Buying Data from Consumers
The Impact of Monitoring Programs in U.S. Auto Insurance

Yizhou Jin Shosh Vasserman
UC Berkeley Stanford

NBER SI IT Digitization & IO
July 2019
Motivation

IT + Privacy Standards \rightarrow Direct transactions of consumer data

- Firms directly incentivize consumers to reveal information \textit{voluntarily}
- \textit{Own} collected data as proprietary
Monitoring in Auto Insurance
A simple device that reveals “how people drive.”
Direct Transactions of Consumer Data in General

Prevalent in insurance and lending. Empirical evidence on its economic impact is limited.
This Project: Research Question and Context

What is the profit and welfare impact of introducing a monitoring program in U.S. auto insurance?

- Acquire proprietary panel datasets from a major U.S. auto insurer
 - A monitoring program is introduced during our research window
 - Matched to competitors’ price menus based on regulatory filings
This Project: Empirical Strategy

1. How useful is monitoring?

2. How much information is revealed in equilibrium?
This Project: Empirical Strategy

1. How useful is monitoring?
 - Provide reduced-form evidence and quantify monitoring’s ability to both incentivize safer driving and improve risk rating.

2. How much information is revealed in equilibrium?
This Project: Empirical Strategy

1. How useful is monitoring?
 ▶ Provide reduced-form evidence and quantify monitoring’s ability to both incentivize safer driving and improve risk rating.

2. How much information is revealed in equilibrium?
 ▶ **Demand**: estimate structural parameters to capture correlations of monitoring opt-in choice, insurance choices, cost to insure.

 ▶ **Supply**: firm’s information set is endogenous to prices: propose two-period two-product model to characterize pricing in counterfactual equilibria.
This Project: Empirical Strategy

1. How useful is monitoring?
 - Provide reduced-form evidence and quantify monitoring’s ability to both incentivize safer driving and improve risk rating.

2. How much information is revealed in equilibrium?
 - Demand: estimate structural parameters to capture correlations of monitoring opt-in choice, insurance choices, cost to insure.
 - Supply: firm’s information set is endogenous to prices: propose two-period two-product model to characterize pricing in counterfactual equilibria.
This Project: Empirical Strategy

1. How useful is monitoring?
 Evaluate the degree to which the IT can address information problems

2. How much information is revealed in equilibrium?
 Stricter privacy standards mean that the firm must “buy” data from consumers.
 Use IO tools to characterize the equilibrium price and quantity of information, and how it interacts with product market primitives.
This Project: Empirical Strategy

1. How useful is monitoring?
 Evaluate the degree to which the IT can address information problems

2. How much information is revealed in equilibrium?
 Stricter privacy standards mean that the firm must “buy” data from consumers.
 Use IO tools to characterize the equilibrium price and quantity of information, and how it interacts with product market primitives.

⇒ No monitoring counterfactual
⇒ Counterfactual equilibria: optimal pricing + data sharing
Roadmap

Background and Data

Demand and Estimation

Pricing and Equilibrium
Auto Insurance

Month 0

Coverage Choice

Renewal Offer

Attrition Choice

5

6
Auto Insurance

Month 0

Coverage Choice

File Claim
Pay OOP

Claim Adjustment
& Reimbursement

5

Renewal Offer

Attrition Choice

6

Claim Surcharge
by All Firms
• **Observable characteristics**: 1-driver-1-vehicle, 22 states, 2012-16
• **Quotes**: liability limits ($30-500K, discrete choice)
• **Competitor quotes**: top 5 competitor per state
• **Coverage choice**: avg. $74K, and 48% in mandatory min
• **Premium paid**: avg. $380/period
Auto Insurance - Data

- **Observable characteristics**
- **Quotes**
- **Competitor quotes**
- **Coverage choice**
- **Premium paid**

- **Claim realization**: avg. 1 per 10 yrs $6K/claim
- **Renewal quote change**
- **Attrition choice**

![Diagram]

- **Month 0**
 - Coverage Choice
- **5**
 - Renewal Offer
- **6**
 - Attrition Choice
Monitoring Program

Monitoring Window

Month 0

Coverage Choice

Monitoring Opt-In Choice

Renewal Offer

Attrition Choice

Renewal Discount or Surcharge
Monitoring Program

- **Monitored behavior**: mileage, hard brakes, speed, late night driving
- **Duration**: First period only (before renewal offer)
- **Opt-in discount**: First period only
- **Renewal discount range**: Lasts forever after first period

