Perc. change in shares outstanding
64. ProfMgn 2008-05 Profit margin
65. AdjProfMgn 2008-05 Ind. adjusted profit margin
66. RetOnOpAssets 2008-05 Return on net operating assets
67. AssetTOver 2008-05 Asset turnover
68. AdjAssets 2008-05 Ind. adjusted total assets
69. %∆InvmtX 2008-07 Perc. change in investments (Xing)
70. %∆Invmt 2008-08 Perc. change in investments
71. ∆AdjShares 2008-08 Change in split-adjusted shares outstanding
72. RetOnCash 2009-01 Return on cash
73. Tangibility 2009-04 Asset tangibility
74. ∆AdjTOver 2009-10 Change in market-adjusted turnover
75. UnexplVlm 2009-10 Standardized unexplained volume
76. RetOnAssets 2010-05 Return on assets
77. OpLevrg 2011-01 Operating leverage
78. MaxRet 2011-01 Max monthly return during prev. year
79. FreeCF 2011-05 Free cash flow
80. R&Dcapital 2011-09 R&D capital
81. %∆Invtry 2012-01 Perc. change in inventory
82. Ret, 12-6 2012-03 Cum. return, months [−12, − 6)

83. CashHldgs 2012-04 Cash holdings

Table 1c. List of Predictors, Ctd. List of variables that predict the cross-section
of expected returns that have been documented in the academic literature sometime
on or after May 1973. Predictors are constructed using data from CRSP and Com-
pustat. Name: The name for the predictor used throughout this paper. P. Date: The
month of publication for the first academic paper about each predictor. Description:
A description of how predictor is constructed for each stock.
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Avg Sd Avg Sd Avg Sd
BetaSq −0.05 2.29 Ret, 6-1 0.09 2.52 NetExtnlFin/Assets −0.11 0.58
Earn/Share −0.02 2.31 %∆Sales −0.22 0.87 Beta 0.06 1.74
Debt/Price 0.06 1.45 OpAccr −0.11 0.72 NetPO/Price 0.06 1.30
Divd/Price 0.04 1.77 CapitalTOver 0.06 0.97 PO/Price 0.04 1.07
Mcap −0.22 1.79 RetOnEquity −0.07 2.16 NetPO 0.00 0.55
Earn/Price 0.05 2.11 KaplanZingales −0.11 0.94 RetOnInvstCap 0.04 1.27
Ret, 36-12 −0.30 1.78 %∆[∆Sales/∆Invtry] 0.06 0.49 %∆Shares 0.11 0.39
AvgSpread 0.17 1.91 %∆[∆Sales/∆Recv] 0.08 0.54 ProfMgn −0.18 1.52
Assets/Mcap 0.21 1.85 %∆[∆Sales/∆XG&A] −0.06 0.57 AdjProfMgn 0.13 1.00
Levrg −0.09 1.38 %∆[∆GrMgn/∆Sales] 0.06 0.60 RetOnOpAssets 0.02 0.82
Levrg/Price 0.01 1.59 LagTOver 0.11 2.50 AssetTOver 0.23 1.01
Sales/Cash 0.02 1.40 Adj[BkVal/Mcap] 0.29 0.93 AdjAssets 0.11 0.56
LtCF 0.10 1.97 AdjMcap −0.11 1.44 %∆InvmtX −0.10 0.49
CurrRatio 0.02 1.28 SdTOver 0.10 1.85 %∆Invmt −0.28 0.88
%∆CurrRatio −0.14 0.60 AdvertRate/Ret 0.22 1.01 ∆AdjShares −0.07 1.10
%∆QuickRatio −0.12 0.60 R&D/Mcap 0.24 1.73 RetOnCash −0.01 0.90
%∆[Sales/Invtry] 0.09 0.44 R&D/Sales −0.06 2.02 Tangibility −0.10 0.79
QuickRatio 0.03 1.56 Advert/Mcap 0.40 1.24 ∆AdjTOver 0.21 0.38
Sales/Invtry 0.01 0.87 ∆Invtry/Assets −0.11 0.54 UnexplVlm 0.30 0.56
Sales/Recv 0.06 0.73 OpCF/Price 0.22 1.12 RetOnAssets 0.06 1.05
Ret, 1-0 −0.47 2.19 Invmt/Lag[AvgInvmt] 0.01 0.47 OpLevrg 0.06 0.55
Ret, 12-1 0.12 2.57 NetOpAssets/Sales 0.00 0.89 MaxRet −0.23 1.15
BkVal 0.33 1.44 %∆BkVal −0.10 0.77 FreeCF 0.18 1.01
MonthlyMcap −0.31 2.11 %∆LtDebt −0.09 0.43 R&Dcapital 0.09 1.30
Sales/Price 0.34 1.52 Price-52WkHi −0.11 2.43 %∆Invtry −0.04 0.44
%∆[Deprc/PP&E] −0.01 0.48 IdioVol −0.10 1.79 Ret, 12-6 0.14 0.74
D&A/Assets 0.23 1.24 TotVol −0.10 1.89 CashHldgs 0.02 0.98
Deprc/PP&E 0.09 1.80 ε%∆Mcap −0.12 1.27

Table 2. Estimated β̂i,t. Summary statistics describing the realized returns of zero-
cost portfolios based on each predictor as defined in Equation (2). Sample Period: May
1973 to May 2015. Units: % per month. Sparkline Plots: time series for each predictor
on a common scale, −3% < β̂i,t < 3%. Every time series ends in May 2015. Predictors
discovered later have shorter sparkline plots. Red indicated negative returns.
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Avg Sd Avg Sd Avg Sd
BetaSq 2.16 1.26 Ret, 6-1 2.31 2.84 NetExtnlFin/Assets 0.52 0.17
Earn/Share 1.48 0.92 %∆Sales 0.57 0.34 Beta 1.13 0.62
Debt/Price 0.92 0.68 OpAccr 0.43 0.25 NetPO/Price 0.84 0.26
Divd/Price 1.20 0.66 CapitalTOver 0.69 0.25 PO/Price 0.72 0.20
Mcap 1.21 0.53 RetOnEquity 1.35 0.84 NetPO 0.27 0.10
Earn/Price 1.34 0.85 KaplanZingales 0.58 0.33 RetOnInvstCap 0.84 0.27
Ret, 36-12 1.10 0.59 %∆[∆Sales/∆Invtry] 0.24 0.13 %∆Shares 0.22 0.06
AvgSpread 1.23 0.47 %∆[∆Sales/∆Recv] 0.27 0.14 ProfMgn 1.04 0.47
Assets/Mcap 1.22 0.87 %∆[∆Sales/∆XG&A] 0.34 0.09 AdjProfMgn 0.62 0.37
Levrg 0.84 0.69 %∆[∆GrMgn/∆Sales] 0.36 0.18 RetOnOpAssets 0.51 0.19
Levrg/Price 1.01 0.76 LagTOver 1.66 1.13 AssetTOver 0.66 0.37
Sales/Cash 0.84 0.66 Adj[BkVal/Mcap] 0.62 0.35 AdjAssets 0.35 0.13
LtCF 1.18 1.02 AdjMcap 0.79 0.83 %∆InvmtX 0.31 0.12
CurrRatio 0.74 0.63 SdTOver 1.22 0.81 %∆Invmt 0.56 0.17
%∆CurrRatio 0.30 0.22 AdvertRate/Ret 0.58 0.27 ∆AdjShares 0.74 0.31
%∆QuickRatio 0.30 0.23 R&D/Mcap 1.10 0.56 RetOnCash 0.60 0.23
%∆[Sales/Invtry] 0.22 0.12 R&D/Sales 1.23 0.72 Tangibility 0.50 0.21
QuickRatio 0.90 0.81 Advert/Mcap 0.83 0.37 ∆AdjTOver 0.24 0.11
Sales/Invtry 0.53 0.25 ∆Invtry/Assets 0.33 0.07 UnexplVlm 0.38 0.07
Sales/Recv 0.48 0.24 OpCF/Price 0.73 0.31 RetOnAssets 0.71 0.10
Ret, 1-0 1.19 0.82 Invmt/Lag[AvgInvmt] 0.27 0.13 OpLevrg 0.36 0.05
Ret, 12-1 1.49 0.94 NetOpAssets/Sales 0.60 0.23 MaxRet 0.86 0.15
BkVal 0.99 0.61 %∆BkVal 0.42 0.22 FreeCF 0.70 0.16
MonthlyMcap 1.29 0.58 %∆LtDebt 0.23 0.09 R&Dcapital 0.83 0.21
Sales/Price 1.00 0.67 Price-52WkHi 1.61 0.94 %∆Invtry 0.22 0.04
%∆[Deprc/PP&E] 0.23 0.14 IdioVol 1.23 0.55 Ret, 12-6 0.54 0.19
D&A/Assets 0.83 0.44 TotVol 1.30 0.51 CashHldgs 0.69 0.19
Deprc/PP&E 1.03 0.92 ε%∆Mcap 0.91 0.42

