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Abstract

We introduce a novel measure of segregation, experienced isolation, that captures in-
dividuals’ exposure to diverse others in the places they visit over the course of their days.
Using novel Global Positioning System (GPS) data collected from smartphones, we mea-
sure experienced isolation by race. We find that the isolation individuals experience is
substantially lower than standard residential isolation measures would suggest. Experi-
enced and residential isolation measures are highly correlated across metropolitan areas.
Individuals are more racially isolated close to home, and are less isolated in public spaces
like parks, retail establishments, and restaurants. The gap between residential isolation and
experienced isolation is larger for Blacks than for Whites.

*E-mail: athey@stanford.edu, gentzkow@stanford.edu, billyf@stanford.edu, tobias.schmidt@quantco.com.
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1 Introduction

Social outcomes are profoundly shaped by the extent to which groups are segregated from

one another. Blacks in segregated cities have worse outcomes along many dimensions (Cutler

and Glaeser 1997). Segregation by income has similar effects, with outcomes for poor chil-

dren changing dramatically when their families move to less segregated areas, either by choice

(Chetty and Hendren 2016) or via random assignment (Chetty, Hendren and Katz 2016). Given

the importance of segregation for social outcomes, large literatures have developed in eco-

nomics, sociology, and related fields seeking to measure the extent of segregation across space

and time.

Most of this empirical work focuses on segregation in where people live. For example, a

leading measure in the economics literature is the isolation index, which captures the share of

individuals’ neighbors who come from their own group.1 Such measures provide a valuable

starting point, but if we view the object of interest as the exposure of one group to another

(Massey and Denton 1988; Cutler, Glaeser and Vigdor 1999; Echenique and Fryer 2007) —

that is, the opportunities group members have to interact or form social connections -– residen-

tial measures have obvious limitations. The extent to which local neighborhoods are the locus

of social interaction has been steadily declining over time (Putnam 1995). Individuals living in

highly segregated neighborhoods may be exposed to diverse others where they work, shop, and

socialize, while those living in apparently mixed neighborhoods may have little contact with

their neighbors and commute to highly segregated places. A corollary is that standard residen-

tial segregation measures are highly sensitive to the way in which neighborhood boundaries

are defined, a weakness frequently highlighted in prior work (e.g., Cowgill and Cowgill 1951;

Massey and Denton 1988).

In this paper, we introduce a novel measure of segregation which addresses these limitations,

and estimate it using Global Positioning System (GPS) data. This experienced isolation has the

same form as the isolation index, but rather than assuming individuals are exposed uniformly

to those in their neighborhood of residence, it averages exposure over the locations individuals

actually visit over the course of their days. This measure does not depend on arbitrary neighbor-

hood boundaries, and it takes explicit account of the diversity experienced away from home. It

can capture individual-level heterogeneity within neighborhoods (Echenique and Fryer 2007),

1See, for example, Cutler and Glaeser (1997), Cutler, Glaeser and Vigdor (1999), Gentzkow and Shapiro (2011),
and Davis et al. (2017).
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and it can be disaggregated across times of day, locations, and activities, giving a richer picture

of the forces that increase or decrease segregation.

Our main data source is GPS signals from a sample of US smartphone users covering ap-

proximately 5% of the US population. The data are obtained from a company that aggregates

anonymous data from a range of smartphone apps. We obtained a subset of these data for the

first four months of 2017. We associate each device with the demographic characteristics of the

Census. Using these characteristics, we show that the sample of individuals is not random, but it

is reasonably close to representative along a number of dimensions, and has sufficient coverage

that we can correct for deviations from representativeness using sample weights. We then com-

bine movement patterns we observe with our imputed demographics to compute experienced

racial isolation.

We present four main results. First, people’s actual experiences as captured by our mea-

sure are substantially less segregated than traditional residential isolation would suggest. The

population-weighted average experienced isolation across all Metropolitan Statistical Areas

(MSAs) is 21.5. This implies that the average White person’s exposures are 21.5 percentage

points more white than the average black person’s exposures. As a comparison, the population-

weighted average residential isolation across MSAs is 31.4 percentage points. The 10th and

90th percentiles of experienced isolation are 7.8 and 34.6, compared to 9.9 and 52.9 for resi-

dential isolation. Experienced isolation falls below residential isolation in roughly 4 out of 5 of

all MSAs.

To understand the gap between experienced and residential isolation, we look separately at

time spent within home Census tracts and outside of these tracts. Experienced isolation within

home tracts could differ from the exposure assumed by residential isolation measures because

individuals are not uniformly exposed to their neighbors and because exposure in home tracts

includes visitors as well as residents. In fact, average experienced isolation within individuals’

home tracts is 28.8, only slightly lower than average residential isolation of 31.4. Outside the

home tract, experienced isolation is much lower at 12.8. Thus time spent away from home tracts

accounts for the bulk of the difference between residential and experienced isolation.

Second, average experienced and residential isolation across MSAs are highly correlated.

Milwaukee, WI has both the highest residential isolation of 59.4 percentage points and the

highest experienced isolation of 41.3 percentage points. The overall correlation of the two

measures among the 361 MSAs in our sample is 0.98. The largest deviations in rank are San

Luis Obispo, CA, McAllen, TX, and Elmira, NY. In San Luis Obispo, experienced isolation
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at 1.3 percentage pointsis lower than residential isolation at 23.3 percentage points. McAllen,

TX on the other hand experiences isolation about 9 percentage points higher than residential

isolation.