![Diagram showing Monitoring Window, Month 0, Coverage Choice, Monitoring Opt-In Choice, Renewal Offer, Renewal Discount or Surcharge, Attrition Choice]
Monitoring Program

- Monitored behavior
- Duration
- Opt-in discount
- Renewal discount range • Real-time feedback

Coverage Choice

Monitoring Opt-In Choice

Renewal Offer

Renewal Discount or Surcharge

Attrition Choice
Monitoring Program

- Monitored behavior
- Duration
- Opt-in discount
- Renewal discount range
- Real-time feedback

- Score & discount: proprietary data (verified with filing)
Monitoring is useful in two ways

Result #1.1 Monitoring changes consumer behavior - drivers become 30% safer when they are monitored

Incentive Effect: drivers can exert effort to send a better signal of their type (Fama 1980, Holmstrom 1999, Villas-Boas and Fudenburg 2005).

- Within-driver comparison: opt-in drivers become riskier after the monitored (first) period; no such effect for drivers that did not opt in.

Result #1.2 Monitoring outcome still signals unobserved risk differences across drivers after monitoring.

- Receiving a score 1 sd above the mean → 29% higher claim count in subsequent (unmonitored) period, conditional on observables
Roadmap

Background and Data

Demand and Estimation

Pricing and Equilibrium
Structural Model - Overview

- **Cost** model - claim count C

- Monitoring **technology** - monitoring score s

- **Choice** model $d = \{f, y, m\}$
 - **Product choices** - firm f and coverage y
 - **Information choice** - monitoring opt-in m
Structural Model - Overview

- **Cost** model - claim count C: $\lambda(\sigma, \theta)$
 - Consumers have latent risk types λ with unobserved heterogeneity σ
 - Consumers can change λ by θ when monitored
Structural Model - Overview

- **Cost** model - claim count C: $\lambda(\sigma_\lambda, \theta)$

 Consumers have latent risk types λ with unobserved heterogeneity σ_λ
 Consumers can change λ by θ when monitored

- Monitoring **technology** - monitoring score s: σ_s

 s is an informative signal of λ with precision σ_s
Structural Model - Overview

- **Cost** model - claim count C: $\lambda(\sigma, \theta)$

 Consumers have latent risk types λ with unobserved heterogeneity σ

 Consumers can change λ by θ when monitored

- Monitoring **technology** - monitoring score s: σ_s

 s is an informative signal of λ with precision σ_s

- **Choice** model $d = \{f, y, m\}$

 Product choices - firm f and coverage y: λ, γ, η

 - risk $\leftarrow \lambda$

 - preference: risk aversion (γ) and inertia for switching firms (η)
Structural Model - Overview

- **Cost** model - claim count C: $\lambda(\sigma_\lambda, \theta)$

 Consumers have latent risk types λ with unobserved heterogeneity σ_λ

 Consumers can change λ by θ when monitored

- **Monitoring technology** - monitoring score s: σ_s

 s is an informative signal of λ with precision σ_s

- **Choice** model $d = \{f, y, m\}$

 Product choices - firm f and coverage y: λ, γ, η

 risk $\leftarrow \lambda$

 preference: risk aversion (γ) and inertia for switching firms (η)

 Information choice - monitoring opt-in m

 ▶ financial risk and rewards

 * risk reduction $\leftarrow \lambda(\theta)$

 * renewal discount and reclassification risk $\leftarrow \lambda(\sigma_\lambda), \gamma, \sigma_s$

 ▶ unobserved disutility from being monitored (ξ)
Structural Model - Overview

- **Cost** model - claim count C: $\lambda(\sigma_\lambda, \theta)$
 - Consumers have latent risk types λ with unobserved heterogeneity σ_λ
 - Consumers can change λ by θ when monitored

- **Monitoring technology** - monitoring score s: σ_s
 - s is an informative signal of λ with precision σ_s

- **Choice** model $d = \{f, y, m\}$
 - **Product choices** - firm f and coverage y: λ, γ, η
 - risk $\leftarrow \lambda$
 - preference: risk aversion (γ) and inertia for switching firms (η)
 - **Information choice** - monitoring opt-in m: $\lambda, \sigma_s, \gamma, \xi$
 - financial risk and rewards
 - risk reduction $\leftarrow \lambda(\theta)$
 - renewal discount and reclassification risk $\leftarrow \lambda(\sigma_\lambda), \gamma, \sigma_s$
 - unobserved disutility from being monitored (ξ)
Estimation

Simulated MLE. Goal: fit monitoring share + selection pattern (who opts in).
Fit

Simulated MLE. Goal: fit monitoring share + selection pattern (who opts in).
Advantageous Selection into Monitoring...