Table 3. Forecasted v̄i,t. Summary statistics describing the one-month-ahead fore-
casts for v̄i,t. We first estimate the in-sample parameter v̂2

i,t separately each month
using the procedure described in Proposition 2.2. We then make one-month-ahead
forecasts by fitting an AR(3) model to squared values in months {t− 60, . . . , t− 1}.
Sample Period: May 1973 to May 2015. Units: % per month. Sparkline Plots: time
series of each predictor-specific forecasts on a common scale, 0% < v̄i,t < 6%. Every
time series ends in May 2015. Predictors discovered later have shorter sparkline plots.

23



3.2 Anomaly Baserate
We first use this data to create estimates v̂2

i,t for σ2 each month for all previously discovered
predictors, i ∈ It. We then use the time series associated with each predictor to make
one-month-ahead forecasts v̄2

i,t for use when evaluating the next predictor you encounter.

Predictor-Specific Estimates. We start by creating separate estimates for σ2 using every
previously discovered predictor in a given month. For each month t such that i ∈ It, we
first solve the optimization problem outlined in Proposition 2.2 separately in each month
t′ ∈ {t−60, . . . , t−1}. This generates a 60-month time series of v̂2

i,t′ values prior to each forecast
month t. We will then denote the one-month-ahead forecasted value by v̄2

i,t to distinguish it
from an in-sample estimate. And, we begin making forecasts for each predictor in the month
they were first published.

To make each forecast, we fit an AR(3) model to these 60 observations prior to month t:

v̂2
i,t′ = ǎi +

∑3
`=1 b̌i,` · v̂2

i,t′−` + ěi,t′ for months t′ = (t− 60), . . . , (t− 1).

Above, ǎi and {b̌i,`}`=1,2,3 denote the coefficients associated with the ith predictor, and ěi,t′
represents the regression residual in month t′. Note that these coefficients will be different for
each forecast date t; we have just suppressed the t subscripts for clarity. We then compute
one-month-ahead forecasts for the prior variance by applying these estimated coefficients to
the final three months of data prior to month t:

v̄2
i,t

def
= Et−1[v̂2

i,t] = ǎi +
∑3

`=1 b̌i,` · v̂2
i,t−`.

Table 3 provides summary statistics describing these forecasted values v̄i,t. The sparkline
plots represent the time series for each predictor i = 1, . . . , 83 on a common scale, 0% < v̄i,t <

6%. Every time series ends in May 2015, so shorter sparkline plots correspond to predictors
that were discovered later in our sample period. The sparkline plots provide evidence that
predictor strengths were drawn from a common distribution. Predictors in our sample are
constructed in very different ways using entirely different datasets—e.g., compare ‘Sales/Cash’
and ‘Ret , 12-1’. Nevertheless, notice that these two predictors generate similar point estimates
for v̄i,t each month. And, this is true even though, when you look at Table 2, the β̂i,t time-series
for each of these predictors is very different.

Combining Results. If you only had past experience with one predictor, i = 1, then you
could only use the forecasted value of v̄2

1,t to inform your prior beliefs about the likelihood
of encountering a tradable anomaly. But, if you have seen It > 1 different cross-sectional
predictors in past research seminars, then you can combine these various signals about σ2 to
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#Obs Avg Sd 1% 25% 50% 75% 99%

506 1.63 0.95 0.74 1.12 1.36 2.05 6.05

Table 4. Forecasted v̄t. Summary statistics describing the sample average of the
rolling one-month-ahead forecasts for v̄i,t. We first estimate the in-sample parameter
v̂i,t separately for each previously discovered predictor each month as described in
Proposition 2.2. We then make our one-month-ahead forecasts by fitting an AR(3)
model to squared values in months {t − 60, . . . , t − 1}. Finally, we combine these
forecasts for all previously discovered predictors to compute v̄t as in Equation (14).
Units: % per month. Sample Period: May 1973 to May 2015. Sparkline Plot: aggregate
time series during sample period. It corresponds to Figure 1 in miniature.

generate a more precise forecast:

v̄2
t

def
= 1

It
·∑i∈It v̄

2
i,t. (14)

This combined forecast, v̄t, represents your best guess about which prior variance of predictor
strengths to use when evaluating predictors in month t—i.e., your best guess about the true
value σ2 to use in Equation (8)—based on your past experience with It other predictors. So,
as the number of previously discovered predictors grows, we will be getting more and more
signals about the anomaly baserate that we should be using going forward. By analogy, a
seasoned researcher who has seen many candidate predictors come and go will have more
signals with which to inform his beliefs than a junior researcher with less experience.

Table 4 provides summary statistics describing this combined forecast each month, v̄t.
And, Figure 1 plots the v̄t time-series. The yearly average forecasted value for the prior
volatility peaked in the year 2000 at 5.20% per month, and it reached its low point in 1990
at 0.77% per month. While Figure 1 reveals a large spike in v̄t at the time of the DotCom
crash, this variable is not just a crash indicator. For example, note that there is no spike
in predictor volatility around the 1987 crash. We estimate that v̄Oct87 = 1.17% per month,
which is much lower than the average value over the entire sample period, 1.63% per month.

Macroeconomic Correlations. Of course, there are numerous macroeconomic variables that
forecast returns. So, to make sure that we are not just repackaging and rebranding one of
these existing variables, we run a suite of regressions. Specifically, we regress our forecast for
v̄t in month t on lagged values v̄t−1, v̄t−2, and v̄t−3 as well as values of other macroeconomic
variables: the level of the VIX index, realized volatility, a smoothed time-series of log GDP
growth, the term spread, the NBER recession indicator, and the value-weighted market return.
Table 5 provides summary statistics for each of these macroeconomic variables. Note that we
do not have data on the VIX or the term spread for our entire sample period.