Third, there is systematic individual heterogeneity in the size of the gap between residential

and experienced isolation. Residential exposure (to Whites) understates experienced exposure

much more for Black individuals than it does for Whites. That is, for Whites, neighborhood

demographics are a better proxy for the exposure they experience throughout the day than is

the case for Blacks. For Blacks, residential exposure understates experienced exposure signif-

icantly. Furthermore, there is much more heterogeneity across MSAs in the degree to which

Black individuals’ exposure is underestimated by traditional residential measures. Besides the

differences in exposure by race, we find that the relation between experienced and residen-

tial isolation varies with several characteristics of the MSAs. In particular, MSAs with higher

employment rate, higher education, lower inequality and higher social mobility show a signifi-

cantly lower ratio of experienced to residential isolation.

Fourth, there are also systematic differences across time periods, locations, and activities

in the extent to which they tend to increase or decrease segregation. People experience high

segregation in the evening and at night, and relatively low segregation in the morning and after-

noon. Given our finding that residential isolation is higher than experienced isolation, it is not

surprising that the evening and night are more isolated. In contrast, isolation tends to be lower

in outdoor spaces like parks and playgrounds and at schools and colleges, as well as at retail

establishments and restaurants.

These findings have several broader implications. They suggest that standard residential

segregation measures will be good proxies for experienced segregation in applications where

the main goal is to assess the relative level of segregation across cities, or to measure the causal

impact of such spatial differences. At the same time, they suggest that standard measures over-

state the overall extent of segregation in the United States, and highlight important forces such as

educational diversity and commercial activity that reduce it. They also suggest a more nuanced

view of where the negative effects of segregation are likely to be largest. For example, local

public goods such as schools or police services that are explicitly tied to residential boundaries

are more likely to be provided in segregated environments. Any negative effects of segregation

are likely higher for children and those who do not work, and others whose exposure is more

tied to their local neighborhoods. Finally, they suggest that policies which affect the spatial

distribution of commercial or leisure activities, or the transportation cost of accessing these
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activities, may be as or more effective than policies explicitly targeting housing.

We identify three main limitations in our analysis. First, we have very little information

about the individuals whose devices we observe in our data, and so we must impute demo-

graphics. We are able to do so within very small areas, but imputation still introduces mea-

surement error and makes assessing the representativeness of our data more difficult. Further,

since imputing demographics in homogeneous areas is less likely to be subject to measurement

error than e.g. in areas with equal shares of Blacks and Whites, imputing demographics may

introduce systematic downward biases into our measures. Second, the geolocation information

we get about any given device is sparse. The median number of pings per day across devices in

our sample is 33.9, and the median number of distinct hours with pings per day is 7.1. We do

not capture the full picture of when and where individuals spend time, and the information we

do have comes from an unknown selection process based on when devices’ phone applications

request and log location data.

Lastly, while we measure exposure based on devices being in the same geographic space,

we do not directly observe actual interaction between individuals. Under our construction, a

restaurant-goer is just as exposed to the person sitting across the table as she is to the waiter or

the cook in the kitchen. White (1983) highlights this subtlety by distinguishing geographic seg-

regation (the concept we measure) and sociological segregation (based on actual interactions).

Sunstein (2002) argues that geographic exposure is of interest on its own. Integrated physi-

cal spaces increase“the set of chance encounters with diverse others” and foster environments

where“exposure is shared” (Sunstein 2002). Overhearing conversations while at a restaurant, a

bus stop, or just walking down the street all contribute to individuals’ understanding of diverse

others and open up opportunities for interaction.

This paper builds on a large literature on measuring urban segregation. For many years, the

dissimilarity index, meant to capture the evenness of diverse populations in a city, was the most

used segregation index (Duncan and Ducan 1955, Taeuber 1965, Massey and Denton 1988).

However, criticism of the dissimilarity index specifically regarding its sensitivity to the size of

the minority population ushered in the development of new segregation indices (Cortese, Falk,

and Cohen 1976, Zelder 1977, Sakoda 1981, James and Taeuber 1985, Hutchens 2001). Pro-

viding a framework for understanding different measures of segregation, Massey and Denton

(1988) distinguish between five dimensions of segregation: evenness, exposure, concentration,

centralization, and clustering. As we intend to measure dynamic interactions moving through-

out a city, we center our analysis around exposure, the interactions experienced by individuals.
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We adopt the isolation index, analogous to that used in Gentzkow and Shapiro (2011) to mea-

sure political isolation on the internet. Almost universally isolation indices use Census tracts or

blocks to parcel the larger MSA for which segregation is measured (Cowgill and Cowgill 1951,

Duncan and Lieberson 1959, Taeuber and Taeuber 1965, Zelder 1970, Farley 1977, White 1983,

Iceland et al. 2002). White (1983) notes that while choosing different indices to measure other

dimensions of segregation may lead to different numerical estimates, there is high rank corre-

lation of MSAs across choice of indices. This conclusion is consistent with our experienced

isolation measure across numerous specifications.

Our work is closely related to a small number of papers using GPS or related data to study

social interactions. Glaeser et al. (2015) anticipates the value of such data. Blattman et al.

(2018) track police patrols in Bogotà, Colombia using GPS to estimate how increased state

presence affects violent and property crime. Chen and Rohla (2018) use GPS data to measure

the effects of political polarization in the 2016 Presidential election on the length of Thanks-

giving dinners. Davis et al. (2017) use data from Yelp to measure the effect of spatial and

social frictions on segregation of restaurants in New York City. They find that restaurants are

only about half as segregated as residential segregation would suggest, a result to which our

estimates lend further credence.