Result #Demand.1 Safer drivers are more likely to opt in...
...But Also Large Demand Friction Against Monitoring

Result #Demand.2 ...but large friction exists so that most who can financial benefit do not opt in.

- $\hat{\xi}(x, \lambda)$ has mean $93; higher for \{younger, less educated, older cars, poorer prior insurance or traffic records\}.

- $\hat{\xi}(x, \lambda)$ is increasing with λ: conditional on expected financial discounts, safer drivers are more likely to opt in \rightarrow exacerbates advantageous selection into monitoring.
Welfare Calculation: Current - No Monitoring

Introducing monitoring increases firm profit, consumer welfare, and total surplus.

- hold baseline (unmonitored) prices fixed
- set resource cost of monitoring is $35 per capita
Welfare Calculation: Tease Out Allocative Effect

assume away incentive effect: drivers are no safer when monitored.

- ~64% of the surplus gain comes from risk reduction (incentive effect)
- competitive cream-skimming with better risk information (vs. Rothschild and Stiglitz 1976): overall profit ↓ and quantity ↑
Roadmap

Background and Data

Demand and Estimation

Pricing and Equilibrium
Pricing and Counterfactual Equilibria

Pricing Model

- Firm profit
 - 2-period: pre- and post-information revelation
 - 2-product: insurance with and without monitoring
Pricing and Counterfactual Equilibria

Pricing Model

- Firm profit
 - 2-period: pre- and post-information revelation
 - 2-product: insurance with and without monitoring

- Firm actions: 3 types of price adjustments for monitoring
 - Parameterization corresponds to how monitoring changes the firm’s information set

 $t = 0$ does not observe monitoring score

 $m = 0 : \kappa_0$ surcharge unmonitored pool
 $m = 1 : \kappa_1$ discount monitored pool

 $t = 1$ observes monitoring score iff $m = 1$

 $m = 1 : \kappa_s$ linear rent-sharing regime with monitored drivers
Pricing and Counterfactual Equilibria

Pricing Model

- Firm profit: 2-period-2-product
- Firm actions: 3 types of price adjustments for monitoring
 - $t = 0, m = 0$: κ_0 surcharge unmonitored pool
 - $t = 0, m = 1$: κ_1 discount monitored pool
 - $t = 1, m = 1$: κ_s linear rent-sharing regime with monitored drivers

Counterfactuals

- **Optimal pricing** of monitoring
 - marginal cost of monitoring is known
 - holding fixed competitor prices
Pricing and Counterfactual Equilibria

Pricing Model

- Firm profit: 2-period-2-product

- Firm actions: 3 types of price adjustments for monitoring
 - $t = 0, m = 0 : \kappa_0$ surcharge unmonitored pool
 - $t = 0, m = 1 : \kappa_1$ discount monitored pool
 - $t = 1, m = 1 : \kappa_s$ linear rent-sharing regime with monitored drivers

Counterfactuals

- Optimal pricing of monitoring
 - marginal cost of monitoring is known
 - holding fixed competitor prices

- Data sharing regulation that eliminates proprietary data
 - assume competitors have symmetric belief and profit function
 - action: only set a single alternative rent-sharing scheme $\kappa_s, -f^*$ to poach monitored drivers ($m = 1$) at $t = 1$
Optimal Pricing

Result #Supply.1: Product market competition → firm can’t coerce drivers into monitoring.

