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Abstract

This paper examines how trading in the FX market carries the information that drives movements
in currency prices over minutes, days and weeks; and how those movements are connected to interest
rates. The paper first presents a model of FX trading in a Limit Order Book (LOB) that identifies how
information from outside the market is reflected in FX prices and trading patterns. I then empirically
examine this transmission process with the aid of a structural VAR estimated on 13 years of LOB trading
data for the EURUSD, the world’s most heavily traded currency pair. The VAR estimates reveal several
new findings: First, they show that shocks from outside the LOB affect FX prices through both a liquidity
and information channel; and that the importance of these channels varies according to the source of
the shock. Liquidity effects on FX prices are temporary, lasting between two and ten minutes, while
information effects of shocks on prices are permanent. Second, the contemporaneous correlation between
price changes and order flows varies across shocks. Some shocks produce a positive correlation (as in
standard trading models), while others produce a negative correlation. Third, the model estimates imply
that intraday variations in FX prices are overwhelmingly driven by one type of shock, it accounts for
87% of hour-by-hour changes in the FX prices.

The second part of the paper examines the connection between the shocks in the trading model
and the macroeconomy. For this purpose, I use the VAR estimates to decompose intraday FX price
changes and order flows into separate components driven by different shocks. I then aggregate these
components into daily and weekly series. I find that one component of daily order flow is strongly
correlated with changes in the long-term interest differentials between US and EUR rates. This suggests
that the intraday shocks driving this order flow component carry news about future short-term interest
rates which is embedded into FX prices. I find that intraday shocks carrying interest-rate information
account for on average 56% of the variance in the daily EURUSD depreciation rate between 2003 and
2015, but their variance contributions before 2007 and after 2011 are over 80%. These findings indicate
that the EURUSD depreciation rate is relatively well-connected to macro fundamentals via a particular
component of order flow. Finally, I show that flows embedding liquidity risk have forecasting power for
daily and weekly EURUSD depreciation rates.
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Introduction

This paper examines how trading flows in the foreign exchange (FX) market carry the information that drives

movements in spot exchange rates over minutes, days and weeks; and how those movements are connected

to interest rates. Short-term movements in exchange rates are generally viewed as having little connection

to macroeconomic variables, an observation Obstfeld and Rogoff (2000) call the Exchange-Rate Disconnect

Puzzle. I argue here that short-term movements in the EURUSD rate (the world’s most heavily traded

currency pair) are in fact quite well “connected” to interest differentials, but the connection is made via

trading flows. More specifically, I show that a particular flow, identified from a trading model estimated

in high-frequency intraday data, accounts for 56% of the daily variation in the EURUSD rate over the 13

years between 2003 and 2015, and that the flow is strongly linked to changes in the differential between one-

year US and Euro interest rates. The connection appears to be even stronger away from the 2008 financial

crisis. Excluding the 2007-11 period, I find that at least 80% of the daily variations in the EURUSD rate

are attributable to flows linked to the interest differential. The trading model also identifies another flow

that captures changes in the risks of providing liquidity to the FX market. These risks are quite different

from those identified in standard asset-pricing models of the exchange-rate risk premia.1 I show that flows

embedding liquidity risk have some forecasting power for daily and weekly changes in the EURUSD rate.

I begin my analysis with a microstructure model of modern FX trading on an electronic Limit Order Book

(LOB). The model identifies different transmission channels through which shocks from outside the trading

venue affect trading flows and FX prices. Next, I estimate a structural VAR that quantifies the importance

of these different channels using 13 years of EURUSD trading data sampled every 30 seconds. The VAR

identifies the components of intraday trading flows and FX price changes that are driven by different shocks,

which I aggregate into daily and weekly time series. Finally, I investigate how the daily trading flows

identified by the VAR are linked to interest rate differentials, how they connect daily depreciation rates with

changes in differentials, and how they contribute to the predictability of future daily and weekly depreciation

rates.

This analysis builds on several areas of prior research, including: microstructure models of FX trading,

empirical exchange-rate models using trading flows, and the large macro-based literature on exchange rate

modeling. Earlier FX microstructure models, such as Lyons (1997), Evans and Lyons (2002), Osler et al.

(2011) and Evans (2011), consider trading in a two-tier market. The FX dealers working at major banks trade

with each other in the inner tier, while trades between dealers and end-users take place in the outer tier. These

models used highly stylized trading protocols to focus on how information embedded in individual trades

between dealers and end-users was transmitted across the market via intra-dealer trades. The institutional

structure of FX trading has evolved considerably since the original development of these models (see, e.g.,

King et al., 2011). FX trading still takes place in a two-tier market, but trading in the inner tier, often

referred to as the wholesale market, now takes place between dealers and other sophisticated trading entities

such as hedge funds, mutual funds, and HFTs. There has also been a proliferation in electronic trading
1See Engel (2014) for a recent survey.
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venues across both tiers. Electronic LOBs run by EBS and Reuters have been the primary wholesale trading

venues for spot FX trading since the late 1990s. Trading in the major currency pairs, like the EURUSD,

GBPUSD, and USDJPY, are concentrated on one or other of these LOBs.2

In light of these institutional changes, I begin my analysis by studying trading flows and price dynamics

in a new microstructure model of FX trading on a LOB.3 The model contains two key features. First, it

recognizes that traders have limited information about outstanding limit orders when they make their own

trading decisions. Second, it confers a temporary informational advantage on traders placing market orders

over those with outstanding limit orders. With these features, the model identifies two distinct transmission

channels: a liquidity and information channel. Shocks have temporary effects on FX prices via the liquidity

channel, and permanent effects via the information channel. I use the model to examine how different types

of shocks to the LOB produce different liquidity and information effects, which in turn generate distinct

correlations between changes in FX prices and order flows.4 These correlations can be positive, zero, or

negative, depending on the type of shock.

My empirical analysis is based on estimates of a structural VAR that uses high-frequency (30-second)

trading data covering a much longer time span that earlier empirical research on FX trading. The data

comprise information on EURUSD spot trades on the LOB run by EBS between midnight on January 6,

2003 and December 31, 2015. Trading data from the EBS system has been previously used by Hau et al.

(2002), Killeen et al. (2006), Berger et al. (2008a) Chinn and Moore (2009), Breedon and Vitale (2010), and

Ito and Yamada (2015).5 One distinguishing feature of my empirical analysis is that it uses high-frequency

trading data over a time span that covers a variety of macroeconomic conditions, including the 2008 financial

crisis. Hasbrouck (1991) pioneered the use of VARs in the empirical analysis of trading data. My use of a

VAR to examine FX trading follows earlier work by Payne (2003), Daníelsson and Love (2006), Menkhoff and

Schmeling (2008), and others. Here the VAR includes six variables and imposes a non-recursive structure

that allows multiple shocks to affect FX prices and trading flows simultaneously. This feature allows the

model to accommodate the different co-movements in FX prices and order flows induced by different shocks,

consistent with the predictions of the microstructure trading model.

The VAR estimates reveal that two innovations account for almost all the variations in FX prices and order

flow in the EURUSD market. One innovation produces impulse responses similar to the effects of exogenous
2At the time of their study, Breedon and Vitale (2010) estimated that 88% of EURUSD spot trades took place on the EBS

venue. In the last few years trading on electronic platforms run by individual banks (e.g. Deutsche Bank’s Autobahn and
Barclays’ BARX platforms) has expanded significantly at the expense of EBS and Reuters. Nevertheless, these LOBs remain
the single most important venues for spot trading in the market.

3Trading in many other financial instruments such as equities, bonds, and derivatives takes place on electronic LOBs, so
there is a substantial body of research analyzing these venues within the broad field of microstructure (see, Parlour and Seppi,
2008 for a survey). Because LOBs allow for the submission of both market and limit orders, finding how the optimal trading
strategies of individual traders combine to produce equilibrium dynamics for prices and trade flows is an extremely complex
undertaking (see, e.g., Foucault et al., 2013). To avoid this complexity, my model focuses on the aggregate implications of
individual traders’ decisions for prices and trade flows, rather than the individual decisions.

4Order flow is defined as the difference in value between flows of market orders to buy FX and market orders to sell FX.
5These studies use several years of trading data at the daily or monthly frequency, or they examine a few years of intraday

data. For example, Hau et al. (2002) and Killeen et al. (2006) studied EBS order flow data at the daily frequency from 1998
and 1999. Breedon and Vitale (2010) studied 6 months of intraday data from 2000 and 2001, while Berger et al. (2008a) use
six intraday data from EBS on EURUSD and USDJPY trading between January 1999 and December 2004. Ito and Yamada
(2015) also use EBS data to study trading around the Tokyo and WMR fixes from 1999 to 2013. Yearly spans of Reuters LOB
data have been used to examine the effects of data releases on order flows by Love and Payne (2008) and Rime et al. (2010).
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shocks to market orders in the microstructure model. These innovations produce a positive correlation

between FX price changes and order flows and account for approximately 87% of the variance in hour-by-

hour EURUSD depreciation rates. The other innovation produces impulse responses similar to the effects of

shocks to the supply of limit orders. These innovations produce a negative correlation between unexpected

FX price changes and order flow and account for approximately 13% of the hour-by-hour depreciation

variance. The estimates also reveal that while the liquidity channel is operable, its quantitative impact is

small. Shocks primarily affect FX prices and trading flows via the information channel.

These empirical findings are quite novel. Following Evans and Lyons (2002), numerous studies have

found a strong positive correlation between order flows and FX price changes measured over periods ranging

from a few minutes to a few weeks.6 My estimates suggest that this unconditional correlation masks the

complex effects of different shocks. The results also contribute to the debate about the relative strengths of

liquidity and information effects. Papers by Froot and Ramadorai (2005), Berger et al. (2008a) and Breedon

and Vitale (2010) argue that liquidity effects are dominant, whereas Evans and Lyons (2002, 2006, 2013),

Marsh and O’Rourke (2005), Killeen et al. (2006), Bjønnes et al. (2007) and Love and Payne (2008) stress

the importance of information effects.

In the last part of the paper, I use the VAR to identify the different components driving daily and weekly

movements in the EURUSD rate and examine their links to interest rates and FX risk. Earlier research

by Evans (2010) and Evans and Lyons (2013) found that order flows from end-users trading with Citibank

contain incremental (non-public) information about (unreported) current and future macro variables. My

results support and extend these findings. In particular, I show that daily order flows driven by intraday

market order shocks are strongly correlated with daily changes in the difference between US and EUR one-

year nominal interest rates. This is consistent with the idea that these intraday shocks carry new information

about future short-term interest rates. Similarly, Rime et al. (2010) find that order flows from the Reuters

LOB are linked to the unexpected macroeconomic announcements in 2004. Furthermore, I estimate that on

average these intraday shocks (carrying interest rate news) account for approximately 56% of the variance

in the daily EURUSD depreciation rates between 2003 and 2015. While this is an unusually high degree of

explanatory power for an exchange-rate model, the connection between depreciation rates and interest rates

appears to be even stronger away from the 2008 financial crisis. I estimate that the variance contribution of

order flow shocks is over 80% in periods before 2007 and after 2011.7

If one component of order flow carries information about interest rates, what is the role of the other

order flow component? The answer, I argue, is that it reflects changes in the risk of providing liquidity to

the market. Shifts in the perceived distribution of future order flows and FX prices alter the risks associated
6Positive correlations between order flow and returns also appear other asset classes; see, e.g. Hasbrouck (1991) for stock

markets and Brandt and Kavajecz (2004) for U.S. bonds. For surveys of the empirical FX literature on order flows, see Osler
(2009) and Evans and Rime (2012).