The next two sections introduce our data and our segregation measure. Section 4 presents

our main results. Section 5 decomposes isolation across times of day, types of locations, and

racial groups. Section 6 offers further evidence on the robustness of our results, and Section 7

concludes.

2 Data

2.1 GPS device movements

Our GPS data are provided by a company that collects anonymous location data from mobile

applications on users’ smartphones. The sample is an unbalanced panel of GPS “pings” from

more than 17 million devices spanning January to April 2017.2

Pings are logged whenever an application on a device requests location information. In some

cases this will be the result of a device actively using an application, such as for navigation or

2We use“GPS” as a shorthand for a variety of data sources used by smartphones to determine their physical lo-
cation. These include cell phone towers, the identity of nearby WiFi networks as well as the US GPS and the
Russian GLONASS systems of satellites.
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Figure 1: Geohash7s in the downtown area of Birmingham, AL

Notes: Figure shows Geohash7s around City Hall and the Jefferson County jail. Source:
http://mapzen.github.io/leaflet-spatial-prefix-tree/

weather information, while in other cases applications may request the information even while

running in the background. Pings thus occur at irregular intervals. For each ping, we observe

a timestamp, a device identifier, and an indicator for the geohash7 in which the ping occurs.

Geohash7’s divide the globe into units approximately 500 feet square.3 Figure 1 illustrates

geohash7s in downtown Birmingham, AL. The data also contain an indicator for each device’s

home geohash7, inferred probabilistically based on the device’s nighttime and early-morning

pings.

2.2 Matching and imputation

We use the inferred home location to impute race and other demographics. We match each

home geohash7 to both Census tracts and blocks as follows. We match the geohash7 to the tract

3The geohash geocoding scheme divides the globe into grids of increasing fineness. Geohash1s divide the globe
into 32 cells of equal size. Geohash2s divide each of these cells into 32 smaller cells, and so on. See Table 1 in
Appendix Section 1.1 for relevant geohash dimensions.
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that contains its centroid. This yields a matching tract for 99.53 percent percent of devices in

our sample. We then match the geohash7 to all Census blocks that overlap its area, and assign

demographics to the geohash7 by taking a simple average of these Census blocks.4 This yields

a match to at least one Census block with non-zero population 98.12 percent of the time.5 We

drop the remaining 2.27 percent of devices.

The 2010 Census distinguishes between race – White, Black or African American, Ameri-

can Indian and Alaskan Native, Asian, Native Hawaiian and Other Pacific Islander, or Other –

and ethnicity – Hispanic or non-Hispanic – as independent concepts (Humes, Jones and Ramirez

2011) and allows those surveyed to identify with multiple races. We follow standard practice

in the segregation literature and focus on segregation between “White” and “Black,” taking

“White” to mean “White Alone (Non-Hispanic)” and “Black” to mean “Black Alone or in

Combination (Non-Hispanic)” where “Alone” refers to individuals who selected only one race

and “in Combination” refers to all those who chose “Black or African American” as one of

multiple races.6 Throughout our analysis we define the population of interest to be the set of

individuals who are either White or Black. Unless otherwise noted, when we refer to the “share

White” or “share Black” we mean the share in the respective group within this population.

2.3 Geographic Features

We obtain information about the location of establishments and geographic features of interest

from two sources: InfoUSA and OpenStreetMaps.

The 2015 InfoUSA US Businesses mailing list contains the names, addresses, industries,

and latitude / longitude for 15.6 million businesses in the United States. We extract from the

full list all establishments that belong to the broad categories of “restaurants and bars,” “civil,

social and religious organizations,” “accommodation,” “sports and recreation,” “entertainment,”

and“retail,”7 2,368,216 places all in all. We match each establishment to the geohash7s that

contain its location.

InfoUSA leans heavily towards businesses and is much sparser for other types of places.

Its richness is also somewhat limited in that it identifies an establishment only with a single

4See Appendix Section 1.2 for a complete list of variables and their sources.
5Appendix Section 1.3 gives more details on the matching procedure and shows an illustrative example.
6Alternatively defining “Black” to include individuals who choose “Black or African American” as the only race
does not significantly alter estimates of residential isolation (Iceland, Weinberg and Steinmetz 2002), nor does it
significantly alter our estimates of experienced isolation (See Appendix Section 3.2).

7See Appendix Section 2.3 for our manual classification of the NAICS codes contained within the dataset into
these categories.
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Outdoor spaces (parks, etc.) Restaurants & bars

Civil, social & religious organizations Education

Figure 2: Features in downtown Birmingham, AL

latitude/longitude point instead of an entire area. We therefore complement InfoUSA with data

from OpenStreetMaps (OSM), an open source project that collects cartographic information

from a variety of sources and makes it publicly available for the creation of maps. We pull

polygon data for outdoor spaces like parks, playgrounds, sports fields, gardens, and combine

polygon data on schools, kindergartens, universities and colleges with the education feature

from InfoUSA (See Appendix Section 2.3 for details). The quality of this data is likely to differ

from feature to feature. Features that are essential for the creation of accurate maps are likely

to be better curated than data on points of interest and less important features.

2.4 Summary Statistics

We observe 17,730,615 devices whose home locations we can trace to 7,292,623 distinct geo-

hash7s. We match these home geohash7s to 72,785 Census tracts and 6,186,564 Census blocks

and use this matching to (probabilistically) impute race and assign sample weights. This match-

ing procedure succeeds for 17,397,580 devices. These devices constitute the final sample used

throughout the rest of this paper.