25



VIX t RVol t dGDP t tSpd t Rcsnt RMkt,t

(1) (2) (3) (4) (5) (6)

Avg 19.89 14.34 1.53 1.81 0.14 0.95
Sd 7.59 8.40 0.94 1.15 0.35 4.59

#Obs 306 506 506 506 402 506

Table 5. Macroeconomic Variables. Summary statistics for macroeconomic fore-
casting variables. Sample Period: May 1973 to May 2015. VIX t: level of the VIX
index. RVol t: realized volatility on value-weighted market index. dGDP t: smoothed
value of log GDP growth. tSpd t: the term spread. Rcsnt: NBER indicator for whether
a recession is taking place. RMkt,t: return on the CRSP value-weighted market index.

We then estimate the relationship between each of these forecasting variables and our
estimate of v̄t using regressions of the form

v̄t = â+
∑3

`=1 b̂` · v̄t−` + ĉ>Zt + êt (15)

where Zt denotes a vector of macroeconomic variables in month t. Table 6 reports the
results of these regression specifications. Each column reports the results of a separate
regression. The table reveals that, while our forecasts for the prior volatility of predictor size
are sometimes related to these well-known macroeconomic variables, they are certainly not
subsumed by them. For example, the three lags of v̄t explain 55% of the variation whereas
the VIX explains only 2%. And, once other macroeconomic variables are included, the VIX
is no longer significant. In other words, v̄t is not just a proxy for the VIX. We are going to be
looking at volatility-managed portfolios. But, instead of looking at the volatility of returns
like in Moreira and Muir (2017), we are looking at the volatility of your priors.

4 Trading Strategy
In the last part of the analysis, we show how to use the forecasted value for σ2 created using
each predictor, v̄2

i,t, to combine different predictors into a single trading strategy. We start
with a benchmark strategy that does not consider the prevailing anomaly baserate. Then, we
show how using the anomaly baserate boosts this strategy’s performance.

4.1 Portfolio Construction
Here is how we construct both the benchmark and the baserate-adjusted trading strategies
that we are interested in.
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Dependent Variable: v̄t
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Const 0.41??? 1.14??? 1.32??? 1.64??? 1.46??? 1.50??? 1.60??? 0.83??? 0.66?? 0.29?? 0.36
(0.06) (0.18) (0.08) (0.04) (0.08) (0.10) (0.05) (0.19) (0.32) (0.14) (0.23)

v̄t−1 0.57??? 0.56??? 0.55???
(0.04) (0.05) (0.06)

v̄t−2 0.35??? 0.34??? 0.33???
(0.05) (0.05) (0.06)

v̄t−3 −0.18??? −0.19??? −0.19???
(0.04) (0.05) (0.06)

VIX t 0.02?? −0.03 −0.01
(0.01) (0.02) (0.01)

RVol t 2.14??? 3.27??? 6.53??? 1.34??? 2.48??
(0.49) (0.66) (1.42) (0.47) (1.05)

RMkt,t −0.67 1.56 1.44 0.72 0.77
(0.92) (1.20) (1.58) (0.84) (1.14)

dGDP t 11.43?? 15.53? 40.06??? −1.07 0.80
(4.47) (8.45) (12.97) (5.97) (9.60)

tSpd t 0.01 −0.00 0.01 −0.01 −0.02
(0.04) (0.04) (0.05) (0.03) (0.04)

Rcsnt 0.18 −0.01 0.08 −0.09 −0.12
(0.12) (0.19) (0.25) (0.13) (0.18)

Adj R2 0.55 0.02 0.03 −0.00 0.01 −0.00 0.00 0.05 0.09 0.54 0.53

#Obs 503 306 506 506 506 402 506 402 306 402 306

Table 6. Macroeconomic Correlations. Relationship between the forecasted v̄t
in month t and six macroeconomic variables. Sample Period: May 1973 to May 2015.
VIX t: level of the VIX index. RVol t: realized volatility on value-weighted market index.
dGDP t: smoothed value of log GDP growth. tSpd t: the term spread. Rcsnt: NBER
indicator for whether a recession is taking place. RMkt,t: return on the CRSP value-
weighted market index. Each column represents the results of a separate regression
of the form described in Equation (15). Numbers in parentheses are standard errors.
Significance: ? = 10%, ?? = 5%, and ??? = 1%.
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Predictor-Specific Returns. Both strategies are going to hold positions in predictor-specific
zero-cost portfolios that mirror cross-sectional regression coefficients. The realized return for
the portfolio associated with the ith predictor in month t is just the estimate for β̂i,t:

Ri,t
def
= β̂i,t = 1

Nt
·∑n (Rn,t − µ̂t) ·Xn,i,t−1. (16)

In other words, Ri,t is the realized return to a zero-cost portfolio that is long stocks which
had high Xn,i,t−1 values and short stocks which had low Xn,i,t−1 values. In Equation (16), µ̂t
denotes the mean excess return of all stocks in month t.

Of course, as emphasized in the introduction, it is next month’s realized returns that
matter for any trading strategy. So, to make a one-month-ahead forecast of β̂i,t, we first fit
an AR(3) model to the previous five years of monthly data, t′ ∈ {(t− 60), . . . , (t− 1)}:

β̂i,t′ = ǎi +
∑3

`=1 b̌i,` · β̂i,t′−` + ěi,t′ for months t′ = (t− 60), . . . , (t− 1). (17)

Above, ǎi and {b̌i,`}`=1,2,3 denote estimated coefficients, and ěi,t′ represents the regression
residual in month t′. Note that these coefficients will be different for each forecast date t; we
have just suppressed the t subscripts for clarity. We then compute one-month-ahead forecasts
by applying these estimated coefficients to the final three months of data prior to month t:

β̄i,t
def
= Et−1[β̂i,t] = ǎi +

∑3
`=1 b̌i,` · β̂i,t−`.

If the resulting forecast is very different from zero, |β̄i,t| � 0, then we say that the ith
predictor is a strong signal. By contrast, if |β̄i,t| ≈ 0, then we say it is a weak signal.

Benchmark Strategy. Our benchmark strategy only uses these one-month-ahead forecasts
to decide whether or not to invest in the ith predictor in month t. It explicitly does not take
into consideration any information about the anomaly baserate. It only looks at the data; it
does not consider the ex-ante probability that the ith predictor is a tradable anomaly. Let
At denote the set of ‘active’ predictors for the benchmark strategy in month t:

At def
=
{
i ∈ It :

∣∣β̄i,t
∣∣ > threshold

}
.

This is the collection of previously discovered anomalies whose past performance exceeds some
minimum threshold. In the analysis below, we are going to set the minimum performance
threshold to 1% per month. And, the dotted line in Figure 3 reports the number of active
predictors each month when using this 1%-per-month threshold level.

To account for the fact that some predictors are contrarian—e.g., the predictor ‘Ret,
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1-0 ’, which represents short-run reversals, delivers negative returns on average—we define
an indicator variable direction i ∈ {−1, + 1} that flips the sign of the benchmark portfolio’s
holdings for all contrarian strategies. So, since there are return reversals at the one-month
horizon and momentum at the 12-month horizon, we have that directionRet, 1-0 = −1 while
directionRet, 12-1 = +1. Note that this direction indicator is defined only once at the time the
predictor is discovered.