7By comparison, exchange-rate models that incorporate macro fundamentals via Taylor-rules for interest rates (see, e.g.,
Engel and West, 2006, Engel et al., 2008 and Mark, 2009) account for less than 10% of month/quarterly depreciation rates (see
Evans, 2011 and Engel, 2014 for discussions). Regressions of daily depreciation rates on order flows estimated over shorter data
spans often produce R2 statistics around 0.5, but these models are silent on what drives the order flows. A partial list of studies
using customer flows includes; Marsh and O’Rourke (2005) for major currencies, King et al. (2010), Bjønnes et al. (2005), and
Rime (2001) for small open economies, and Gyntelberg et al. (2009), Onur (2008) and Wu (2007) for emerging markets.
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with the submission of limit orders. Such shifts should appear as shocks to the supply of limit orders, which

drive the second component of daily order flow identified by the VAR. They should also show up in future

FX price changes. Consistent with this view, I find that the order flow component embedding shifts in

liquidity risk has statistically significant (within-sample) forecasting power for daily and weekly changes in

the EURUSD rate that are unrelated to future changes interest rates. This finding adds to earlier results on

the forecasting power of order flow in Evans and Lyons (2005, 2013), Bjønnes et al. (2005) and Killeen et al.

(2006).

The remainder of the paper is structured as follows: Section 1 presents the microstructure trading model.

In Section 2, I describe my intraday empirical analysis using the structural VAR. Section 3 contains the macro

empirical analysis connecting the EURUSD rate to interest rates and liquidity risk. Section 4 concludes.

1 The Trading Model

I use a simple model of trading on a LOB to examine how different shocks are transmitted to FX prices

and trading flows. The model incorporates into a LOB setting aspects of inventory control and asymmetric

information found in earlier microstructure models of dealer markets (for overviews, see Hasbrouck, 1996,

O’Hara, 1997 and Foucault et al., 2013). One central feature of the model is that traders have limited

information about the state of the LOB: they only observe the best prices and the flows of market orders

rather than the complete structure of limit orders. There are similar limits on the information available

to actual FX traders on LOBs. The model identifies two distinct transmission channels: a liquidity and

information channel. My analysis examines how different types of shocks to the LOB produce different

liquidity and information effects, which in turn generate distinct co-movements in FX prices and trading

flows.

1.1 Set Up

Let pofft and pbidt denote the logs of the best offer and bid prices for FX on the LOB at the start of period

t. These prices are identified as the lowest offer price among the outstanding limit sell orders for FX and

highest bid price among the outstanding limit buy orders for FX. I assume that these prices depend on the

current estimated fundamental value of FX, µt, and the estimated depth (i.e. total value) of limit orders on

either side of the book. Let dsellt and dbuyt respectively denote the depth of the sell and buy limit orders at

the start of period t. The best limit prices are determined as

pofft = µt + 1
2δ − βEtd

sell
t and pbidt = µt − 1

2δ + βEtd
buy
t , (1)

where δ and β are positive constants. Expectations conditioned on information at that start of period t are

denoted by Et.

The value of δ determines the size of the spread between the bid and offer prices when the estimated

depth of the book is zero, i.e., pofft − pbidt = δ when Et(dsellt +dbuyt ) = 0. This parameter captures the adverse
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selection cost of submitting a limit order. The β coefficient determines the sensitivity of the best limit prices

to the estimated depth. Since market orders are matched against the limit order with the best price, traders

submitting a limit order balance the benefit from the order being matched at a higher offer (lower bid)

against the cost of their order not being matched. Ceteris paribus, an increase in the depth reduces the

probability of a match, so when the estimated buy (sell) depth increases, traders submit buy (sell) orders

with higher (lower) prices. The β coefficient determines the degree to which the best limit prices move

as changes in the estimated depth alter traders’ limit order submissions. In particular, an increase in the

estimated depth of sell orders lowers the price of the lowest offer, while an increase in the estimated depth

of buy orders raises the price of the highest bid. Note that prices reflect estimated rather than actual depth

because traders cannot observe all outstanding limit orders.

The flows of market orders to buy FX and sell FX during period t depend on the difference between

the expected trade price and the estimated fundamental value of FX. Because individual market orders are

sequentially matched with the best outstanding limit orders, the actual trade price for an individual market

buy (sell) order will differ from pofft (pbidt ) when the volume of preceding orders exceeds the depth of the

limit orders at pofft (pbidt ). I assume that the individual market orders submitted in period t are randomly

sequenced so that the (ex ante) expected trade price for an individual order is a weighted average of the

current best price and the expected best price next period. Specifically, the expected trade price for market

buy and sell orders are respectively (1−ω)pofft +ωE*
t p

off
t+1 and (1−ω)pbidt +ωE*

t p
bid
t+1 with 1 > ω > 0, where

E*
t denotes the expectations of traders placing market orders. The flows of market orders to buy FX and

sell FX during period t are determined by:

mtbuyt+1 = −α
[
(1 − ω)pofft + ωE*

t p
off
t+1 − 1

2δ − µt

]
+ umbuy

t+1 and

mtsellt+1 = α
[
(1 − ω)pbidt + ωE*

t p
bid
t+1 + 1

2δ − µt

]
+ umsell

t+1 , (2)

where α > 0. Here umbuy
t+1 and umsell

t+1 denote exogenous shocks to the flows of market buy and sell orders,

respectively. They comprise a common and directional component: umbuy
t+1 = 1

2u
vol
t+1 + 1

2u
flw
t+1 and umbuy

t+1 =

1
2u

vol
t+1 − 1

2u
flw
t+1. The uvolt+1 shock contributes equally to the flows of market buy and sell orders, while the

uflwt+1 shock changes the balance between the flows. The uvolt+1 and uflwt+1 shocks will be interpreted as volume

and order flow shocks below. Note that market orders during period t appear with a t+ 1 subscript to make

clear that they embody participants’ decisions to trade after period−t limit prices are determined.

The depth on each side of the LOB depends upon the flows of market orders and the submission of new

limit orders. The depth of outstanding limit orders to buy and sell FX at the start of period t+ 1 are given

by

dbuyt+1 = dbuyt −mtsellt+1 + ulbuyt+1 and dsellt+1 = dsellt −mtbuyt+1 + ulsellt+1 , (3)

where ulbuyt+1 and ulsellt+1 respectively denote the exogenous shocks to the supplies of limit orders to buy and sell

FX during period t. Again I write the limit supply shocks as the sum of common and directional components:

ulbuyt+1 = 1
2u

d
t+1 + 1

2u
bal
t+1 and ulsellt+1 = 1

2u
d
t+1 − 1

2u
bal
t+1. The udt+1 component equally affects the supply of limit
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orders on both sides of the LOB, while the ubalt+1 component changes the balance between the supplies to

each side of the LOB.

To facilitate the analysis below it proves useful to rewrite equations (1) - (3) in terms of some new

variables. The new variables are the mid-point FX price, pt = 1
2p

off
t + 1

2p
bid
t ; the spread between the best

bid and offer prices, spdt = pofft − pbidt ; total depth, dt = dbuyt + dsellt ; the depth balance, balt = dbuyt − dsellt ;

trading volume, volt = mtbuyt +mtsellt ; and order flow flwt = mtbuyt −mtsellt . Rewriting (1) - (3) in terms of

these new variables gives:

flwt+1 = −2α [(1 − ω)pt + ωE∗t pt+1 − µt] + uflwt+1, (4)

balt+1 = balt + flwt+1 + ubalt+1, and (5)

pt = µt + 1
2βEtbalt. (6)

Equations (1) - (3) also imply that

volt+1 = −α [(1 − ω)sprt + ωE∗t sprt+1 − δ] + uvolt+1, (7)

dt+1 = dt − volt+1 + udt+1, (8)

spdt = δ − βEtdt. (9)

I assume that the common and directional components of market order and limit supply shocks: ufllwt+1, ubalt+1,

uvolt+1 and udt+1 are i.i.d. mean zero random variables. Under these conditions, (4) - (9) show that the model

exhibits a dichotomy between the behavior of prices, order flow and the depth balance on the one hand, and

the behavior of the spread, trading volume and total depth on the other. Hereafter, I will refer to ufllwt+1, ubalt+1,

uvolt+1 and udt+1 as exogenous shocks to order flow, balance, volume and depth, respectively.

Information plays a central role in the model. First, traders use information available at the start of

period t to submit limit orders that determine pt and sprdt based on their estimates of fundamental value,

µt, the current depth balance, Etbalt, and total depth, Etdt. Since the actual depth on each side of the LOB

is unobservable, these estimates are imprecise and are derived from past observations on prices and trade

flows. The flows of market orders determining order flow and trading volume also depend on µt and embed

trader’s expectations about future prices, E∗t pt+1, and spreads E∗t sprt+1. These expectations are conditioned

on more information than was available at the start of period t when limit orders were determined. This

assumption gives traders submitting market orders an informational advantage over those with outstanding

limit orders.

Traders obtain information from outside and inside the LOB. Outside information comes at the start of

each period in the form of news about the fundamental value of FX. Inside information comes in the form of

period-by-period observations on prices, spreads, order flows and volume, and noisy signals concerning LOB

depth. I now describe how these information sources are used to determine traders’ expectations.
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At the start of period t, traders revise their estimates of the fundamental value of FX according to

µt = µt−1 + nt + λ(flwt − Et−1flwt), (10)

with λ > 0. Here traders change their estimates between the start of periods t − 1 and t based on news nt
which arrives at the start of period t, and the unexpected order flow during period t− 1. The news term nt

represents new information that directly leads to a revision in the estimated fundamental value of FX. The

size of the λ parameter depends on the degree to which unexpected order flow is viewed as conveying new

information about fundamental value.

After the arrival of news, traders’ determine limit orders based on their estimates of the depth balance

balt and total depth dt. These estimates depend on prior expectations and new information from market

orders during period t− 1:

Etbalt = E∗t−1balt + ϕbal (flwt − E∗t−1flwt), and (11)

Etdt = E∗t−1dt − ϕd(volt − E∗t−1volt), (12)

where ϕbal and ϕd are positive constants less than one. According to (11), traders use their observations

of order flow during period t− 1 to revise their prior expectations about the depth balance (i.e., E∗t−1balt).

These flows are informative because (5) shows that changes in the depth balance between the start of periods

t − 1 and t depend on order flow during period t − 1. Similarly, in (12) traders use their observation on

volume during period t− 1 to revise their prior estimate of total depth at the start of period t (i.e., E∗t−1dt).

Again, volume is informative because (7) shows that volume during period t − 1 contributes to the change

in total depth between the start of periods t− 1 and t.

Next, traders receive noisy signals about the current depth balance and total depth in the LOB. The

balance and depth signals are equal to balt+ξbalt and dt+ξdt , respectively. Here ξbalt and ξdt are independently

distributed mean-zero random variables that represent the noise in each signal. Expectations incorporate

these signals as

E∗t balt = Etbalt + κbal (balt + ξbalt − Etbalt), and (13)

E∗t dt = Etdt + κd(dt + ξdt − Etdt), (14)

where κbal and κd are positive constants less than one. Recall that traders make decisions about the

submission of market orders during period t based on E∗t balt and E∗t dt rather than Etbalt and Etdt. These

decisions are therefore based on more precise information concerning the structure of the LOB than was

available when limit orders were determined at the start of period t. As we shall see, this informational

advantage plays an important role in the model.

This model can be viewed as an extension of earlier models where investors trade sequentially with an

FX dealer. (see, e.g., Lyons, 1995 and 2001). In that setting, the dealer quotes prices based on estimated
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fundamental value and their inventory. They revise their estimates of fundamental value based on news and

order flow in a similar manner to (10), and these revisions are reflected one-for-one in the price level as

in (6). Dealers also control their inventories by lowering (raising) their price quotes (relative to estimated

fundamental value) when their inventory rises above (below) its targeted level. The estimated depth balance

plays a similar role in this model. Here competition between traders submitting limit orders pushes the

(mid-point) price level below (above) estimated fundamental value when the estimated depth of sell orders

exceeds that of buy orders. The determination of market orders in this model can also be seen as an extension

of the role played by investors in earlier models. There investors’ trading decisions depend on the difference

between the dealer’s quotes and estimated fundamental value. Here market orders similarly depend on the

difference between the trade price and estimated fundamental value, but the trade price must be estimated

by individual traders because there is limited information about the matching of their order with existing

limit orders.