<table>
<thead>
<tr>
<th></th>
<th>Current Regime</th>
<th>Optimal Pricing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surplus & division (/capita/year)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm Profit</td>
<td></td>
<td>+14.7</td>
</tr>
<tr>
<td>Competitor Profit</td>
<td></td>
<td>−11.0</td>
</tr>
<tr>
<td>Consumer Welfare (in CE)</td>
<td></td>
<td>+4.7</td>
</tr>
<tr>
<td>Total Surplus</td>
<td></td>
<td>+8.4</td>
</tr>
</tbody>
</table>

| **Monitoring Market Share (%)** | 3.0% | 4.4% ↑ |

<table>
<thead>
<tr>
<th>Pricing: First Period (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmonitored surcharge $κ_0$</td>
<td>0.0%</td>
<td>2.7% ↑</td>
</tr>
<tr>
<td>Opt-in discount $κ_1$</td>
<td>4.6%</td>
<td>22.1% ↑↑</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pricing: Second Period</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rent-sharing $κ_s$</td>
<td>1x</td>
<td>0.80x ↓</td>
</tr>
<tr>
<td>Competitor rent-sharing $κ_{s,f*}$</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- e.g. Post-GDPR, Google and Facebook can contingent service upon data consent, smaller firms/websites cannot (Schechner 2018).
Optimal Pricing

Result #Supply.2: Firm “buys” consumer data with upfront discount expecting ex-post rent.

<table>
<thead>
<tr>
<th>Current Regime</th>
<th>Optimal Pricing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surplus & division (/capita/year)</td>
<td></td>
</tr>
<tr>
<td>Firm Profit</td>
<td>+14.7</td>
</tr>
<tr>
<td>Competitor Profit</td>
<td>-11.0</td>
</tr>
<tr>
<td>Consumer Welfare (in CE)</td>
<td>+4.7</td>
</tr>
<tr>
<td>Total Surplus</td>
<td>+8.4</td>
</tr>
<tr>
<td>Monitoring Market Share (%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0%</td>
</tr>
<tr>
<td></td>
<td>4.4% ↑</td>
</tr>
<tr>
<td>Pricing: First Period (%)</td>
<td></td>
</tr>
<tr>
<td>Unmonitored surcharge κ_0</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>2.7%</td>
</tr>
<tr>
<td>Opt-in discount κ_1</td>
<td>4.6%</td>
</tr>
<tr>
<td></td>
<td>22.1% ↑↑</td>
</tr>
<tr>
<td>Pricing: Second Period</td>
<td></td>
</tr>
<tr>
<td>Rent-sharing κ_s</td>
<td>1x</td>
</tr>
<tr>
<td>Competitor rent-sharing $\kappa_{s,-f^*}$</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.80x ↓</td>
</tr>
</tbody>
</table>

- Information (“privacy”) choice is contextual (Nissenbaum 2009), and firms can greatly affect that context through pricing.
Counterfactual Equilibrium: Information Sharing

Data sharing undermines firm incentives to “buy” consumer data.

<table>
<thead>
<tr>
<th></th>
<th>Optimal Pricing</th>
<th>Data Sharing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surplus & division (/capita/year)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm Profit</td>
<td>−11.9</td>
<td>−11.9</td>
</tr>
<tr>
<td>Competitor Profit</td>
<td>+8.9</td>
<td>+8.9</td>
</tr>
<tr>
<td>Consumer Welfare (in CE)</td>
<td>−2.5</td>
<td>−2.5</td>
</tr>
<tr>
<td>Total Surplus</td>
<td>−5.5</td>
<td>−5.5</td>
</tr>
<tr>
<td>Monitoring Market Share (%)</td>
<td>4.4%</td>
<td>3.4% ↓</td>
</tr>
<tr>
<td>Pricing: First Period (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unmonitored surcharge κ_0</td>
<td>2.7%</td>
<td>1.6% ↓</td>
</tr>
<tr>
<td>Opt-in discount κ_1</td>
<td>22.1%</td>
<td>8.3% ↓</td>
</tr>
<tr>
<td>Pricing: Second Period</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rent-sharing κ_s</td>
<td>0.80x</td>
<td>1.14x ↑</td>
</tr>
<tr>
<td>Competitor rent-sharing $\kappa_{s,-f^*}$</td>
<td>-</td>
<td>1.81x</td>
</tr>
</tbody>
</table>

- hurts welfare as monitoring is “socially-valuable” (Posner 1979).
- real-world regulation: data portability + algorithm transparency
Takeaway

The **optimal privacy standards** should depend on

Social value of the data collected, and...

▷ Don’t underestimate how data collection can change consumer behavior

Demand and supply primitives in the product market

▷ Customers self-select into revealing information
▷ Firms can compete on information through prices

Information structure is an equilibrium object. Regressing other equilibrium outcomes on the amount of information fall prey to the same critiques as the S-C-P approach