The benchmark strategy holds an equal-weighted position in all active predictors, i ∈ At,
in month t. Thus, its raw returns are given by:

RAt,t
def
= 1
|At| ·

∑
i∈At Ri,t · direction i. (18)

If you want these returns to reflect the minimum performance threshold, you can also compute
an analogous ‘net’ return:

1
|At| ·

∑
i∈At (Ri,t · direction i − threshold).

We will study both kinds of returns in various contexts in the analysis below. If a strategy
has positive raw returns but negative net returns, then it is not something that is tradable.
The strategy is generating phantom returns that will likely disappear once you start trading.

Baserate Adjustment. Now, suppose that you wanted to adjust the holdings of this bench-
mark strategy to account for the prevailing anomaly baserate. Imagine that you forecast a
large positive realized return in month t for the ith predictor, β̄i,t � 0. If the forecasted
value of v̄2

i′,t was small in month t for all other predictors i′ 6= i and the realized returns for
all predictors i ∈ It were drawn from a common distribution, then the ith predictor’s true
magnitude is likely small as well, β?i,t ≈ 0. And, even though your forecasted value represents
a strong signal, you should still be reluctant to trade on it.

But, exactly how reluctant? How much should we revise next month’s forecast? We can
return to the statistical framework outlined in Section 2 to answer this question. Suppose
that your forecast for the ith predictor’s realized returns next month is a noisy signal about
the true realized returns next month, β̄i,t ∼ Normal[β?i,t, N · se2

i ], where se2
i > 0 represents

the typical size of your forecast error for the ith predictor. Then, if your prior beliefs are that
realized returns for each predictor are drawn from a Normal distribution each month with
prior variance σ2 > 0, β?i,t ∼ Normal[0, σ2], then your best guess about the realized returns
for the ith predictor in month t after calculating your return forecast would be:

E[Ri,t|β̄i,t, se2
i , σ

2] =
(
1 + se2

i /σ
2
)−1× β̄i,t.
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This formula is just an application Bayesian-normal learning. And, you could use it to revise
our forecast for next month’s realized returns if you also had forecasts for se2

i and σ2.
Forecasting se2

i in month t is easy enough. You can fit an AR(3) model to the squared
residuals from the β̂i,t-forecasting regression in Equation (17) in each 60-month window:

ě2
i,t′ = η̂i +

∑3
`=1 θ̂i,` · ě2

i,t′−` + ω̂i,t′ for months t′ = (t− 60), . . . , (t− 1).

Above, η̂i and {θ̂i,`}`=1,2,3 denote coefficients associated with the ith predictor for use when
forecasting month t, and ω̂i,t′ represents the regression residual in month t′. Note that these
coefficients will be different for each forecast date t; we have just suppressed the t subscripts
for clarity. You can then forecast the standard error in the following month by applying these
estimated coefficients to the final three months of data prior to month t:

s̄e2
i,t

def
= Et−1[ě2

i,t] = η̂i +
∑3

`=1 θ̂i,` · ě2
i,t−`.

Computing a forecast of prior variance for use when evaluating the ith predictor in month
t requires a bit more subtlety. You do not just want to use the average value of v̄2

i,t for
all previously discovered predictors, i ∈ It, because the ith predictor itself is a previously
discovered predictor. You cannot use data about the ith predictor to inform the prior you use
when evaluating this data. So, when adjusting the forecast of the ith predictor, we compute
the average prior-variance forecast for all other previously discovered predictors i′ ∈ It \ i:

v̄2
¬i,t

def
= 1

It−1
·∑i′∈It\i v̄

2
i′,t.

This means that you are going to be using a slightly different prior volatility when adjusting
the forecast of each predictor:

β̄σi,t =
(
1 + s̄e2

i,t/v̄
2
¬i,t
)−1× β̄i,t.

It also means that you cannot calculate the baserate adjustment unless you have past expe-
rience with at least two other predictors. In other words, you need It ≥ 3. For this reason,
even though our data sample starts in May 1973, all of the trading-strategy results in this
section will compare the benchmark strategy to a baserate-adjusted strategy starting in June
1979, the publication date of the third predictor in Table 1a.

Economic Interpretation. We have constructed the benchmark strategy defined in Equa-
tion (18) so that it does not require any information about the estimated values of v̄2

i,t. But,
that does not mean this strategy is agnostic about what the anomaly baserate actually is. In
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Dependent Variable: Ri,t

1979-2015 1979-1997 1998-2015
(1) (2) (3) (4) (5) (6)

Const 0.55??? 0.60??? 0.41??? 0.46??? 0.56??? 0.60???
(0.06) (0.06) (0.11) (0.11) (0.07) (0.07)

β̄i,t 0.23??? 0.42??? 0.21???
(0.02) (0.04) (0.02)

β̄σi,t 0.30??? 0.65??? 0.27???
(0.03) (0.07) (0.03)

Adj . R2 0.01 0.01 0.03 0.03 0.01 0.01

#Obs 15,330 3,103 12,227

Table 7. Predictive Power. Panel regressions showing that you can boost your
predictive power by adjusting your return forecasts for the prevailing anomaly baserate.
Columns (1) and (2) use a monthly panel data set that starts in June 1979, ends in
May 2015, and includes one observation each month for each previously discovered
predictor, i ∈ It. So, there were 4 observations in June 1979 and 83 observations in
May 2015. Columns (3)-(6) study sub-samples of the same data set. Columns (1),
(3), and (5) report the estimated coefficients from regressing each predictor’s realized
returns on the raw return forecast, Ri,t = â+ b̂ · β̄i,t + êi,t. Columns (2), (4), and (6)
report analogous results using the baserate-adjusted forecast, Ri,t = â+ b̂ · β̄σi,t + êi,t.
Const has units of % per month, and the slope coefficients are dimensionless. Numbers
in parentheses are standard errors. Significance: ? = 10%, ?? = 5%, and ??? = 1%.

fact, the benchmark strategy makes a strong implicit assumption about the anomaly baserate.
By using the benchmark strategy, you are implicitly saying that you think extremely strong
cross-sectional predictors are very common:

lim
v̄2
¬i,t→∞

β̄σi,t = β̄i,t.

By contrast, if your past experience tells you that there are no cross-sectional predictors,
then you will discard all evidence to the contrary:

lim
v̄2
¬i,t→0

β̄σi,t = 0.

This is the sense in which believing that σ2 = 0 is equivalent to having dogmatic priors. You
have to take a stand on your priors in order to drawn an inference from a test result. You
cannot punt on this issue. And, ignoring the problem is a really strong stance.

Predictive Power.What is more, before looking at any trading-strategy returns, we can run
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Figure 3. Number of Predictors. Shaded Region: number of previously discovered
predictors, It. Dotted Line: number of predictors used in the benchmark strategy in
month t, At, when the minimum-performance threshold is set to 1% per month. Solid
Line: number of predictors used in the baserate-adjusted strategy in month t, Aσt ,
when using the same threshold. Sample Period: June 1979 to May 2015.

a simple panel regression to show that it helps to adjust your predictor-specific forecasts for the
prevailing anomaly baserate. Consider a panel data set with predictor×month observations.
The data set starts in June 1979 and ends in May 2015. And, it includes one observation
each month for each previously discovered predictor, i ∈ It. So, there were 4 observations in
June 1979 and 83 observations in May 2015. We first use this data to regress the realized
returns for each predictor i in month t on the benchmark forecasts, β̄i,t:

Ri,t = â+ b̂ · β̄i,t + êi,t.