Table 1 shows summary statistics for various measures of activity for the devices in our
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median mean

number of days active 51.00 56.92
number of hours / active day 7.10 9.45
number of geohash7s visited / active day 9.68 22.95
number of pings / active day 33.88 86.84
percent of pings at home (narrowly defined) 36.79 42.15
number of geohash7s visited overall 195.00 720.85
mean horizontal accuracy (in m) 41.11 98.90

Table 1: Summary statistics for measures of activity of devices in the sample.

All statistics are weighted using the sample weights described in Section. An active day is a day on
which we see at least one ping for the device. Horizontal accuracy is defined by the operating system
vendors Google and Apple.

sample after re-weighting.

Table 2 shows summary statistics for imputed demographics. The imputed racial makeup

of each device’s home geohash7 implies that 64.84 percent of our sample is White despite

Whites making up 63.7 percent of the population according to the 2010 Census; this suggests

we oversample from Whiter neighborhoods (Hixon, Hepler and Kim 2011). Conversely, Blacks

make up 11.96 percent of our sample, which makes them underrepresented relative the 13.0

percent in the general population (Rastogi, Johnson, Hoeffel, and Drewery 2011).

Our results show experienced and residential isolation at the aggregated geographic level of

Metropolitan Statistical Areas. We calculate experienced isolation for 361 of the 366 Metropoli-

tan Statistical Areas in the 2010 decennial Census. We omit Micropolitan Statistical Areas

because their urban core contains fewer than 50,000 people and given the small number of de-

vices, estimates of isolation are therefore extremely noisy and likely to carry a downward bias

of unknown magnitude.
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US mean mean sd mean (re-w.) sd (re-w.) missing

Female: 18 and 24 years 0.05 0.05 (0.04) 0.05 (0.04) 0
Female: 25 to 34 years 0.07 0.07 (0.03) 0.07 (0.02) 0
Female: 35 to 49 years 0.10 0.11 (0.02) 0.10 (0.02) 0
Female: 50 to 61 years 0.08 0.08 (0.02) 0.08 (0.02) 0
Female: 62 to 74 years 0.05 0.05 (0.02) 0.05 (0.02) 0
Female: 75 and older 0.04 0.04 (0.03) 0.04 (0.03) 0
Female: Under 17 Years 0.12 0.12 (0.03) 0.12 (0.03) 0
Male: 18 and 24 years 0.05 0.05 (0.04) 0.05 (0.04) 0
Male: 25 to 34 years 0.07 0.07 (0.03) 0.07 (0.03) 0
Male: 35 to 49 years 0.10 0.10 (0.02) 0.10 (0.02) 0
Male: 50 to 61 years 0.08 0.08 (0.02) 0.08 (0.02) 0
Male: 62 to 74 years 0.05 0.05 (0.02) 0.05 (0.02) 0
Male: 75 and older 0.02 0.02 (0.02) 0.02 (0.02) 0
Male: Under 17 Years 0.12 0.12 (0.03) 0.12 (0.03) 0
Bachelor’s Degree 0.11 0.12 (0.07) 0.11 (0.07) 0
Graduate or Professional Degree 0.07 0.07 (0.06) 0.07 (0.06) 0
High School Graduate 0.19 0.18 (0.08) 0.19 (0.08) 0
Less than High School 0.10 0.09 (0.07) 0.10 (0.07) 0
Some College or Associate’s Degree 0.18 0.18 (0.06) 0.18 (0.06) 0
Asian Alone 0.05 0.05 (0.09) 0.05 (0.1) 53
Black Alone 0.12 0.11 (0.21) 0.12 (0.22) 53
Black Alone or in Combination 0.13 0.12 (0.21) 0.13 (0.22) 53
Hispanic or Latino 0.16 0.15 (0.22) 0.16 (0.23) 53
White Alone 0.64 0.66 (0.31) 0.64 (0.32) 53
Average Household Size 2.65 2.63 (0.46) 2.65 (0.49) 0
Employment Rate 0.46 0.46 (0.1) 0.46 (0.09) 0
Gini Index 0.40 0.40 (0.06) 0.40 (0.06) 16151
Median Age 37.39 37.43 (7.02) 37.39 (7.11) 3702
Median House Value (in 1000s of USD) 244.75 242.99 (176.62) 244.75 (181.98) 134297
Median Income (in 1000s of USD) 28.62 29.73 (11.7) 28.62 (11.54) 3884
Median Number of Rooms 5.60 5.66 (1.11) 5.60 (1.06) 17404
Population in Poverty 0.13 0.12 (0.1) 0.13 (0.11) 0
Unemployment Rate 0.04 0.04 (0.02) 0.04 (0.02) 0

Table 2: Summary statistics for inferred demographics of devices in the sample.

Columns show US averages as well as mean and standard deviation of all inferred variables for both an
unweighted sample and one that is re-weighted using the sample weights described in Section.

3 Measure

3.1 Definition

Consider a population of individuals indexed by i and a set of MSAs or other geographic areas

of interest indexed by a. Each individual is a member of one of two groups which we denote W
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and B.8 Each individual has a set of exposures to other individuals in area a. We let ei ∈ [0, 1]

denote the share of individual i’s exposures that are to members of group W .

A general form of the isolation index for area a captures the difference between the average

value of ei among individuals in the two groups (cf. Gentzkow and Shapiro 2011):

Ia =
1

|Wa|
∑
i∈Wa

ei −
1

|Ba|
∑
i∈Ba

ei. (1)

Here Wa and Ba are the sets of individuals making up the two groups in area a and |·| denotes

the size of these sets. This measure ranges from zero—no isolation, with average ei equal for

the two groups—to one—perfect isolation, with ei = 0 for alli ∈ B and ei = 1 for all i ∈ W .