It is also worth acknowledging that this is not a structural model in the sense that the equations for

prices and trade flows in (4), (6), (7) and (9) are not explicitly derived from the optimal decisions of traders.

Recent microstructure research considers the optimal placement of limit orders (see e.g., Glosten, 1994)

and the choice between market and limit orders (see, e.g., Foucault, 1999), but deriving the equilibrium

in a LOB based on fully optimal trading decisions remains a challenge (see, Parlour and Seppi, 2008 and

Foucault et al., 2013 for overviews). I have deliberately chosen to avoid this challenge in order to provide a

tractable framework for studying the transmission of different shocks into FX prices and trade flows when

traders have limited information about the state of the LOB.

1.2 Order Flow and Price Dynamics

I now examine how FX prices and order flow react to different shocks. This analysis draws on the solution

of the model which is derived in the Appendix. The equilibrium behavior of order flow and prices is most

simply described by the dynamics of two variables: the estimated depth balance Etbalt and the associated

estimation error erbalt = balt − Etbalt. These variables follow a stationary vector process:

 Etbalt

erbalt

 =

 ρ (1 − ωφ)κbal

0 1 − κbal

 Et−1balt−1

erbalt−1

+

 ϕbal 0 (1 − ωφ)κbal

1 − ϕbal 1 −κbal



uflwt

ubalt

ξbalt−1

 (15)

where ρ = 1
1+αβ and φ = αβ

1+αω(2λ+β) . Order flow during period t depends on the estimated depth balance

and its associated estimation error:

flwt+1 = −(1 − ρ)Etbalt + uflwt+1 − ωφκbal(erbalt + ξbalt ). (16)
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The last two terms are unforecastable at the start of period t, so the revision in estimated fundamental value

between t and t+ 1 is given by

µt+1 = µt + nt+1 + λ
[
uflwt+1 − ωφκbal(erbalt + ξbalt )

]
. (17)

Combining (15) and (17) with (6) gives the following equation for the change in prices:

∆pt+1 = nt+1 +
(
λ+ 1

2βϕ
bal)uflwt+1

− 1
2β(1 − ρ)Etbalt + 1

2 [β − ωφ (β + 2λ)]κbal(erbalt + ξbalt ). (18)

These equations display several noteworthy features. First, since the estimated balance Etbalt contributes

to order flow and price changes, both variables display persistence and can be forecast using information

available at the start of period t. Second, incomplete information concerning the state of the LOB contributes

to the persistence of order flow and price changes. Equation (15) shows that the estimation errors erbalt are

serially correlated and contribute to the dynamics of Etbalt. Third, noisy observations on the depth balance

provide traders with more precise information about order flow and future price changes when choosing their

market orders than was available when limit orders were determined. The last terms on the right-hand-side

of equations (16) and (18) identify the new information conveyed by the noisy observations so that

(E∗t − Et)flwt+1 = −ωφκbal(erbalt + ξbalt ) and

(E∗t − Et)∆pt+1 = 1
2 [β − ωφ (β + 2λ)]κbal(erbalt + ξbalt ).

These features come into play as we next examine the effects of different shocks.

The transmission of news shocks occurs entirely via the information channel. To see why, consider the

effects of a positive news shock nt+1 that arrives at the start of period t + 1. Equation (17) shows that

the arrival of news leads to an immediate upward revision in the estimated fundamental value of FX. This

revision is reflected in period-t+ 1 limit orders, increasing both the best bid and ask prices equally, so there

is a one-to-one price change, as shown in equation (18). Moreover, because the news produces no further

revisions in estimated fundamental value beyond t+ 1, it has no effect on the expected future price changes

that drive market orders during period t + 1 and beyond. Consequently, as (16) shows, news shocks have

no effect on order flow. This feature of the model is entirely standard. It reflects the fact that news shocks

revise the estimates of fundamental value used by all traders submitting limit and market orders.

Order flow shocks affect prices and order flows through two channels: the liquidity and information

channels. The liquidity channel operates by changing traders’ estimates of the depth balance. Equation

(16) shows that a positive uflwt+1 shock produces an unexpected rise in period-t order flow flwt+1, which in

turn produces an increase in the estimated balance Et+1balt+1, as shown in (15). Thereafter, the effects of

the shock dissipate until estimates of the depth balance return to zero. Consequently, since pt+1 = µt+1 +

1
2βEt+1balt+1, the positive uflwt+1 shock pushes prices above the estimated fundamental value of FX from period
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t + 1 until their effects on the estimated depth balances disappears. The information channel operates by

changing the estimated fundamental value of FX. In particular, (17) shows that a positive uflwt+1 shock induces

an upward revision in estimated fundamental value at the start of period t+ 1 equal to λubalt+1. Thereafter,

the shock adds to the estimation errors erbalt+i for i > 1 as shown in (15). These errors lead to further

revisions in estimated fundamentals because they contribute to future unexpected order flows. Equation

(17) implies that the cumulative effect of a positive uflwt+1 shock is to increase estimated fundamental value by

[λ−ωφ(1−ϕbal)]ubalt+1. Since changes in µt are reflected one-to-one in the price level, the informational channel

gives order flow shocks a smaller permanent price impact than their immediate price impact. Equation (18)

implies that the immediate price impact of order flow shocks operating through the liquidity and information

channels is λ+ 1
2βϕ

bal , while the permanent price impact is λ+ 1
2β−ωφ(β+ 2λ)(1−ϕbal) . For reasonable

parameterizations of the model, the permanent price impact is slightly smaller than λ, so prices fall after

period t+ 1 until they reach their new long-run level. During this period, order flows are negative because

traders estimate that trade prices are above the estimated fundamental value of FX.

The operation of the liquidity and information channels discussed above is affected by the presence

of limited information. In particular, limited information adds to the persistence of the liquidity channel

because order flow shocks have longer lasting effects on the estimated depth balance.8 The liquidity effects

of order flow shocks are still present when traders know the depth balance, and they still temporarily push

prices away from estimated fundamental value, but the effect dies out more quickly. Limited information

also contributes to the persistence of the information channel. If traders know the depth balance directly, all

the information effects of the order flow shock occur immediately because the uflwt+1 shock only contributes to

unexpected order flows during period t. Consequently, order flows have an immediate an permanent price

impact through the information channel.

Next, consider the effects of a positive balance shock ubalt+1 that increases the depth balance (i.e. the depth

of limit buy orders relative to sell orders) at the start of period t+ 1. This shock has no immediate effect on

pt+1 because traders setting limit orders at the start of period t+1 are unaware of the shock. In contrast, the

shock produces an unexpected fall in period t+ 1 order flow because traders revise their estimates for trade

prices upwards based on the higher signal concerning balt+1 they receive before placing their market orders.

From this point forward, the effects of the shock are transmitted to prices via the liquidity and information

channels. Traders submitting limit orders use their higher estimates of the depth balance to push prices

above fundamental value. They also revise their estimates of fundamental value downwards in response

to the unexpected fall in order flow. Thus, the information and liquidity channels initially push prices in

opposite directions: the liquidity channel pushes the price upward, while the information channel pulls it

downwards. This means that while positive balance shocks induce an unexpected fall in order flow, they

can produce either an unexpected rise or fall in prices depending upon whether the liquidity or information

channels dominate. Of course, as time passes the liquidity effects of the shock die out, so that the permanent

price impact of a positive balance shock is negative.9

8To see this analytically, note that (15) simplifies to Etbalt = ρEt−1balt−1 + ubalt + uflwt when traders observe the depth
balance directly (balt = Etbalt).

9Traders’ misperceptions about the state of the LOB can also affect prices and order flow. In particular, noise in signals
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Two key features of the model give rise to these price and order flow responses: (i) the informational

advantage of traders submitting market orders over limit orders, and (ii) the limited depth at the top of

the LOB. If traders submitted market orders before receiving the signal about the depth balance (thereby

eliminating their information advantage over traders submitting limit orders), the the balance shock would

not produce unexpected order flow in period t+ 1. In fact, it would only contribute to lower expected order

flow in the periods that follow. Under these circumstances, the shock would have no effect on prices via the

information channel, it would only temporarily raise prices via the liquidity channel. Similarly, if there was

unlimited depth on either side of the LOB at the best prices, traders submitting market orders would know

that their orders would be executed at those prices. The model accommodates this special case when ω = 0.

Under these circumstances, information about the balance shock would not impact on the traders’ choice of

market orders, so again order flow in period t + 1 would be unaffected and the information channel would

be inoperable.

To better understand the roles of the information and liquidity channels, Figure 1 plots the responses of

the (log) price level and order flow to order flow shocks and balance shocks. The plots are computed from

a simulation of the model with α = 15, β = 0.1, λ = 0.2, κbal = κd = 0.6 and ϕbal = ϕd = 0.5: the implied

value for ρ is 0.86.

Panels A and B show the responses to a positive order flow shock uflwt+1 that occurs during period t. Here

we see how the effects of the shock operating through the information and liquidity channels lead to an

immediate price-impact (in period t + 1) that exceeds the long-run impact (depicted by the dashed line in

panel A). Panel B shows that the shock induces a persistent effect on order flow. After the initial effect of

the shock, the liquidity channel temporarily pushes order flow negative while prices are above the estimated

fundamental value of FX.

The effects of a positive period t balance shock ubalt are shown in panels C and D. In this calibration

of the model, the liquidity channel is stronger than the information channel so the immediate price-impact

of the shock is positive. Of course, over time, the liquidity effects dissipate so that prices fall towards the

new estimate of fundamental value, shown by the dashed line in panel C. In panel D we see that the shock

initially produces an unexpected fall in order flow. This is then followed by a period of negative order flow

while prices remain above estimated fundamental value.

The plots in Figure 1 make clear that the contemporaneous correlation between unexpected price changes

and order flow depends on the source of the shock. In this particular calibration of the model exogenous

shocks to order flow produce a positive correlation, whereas balance shocks produce a negative correlation.

These correlations reflect the relative importance of the information and liquidity channels in the transmission

of different shocks to prices. The plots in Figure 1 also show that the long-run price impact of a shock can

differ from its immediate impact when liquidity effects are important. The long run price impact of order

flow shocks is smaller because the liquidity effects amplify the immediate information effects of the shock.

In contrast, the liquidity effects completely dominate the immediate information effects of balance shocks,

traders receive about the depth balance affect order flows and prices through the information and liquidity channels in a similar
manner as balance shocks.
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Figure 1: Model Impulse Responses

Price Level Order Flow

Notes: Impulse responses of the (log) price level, and order flow to positive order flow shocks uflwt (panels A
and B), and balance shocks ubalt (panels C and D). Dashed lines show long run response.

so that the short- and long-run price impacts are in opposite directions.

In summary, the trading model illustrates the complex process by which shocks affect FX prices and

trading flows in a LOB. The complexity arises because the shocks operate through multiple channels that

have different short- and long-run effects. In the next section, I empirically examine this complex process.

2 Intraday Empirical Analysis

I now describe the structural VAR model I estimate with LOB data on trading in the EURUSD, the world’s

most heavily traded currency pair. The trading model in Section 1 includes several stylized but counterfactual

assumptions that facilitated the analysis of equilibrium dynamics. In particular, the model assumes that

the submission of limit and market orders follow a sequence, and that noisy information about the depth of
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the LOB reaches traders in a specific way. In reality, the submission of limit and market orders can occur

simultaneously and continuously. Furthermore, while actual traders have limited information about the state

of the LOB, they undoubtedly receive new information in a more complex manner than is assumed in the

trading model. In light of these observations, I will not attempt to empirically estimate the exact structure

of the trading model. Instead, I use its implications concerning the short- and long-run effects of shocks to

impose restrictions on the VAR so that the estimates are informative about the sources of FX price dynamics

and trading flows.