Then, we run the exact same regression, only this time using the baserate-adjusted forecasts,
β̄σi,t, as the right-hand-side variable:

Ri,t = â+ b̂ · β̄σi,t + êi,t.

Table 7 reports the results from these two regressions. The first two columns show that
adjusting your one-month-ahead return forecasts for the anomaly baserate boosts your predic-
tive power from b̂ = 0.23 to b̂ = 0.30. In other words, shrinking your return forecasts towards
zero improves your performance. In the remaining four columns, we split our sample period
in half and show that this result holds in both sample periods. The amount of predictability
is higher on average for each predictor earlier in our sample period. And, this is exactly what
you would expect if many of the recently discovered predictors that constitute the anomaly
zoo were spurious. But, adjusting your forecasts for the prevailing anomaly baserate always
results in a statistically significant increase in predictive power.
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At Aσt At Aσt At Aσt
BetaSq Ret, 6-1 0.30 0.19 NetExtnlFin/Assets 0.00 0.00
Earn/Share %∆Sales 0.82 0.51 Beta 0.06 0.00
Debt/Price 0.40 0.10 OpAccr 0.61 0.39 NetPO/Price 0.30 0.00
Divd/Price 0.63 0.11 CapitalTOver 0.22 0.08 PO/Price 0.36 0.01
Mcap 0.83 0.59 RetOnEquity 0.94 0.76 NetPO 0.00 0.00
Earn/Price 0.16 0.14 KaplanZingales 0.03 0.01 RetOnInvstCap 0.72 0.00
Ret, 36-12 0.75 0.69 %∆[∆Sales/∆Invtry] 0.11 0.03 %∆Shares 0.00 0.00
AvgSpread 0.07 0.00 %∆[∆Sales/∆Recv] 0.21 0.17 ProfMgn 0.92 0.00
Assets/Mcap 0.60 0.32 %∆[∆Sales/∆XG&A] 0.00 0.00 AdjProfMgn 0.01 0.00
Levrg 0.01 0.00 %∆[∆GrMgn/∆Sales] 0.00 0.00 RetOnOpAssets 0.17 0.00
Levrg/Price 0.27 0.06 LagTOver 0.20 0.00 AssetTOver 0.84 0.17
Sales/Cash 0.08 0.05 Adj[BkVal/Mcap] 0.92 0.91 AdjAssets 0.00 0.00
LtCF 0.01 0.00 AdjMcap 0.87 0.84 %∆InvmtX 0.15 0.00
CurrRatio 0.08 0.02 SdTOver 0.29 0.09 %∆Invmt 0.87 0.58
%∆CurrRatio 0.36 0.32 AdvertRate/Ret 0.89 0.81 ∆AdjShares 0.00 0.00
%∆QuickRatio 0.00 0.00 R&D/Mcap 0.91 0.42 RetOnCash 0.00 0.00
%∆[Sales/Invtry] 0.05 0.00 R&D/Sales 0.28 0.06 Tangibility 0.00 0.00
QuickRatio 0.09 0.03 Advert/Mcap 0.98 0.95 ∆AdjTOver 0.00 0.00
Sales/Invtry 0.02 0.00 ∆Invtry/Assets 0.44 0.39 UnexplVlm 0.98 0.86
Sales/Recv 0.29 0.16 OpCF/Price 0.08 0.00 RetOnAssets 1.00 0.47
Ret, 1-0 0.89 0.60 Invmt/Lag[AvgInvmt] 0.17 0.03 OpLevrg 1.00 0.61
Ret, 12-1 0.17 0.03 NetOpAssets/Sales 0.17 0.03 MaxRet 0.83 0.00
BkVal 0.81 0.48 %∆BkVal 0.87 0.73 FreeCF 0.86 0.00
MonthlyMcap 1.00 0.34 %∆LtDebt 0.31 0.23 R&Dcapital 0.96 0.00
Sales/Price 0.93 0.34 Price-52WkHi 0.87 0.00 %∆Invtry 0.76 0.55
%∆[Deprc/PP&E] 0.00 0.00 IdioVol 0.87 0.01 Ret, 12-6 0.68 0.00
D&A/Assets 0.78 0.67 TotVol 0.86 0.00 CashHldgs 0.08 0.00
Deprc/PP&E 0.52 0.09 ε%∆Mcap 0.53 0.21

Table 8. Predictor Selection. At: fraction of all post-discovery months that predic-
tor was held by benchmark strategy. Aσt : same fraction for baserate-adjusted strategy.
Sparkline plots: x-axis is time in months. All time series end in May 2015. Predictors
discovered later have shorter sparkline plots. If predictor held by benchmark strategy,
then there is a bar on the bottom half of the plot; if it is held by the baserate-adjusted
strategy, then there is a bar on the top half. Sample period: June 1979 to May 2015.
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Baserate-Adjusted Strategy. We modify the benchmark trading strategy to account for
changes in the anomaly baserate by choosing which predictors to invest in based on β̄σi,t rather
than β̄i,t. Let Aσt denote the set of active predictors for the baserate-adjusted strategy in
month t:

Aσt
def
=
{
i ∈ It :

∣∣β̄σi,t
∣∣ > threshold

}
.

The solid line in Figure 3 reports the number of active predictors each month for the baserate-
adjusted strategy when the threshold is set to 1% per month. Because the baserate-adjusted
strategy is using the same return forecasts as the benchmark strategy only revised toward
zero, the black line will always lie below the dotted line. Let RAσt ,t denote the realized return
of the benchmark-adjusted strategy at time t:

RAσt ,t
def
= 1
|Aσt |
·∑i∈Aσt

Ri,t · direction i.

Note that, because they are defined in analogous ways, if the baserate-adjusted strategy
outperforms the benchmark-adjusted strategy, then it must be because the predictors that
make up the gap between the dotted and solid lines in Figure 3 had poor returns.

Predictor Selection. Table 8 takes a more detailed look at which predictors each strategy
is holding and when. The column labeled At reports the fraction of all months following
discovery that a predictor was held in the benchmark strategy; whereas, the column labeledAσt
reports the same fraction but for the baserate-adjusted strategy. And, because the baserate-
adjusted strategy is based on return forecasts that have been revised toward zero, the fraction
in the Aσt column will always be smaller.

The sparkline plots then report precisely which months each predictor was held by each
strategy. The x-axis in each figure represents time in months. Every time series ends in
May 2015. So, predictors discovered later have shorter sparkline plots. Months in which a
predictor was held by the benchmark strategy are denoted by vertical bars on the bottom half
of each sparkline plot; whereas, months in which a predictor was held by the baserate-adjusted
strategy are denoted by vertical bars on the top half of each sparkline plot. Thus, a full bar
represents a month in which the predictor was held by both strategies, a half bar represents a
month in which the predictor was only held by the benchmark strategy, and an empty space
represents a month in which neither strategy invested in the predictor.