The standard version of this measure is residential isolation, which is equivalent to Equa-

tion (1) under the assumption that each individual is exposed uniformly to others in her neigh-

borhood of residence (Massey and Denton 1988; Cowgill and Cowgill 1951; Jahn 1950). In

practice neighborhoods are typically defined to be Census tracts. Letting c (i) denote i’s Census

tract of residence, and letting rc denote the share of the residents of tract c who are in group W ,

residential isolation is given by:

RIa =
1

|Wa|
∑
i∈Wa

rc(i) −
1

|Ba|
∑
i∈Ba

rc(i). (2)

Because this measure does not rely on any information other than the racial composition of each

neighborhood, it can easily be computed using aggregate Census data.

The new measure that we introduce, experienced isolation, instead assumes that ei is given

by the composition of the individuals actually present in the locations that i visits over time. We

index time by t ∈ [1, T ] and consider a set of locations within area a indexed by l. We think of

a location l as a specific place such as a restaurant, workplace, or park which is much smaller

than a neighborhood. In our application, locations will be geohash7s. Letting l (i, t) denote i’s

location at time t, and letting s (l, t) denote the share of individuals in location l at time t who

are from group W , experienced isolation is defined to be:

EIa =
1

|Wa|
∑
i∈Wa

∫ T

t=1

s (l (i, t) , t) dt− 1

|Ba|
∑
i∈Ba

∫ T

t=1

s (l (i, t) , t) dt. (3)

8Recall that according to our Census definition some individuals are neither White nor Black, but that we define
the population of interest to be those who fall into one of these two groups.
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3.2 Estimation

Estimating EIa would be straightforward if we observed continuous location data for all indi-

viduals in both Wa and Ba. While our GPS dataset is rich, it still falls well short of this ideal.

There are three key limitations: (1) we observe locations only when a device pings rather than

continuously; (2) we do not directly observe individuals’ demographics; (3) we only observe

a sample of individuals not the full population. We make several simplifying assumptions in

order to address these limitations.

To address (1), we assume that the term
∫ T

t=1
s (l (i, t) , t) dt can be consistently estimated

by Si =
∑

l qilsl where qil is the share of i’s time that is spent in location l, and sl is the average

of s (l, t) across time. This assumption will hold if variation over time in i’s propensity to visit

l is uncorrelated with the corresponding variation in s (l, t). We further assume that the times

at which we observe pings are a random sample from [1, T ] so we can estimate qil and sl by

the shares of i’s pings that occur in location l and the share of all pings in location l that come

from Whites respectively (among those that come from either Whites or Blacks). In Appendix

Section 3.4 we present robustness to alternative specifications that account for non-random

weighting of pings across time.

To address (2), we impute individuals’ race based on the racial composition of their home

geohash7s, which we in turn estimate using block-level race data from the 2010 decennial Cen-

sus as described in Section 2.2. Let ρWl denote the share of the total population with home

location l (including those who are neither White nor Black) that is White. Let ρBl denote the

analogous share that is Black, and assume that an observed device from home location l has

probability ρWl of being associated with a White individual and probability ρBl of being asso-

ciated with a Black individual, independent of the device’s observed movement patterns. This

assumption will hold if movement is orthogonal to race conditional on our very fine definition

of home location.

To address (3), we reweight home locations in our sample to match the distribution of pop-

ulation in the 2010 US Census. Because our data are relatively sparse at the geohash7 level, we
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reweight by Census tract.9 We define the weight for individual i to be

λi =
Nc(i)

Ñc(i)

(4)

where Nc is the Census population of tract c and Ñc is the number of devices in our sample with

home locations in tract c.

Combining these assumptions, we form an estimator of Si as follows. First, we form a

leave-out estimate of sl:

ŝ−il =
1∣∣λP−il

∣∣ ∑
j∈P−i

l

λj
(
ρWl(j)

)
,

where P−il is the set of pings associated with individuals other than i who visit location l, l (j)

is the location associated with ping j, and we abuse notation by letting λj denote the weight of

the individual associated with ping j and
∣∣λP−il

∣∣ the weighted sum of pings. We omit visits by i

from this measure to avoid a severe small-sample bias that can arise when some locations have

a small number of observed visits. Second, we estimate Si by

Ŝi =
1

|Pi|
∑
j∈Pi

ŝ−il(j),

where Pi is the set of pings associated with i.

Finally, we estimate experienced isolation by

ÊIa =
1

|Wa|
∑
i∈a

λiρ
W
h(i)Ŝi −

1

|Ba|
∑
i∈a

λiρ
B
h(i)Ŝi,

where h (i) is the home location of individual i.

3.3 Discussion

Our measure of experienced isolation considers one individual to be exposed to another if they

are in the same location at the same time. This is what allows us to write Equation 3 replacing

the ei of Equation 1 with the average of s (l, t) across space and time. This form of exposure is,

of course, quite different from the set of people with whom an individual actually interacts. As

9While it may seem desirable to define the reweighting geography with the same geography over which exposure
patterns were assumed to be constant, we find in practice that the number of devices observed in each home geo-
hash7 is small enough that the weights under the geohash7 specification are noisy and do not recover benchmark
estimates of residential isolation as well as tract reweighting cells.
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noted in the introduction, Sunstein (2002) among others have argued that this passive form of

exposure is of interest, as it captures the possibility of chance encounters and a sense of shared

experience. To the extent that we view actual interactions as the true object of interest, our

measure can be seen as an approximation which significantly improves on residential measures

but may still over- or understate isolation to the extent that interactions within different locations

are relatively more or less segregated. As one way to assess the importance of this issue, we

show in Appendix Section 3.3 that our qualitative results do not change if we aggregate our

main geohash7 location measure to coarser geographic grids.