2.1 The Structural VAR

The VAR includes six variables from the trading model: order flow and volume during period t, flwt+1 and

volt+1; the depth balance, total depth, and the spread at the start of period t+ 1, balt+1, dt+1 and spdt+1;

and the change in (log) mid-point prices between the start of periods t and t + 1, ∆pt+1 = pt+1 − pt. One

period in the VAR spans 30 seconds. While this is clearly a much shorter time span than is typically used

in VARs, it often covers a great deal of EURUSD trading activity. Examining the LOB trading data at a

30-second frequency provides greater clarity into the process driving prices and trade flows than is possible

at lower frequencies (e.g., five minutes) while avoiding the technical complexity of estimating a model on a

trade-by-trade basis (see, e.g. Evans, 2011).

I assume that the vector Yt+1 = [flwt+1, volt+1, balt+1, dt+1, spdt+1,∆pt+1]′ follows a (possibly infinite)

covariance stationary vector moving average process:

Yt+1 = Θ(L)Vt+1, (19)

where Θ(L) = Θ0 + Θ1L + Θ2L
2 + ... is a matrix polynomial in the lag operator and Vt+1 = [v1t+1, ...v

6
t=1]′

is a 6 × 1 vector of mean-zero innovations with diagonal covariance matrix ΣV .

I place two sets of restrictions on the matrices of moving average coefficients: short-run restrictions on

the impact matrix Θ0, and long-run restrictions on the sum of the Θi matrices, Ψ =
∑
i Θi. The restrictions

are

Θ0 =



1 0 0 0 0 θ16

θ21 1 0 0 0 0

θ31 θ32 1 0 0 θ36

θ41 θ42 θ43 1 θ45 0

θ51 θ52 θ53 θ54 1 0

θ61 θ62 θ63 θ64 θ65 1


and Ψ =



ψ11 ψ12 ψ13 ψ14 ψ15 ψ16

ψ21 ψ22 ψ23 ψ24 ψ25 ψ26

ψ31 ψ32 ψ33 ψ34 ψ35 ψ36

ψ41 ψ42 ψ43 ψ44 ψ45 ψ46

ψ51 ψ52 ψ53 ψ54 ψ55 ψ56

ψ61 ψ62 0 0 0 ψ66


. (20)

The impact matrix Θ0 contains 12 zeros that restrict the contemporaneous impact of innovations on VAR

variables. The coefficients on the leading diagonal of Θ0 are normalized to one to facilitate interpretation of

the model estimates. The long-run matrix Ψ contains just three zero restrictions in the sixth row. Because

the change in FX prices appears as the sixth variable in Yt+1, these three zeros restrict the third, forth and
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fifth innovations to have no permanent effect on the level of prices. The 18 θi,j, coefficients and six innovation

variances can be exactly identified from estimates of the VAR by imposing the long-run restrictions in Ψ.

The restrictions on the impact matrix are conventional except for the three (possibly) non-zero coefficients

that appear above the leading diagonal. The motivation for these coefficients comes from the trading model.

Recall that the contemporaneous correlation between unexpected price changes and order flow could be

positive, negative or zero depending on the shock. Here I allow the correlation between price changes and

order flow to be similarly determined by the source of the innovation. In particular, the first innovation

v1t has a one-for-one impact on order flow flwt while inducing a price change ∆pt+1 of θ61v1t . From the

perspective of the trading model, it is natural to interpret v1t as an order flow shock, so we would expect to

estimate a positive value for θ61 (implying a positive correlation between price changes and order flow).10

The structure of the Θ0 matrix also allows v1t innovations to affect the other four variables in the model.11

The sixth innovation, v6t , can induce a different correlation between price changes and order flow. According

to the impact matrix, v6t has a one-to-one effect on prices while inducing an order flow equal effect of θ16v6t .

If news shocks are the primary contributors to the v6t innovations, θ16 should be (close to) zero because news

shocks have no affects on order flow (implying a zero correlation between price changes and order flow).

In this case, θ36 should also be (close to) zero because news shocks have no effect on the depth balance.

Alternatively, if v6t innovations are primarily driven by balance shocks as in the trading model, θ16 should

be negative.

The structure of the Θ0 matrix also allows the correlation between the spread and depth to depend

on the source of the innovation. In the trading model, changes in the spread are negatively correlated with

revisions in the estimated depth of the LOB. So shocks to actual depth that are accurately perceived produce

a negative correlation between actual depth and the spread. In contrast, shocks that inaccurately induce

a revision in estimated depth induce a movement in the spread without a corresponding change in actual

depth. The coefficients θ54 and θ45 allow for similar differences in the correlation between depth and spreads

depending on the incidence of the fourth and fifth innovations, v4t and v5t .

The structure of the Ψ matrix allows for just three of innovations, v1t , v2t and v6t , to have a long-run effect

on the price level. In the trading model, shocks have a permanent price-impact via the information channel.

So from that perspective, v1t , v3t and v6t will have long-run price effects insofar as they reflect shocks that

affect prices via the information channel. For example, if v1t innovations reflect order flow shocks, we should

expect ψ61 to be positive, but less than θ61 because the liquidity channel amplifies the short-run effects of

order flow shocks on prices. Similarly, if news shocks are the primary source of v6t innovations, ψ66 should

equal one because the price-impact of such shocks is immediate and complete (i.e., the short- and long-run

price effects are equal). Alternatively, if balance shocks are the main contributor to the v6t innovations, we

expect the long-run price effects to differ from the short-run effects, as illustrated in Figure 1. In this case,

ψ66 could be positive or negative. The structure of the Θ0 matrix also allows for the possibility that v2t
10While this is a natural interpretation, the VAR innovations are logically distinct from (linear combinations of) the exogenous

shocks in the trading model because the linear VAR forecasts for Yt+1 need not equal traders’ conditional expectation, EtYt+1.
11Under the interpretation that v1t represent order flow shocks, θ31 should be positive, while θ21, θ41 and θ51 should be close

to zero. These predictions are borne out in the estimates presented below.
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innovations have a long-run price impact identified by the ψ62 coefficient. This could occur if order flow or

balance shocks contribute to the v2t innovations.

In summary, the structural VAR imposes restrictions that can accommodate the various correlations

between order flow and price changes produced by different shocks, and differences between their immediate

and permanent price-impacts. Both of these features turn out to be empirically important.

2.2 Data

I construct the six VAR variables from the EBS trading data using an observation window of 30 seconds.

Although FX trading takes place continuously 24 hours a day, seven days a week, there are distinct weekly

and daily patterns in activity that show up in volume, depth and the spread. To illustrate these seasonal

patterns, Figure 2 plots median volume and median depth for each hour in three years from the sample

period. The plots in panel A show that trading volume is typically concentrated between 7:00 and 18:00

hrs (London time), with a distinct peak between 14:00 and 16:00 hrs. Notice also that trading volume

is significantly higher in 2008 than in 2003 and 2015. These differences in volume are representative of a

persistent increase in volume between 2003 and 2010, followed by a decline from 2011 to 2015. Panel B

shows that the median depth of the LOB showed much less intraday “seasonality” than volume during 2003

and 2015. In contrast, median depth increased markedly between 7:00 and 18:00 hrs during 2008, peaking

at approximately the same time as volume.

I remove these weekly and daily patterns before estimating the VAR. First, I exclude the 48 hours between

midnight (London Time) on Friday and Sunday because there is very little activity during this period.

Second, I estimate the average volume, depth and spread for each 15-minute interval in the remaining days

using data from the same interval on the prior 10 trading days. For example, I estimate seasonal volume

between 12:00 and 12:15 pm on day 11 as the average volume (per 30-second period) between 12:00 and

12:15 pm on days 1 to 10. This procedure only uses information about past daily patterns of activity. It also

accommodates the slow-moving change in the seasonal patterns that occurred over the months and years

spanned by the sample that was illustrated by Figure 2.

Table 1 provides statistics for the six variables in the VAR. The variables are defined as follows: Order

flow flwt+1 is computed as the difference between the value of market EUR purchase and market EUR sale

orders in millions of USD during the 30-second period t. Volume volt+1 is the sum market EUR purchase

and market EUR sale orders in millions of USD during period t. The depth balance balt is measured as the

difference in millions between the USD value of limit bids to buy EUR and limit offers to sell EUR at the

start of period t. Total depth dt is the USD value in millions of limit offers to sell EUR and limit bids to

buy EUR at the start of period t. The spread and price change variables (measured in basis points) are

computed from the logs of the best limit bid and offer prices, pbidt and poffert , at the start of period t. In

particular, the period-t spread is computed as spdt = (poffert − pbidt )× 10000, and the price change between t

and t+ 1 is computed as ∆pt+1 = (pt+1 − pt) × 10000, where pt = 1
2p

offer
t + 1

2p
bid
t .
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Figure 2: Seasonal Volume and Depth
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Notes: Panel A plots the median trading volume in billions for each hour (London Time)
for three years from the sample period: 2003, 2008 and 2015. Panel B plots the median
depth in millions for each hour. Trading data between midnight on Friday and midnight
on Sunday are excluded from the calculations.

Panel A of Table 1 reports the mean, median, standard deviation and autocorrelations for the raw

variables. The most notable statistics are the autocorrelations, which cover up to 20 periods, or equivalently

10 minutes of trading activity. Volume, total depth, and the depth balance are all strongly autocorrelated,

whereas order flow, the spread and price changes display small amounts of serial correlation. Seasonal

patterns contribute to the autocorrelations in some of these variables.12 Panel B reports statistics for “de-
12There is no discernible seasonal pattern in the depth balance.
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seasonalized” volume, depth and the spread. These variables are computed by removing their respective

seasonal components (estimated from the prior 10 trading days as described above). De-seasonalization

reduces the size of autocorrelations more at longer lags than shorter lags. It also reduces the standard

deviation of the volume and depth.

Table 1: Summary Statistics

Order Flow Volume Depth Balance Total Depth Spread Price Change

A:
Mean 0.136 50.719 0.626 177.663 1.048 0.000
Median 0.000 24.000 1.000 148.000 0.824 0.000
Std. 26.690 74.864 79.673 123.698 1.967 1.311
Autocorr.
lag = 1 0.101 0.753 0.908 0.963 0.053 -0.036

5 0.025 0.608 0.811 0.925 0.031 -0.004
10 0.017 0.566 0.747 0.900 0.029 0.001
20 0.013 0.523 0.665 0.868 0.026 0.001

B:
Mean -3.307 -0.692 0.000
Median -8.829 -8.325 -0.086
Std. 60.363 80.075 1.945
Autocorr.
lag = 1 0.620 0.911 0.037

5 0.398 0.817 0.016
10 0.333 0.755 0.014
20 0.266 0.676 0.010

Notes: The table reports summary statistics for the variables in the VAR. Panel A shows statistics for the
raw variables, while panel B shows statistics for the de-seasonalized variables. All statistics are computed
from 9760079 observations, at a 30-second frequency, over 13 years; January 6, 2003 to December 31, 2015.

2.3 VAR Estimates

Table 2 shows estimates of the impact matrix Θ0 and the innovation variances in the covariance matrix ΣV .

These estimates are computed from a third-order VAR; estimates from higher-order VARs are very similar.

The table also shows standard errors in parentheses under each of the estimated parameters. These standard

errors (and the confidence bands shown below) are computed from a bootstrap with 5000 replications. The

VAR estimates and the bootstrap are computed from time series with approximately 9.8 million observations,

so the standard errors associated with many of the parameters are extremely small. The table shows a value

of 0.0000 in the cases where the bootstrap standard errors are smaller than 0.0001. Restricted coefficients

in the impact matrix (i.e. those equal to one or zero) appear without standard errors. By conventional

standards, almost all the coefficient estimates in the impact matrix are highly statistically significant.