4.2 Realized Returns
We find that the baserate-adjusted trading strategy outperforms the benchmark trading
strategy in a way that is statistically significant, economically large, and robust to controlling
for risk-factor exposures. And, we now explore this fact in several different ways.
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Figure 4. Cumulative Returns. Solid black Line,Aσt : current value of portfolio that
started with $1 in June 1979 and continually reinvested its holdings in the baserate-
adjusted strategy. Dotted black Line, At: current value of same initial $1 portfolio
when investing in the benchmark strategy. Solid gray Line, At \ Aσt : current value of
same initial $1 portfolio when investing in only those predictors that are held by the
benchmark strategy but not the baserate-adjusted strategy. Left panel: cumulative
raw returns. Right panel: cumulative net returns after subtracting off the 1% per
month performance threshold. Red shading: regions where your portfolio would have
been worth less than $1 when following a particular strategy. Sample Period: June
1979 to May 2015.

Cumulative Returns. To quantify the performance boost that comes from incorporating
information about the anomaly baserate, we start by computing the cumulative returns to
investing $1 in both the benchmark strategy and the baserate-adjusted strategy starting in
June 1979. Figure 4 reports the total amount of money that you would have in your account
in month t if you followed either strategy, continually reinvesting any capital gains along the
way. First, look at the left panel, which shows results using raw returns. By May 2015 the
solid black line, which represents the wealth generated by the baserate-adjusted strategy is
more than four times as high as the dotted black line, which represents the wealth generated
by the benchmark strategy. When looking at raw returns, following the baserate-adjusted
strategy turns $1 in June 1979 into $671.03 in May 2015; whereas, following the benchmark
strategy leaves you with only $161.23 in May 2015. The right panel shows analogous results
using net returns based on the 1%-per-month performance threshold. After accounting for
this implementation cost, the benchmark strategy actually loses money for the first half of
the sample period. And, if we look at the predictors held by the benchmark strategy but not
the baserate-adjusted strategy—i.e., the solid gray line—we see that a strategy composed of
only these predictors would lose money throughout the sample period on net.

Performance Metrics. In Table 9, we explore the difference in performance between the
benchmark and baserate-adjusted strategies in more detail. We report both the mean and
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Benchmark Adjusted Difference
At Aσt At \ Aσt
(1) (2) (3)

E[RRaw
s,t ] 1.28 1.62 0.56

E[Rs,t] 0.29 0.68 −0.25

Sd[Rs,t] 4.50 4.75 5.36

Skew[Rs,t] 0.61 0.96 −0.16

Kurt[Rs,t] 4.14 7.83 12.56

SRs 0.22 0.50 −0.16

Max[DDs] 73.81 46.73 89.43

Pr[Inv s] 0.99 0.94 0.81

Table 9. Performance Metrics. Performance statistics for the excess returns to
three different trading strategies. Column (1): benchmark strategy, At. Column (2):
baserate-adjusted strategy, Aσt . Column (3): strategy that invests in predictors held
by the benchmark strategy but not the baserate-adjusted strategy, At \Aσt . All return
statistics quoted in % per month. E[RRaw

s,t ]: mean raw monthly return. E[Rs,t]: mean
net monthly return. Sd[Rs,t]: standard deviation of net monthly returns. Skew[Rs,t]:
skewness of net monthly returns. Kurt[Rs,t]: kurtosis of net month returns. SRs: an-
nualized Sharpe ratio using net monthly returns. Max[DDs]: maximum drawdown for
strategy based on net returns units of in % decline from peak. Pr[Inv s]: fraction of all
433 months during the sample period in which a strategy is invested in at least one
predictor. Sample period: June 1979 to May 2015.

standard deviation of each strategy’s monthly returns as well as their skewness and kurtosis.
We also report the annualized Sharpe ratio, the maximum cumulative drawdown in percent,
and the percent of all months in which each strategy is invested in at least one predictor. The
first column reveals that, after accounting for implementation costs, the annualized Sharpe
ratio of the benchmark strategy is only 0.22 during our sample period. By contrast, when we
look at the second column, we can see that the baserate-adjusted strategy has an annualized
Sharpe ratio that is more than twice as high, 0.50. And, as you would expect, this difference
is due to systematically dropping predictors from the portfolio that only seem to have strong
signals. The third column shows that the net returns of a trading strategy that only invests
in predictors that are held by the benchmark strategy but not by the benchmark-adjusted
strategy are negative. The baserate-adjusted strategy has more positive skewness, slightly
higher kurtosis, and a much lower maximum drawdown compared to the benchmark strategy.

Abnormal Returns. We next show that the performance of the baserate-adjusted strategy
is not just the result of exposure to market risk. To show this, we run a time-series regression
of the net excess returns to the baserate-adjusted strategy on the excess returns to the
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(a) Summary Statistics

Avg Sd SR

RMkt,t 0.65 4.49 0.50

(b) Regression Results

Dependent Variable: Rs,t

Benchmark Adjusted Difference
At Aσt At \ Aσt

(1) (2) (3) (4) (5) (6)

Const 0.29 0.27 0.68?? 0.67?? −0.25 −0.23
(0.27) (0.26) (0.27) (0.27) (0.27) (0.27)

RMkt,t 0.04 0.02 −0.04
(0.07) (0.06) (0.07)

Adj . R2 0.00 0.00 0.00

Table 10. Abnormal Returns. Net abnormal returns relative to the market model
for three different trading strategies: benchmark strategy, At; baserate-adjusted strat-
egy, Aσt ; set-difference strategy that invests in predictors held by the benchmark
strategy but not the baserate-adjusted strategy, At \ Aσt . RMkt,t: excess return on
the value-weighted market portfolio. (a) Summary Statistics. Mean and standard
deviation of the excess return on the market in units of % per month as well as the
annualized Sharpe ratio. (b) Regression Results. Each column reports the results
of a separate time-series regression with the net excess returns of a particular strategy
as the left-hand side variable. Const has units of % per month, and the slope coef-
ficients are dimensionless. Numbers in parentheses are Newey-West standard errors.
Statistical significance: ? = 10%, ?? = 5%, and ??? = 1%. Sample period: June 1979 to
May 2015. All regressions involve 433 monthly observations.

value-weighted market:
RAσt ,t = â+ b̂ ·RMkt,t + êt.

In the equation above, RMkt,t is the excess return on the market in month t, â is the abnormal
return to the baserate-adjusted strategy, b̂ is the slope coefficient from this time-series re-
gression, and êt is the regression residual. These data come from Kenneth French’s website.3

Column (4) in Table 10 shows that market-risk exposure does not account for the baserate-
adjusted trading strategy’s good performance. The average net return of the baserate-adjusted
strategy is 0.68% per month; and, after accounting for market-risk exposure, the net abnormal
returns to this strategy are 0.67% per month. There is hardly any difference. The columns
(2) and (6) in Table 10 replicate the same analysis using the net returns of the benchmark
3See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Dependent Variable: Ri,Post

(1) (2) (3) (4) (5) (6)

Const −0.35 −1.73 4.06 5.35 4.32 1.97
(4.27) (3.58) (6.92) (5.67) (4.76) (5.18)

1
[
i ∈ Aσt0(i)

]
15.07??? 12.22??? 15.87??? 12.52?? 18.77???
(4.52) (2.94) (4.69) (4.81) (6.42)

β̄i,t0(i) 1.02??? 1.40??
(0.29) (0.57)

s̄e i,t0(i) −0.89 −1.53?
(0.94) (0.84)

1
[
i ∈ AE[v̄t]

t0(i)

]
6.48 −6.37
(4.95) (7.69)