One other important feature of our measure to highlight is that it includes exposure to indi-

viduals who live outside a given MSA a. We observe where these “outsiders” are from, what

exposure patterns they have, where within area a they spend their time and therefore who they

interact with. We explore how estimates of isolation change when we move closer to the tradi-

tional literature and consider only exposure to residents of the MSA in Section 6.0.2.

4 Main Results

4.1 Residential Isolation

In order to draw comparisons between residential and experienced isolation, it is useful to have

a measure of residential isolation that is as close to experienced isolation in its method of con-

struction as possible. The difference between our estimates of experienced and residential isola-

tion should represent a change in our definition of exposure - device-based residential isolation

assumes uniform exposure to other residents of an individual’s home Census tract while expe-

rienced isolation looks to the set of all places visited - and not discrepancies in sampling or

matching. Traditional residential isolation simply relies on Black and White counts in Census

tracts, deviating from the estimation of experienced isolation in two ways. First, experienced

isolation uses our sample of device level data instead of aggregate population data. Second,

while traditional residential isolation relies on the White share of a Census tract to measure

exposure, experienced isolation estimates exposure from the set of device demographics in a

place.

In this section, we step through the construction of a comparable device-based residential

isolation built analogous to experienced isolation so that the definition of exposure is the only

difference between the two measures. To demonstrate that we can accurately build an object of
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interest, we use traditional estimates of residential isolation as a benchmark and show that we

can recover them using our estimation strategy.10 Figure 3 plots the traditional isolation measure

against our device-based measure for three different versions of the device-based measure. In

Table 5 of Appendix Section 2.2 we show summary statistics for traditional residential isolation

through the three isolation estimates from Figure 3 ending with the preferred comparison to our

experienced measure, device-based residential isolation.

First, we address the switch from aggregate population data to our device sample. The

first panel of Figure 3 shows the results of a straight replication of the residential isolation cal-

culations performed in the extant literature but using devices instead of Census subjects as the

population. In keeping with the assumptions and procedures of that literature, exposure patterns

are assumed to be constant within Census tract and every device is weighted equally in calculat-

ing MSA-level isolation. That is, we calculate residential isolation according to Equation 2 but

sum over devices instead of Census subjects. Perhaps surprisingly, even using the sample as-is

we can recover some of the most salient features of the extant literature on residential isolation.

Estimates are lower by about 1.4 percentage points but are extremely highly correlated with tra-

ditional estimates (Pearson correlation coefficient: 0.99, Spearman rank-correlation coefficient:

0.99).

To overcome the sampling noise, experienced isolation re-weights devices by the inverse of

the device density of their home Census tract as described in Section 3.2. The slight downward

bias observed in the raw numbers in Panel 1 of Figure 3 can be corrected by modifying Equation

2 to use the weighs as defined in Equation 4:

RIa =
1

|Wa|
∑
i∈a

λiρ
W
n(i)ρ

W
n(i) −

1

|Ba|
∑
i∈a

λiρ
B
n(i)ρ

W
n(i) (5)

The resulting residential isolation measure is shown in the second panel of Figure 3. As

the figure shows, the weights correct the bias introduced by geographically non-representative

sampling completely. The only exceptions to this, MSAs for which we are unable to replicate

the existing results, are MSAs like State College, PA and Vineland-Milville-Bridgeton, NJ.

These are MSAs with Census tracts for which we observe not even a single device that could be

appropriately re-weighted. 32 such tracts across 28 MSAs exist in our data but they do not have

a large effect on estimates in most cases because the “empty” tracts are either just one among

10We used measures created by the Diversity and Disparities Project at Brown University, accessed in March, 2018
from https://s4.ad.brown.edu/projects/diversity/Data/data.htm.
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Figure 3: Residential isolation measures computed on device sample

many or account for only a small share of the MSA’s total population.11 Throughout the rest

of the paper we remove five MSAs for which the population in tracts without devices accounts

for more than 0.1 percent of the MSA’s total population, and focus on the remaining 361 MSAs

defined in the decennial Census12.

The third and final specification of residential isolation addresses the second estimation dis-

crepancy between residential and experienced isolation. Recall that to estimate experienced

isolation, we cannot rely on reference estimates of demographics in a geohash7, and instead

must construct exposures from the set of devices we observe in a geohash7. To mirror this

method of construction, we create a measure (illustrated in Panel 3 of Figure 3) of residential

isolation that estimates exposure by aggregating the imputed demographics of all resident de-

vices in the tract instead of using the reference Census figures. Devices are still reweighted

using tract-level population estimates to account for the non-random sampling of our data.

Panel 3 of Figure 3 shows that this newly-constructed measure of residential isolation tracks

traditional estimates very closely. On average the preferred device-based residential isolation

is lower by only 0.3 percentage points and extremely highly correlated (Pearson correlation

11A full list of these Census tracts can be found in Appendix Section 1.4.
12This is the case for State College, PA (3.6 percent), Vineland-Milville-Bridgeton, NJ (1.3 percent), Bakersfield-

Delano, CA (0.6 percent), Ann Arbor, MI (0.4 percent) and Yuma, AZ (0.2 percent).
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coefficient 0.999) with traditional residential isolation. Differences are largely due to the switch

from reference Census share White to device-based construction of exposure, where geohash7s

do not neatly fit inside the boundaries of tracts and we do not sample individuals in every

geohash7 of a tract. For the rest of the paper we will only refer to device-based residential

isolation when discussing residential isolation as this specification most closely mirrors the

estimation procedure for experienced isolation.