Our primary interest is in understanding the origins of movements in order flows and FX prices. To this
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Table 2: VAR Estimates

1.0000 0.0000 0.0000 0.0000 0.0000 -4.1103 5.2910
(0.0018) (0.0000)

-0.0134 1.0000 0.0000 0.0000 0.0000 0.0000 25.7780
(0.0008) (0.0000)
0.0611 -0.0009 1.0000 0.0000 0.0000 -0.1943 11.2370

Θ0 = (0.0005) (0.0002) (0.0027) diag(ΣV ) = (0.0000)
-0.0076 -0.0263 -0.0127 1.0000 -1.5245 0.0000 10.5390
(0.0005) (0.0002) (0.0004) (0.0023) (0.0000)
0.0013 0.0023 -0.0001 0.0420 1.0000 0.0000 (0.2443)
(0.0001) (0.0000) (0.0001) (0.0001) (0.0000)
0.5274 -0.0008 -0.0393 -0.0018 0.0139 1.0000 0.2010
(0.0001) (0.0000) (0.0000) (0.0000) (0.0003) (0.0000)

Notes: The table reports estimates of the impact matrix Θ0 and the innovation variances (from the leading diagonal
of Σv) computed from a third-order VAR estimated at a 30-second frequency, over 13 years; January 6, 2003 to
December 31, 2015. Bootstrap standard errors are reported below each parameter estimate. Standard errors smaller
than 0.0001 are shown as 0.0000.

end, Figure 3 plots the impulse responses of order flow and the log price level to the v1t and v6t innovations.

The horizontal axis shows the number of minutes since the innovation. Table 3 shows below that these two

innovations account for almost all the variance of order flows and price changes across all horizons, so I

concentrate on these impulse responses.13 In addition to the impulse responses, Figure 3 also shows 95%

confidence intervals computed from the bootstrap as grey bands. The bands are almost invisible in the order

flow responses because the underlying VAR parameters are so precisely estimated.

The plots in panel A of Figure 3 show the effects of a v1t innovation to order flow. The immediate effect

of the innovation is to increase order flow by 1 million USD (by construction). Thereafter, the effects of the

innovation on order flow quickly diminish, becoming negligible after three minutes. The right-hand plot in

panel A shows the response of the price level pt. (These responses are computed by cumulating the price

change responses from the VAR.) The immediate price-impact is to increase the price level by 0.53 basis

points. Prices rise further for the next minute and then begin a gradual decline. This decline continues

beyond the ten minutes shown in the plot. According to the estimates of Ψ matrix, the impulse response

reaches a value of 0.521. Thus the model estimates imply that the permanent price-impact of the 1 million

USD v1t innovation is 0.52 basis points. This response pattern is qualitatively similar to the response of the

price level to exogenous order flow shocks in the trading model shown in Figure 1. This suggests that order

flow shocks affect prices via both the information and liquidity channels; and that the latter channel has

non-negligible effects for many minutes following the shock.

The plots in panel B show the responses to a v6t innovation that immediately increases the price level by

one basis point. It is immediately clear from these plots that news shocks cannot be the primary contributor

to such innovations. Theoretically speaking, news should not affect order flow, and its price-impact should be
13The Appendix contains a complete set of impulse responses.
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immediate and complete. In contrast, Figure 3 shows that the v6t innovation induces an immediate negative

order flow of approximately four million USD, which then dies out in the following two minutes. During this

period, the price level falls by approximately 0.08 basis points. Thereafter, the price response approaches

its long-run value of 0.91 more slowly. The initial effects of the v6t innovation are qualitatively similar to the

impact of the balance shock: the innovation induces a negative correlation between unexpected prices and

order flow. In the minutes that follow, the effects of the v6t innovation on prices and order flow die out more

quickly than in the trading model.

Figure 3: Impulse Responses
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Notes: The plots show the impulse response of order flow and the price level to a v1t innovation (panel A)
and v6t innovation (panel B). The shaded bands around each response are 95% confidence bands computed
from a bootstrap. The horizontal axis shows the number of minutes since the innovations.
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Overall, the impulse responses in Figure 3 provide empirical support for two key predictions of the

trading model. First, they show that contemporaneous co-movements between order flow and price changes

vary according to the shock affecting trading behavior. Second, it is important to distinguish between

the immediate price-impact of a shock and its permanent price impact. These findings have important

implications for understanding the source of FX price movements and order flows.

Table 3 reports the estimated variance contributions of the v1t and v6t innovations to order flow and price

changes over horizons ranging from one minute to one hour, together with the lower and upper bounds of the

95% confidence intervals for each estimated contribution computed from the bootstrap. Panel A shows that

approximately 61% of the variance in order flow is attributable to v1t innovations and approximately 39%

to v6t innovations across all horizons. From the perspective of the trading model, these estimates suggest

that variations in order flow are not simply due to exogenous shocks to the flows of market orders, but

they also reflected the arrival of new information about the state of the LOB. The statistics in panel B

show that v1t innovations are the dominant driver of FX price changes, accounting for approximately 87%

of the variance across all horizons. In contrast, the variance contribution of v6t innovations is relatively

unimportant at approximately 12%. (Together, the v1t and v6t innovations account for 99% of the variance in

FX price changes.) It is also worth noting that 95% confidence intervals around all the estimated variance

contributions in the table are very tight.

Table 3: Variance Decomposition

Innovation
v1t (Order Flow) v6t (Balance)

Variable
lower estimate upper lower estimate upper

A: Order Flow
horizon 1 (60.830% 60.871% 60.913%) (39.087% 39.129% 39.170%)

2 (60.511% 60.553% 60.596%) (39.254% 39.296% 39.338%)
10 (60.334% 60.376% 60.418%) (39.383% 39.426% 39.468%)
60 (60.311% 60.353% 60.396%) (39.367% 39.410% 39.453%)

B: Price Change
horizon 1 (87.050% 87.057% 87.065%) (11.905% 11.911% 11.916%)

2 (86.982% 86.990% 86.998%) (11.936% 11.942% 11.948%)
10 (86.971% 86.979% 86.987%) (11.936% 11.943% 11.949%)
60 (86.964% 86.972% 86.981%) (11.936% 11.942% 11.948%)

Notes: The columns headed estimate report the percentage contributions of v1t and v6t innovations to order
flow and price changes over horizons ranging from 1 to 60 minutes. The columns headed lower and upper
report the lower and upper boundaries of the 95% confidence interval for each variance contribution computed
from a bootstrap. Estimated variance contributions and bootstrap boundaries are based on estimates of a
third-order VAR estimated at a 30-second frequency, over 13 years; January 6, 2003 to December 31, 2015.

The results in the Table 3 are quite surprising. To understand why it is worth considering what we

would expect to see if conventional views about FX price dynamics we true. Consider, first, the textbook
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macroeconomic view that FX prices primarily react to news concerning future exchange rate fundamentals,

such as interest rates or their macroeconomic determinants (see, e.g., Engel and West 2006, Engel et al.,

2008 and Mark, 2009). In this case, the v6t innovations would primarily reflect such news, so we would expect

them to contribute little to the variance of order flow and almost 100% to the variance of FX price changes

at all horizons. Obviously, the results in Table 3 are very different.

An alternative view explains the contemporaneous short-horizon correlation between order flow and

price changes while retaining the focus on fundamentals’ news as the most important driver of FX prices

over long horizons (see, e.g., Froot and Ramadorai, 2005, Berger et al., 2008a and Breedon and Vitale,

2010). According to this view, shocks to order flow only have a price impact via the liquidity channel. The

operation of this channel accounts for the contemporaneous correlation between order flow and price changes

over short horizons. It also means that shocks to order flow have no permanent price impact. In this case,

the v1t innovations should account for all of the order flow variance across horizons, and some of the variance

of price changes at short horizons. At long horizons, the v6t innovations (representing news) should account

for almost 100% of the variance of FX price changes (as in the textbook macroeconomic view). Again, the

results in table 3 are very different.

This is not to say that liquidity effects are absent. But, if the liquidity channel were important, we

should expect to see that v1t innovations make a larger contribution to the variance of price changes at short

horizons than at long horizons. The estimated variance contributions in Table 3 display this pattern, but

the difference between the contributions at the short and long horizons are very small. This suggests that

while the liquidity channel is operative, its quantitative impact on the short-term price impact is very small.

Table 3 contains two further noteworthy results. The first concerns the size of the variance contributions

of v6t innovations to order flow. From the perspective of the trading model, v6t innovations represent revisions

in the estimated state of the LOB so they contribute to the variance of order flow insofar as traders submit-

ting market orders have an informational advantage over traders with existing limit orders. The estimated

variance contributions of approximately 39% indicate that this endogenous response of order flow is empir-

ically important. The second noteworthy result concerns the estimated 87% contribution of v1t innovations

to the variance of FX price changes. Earlier research by Payne (2003), Daníelsson and Love (2006), Berger

et al. (2008b) and others found that order flows accounted for no more than 50% of the variance of intraday

changes in FX prices. One way to account for this difference is to view order flow as a noisy signal of the

“informative” flow that carries the information driving intraday FX price changes.

3 Macro Empirical Analysis

The results from the VAR show that intraday movements in FX prices (i.e., the EURUSD rate) are over-

whelmingly driven by information that is conveyed by order flows, but not all order flows are equally impor-

tant in conveying information. In this section, I use the VAR as a filter to identify the different components

driving daily and weekly movements in EURUSD rates. I then examine how these components are linked to

the behavior of interest rates.
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3.1 VAR Filtering

I use the VAR estimates to decompose the intraday FX price changes and order flows into two components:

one driven by the v1t innovations, and ones driven the v6t innovations. I then aggregate the price change and

order flow components into daily and weekly time series.

To begin, I compute the implied vector moving average process for Yt+1 from the VAR estimates as

Yt+1 = Θ̂(L)V̂t+1, (21)

where V̂t+1 = [v̂1t+1, ...v̂
6
t+1] is the vector of estimated innovations, and Θ̂(L) = Θ̂0 + Θ̂1L+ Θ̂2L

2 + ... is the

estimated moving average polynomial with estimated matrices Θ̂i. The contribution of the vjt innovation

to the vector Yt+1 can now be calculated for every 30-second period as Y jt+1 = Θ̂(L)V̂ jt+1, where the vector

V̂ jt+1 = [0, ..v̂jt+1, ..0]′ only contains the estimated vjt innovation. Our interest is in the contributions of

the v1t and v6t innovations to order flows and prices. I compute the contributions to order flow as flw1
t =

[ 1 0 0 0 0 0 ]Y 1
t+1 and flw6

t = [ 1 0 0 0 0 0 ]Y 6
t+1, and the contributions to price changes as

∆p1t+1 = [ 0 0 0 0 0 1 ]Y 1
t+1 and ∆p6t+1 = [ 0 0 0 0 0 1 ]Y 6

t+1. To construct daily time series

from these components, I choose 17:00 hrs as the end of a day. The daily order flow component driven by vjt
innovations is just the sum of the 30-second order flow components in the 24 hours before 17:00 hrs on day

T : flwjT =
∑
t∈day(T ) flw

j
t . Similarly, I compute the daily price change (or depreciation rate) component

driven by vjt innovations as ∆pjT =
∑
t∈day(T ) ∆pjt . Hereafter, I use “T ” subscripts to index daily time series.

Table 4 reports summary statistics for daily EURUSD order flow and its components, and the daily

EURUSD depreciation rate and its components. Panel I shows that the order flow component driven by the

v6t innovations is more variable than the component driven by the v1t innovations and that the two components

are positively correlated at the daily level. This pattern is repeated across the three sub-periods, but the

flw6
T component is much more volatile than the flw1

T component during the 2007-2011 period. Panel II

shows a somewhat different pattern. Here the depreciation components are negatively correlated and the

∆p1T component is more variable than the ∆p6T component.