Adj . R2 0.18 0.18 0.16 0.18 0.00 0.17

Table 11. New Predictors. Evidence that the anomaly baserate is helpful when
evaluating new cross-sectional predictors. Each column reports results of a separate
cross-sectional regression with 46 observations, one for each predictor i held by the
benchmark strategy in month following discovery, t0(i). Ri,Post: annualized return
to predictor-specific strategy associated with ith predictor defined in Equation (16)
during 10 years immediately following publication. Const : intercept term; units of
% per year. 1

[
i ∈ Aσt0(i)

]
: indicator variable for whether ith predictor was held by

baserate-adjusted strategy in month t0(i); units of % per year. β̄i,t0(i): forecasted
return of the ith predictor in month t0(i). s̄e i,t0(i): forecasted standard error of the ith
predictor in month t0(i). 1

[
i ∈ AE[v̄t]

t0(i)

]
: indicator variable for whether ith predictor was

held by time-invariant version of baserate-adjusted strategy in month t0(i); units of %
per year. Numbers in parentheses are Newey-West standard errors using the optimal
number of lags. Statistical significance: ? = 10%, ?? = 5%, and ??? = 1%. Sample
period: June 1979 to May 2015.

and set-difference strategies as the left-hand-side variable. While the net excess returns to
each of these strategies is much lower than that of the baserate-adjusted strategy, neither
strategy had excess returns that are very correlated with the market.

New Predictors. Finally, we motivated this paper by discussing the problem faced by a
researcher who is trying to evaluate statistical evidence concerning a new cross-sectional pre-
dictor. However, the trading strategy defined in Equation (18) holds positions in both brand
new and previously discovered predictors. e.g., it might invest based on a firm’s investment
growth at any time on or after December 2004 when Titman, Wei, and Xie (2004) published
a paper documenting this predictor. So, maybe the improved performance of the baserate-
adjusted strategy relative to the benchmark strategy is only due to different positions in
previously discovered predictors? In the last part of our analysis, we show this is not the case.

First, we compute the realized returns of each predictor-specific trading strategy held by
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the benchmark strategy in the 10 years immediately after its publication. Let Ri,Post denote
the annualized return to the predictor-specific strategy associated with the ith predictor
defined in Equation (16) during the 10 years immediately following its publication date as
given in Tables 1a, 1b, and 1c. And, let t0(i) denote the month immediately following the
publication of the ith predictor. e.g., for investment growth as defined in Titman,Wei, and Xie
(2004), t0(i) = Jan2005. There are 81 predictors for which we can forecast the prior variance
in month t0(i). And, 46 of these 81 possible predictors have forecasted returns in excess of
1% for month t0(i) and are thus held by the benchmark strategy,

∑83
i=3 1

[
i ∈ At0(i)

]
= 46.

Then, we regress the post-publication returns of each predictor held by the benchmark
strategy on a variable indicating whether or not the predictor would also have been held by
the baserate-adjusted strategy:

Ri,Post = â+ b̂ · 1
[
i ∈ Aσt0(i)

]
+ êi for predictors i ∈ At0(i). (19)

Column (1) of Table 11 reports the results of this cross-sectional regression, which contains
one observation for each of the 46 predictors held by the benchmark strategy immediately
following their initial discovery. We estimate that b̂ = 15.07% per year, and this suggests that
incorporating information about the prevailing anomaly baserate is useful when evaluating
new predictors. The realized returns over the next 10 years of the 27 predictors which had
baserate-adjusted return forecasts in excess of 1% per month, 1

[
i ∈ Aσt0(i)

]
= 1, were 15.07%

per year higher than those of the remaining 19 predictors.
The remaining columns in Table 11 provide supporting evidence that this result is not

mechanical. This evidence comes in two flavors. In Columns (2), (3), and (4), we start by
showing that adjusting each predictor’s β̄i for the prevailing anomaly baserate is doing more
than just selecting the strongest in-sample predictors. We document that the estimated b̂
remains positive and statistically significant even after we add the level and the standard
error of each predictor’s forecasted return as right-hand-side variables in Equation (19). The
results in these columns also suggest that other popular factor-timing strategies such as the
valuation spread (Baba Yara, Boons, and Tamoni, 2018) do not subsume the predictive power
of the baserate. The columns that include s̄e i as a right-hand-side variable also indicate that
our baserate-adjusted strategy is different from a strategy that only trades predictors with
sufficiently large t-stats. In Columns (5) and (6), we then directly investigate whether or not
the results are driven by time-series variation in the prevailing anomaly baserate. We do this
be replacing the indicator variable in Equation (19), which is defined using the prevailing prior
volatility, with an analogous indicator variable, which is defined using the time-series average
of the aggregate prior volatility reported in Table 4, E[v̄t] = 1.63% per month. This new
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indicator variable, 1
[
i ∈ AE[v̄t]

t0(i)

]
, shrinks each predictor’s return forecast by a constant amount

that is correct on average. Columns (5) and (6) show that this correct-on-average formulation
is nowhere nearly as helpful when it comes to evaluating new predictors. Accounting for
time-series variation in the anomaly baserate is key to our results.

5 Conclusion
The academic literature contains hundreds of statistically significant cross-sectional predictors.
The existence of this so-called “anomaly zoo” has caused many to question whether researchers
are using the right tests for statistical significance. But, here is the thing: even if researchers are
using the right tests, they will still be drawing the wrong conclusions from their econometric
analysis if they are starting out with the wrong priors—i.e., if they are starting out with
incorrect beliefs about the probability of discovering an anomaly. And yet, the academic
literature offers no guidance about how to estimate this anomaly baserate. Motivated by
this logical gap, we provide a way to estimate the anomaly baserate by running penalized
regressions and searching for the best-fit tuning parameter.

Machine-learning techniques, such as the Ridge regression and LASSO, have become
popular of late in the asset-pricing literature. And, in the past, researchers have used these
tools to answer canonical asset-pricing questions in high-dimensional settings. This paper
is different. We are not using machine-learning techniques as off-the-shelf statistical tools.
Instead, we are using the Bayesian interpretation of the best-fit tuning parameter to shed
light on an economic object, the anomaly baserate, that is of first-order importance regardless
of the dimensionality of the problem. Thus, while we use the same machine-learning toolkit
as earlier papers, we are using this toolkit to solve a qualitatively different kind of problem,
a kind of problem that exists even in the absence of the anomaly zoo that popularized the
machine-learning techniques that we use to solve it.
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A Technical Appendix
Proof (Proposition 2.1). The result follows from properties of the normal distribution. If
z ∼ Normal[0, σ2], then for any ω > 0 we have that:

Pr[z > ω] = Pr[z < −ω]

= Φ[−ω/σ].

Thus, we have Pr[ |β?I+1| > threshold ] = 2 ·Pr[ β?I+1 < −threshold ] = 2 ·Φ[−threshold/σ ].

Derivation (Equation 10). Optimizing Equation (9) results in the first-order condition:

0 = − 2 · 1
N
·∑n

(
Rn − µ̂− β ·Xn,i

)
·Xn,i + 2 · λ · β

= − 1
N
·∑n (Rn − µ̂) ·Xn,i + β · 1

N
·∑nX

2
n,i + λ · β

= − β̂i + (1 + λ) · β.

Solving for β yields the desired result.

Proof (Lemma 2.2). Let S[v2] denote the shrinkage in a Ridge regression with λi = se2
i /v

2:

S[v2] = v2/(v2 + se2
i ).