4.2 Experienced Isolation

The first main result is that in the great majority of MSAs experienced isolation is substantially

lower than residential isolation. This holds true for more than 4/5 of all MSAs. The 1/5 of

MSAs for which it does not are all small and places in which residential isolation is small to

begin with. Figure 4 plots experienced isolation against comparable device-based residential

isolation and shows that across all MSAs the former is 10 percentage points lower than the

latter on average. The unweighted average of experienced and residential isolation in the 50

most populous MSAs are 23.3 and 34 respectively.

While the experienced isolation estimates differ from the residential benchmark, the corre-

lation between the two measures is extremely high (Pearson linear correlation: 0.985, Spearman

rank-correlation: 0.982 ).

Figure 5 shows both experienced and residential isolation across the United States.13 Places

with high experienced isolation are predominantly in the Rust Belt or in the Deep South, with

major cities like New York, Chicago and Baltimore as notable exceptions. Most of the MSAs

with low experienced isolation are small, predominantly White and rural.14

Figure 6, finally, shows the ratio between experienced and residential isolation for the 50

most populous MSAs. Compared to residential isolation, experienced isolation falls the most in

San Francisco-Oakland-Fremont, CA, Los Angeles, CA and Miami, FL. Experienced isolation

is highest compared to residential isolation in Raleigh, NC, Birmingham, AL and Orlando, FL.

Among the full set of MSAs in our sample the ratio is largest – and actually exceeds unity,

in McAllen, TX, Missoula, MT and Las Cruces, NM. All of these MSAs have very small Black

populations (0.4% in McAllen, 0.8% in Missoula and 1.7% in Las Cruces), populations that

13Maps showing the difference and the ratio of residential and experienced isolation can be found in Figure 3 in
the Appendix. Table 6 in the Appendix gives both baseline experienced isolation and residential isolation for all
of the 361 MSAs.

14Exceptions, like El Paso, TX and Honolulu, HI, often have large non-White, non-Black populations, which limits
the explanatory power of isolation, which is based on a race binary.

18



Atlanta, GA

Birmingham, AL

Boston, MA

Chicago, IL
Cleveland, OH

Dallas, TX

Detroit, MI

Houston, TX

Los Angeles, CA

Miami, FL

Milwaukee, WI

New York, NY
Philadelphia, PA

Phoenix, AZ

Riverside, CA
San Francisco, CA

Seattle, WA

Washington, DC

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6
residential isolation

ex
pe

rie
nc

ed
 is

ol
at

io
n

Figure 4: Experienced vs. residential isolation

The 20 most populous MSAs are identified by name.

experience an even greater degree of isolation than residential isolation numbers would suggest.

Understanding what drives the differences could illuminate a new understanding of the social

landscape of a city. We turn to this question next.

The headline result raises the question of just why experienced isolation is lower than res-

idential isolation across MSAs. In the following we will explore what features of MSAs are

predictive of the magnitude of the difference for any given MSA and break down the overall

index into the contributions from different groups of individuals, different places and different

times.

4.3 Correlates with differences between experienced and residential iso-

lation

While the residential and experienced isolation measures correlate closely, there do exist differ-

ences in both ranking and magnitude between them. In this section we explore what character-

istics of an MSA – if any – can explain these differences. To get at the heart of the difference

between the two measures, we split the sample at the median of each of the potential correlates
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Figure 5: Experienced and residential isolation by MSA
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Figure 6: Experienced vs. residential isolation by MSA

and run a t-test on the average ratio of experienced to residential isolation below and above the

median of each variable weighted by population. We reduce our sample to the MSAs above the

lowest percentile in residential segregation.

Our variables come from three different sources. First, we consider a set of demographics

that come from the 2010 American Community Survey (ACS) and the 2010 decennial Census.

These variables include the MSA’s total population, the share of its population that is White,

Black or neither of both, its age distribution, median income, education level, Gini index, un-

employment rate, and means of transportation to work by race.15 Second, we use mobility

measures indicating the share of individuals born in the lowest quintile of the income distribu-

tion who make it to the top quartile (Chetty et al 2018).

Third, we consider covariates that contain information about the presence and use of certain

features and amenities like universities, parks, restaurants and bars in each of the MSAs that

we derive from our primary dataset: we calculate the share of each MSA’s residents that ever

visit a geohash7 associated with each feature. We construct these “feature resident shares” for

accomodations, civil, social, and religious institutions, education, entertainment, transportation,

restaurants and bars, sports and recreation, retail, and outdoor spaces (parks, playgrounds, sports

15See the Appendix Section 1.2 for a complete description and sources for the Census and ACS variables used.
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fields, and gardens).16

Table 3 shows the average ratio of experienced to residential isolation above and below the

median of each variable.

mean
below
me-
dian

sd for
below
me-
dian

mean
above
me-
dian

sd for
above
me-
dian

t value p value

share Black 0.791 0.193 0.761 0.137 2.382 0.018
share White 0.763 0.176 0.790 0.158 -2.157 0.031
share Hispanic 0.793 0.161 0.759 0.173 2.710 0.007
share urban 0.805 0.159 0.749 0.172 4.523 0.000
median age 0.792 0.178 0.759 0.154 2.691 0.007
share of non-high school
graduates