The correlations between the daily components deserves comment. By construction, there is no contempo-

raneous correlation between the intraday components of order flow and price changes: i.e., Corr(flw1
t , f lw

6
t )

= 0 and Corr(∆p1t ,∆p6t ) = 0. The estimated intraday innovations v̂1t and v̂6t are also uncorrelated with the

three lagged values of Yt that appear in the estimated VAR. This means that order flow or price change

components aggregated over a couple of minutes are uncorrelated by construction. This reasoning does not

apply to the daily order flow and depreciation components because estimated innovations from later in the

day can be correlated with price changes and order flows that were observed hours earlier. This could occur,

for example, if traders decided to submit market or limit orders based on their analysis of order flow and price

movements in the previous hour. Obviously, these correlations would not exist if the estimated innovations

were computed from a VAR with hundreds of lags (that spanned at least 24 hours), but estimating such

VAR is completely impractical. Thus, the correlations between the daily components reported in Table 4 are

indicative of inter-temporal links between price changes and order flow within the day that are undetectable
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Table 4: Summary Statistics for EURUSD Daily Series

I: Order Flows II: Depreciation Rates
Sample

Std(flwT ) Std(flw1
T ) Std(flw6

T ) Corr Std(∆pT ) Std(∆p1T ) Std(∆p6T ) Corr

A: 2003-2015
(3388 obs) 394.090 142.490 308.310 0.448 63.117 68.896 39.060 -0.449

B: 2003-2006
(1039 obs) 233.980 114.570 179.020 0.118 59.451 55.443 22.678 -0.119

C: 2007-2011
(1305 obs) 563.700 175.300 445.690 0.585 69.595 84.746 56.466 -0.586

D: 2012-2015
(1044 obs) 226.140 119.570 165.520 0.203 57.906 57.810 20.964 -0.204

Notes: The table reports the standard deviations of daily order flows and their components (panel I) and the daily
depreciation rates and their components (panel II) together with the correlation between the components (in the
columns labelled “Corr”). The statistics in Panels A - D are computed for the whole sample period and three
sub-periods.

in the intraday data.

3.2 Order Flows and the Transmission of Macro Information

I now examine whether the daily order flows and depreciation rates, flwjT and ∆pjT , are linked to the flows

of information concerning exchange-rate fundamentals. For this purpose, it is useful to refer to an identity

that links daily changes in FX prices with expectations. The identity is derived from the definition of the

expected log excess return on holding euros between the days T and T + 1:

erT = ET pT+1 − pT + i∗T − iT , (22)

where iT and i∗t are the log US and Euro one day nominal interest rates. ET denotes expectations conditioned

on information known at 17:00 hrs on day T . Re-arranging (22) gives the following expression for daily

depreciation rate

∆pT+1 = (iT − i∗T + erT ) − (ET+1 − ET )

H∑
i=1

(
iT+i − i∗T+i

)
− (ET+1 − ET )

H∑
i=1

erT+i + (p̄T+1, − ET p̄T+1) , (23)

where p̄T ≡ ET pT+H is the expected EURUSD rate many (i.e., H > 0) days ahead.14

14The derivation of this equation requires several steps, which are described in the Appendix. Importantly, the equation
follows from the Law of Iterated Expectations and the definition in (22), it embeds no additional assumptions.
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Equation (6) identifies all the proximate factors that can drive the daily depreciation rate. The first term

on the right identifies the expected depreciation rate, ET∆pT+1. The remaining terms identify the factors

that contribute to the error in forecasting the EURUSD rate one day ahead, i.e., pT+1 − ET pT+1. These

factors are: (i) news about future interest differentials (over the next H days), (ii) news about expected

excess returns (over the next H days), and (iii) revisions in expectations concerning the EURUSD rate H

days ahead.

Recall that the v1t innovations appear to be the dominant driver of intraday changes in EURUSD rates,

accounting for approximately 87% of their variance. Since daily depreciation rates have very little pre-

dictability, equation (6) implies that v1t innovations primarily covey news about future interest differentials,

expected excess returns, and/or long-horizon FX prices. It is therefore natural to empirically investigate

whether the daily order flow component driven by v1t innovations, flw1
T , is related to other variables that

embed news about interest differentials. The variable I use for this purpose is the daily change in the dif-

ference between US and EUR one-year nominal interest rates: ∆(i
(yr)
T+1 − i

∗(yr)
T+1 ). Changes in these one-year

rates reflect revisions in the expected path of daily rates over the next year, and changes in the risk premium

embedded in the term structure of interest rates. So if we set the horizon H in equation (6) to one year,

∆(i
(yr)
T+1 − i

∗(yr)
T+1 ) should be correlated with (ET+1 − ET )

∑H
i=1

(
iT+i − i∗T+i

)
.

Table 5 shows the results of regressing the daily order flow components, flw1
T and flw6

T , on the daily

change in the difference between the US and EUR one-year nominal interest rates, ∆(i
(yr)
T+1 − i

∗(yr)
T+1 ). The

regressions also include a constant and one lag of the dependent variable (in some cases). The table reports

estimates computed from the full sample period, and from three sub-periods. These sub-periods were chosen

to give results based on data before, during, and after the 2008 financial crisis.

As the table shows, there is a striking difference between the estimated coefficients in the regressions for

the flw1
T component in panel I and the estimated coefficients in the regressions for the flw6

T in panel II.

The estimated coefficient on the change in the interest differential ∆(i
(yr)
T+1 − i

∗(yr)
T+1 ) is negative and highly

statistically significant in the flw1
T regressions in both the full sample period and all but the first sub-period.

In contrast, none of the estimated coefficients on ∆(i
(yr)
T+1 − i

∗(yr)
T+1 ) are statistically significant in the flw6

T

regressions. These results suggest that news concerning future interest differentials contributed to the v1t
innovations that drove that flw1

T component of order flow. Moreover, it appears that the order flow compo-

nent fell on days where news produced an upward revisions in expectations (ET+1 − ET )
∑H
i=1

(
iT+i − i∗T+i

)
.

This pattern is consistent with equation (6) because v1t innovations produce a positive correlation between

order flow and depreciation rates (FX price changes).

To provide further evidence on the information conveyed by order flow, Table 6 reports estimates of

regressions for the daily depreciation rate ∆pT+1. Panel I shows the results from regressing ∆pT+1 on

the change in the interest differential ∆(i
(yr)
T+1 − i

∗(yr)
T+1 ). Some specifications also include two lags of the

depreciation rate, order flow and the interest differential. As the table shows, the estimated coefficients

on the interest differential are negative and statistically significant in both the full sample-period and the

sub-periods. However, these regressions account for very little of the variability in the depreciation rate

– the largest adjusted R2 statistics equal 0.1 in the 2007-11 sub-period, and approximately 0.05 over the
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whole 13 year sample period. Panel II reports estimates of regressions that replace the change in the interest

differential with the component of the depreciation rate driven by v1t innovations, ∆p1T+1. In contrast to

the results in panel I, the estimated coefficients on the depreciation component are positive and highly

significant. The large adjusted R2 statistics confirm that v1t innovations are the dominant drivers of daily

EURUSD depreciation rates, consistent with the variance decomposition results in Table 3.

Table 5: Daily Order Flow Regressions

Sample Variable Specification
I: flow1

t II: flow6
t

A: 2003-2015
(3388 obs) ∆(i(yr) − i∗(yr)) -3.995∗∗∗ -3.964∗∗∗ 0.276 0.356

(0.613) (0.602) (0.673) (0.660)
lag no yes no yes

R
2

0.038 0.041 0.000 0.072

B: 2003-2006
(1039 obs) ∆(i(yr) − i∗(yr)) -1.044∗ -1.038∗ -0.259 -0.150

(0.552) (0.559) (0.930) (0.790)
lag no yes no yes

R
2

0.003 0.003 0.001 0.052

C: 2007-2011
(1305 obs) ∆(i(yr) − i∗(yr)) -4.916∗∗∗ -4.811∗∗∗ 0.563 0.648

(0.651) (0.641) (0.946) (0.958)
lag no yes no yes

R
2

0.062 0.076 0.001 0.077

D: 2012-2015
(1044 obs) ∆(i(yr) − i∗(yr)) -14.677∗∗∗ -14.677∗∗∗ -0.919 -0.976

(1.732) (1.734) (2.095) (2.070)
lag no yes no yes

R
2

0.087 0.087 0.001 0.037

Notes: The table reports OLS estimates for regressions of the daily order flow components: flw1
T

(panel I) and flw6
T (panel II). All regressions include a constant and daily change in the 12-month

interest differential ∆(i(yr)−i∗(yr)) as right-hand side variables. Regressions with “lag” also include
the one lag of the dependent variable. Heteroskedastic-consistent standard errors are reported in
parenthesis below each of the parameter estimates. Statistical significance at the 10, 5 and 1%
levels is indicated by ∗ ∗∗ and ∗∗∗, respectively.
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Table 6: Daily Depreciation Rate Regressions

Sample Variable Specification

I II III

2003-2015
∆(i(yr) − i∗(yr)) -1.979∗∗∗ -2.028∗∗∗

(0.300) (0.285)
∆p1 0.742∗∗∗ 0.759∗∗∗ 1.027∗∗∗ 1.029∗∗∗

(0.017) (0.017) (0.052) (0.052)

lags no yes no yes no yes

R
2

0.048 0.051 0.656 0.673 0.559 0.588

2003-2006
∆(i(yr) − i∗(yr)) -0.428∗∗∗ -0.792∗∗∗

(0.190) (0.253)
∆p1 0.961∗∗ 0.971∗∗ 0.890∗∗ 0.987∗∗

(0.017) (0.016) (0.336) (0.225)

lags no yes no yes no yes

R
2

0.003 0.008 0.807 0.813 0.802 0.813

2007-2011
∆(i(yr) − i∗(yr)) -2.480∗∗∗ -2.466∗∗∗

(0.329) (0.323)
∆p1 0.598∗∗∗ 0.619∗∗∗ 1.046∗∗∗ 1.033∗∗∗

(0.025) (0.025) (0.053) (0.056)

lags no yes no yes no yes

R
2

0.101 0.102 0.530 0.552 0.232 0.306

2012-2015
∆(i(yr) − i∗(yr)) -7.069∗∗∗ -7.083∗∗∗

(0.841) (0.866)
∆p1 0.929∗∗∗ 0.933∗∗∗ 1.000∗∗∗ 1.002∗∗∗

(0.025) (0.025) (0.037) (0.041)

lags no yes no yes no yes

R
2

0.087 0.084 0.860 0.865 0.855 0.860

Notes: The table reports estimates of the daily depreciation rate for the EURUSD on the daily change in the 12-month
interest differential ∆(i − i∗), and the order flow component of the daily depreciation rate ∆pflw. Regressions with
“lags” also include two lags of ∆(i− i∗), the daily depreciation rate and daily order flow. Specifications I and II are
estimated by OLS. Specification III is estimated by GMM using ∆(i−i∗) as an instrument for ∆pflw. Heteroskedastic-
consistent standard errors are reported in parenthesis below each of the parameter estimates. Statistical significance
at the 10, 5 and 1% levels is indicated by ∗ ∗∗ and ∗∗∗, respectively.

The estimates in Panel III of Table 6 speak to the question of what drives the v1t innovations. Here I

report the estimates from an instrumental variable (IV) regression of ∆pT+1 on ∆p1T+1 where change in

the interest differential are used as the instrument for ∆p1T+1. If v1t innovations are unrelated to revisions

in expectations concerning future interest rates, the IV estimates of the ∆p1T+1 coefficient should be close
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to zero and insignificant. Alternatively, if changing interest rate expectations account for most of the v1t
innovations, the IV estimates of the ∆p1T+1 coefficient should be significant and close to one. The results in

the table confirm this prediction. In all cases the estimated coefficients are highly significant and close to one.