The Ridge-regression optimization problem can then be expressed as:

min
v2>0

{
E
[(
Rn − µ̂− S[v2] · β̂i ·Xn,i

)2
]}

.

This optimization problem results in the following first-order condition:

0 = 2 · E
[(
Rn − µ̂− S[v2] · β̂i ·Xn,i

)
·
(
S′[v2] · β̂i ·Xn,i

)]

= 2 · S′[v2] ·
(
β̂i · E[(Rn − µ̂) ·Xn,i]− S[v2] · E[(β̂i ·Xn,i)

2]
)

= 2 · S′[v2] ·
(
β̂2
i − S[v2] · β̂2

i

)

= 2 · S′[v2] · (1− S[v2]) · β̂2
i

= 2 · se4
i

(v2+se2
i )

3 · (β̂i)2.

Taking the expectation with respect to realizations of the true slope coefficient yields:

0 = E
[

2 · se4
i

(v2+se2
i )

3 · β̂2
i

]
= 2 · se4

i

(v2+se2
i )

3 · (σ2 + se2
i ).

The only way to satisfy this first-order condition is to choose v2 =∞.

Proof (Proposition 2.2). Suppose we add a correction term, C[v2], to the training error in
Equation (12) to undo this in-sample overfitting. The objective function would then become:

min
v2>0

{
E
[(
Rn − µ̂− S[v2] · β̂i ·Xn,i

)2
]

+ C[v2]
}
.
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Our goal is to find a functional form for C[v2] that yields an unbiased estimate of v2 = σ2.
Note that this corrected optimization problem yields the following first-order condition:

0 = 2 · E
[(
Rn − µ̂− S[v2] · β̂i ·Xn,i

)
· S′[v2] · β̂i ·Xn,i

]
− C′[v2]

= 2 · S′[v2] · (1− S[v2]) · β̂2
i − C′[v2]

= 2 · se4
i

(v2+se2
i )

3 · β̂2
i − C′[v2].

And, taking the expectation of this corrected first-order condition with respect to realizations
of the true slope coefficient yields:

0 = E
[

2 · se4
i

(v2+se2
i )

3 · β̂2
i

]
− C′[v2] = 2 · se4

i

(v2+se2
i )

3 · (σ2 + se2
i )− C′[v2].

By inspection, we see that choosing any C[v2] with the following first derivative,

C′[v2] = 2 · se4
i

(v2+se2
i )

3 · (v2 + se2
i )

= 2 · se4
i · (v2 + se2

i )
−2

,

will result in a minimum at v2 = σ2. Thus, by appropriately choosing the constant of
integration, we can arrive at the desired result:

C[v2] = 2 ·
(

1
1+se2

i /v
2

)
· se2

i .
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B Distributional Assumptions
The statistical approach described in Section 2 models the anomaly-discovery process as
independent draws from a normal distribution. The key assumption is that the strength
of cross-sectional predictors is drawn from a common distribution. The assumptions of
independence and normality are not key. And, we now show why.

B.1 Independence
To see why the assumption of independent draws is not crucial, note that Proposition 2.2
shows that E[v2

i ] = σ2 for any i ∈ It. If we relax the independence assumption, then the
worst thing that could happen would be that the realized value of β?i is the same for all i ∈ It.
In this extreme case, we would effectively only have one signal about σ2. But, we could still
use this lone signal, v2

1 = v2
2 = · · · = v2

It
. Thus, relaxing the independence assumption only

affects the precision of our estimate for σ2.

B.2 Normality
To see why the assumption of normality is not crucial, let’s consider an alternative setting
where the true slope coefficients are instead drawn from a Laplace distribution:

β?i
iid∼ Laplace[

√
2 /σ].

The probability density function of this Laplace distribution is given by pdf[β] = 1
σ·
√

2
·e−

√
2
σ
·|β|,

which implies that the mean and variance of the resulting draws are the same as in the original
normally distributed case: E[β?i ] = 0 and Var[β?i ] = σ2. We now show that, even though the
true slope coefficients are being drawn from a different prior distribution, you can apply the
exact same logic to estimate the anomaly baserate.

Inference Problem. If the true slope coefficients are drawn from a Laplace distribution,
then the functional form of our inference problem will change slightly. Now, the negative log
likelihood of the true slope coefficient taking on a particular value, β?i = β, given the realized
cross-section of returns and lagged predictor values, {R1, . . . , RN+1} and {X1,i, . . . , XN+1,i},
will correspond to

− log Pr[β] = 1
2·(N ·se2

i )
·∑n

(
Rn − µ̂− β ·Xn,i

)2
+
√

2
σ
× |β|+ · · ·

= 1
2·se2

i
·
{

1
N
·∑n

(
Rn − µ̂− β ·Xn,i

)2
+
√

8 · se2
i

σ
× |β|

}
+ · · ·

where the “· · · ” represents constants that do not depend on the choice of β. This inference
problem suggests using a different penalized-regression procedure than before—i.e., a proce-
dure with an absolute-value penalty rather than a quadratic penalty like a Ridge regression.

Bayesian LASSO. The least absolute shrinkage and selection operator (the LASSO; Tib-
shirani, 1996) is just such a penalized-regression procedure. Estimating the LASSO involves
solving the optimization problem below:

β̂i[λ]
def
= arg min

β

{
1
N
·∑n

(
Rn − µ̂− β ·Xn,i

)2
+ λ · |β|

}
.
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Note that this is just the optimization problem given in Equation (5) when q = 1. What is
more, when there is only one predictor that has been standardized to have zero mean and unit
variance, it is possible to characterize the solution to this optimization problem analytically:

β̂i[λ] = Sign[β̂i] · (|β̂i| − λ)+.

Thus, as pointed out in Park and Casella (2008), the LASSO’s absolute-value penalty can be
interpreted as the effect of imposing Laplace priors on an inference problem when the tuning
parameter is chosen as follows:

λi =
√

8 · se2
i /σ.

Econometric Estimator. The proposition below shows that, if the true slope coefficients
are drawn from a Laplace distribution instead of a normal distribution, then we can learn
about the anomaly baserate by studying the best-fit tuning parameter in the LASSO instead
of a Ridge regression. Different prior distribution. Different penalized-regression procedure.
Same underlying approach.

Proposition B.2 (Econometric Estimator, The LASSO). Let E[·] denote an expectations
operator evaluated with respect to realizations of β?i drawn from a Laplace distribution. If vi
denotes the parameter estimate with the minimum in-sample prediction error subject to an
overfitting penalty for the ith predictor,

vi
def
= arg min

v>0

{
Erri

[
se2
i /v

2
]

+ 2 · 1
[
|β̂i| >

√
8 · se2

i /v
]
· se2

i

}
,

then for all σ > 0 we have that E[vi] = σ.

Proof (Proposition B.2). The 2 · 1
[
|β̂i| >

√
8 · se2

i /v
]
· se2

i term in Proposition B.2 is an
information-criterion penalty. This sort of penalty takes the form 2 · (df /N)×Var[εn,i] where
df represents the estimator’s degrees of freedom. Zou, Hastie, and Tibshirani (2007) proves
that the number of non-zero slope coefficients is an unbiased estimator for the degrees of
freedom when using the LASSO:

Pr
[
|β̂i| > λ

]
= df[λ].

Thus, since Var[εn,i] = N · se2
i , the generalized information-criterion penalty reduces to the

one above when λi =
√

8 · se2
i /v.
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