Indeed, despite the small standard errors, t-tests for the null of a coefficient equal to one cannot be rejected

at conventional significance levels. The adjusted R2 statistics from these regressions are also noteworthy.

Across the full sample period, and two of the sub-periods, these statistics are very similar in magnitude to

those in panel II. This implies that most of the variations in ∆p1T+1 during these periods were correlated with

changes in the interest differential. The one exception to this pattern appears in the 2007-2011 sub-period,

where the adjusted R2 statistics in panel III are a good deal smaller than those in panel II. It appears that v1t
innovations conveyed less information about revisions in interest-rate expectations and were a less dominant

source of daily FX price movements during this sub-period. Perhaps this is not too surprising in light of the

fact that much of the 2007-2011 period includes the 2008 financial crisis.

The results in Tables 5 and 6 are notable from several perspectives. First, they contradict the view that

spot exchanges rates are largely disconnected from macro fundamentals; a view Obstfeld and Rogoff (2000)

called the Exchange-Rate Disconnect Puzzle. If we exclude the sub-period dominated by the 2008 financial

crisis, at least 80% of the daily variations in the EURUSD spot rate are attributable to order flows correlated

with changing long-term interest rates. It appears that order flow, or more precisely a component of order

flow, acts as the medium connecting spot rates with changing expectations about future short-term interest

rates.15 Second, the results appear to confirm earlier research linking order flows to macro information.

Evans (2010) and Evans and Lyons (2013) found that order flows from end-users contain incremental (non-

public) information about (unreported) current and future macro variables, while Rime et al. (2010) show

that order flows have short-term forecasting power for specific macro data releases. The results here use a

component of order flow from the wholesale market rather than the end-user flows of an individual bank,

and cover a much longer time period.

Finally, it is worth considering why the regressions with order flow in panels II and III of Table 6 are

so much more successful in accounting for daily depreciation rates than the regressions in panel I that only

include changes in the interest differential, ∆(i
(yr)
T+1 − i

∗(yr)
T+1 ). Suppose changes in the interest differential

were entirely due to revisions in expectations about future short-term interest rates, and those revisions

were driven by the arrival of public news nt as identified in the trading model. Under these circumstances,

the regressions in panel I of Table 6 would have high adjusted R2 statistics. Furthermore, the regressions

of the daily order flow components on ∆(i
(yr)
T+1 − i

∗(yr)
T+1 ) in Table 5 would produce insignificant coefficients.

The fact that neither of these predictions is borne out empirically suggests that revisions in expectations

are not primarily driven by such news. It seems, instead, that throughout the day expectations are revised

through an unobserved process that also produces (what appear as) shocks to order flow, which ultimately

are transmitted to FX prices through the information channel. Thus the flw1
T component of order flow

15Of course, movements in long-term interest rates could reflect changes in the term premia rather than expectations con-
cerning future short-term rates, so it is possible that the v1t innovations conveyed information about term premia. I regard this
as a less likely explanation for the results in panel III because the explanatory power of order flow is so much less between 2007
and 2011 that in the earlier or later sub-periods.
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appears as the key link connecting movements in spot exchange rates to macro fundamentals via changing

expectations concerning future interest rates.

3.3 Order Flows and Risk Premia

If the flw1
T component of order flow carries information about future interest rates, what is the role of the

flw6
T component? To address this question, let us return to the identity in equation (23), which I now

rewrite as

∆pT+1 + (ET+1 − ET )

H∑
i=1

(
iT+i − i∗T+i

)
= ET∆pT+1 − (ET+1 − ET )

H∑
i=1

erT+i + (p̄T+1, − Etp̄T+1) . (24)

The results in Panel III of Table 6 imply that ∆p1T+1 is a good proxy for − (ET+1 − ET )
∑H
i=1

(
iT+i − i∗T+i

)
,

so the term on the left-hand-side of (24) is approximately equal to ∆pT+1−∆p1T+1 = ∆p6T+1. Thus the flw
6
T

component must reflect the expected depreciation rate ET∆pT+1, revisions in expected future excess returns

(ET+1 − ET )
∑H
i=1 erT+i, and/or changing long-horizon forecasts for the EURUSD rate p̄T+1, − Etp̄T+1.

To differentiate between these alternative possibilities, I estimate forecasting regressions of the form

∆τp6T+τ = α0 + α1Z1,T + ..αjZj,T + uT+τ , (25)

where ∆τp6T+τ =
∑T
j=1 ∆p6T+j is the τ -day change in p6T and Zj,T are forecasting variables known on day

T . If movements in the flw6
T component reflect changing expectations about depreciation rates, and those

expectations are correlated with the forecasting variables, some of the αj coefficients should be statistically

significant.

I consider three forecasting variables: the change in the interest differential on one week bonds ∆(i
(w)
T −

i
∗(w)
T ), the ∆p6T component of the daily depreciation rate, and the realized skewness in intraday FX price

changes during day T : skwT =
∑
i∈day(T )(∆pt)

3. The trading model from Section 1 motivates these

forecasting variable choices. Recall that the impulse responses to the v6t innovations in Figure 3 resembled

the responses in the trading model to shocks that change the estimated depth balance. If v6t innovations

are indeed primarily driven by revisions in Etbalt, the ∆p6T component of the daily depreciation should have

forecasting power for ∆τp6T+τ .

To understand the economic logic behind this prediction, we need to consider the risks associated with

the submission of a limit order. A trader submitting a limit order to sell FX faces two risks. The first is the

risk that the order will not execute (i.e., it will not be matched with an incoming market buy order). The

second risk is that the order will execute along with other limits with much higher offer prices (because there

is a large flow of market buy orders). In this case the trader would have missed the opportunity to sell FX

at a higher price. The size of both risks depends on the probability distribution for the flow of market buy

orders used by traders. Suppose this distribution shifts to the right, so the risk of underpricing the limit sell
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order rises, and the risk of non-execution falls. Ceteris paribus, such a shift will reduce the depth of limit

sell orders, which in turn will raise the actual and estimated depth balance. Analogous reasoning applies to

limit buy orders. In this case a rightward shift in the distribution for the flow market sell orders would lower

the depth of limit buy orders and lower Etbalt, ceteris paribus. When shifts in the distribution for market

buy and sell orders reflect changes in the distribution of order flow shocks, movements in Etbalt will reflect

changes in the distribution of future FX prices. In particular, if traders believe that the distribution of order

flow shocks has shifted to the right, Etbalt will rise and the distribution of future FX price changes will

shift to the right (because large positive order flow shocks are more likely). As the trading model showed,

an upward revision in Etbalt produces an increase in FX prices. So ∆p6T should be positive on days where

the consensus view among traders is that distribution of future FX price changes has moved to the right.

Insofar as this consensus view is correct, positive (negative) values for ∆p6T should forecast higher (lower)

future changes in FX prices.

The results from estimating the forecasting regression in (25) are reported in Table 7. Panel I shows the

results from forecasting the daily depreciation component ∆p6T+1 one day ahead, while Panel II shows the

results from forecasting the weekly depreciation component ∆5p6T+5 one week ahead. As above, I report

estimates for the whole sample and three sub-periods. Overall, the table shows that the ∆p6T component

has forecast power at both horizons. The estimated coefficients on ∆p6T are positive and highly statistically

significant in all the specifications. In contrast, changes in the interest differentials appear to have no

forecasting power. This finding is robust to the inclusion of the interest differential rather than the change

in the interest differential. The table also shows that the forecasting power of ∆p6T is not diminished by the

addition of realized skewness skwT . If traders changed their views about the future distribution of price

changes based on past changes, the forecasting power of ∆p6T could disappear when this variable is added to

the regression. As the table shows, the skwT variable appears significant in some of the regressions, but the

forecasting power of ∆p6T appears robust to its inclusion.

The forecasting results presented here distinct from those found in earlier studies. For example, Evans

and Lyons (2005) and Evans and Lyons (2013) use the end-user order flows received by Citibank to forecast

EURUSD depreciation rates (both within-sample and out-of-sample) up to four weeks ahead.16 These

order flows represent private information that was not available across the market, whereas the order flow

components used here come from trades on the EBS LOB that are observable to a large number of market

participants.

Of course there is a long tradition in exchange-rate economics, starting with Meese and Rogoff (1983),

of considering the forecasting implication of different models. The results here add two perspectives to this

tradition. First, because a component of order flow appears to convey new information about future interest

rates that typically accounts for a large fraction of the variance in daily depreciation rates, the ability of any

variable (known ex ante) to forecast daily depreciation rates should be quite limited. Second, the theoretical

foundation of the forecasting results presented here considers the risks associated with the provision of
16In contrast to Evans and Lyons results, Reitz et al. (2011) were unable to find forecasting power in the end-user flows they

studied. It appears that not all end-user order flows are equally informative.
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liquidity in FX trading rather than the risk identified by the behavior of pricing kernels (stochastic discount

factors) found in traditional asset-pricing models (see, e.g., Engel, 2013).

Table 7: Forecasting Order Flow Regressions

Forecast Variables

I: One Day Ahead II: One Week Ahead

Sample Forecasting ∆1p6T+1 ∆5p6T+5

Variables

A: 2003-2015
∆(iT − i∗T ) 0.587 1.004 0.899 -0.116 -0.125 -0.049

(1.165) (1.213) (1.197) (0.520) (0.499) (0.513)
∆τp6T 0.270∗∗∗ 0.250∗∗∗ 0.207∗∗∗ 0.390∗∗∗

(0.032) (0.032) (0.052) (0.106)
skwT 0.074∗∗ -0.206∗∗

(0.030) (0.102)

R
2

0.000 0.072 0.077 0.000 0.042 0.051

B: 2003-2006
∆(iT − i∗T ) 2.857 1.899 1.922 0.329 0.086 0.130

(2.982) (2.952) (2.948) (1.186) (1.126) (1.141)
∆τp6T 0.231∗∗∗ 0.229∗∗∗ 0.333∗∗∗ 0.278∗∗∗

(0.037) (0.038) (0.061) (0.089)
skwT 0.008 0.061

(0.034) (0.086)

R
2

0.000 0.052 0.051 -0.001 0.109 0.109

C: 2007-2011
∆(iT − i∗T ) 0.506 1.027 0.888 -0.221 -0.238 -0.124

(1.274) (1.319) (1.297) (0.574) (0.536) (0.560)
∆τp6T 0.280∗∗∗ 0.258∗∗∗ 0.189∗∗∗ 0.419∗∗∗

(0.039) (0.040) (0.062) (0.128)
skwT 0.078∗∗ -0.258∗∗

(0.037) (0.121)

R
2

-0.001 0.077 0.082 -0.001 0.034 0.047

D: 2012-2015
∆(iT − i∗T ) -0.379 -0.002 -0.025 4.420 4.945 5.015

(4.221) (4.209) (4.217) (4.558) (4.571) (4.542)
∆τp6T 0.197∗∗∗ 0.180∗∗∗ 0.148∗∗∗ 0.210∗∗∗

(0.031) (0.032) (0.049) (0.068)
skwT 0.086∗∗∗ -0.071

(0.031) (0.075)

R
2

-0.001 0.037 0.043 0.002 0.022 0.022

Notes: The table reports estimates of forecasting regression (25). Regressions are estimated by OLS at the
daily frequency. Heteroskedastic-consistent standard errors are reported in parenthesis below each of the
parameter estimates. There standard errors also account for the MA(4) process induced by the overlapping
forecast errors in the Panel II regressions. Statistical significance at the 10, 5 and 1% is signified by ∗, ∗∗

and ∗∗∗, respectively.
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4 Conclusion

This paper looked inside the “black box” of FX trading in an attempt to reconnect short-term movements

in spot exchange rates with macroeconomic variables. Using insights from the microstructure model of FX

trading on a LOB, I used a structural VAR to identify two distinct components of order flow in wholesale

FX trading that play distinctive roles in driving intraday changes in the EURUSD rate. The v1t innovations

driving one component are the dominant driver of EURUSD rates, accounting for up to 80% of the vari-

ations in daily depreciation rates before 2007 and after 2011. Furthermore, both the daily order flow and

depreciation components driven by the v1t innovations are strongly correlated with daily changes in long-term

interest differentials, suggesting that these innovations carry information about future short-term interest

rates. These findings suggest that short-term movements in EURUSD rates are often much better connected

to macro variables than is widely thought.
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A Appendix

A.1 Solution to the Trading Model

This appendix describes the solution of the microstructure trading model in equations (4) - (14). I solve the

model in two steps. In the first step I find the solution for price changes, order flow and the depth balance.

I then solve for for the spread, volume and total depth in the second step.

To begin, I rewrite order flow and the change in FX prices as

flwt+1 = −αβEtbalt − 2αωE∗t ∆pt+1 + uflwt+1 and (26)

∆pt+1 = nt+1 + λ(flwt+1 − Etflwt+1) + 1
2βκ

bal(balt + ξbalt − Etbalt)

+ 1
2βflwt+1 − 1

2β(1 − ϕbal)(flwt+1 − E∗t flwt+1). (27)

These equations imply that Et∆pt+1 = 1
2βEtflwt+1 and Etflwt+1 = −αβEtbalt−2αωEt∆pt+1. Combining

these expressions gives

Etflwt+1 = − αβ

1 + αβω
Etbalt and Et∆pt+1 = − 1

2β
αβ

1 + αβω
Etbalt. (28)

Equations (26) and (27) also imply that

E∗t flwt+1 = −αβEtbalt − 2αωE∗t ∆pt+1 and

E∗t ∆pt+1 = (λ+ 1
2β)E∗t flwt+1 +

λαβ

1 + αβω
Etbalt + 1

2βκ
bal(balt + ξbalt − Etbalt).

Writing these expressions in matrix form, and solving for the expectations gives E∗t ∆pt+1

E∗t flwt+1

 =

 1
2

β
1+αω(2λ+β)κ

bal − 1
2β

αβ
1+αβω

−αω β
1+αω(2λ+β)κ

bal − αβ
1+αβω

 balt + ξbalt − Etbalt

Etbalt

 . (29)

With these results I can rewrite the order flow equation (26) as

flwt+1 = −(1 − ρ)Etbalt + uflwt+1 − ωφκbal
(
balt − Etbalt + ξbalt

)
, (30)
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where ρ = 1
1+αβ and φ = αβ

1+αω(2λ+β) . This equation implies that flwt+1 − E∗t flwt+1 = uflwt+1 and flwt+1 −

Etflwt+1 = uflwt+1 − ωφκbal(balt − Etbalt + ξbalt ). So I can now rewrite the price change equation in (27) as

∆pt+1 = nt+1 + (λ+ 1
2βϕ

bal)uflwt+1 + 1
2 [β − ωφ (β + 2λ)]κbal(balt − Etbalt + ξbalt ) − 1

2β(1 − ρ)Etbalt. (31)

To complete the first step, I solve for the estimated depth balance and its associated estimation error.

Equations (5), (11) and (13) imply that

Et+1balt+1 = Etbalt + κbal(balt + ξbalt − Etbalt) + flwt+1 − (1 − ϕbal)(flwt+1 − E∗t flwt+1), and (32)

balt+1 − Et+1balt+1 = (1 − κbal)(balt − Etbalt) + ubalt+1 − κbalξbalt + (1 − ϕbal)(flwt+1 − E∗t flwt+1). (33)

Simplifying these expressions gives Et+1balt+1

balt+1 − Et+1balt+1

 =

 ρ (1 − ωφ)κbal

0 1 − κbal

 Etbalt

balt − Etbalt



+

 ϕbal 0 (1 − ωφ)κbal

1 − ϕbal 1 −κbal



uflwt+1

ubalt+1

ξbalt

 . (34)

To start the second step, I rewrite volume and the change in the spread as

volt = αβE*
t dt − αωE*

t ∆sprt+1 + uvolt+1 and (35)

∆sprt+1 = −βκd(dt + ξdt − Etdt) + βvolt − β(1 − ϕd)(volt − E∗t volt). (36)

This implies that Et∆sprt+1 = βEtvolt and hence Etvolt = αβEtdt − αωEt∆sprt+1, so combining these

expressions gives

Etvolt =
αβ

1 + αβω
Etdt and Et∆sprt+1 = β

αβ

1 + αβω
Etdt. (37)

Equations (35) and (36) also imply that

E∗t ∆sprt+1 = −βκd(dt + ξdt − Etdt) + βE∗t volt and

E∗t volt = αβE*
t dt − αωE*

t ∆sprt+1.

Solving these equations gives

E∗t volt =
αβ

1 + αβω
Etdt +

αβ (1 + ω)

1 + αβω
κd(dt + ξdt − Etdt) and

E∗t ∆sprt+1 = β
αβ

1 + αβω
Etdt − β

(
1 − αβ

1 + αβω

)
κd(dt + ξdt − Etdt).
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We can now find expressions for volume and the spread:

volt = (1 − ρ)Etdt + (1 + ω) (1 − ρ)κd(dt + ξdt − Etdt) + uvolt+1 and (38)

∆sprt+1 = β(1 − ρ)Etdt − β (1 − (1 + ω) (1 − ρ))κd(dt + ξdt − Etdt) + βϕduvolt+1. (39)

To complete the second step we solve for the estimated total depth and its associated estimation error.

Equations (8), (12) and (14) imply that

Et+1dt+1 = ρEtdt + (ρ− ω(1 − ρ))κd(dt + ξdt − Etdt) − ϕduvolt+1 and (40)

dt+1 − Et+1dt+1 =
(
1 − κd

)
(dt − Etdt) + udt+1 − κdξdt − (1 − ϕd)uvolt+1. (41)

Simplifying these expressions gives Et+1dt+1

dt+1 − Et+1dt+1

 =

 ρ (1 − (1 + ω)(1 − ρ))κd

0 1 − κd

 Etdt

dt − Etdt



+

 −ϕd 0 (1 − (1 + ω)(1 − ρ))κd

−(1 − ϕd) 1 −κd



uvolt+1

udt+1

ξdt

 . (42)

A.2 Derivation of Equation (23)

First, we rewrite (22) as a difference equation in pT and solve forward H periods. Applying the Law of

Iterated Expectations to the resulting expression produces

PT = ET

H−1∑
i=0

(
i∗T+i − iT+i

)
− Ed

t

H−1∑
i=0

erT+i + p̄T , (43)

where p̄T ≡ ET pT+H . Next, we consider the implications of (43) for the daily depreciation rate, ∆pT+1 =

pT+1−pT . By definition, this rate equals the sum of expected depreciation rate, ET∆pT+1, and the forecast

error pT+1 − ET pT+1; components that can be directly computed from (43) as

ET∆pT+1 = iT − i∗T + erT and (44a)

pT+1 − ET pT+1 = − (ET+1 − ET )

H∑
i=1

(
iT+i − i∗T+i

)
− (ET+1 − ET )

H∑
i=1

erT+i + (p̄T+1, − ET p̄T+1) . (44b)

Substituting these expressions into the identity ∆pT+1 = ET∆pT+1 + pT+1 − ET pT+1 produces equation

(23).
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A.3 VAR Impulse Responses

Figure 4: Impulse Responses to v1t Innovations
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Notes: The plots show the impulse responses a v1t innovation. The shaded bands around each response are
95% confidence bands computed from a bootstrap. The horizontal axis shows the number of minutes since
the innovations.

-37-



Figure 5: Impulse Responses to v2t Innovations
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Notes: The plots show the impulse responses a v2t innovation. The shaded bands around each response are
95% confidence bands computed from a bootstrap. The horizontal axis shows the number of minutes since
the innovations.
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Figure 6: Impulse Responses to v3t Innovations
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95% confidence bands computed from a bootstrap. The horizontal axis shows the number of minutes since
the innovations.
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Figure 7: Impulse Responses to v4t Innovations

Order Flow (millions USD) Total Depth (millions USD)

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5
10 -3

0 1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Volume (millions USD) Spread (basis points)

0 1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 1 2 3 4 5 6 7 8 9 10
-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Depth Balance (millions USD) Price Level (basis points)

0 1 2 3 4 5 6 7 8 9 10
-8

-6

-4

-2

0

2

4
10 -3

0 1 2 3 4 5 6 7 8 9 10
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
10 -3

Notes: The plots show the impulse responses a v4t innovation. The shaded bands around each response are
95% confidence bands computed from a bootstrap. The horizontal axis shows the number of minutes since
the innovations.
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Figure 8: Impulse Responses to v5t Innovations
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Notes: The plots show the impulse responses a v5t innovation. The shaded bands around each response are
95% confidence bands computed from a bootstrap. The horizontal axis shows the number of minutes since
the innovations.
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Figure 9: Impulse Responses to v6t Innovations
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Notes: The plots show the impulse responses a v6t innovation. The shaded bands around each response are
95% confidence bands computed from a bootstrap. The horizontal axis shows the number of minutes since
the innovations.
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A.4 Additional Regressions

Table 8: Forecasting Order Flow Regressions

Forecast Variables

I: One Day Ahead II: One Week Ahead

Sample Forecasting flw flw1 flw6 flw flw1 flw6

Variables

2003-2015
flw1 0.131∗∗ 0.000 0.066 0.219 0.039 0.172

(0.053) (0.020) (0.043) (0.116) (0.038) (0.094)
flw6 0.297∗∗ 0.070∗∗ 0.256∗∗ 0.206∗∗ 0.049∗∗ 0.166∗∗

(0.040) (0.011) (0.031) (0.072) (0.018) (0.058)

R
2

0.066 0.023 0.073 0.043 0.023 0.045

2003-2006
flw1 0.206∗∗ -0.042 0.041 0.276∗∗ 0.010 0.209∗

(0.056) (0.030) (0.048) (0.137) (0.050) (0.108)
flw6 0.257∗∗ 0.082∗∗ 0.229∗∗ 0.326∗∗ 0.081∗∗ 0.306∗∗

(0.050) (0.020) (0.037) (0.075) (0.027) (0.056)

R
2

0.052 0.015 0.053 0.090 0.026 0.119

2007-2011
flw1 0.087 0.041 0.041 0.141 0.067 0.103

(0.098) (0.032) (0.080) (0.208) (0.064) (0.169)
flw6 0.317∗∗ 0.061∗∗ 0.270∗∗ 0.210∗∗ 0.040 0.164∗∗

(0.052) (0.015) (0.041) (0.101) (0.026) (0.081)

R
2

0.070 0.032 0.077 0.037 0.027 0.035

2012-2015
flw1 0.115 -0.039 0.107∗∗ 0.383∗∗ 0.003 0.351∗∗

(0.067) (0.040) (0.045) (0.133) (0.060) (0.105)
flw6 0.224∗∗ 0.056∗∗ 0.181∗∗ 0.071 0.013 0.064

(0.044) (0.026) (0.032) (0.080) (0.033) (0.061)

R
2

0.033 0.004 0.043 0.033 -0.001 0.052

Notes: The table reports estimates of forecasting regressions for order flow and the order flow components
at the one day (panel I) and one week horizon (panel II). Forecasting variables are the daily order flow
components in panel 1 and weekly order flow components in panel II. Regressions are estimated by OLS at
the daily frequency. Heteroskedastic-consistent standard errors are reported in parenthesis below each of the
parameter estimates. There standard errors also account for the MA(4) process induced by the overlapping
forecast errors in the panel II regressions. “*” and “**” denote statistical significance at the 5 and 1 percent
levels, respectively.
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