0.766 0.156 0.786 0.179 -1.598 0.110

share of high school graduates
and/or with some college
experience

0.768 0.178 0.784 0.156 -1.301 0.194

share of bachelor or graduate
degree holders

0.808 0.194 0.746 0.131 4.996 0.000

employment rate 0.799 0.194 0.754 0.133 3.704 0.000
unemployment rate 0.784 0.180 0.768 0.154 1.356 0.176
median income 0.823 0.190 0.733 0.128 7.504 0.000
gini index 0.759 0.153 0.793 0.180 -2.750 0.006
population density 0.814 0.181 0.740 0.145 6.064 0.000
mobility measure black female 0.790 0.152 0.761 0.181 2.332 0.020
mobility measure black male 0.786 0.145 0.765 0.187 1.642 0.101
mobility measure white female 0.798 0.178 0.754 0.153 3.546 0.000
mobility measure white male 0.793 0.152 0.759 0.180 2.739 0.006

Table 3: Average ratio of experienced to residential isolation above and below the median of each
variable

We find that experienced isolation is relatively lower than residential isolation in MSAs

that have a higher share of Blacks. This is in line with our previous results since we find that

the exposure of Blacks to Whites is much higher in places outside their home (see Figure 10).

Further, we find that individuals in more urban and dense MSAs are relatively less isolated

over the course of their day than residential isolation measures would indicate. Besides, MSAs

with a higher median age show a relatively lower experienced than residential isolation. This is

potentially driven by the working age population who leave their neighborhoods to go to work

whereas children attend local schools. Overall, MSAs with lower experienced than residential
16See Appendix Section 1.5 for complete descriptions of these features. See the Appendix Section 1.2 for details on

how the feature geohash shares are constructed. We explore characteristics of these features and their contribution
to experienced isolation in Section 5.2.2.
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isolation are associated with many positive outcomes like higher education, higher income,

lower inequality and higher social mobility. In line with our previous results, we show in Table 8

in the Appendix that experienced isolation is relatively lower than residential isolation in MSAs

in which individuals walk or use public transportation instead of driving and where individuals

spend more time outside their home.

5 Decomposing Experienced Isolation

5.1 By Time

The experienced isolation index behaves in highly intuitive ways: Experienced isolation is low-

est in the middle of the day as people move around and highest late at night as people withdraw

into their homes.

We separate activity into seven distinct time periods and then calculate the isolation index

separately on each period: leisure morning from 6 a.m. to 8 a.m.; work morning from 8 a.m. to

12 p.m.; lunch from 12 p.m. to 1 p.m.; work afternoon from 1 p.m. to 6 p.m.; leisure evening

from 6 p.m. to 9 p.m.; night from 9 p.m. to 2 a.m. and from 4 a.m. to 6 a.m.; late night from 2

a.m. - 4 a.m.
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Figure 7: Experienced / residential isolation at different times throughout the day

Instead of plotting residential against experienced isolation, we can look at the ratio of
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experienced to residential isolation as a one-dimensional representation of the discrepancies.

Figure 4 in Appendix Section 2.4 shows the densities of the experienced-residential isolation

ratio by time. Notice how the mean of the residential to experienced isolation ratio is not the

only shift we see across time-bins; the variance also increases as our time-bins become more

homebound.

Figure 7 plots the same ratio over the course of the day, highlighting the 10 most populous

MSAs. The ratio mostly differs in level between MSAs and almost all MSAs share the same

time profile: The ratio ranges between 0.82 and 0.95 in the middle of the night, then declines

throughout the morning, reaches a trough of between 0.53 and 0.64 by noon and then rises again,

somewhat more gradually, in the afternoon and throughout the evening. Of the top 10 MSAs

only Chicago, IL shows a markedly different time profile, one that is much flatter and does not

vary as much throughout the day as it does for the other cities, suggesting that throughout the

whole day the places people spend time at in Chicago are similar to their home Census tracts.

5.2 By Location

For each individual, exposure is a ping-weighted average over the exposures in the geohashes

visited. We can therefore analyze exposures coming from geohashes with different properties,

as well as analyze the contribution to isolation that is derived from people spending time at

home versus spending time outside of their homes or into time spent in restaurants and bars

rather than at church.

In each of the next subsections we will take the baseline experienced isolation index and

then restrict the set of geohashes over which we calculate it to a more narrow set. For example,

we will restrict the set of geohash7s used to construct an individual’s exposure to only those

geohash7s containing an outdoor space like a park, playground, garden, or sports field. In this

case, if an individual never visits an outdoor space, they are dropped from the sample. By doing

this, we get an estimate of the isolation at outdoor spaces in an MSA amongst individuals who

spend time in outdoor spaces.

In part these “decompositions” will speak to how much the overall measure may be picking

up on exposures to others that are not actually meaningful exposures – people spending time

at home, not actually interacting with those passing by just outside within the same geohash7,

people not interacting with those in the same geohash7 while asleep or while traveling down

the Interstate. Other aspects, however, may be more informative about what particular features
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of the environment shape experienced isolation.

5.2.1 Homes

First, we look at how much the experienced isolation measure is shaped by time spent at home.

Figure 8 shows the comparison between residential isolation and experienced isolation where

for the latter Census home tracts are included or excluded from the isolation computation:

1. all shows the overall, baseline isolation index, with all geohash7s included as in Figure 4

2. within home tract calculates exposures only in the home Census tract of each device

3. outside home tract removes the device’s home Census tract from the calculation of av-

erage isolation (the complement of (2))

We can think of our baseline experienced isolation measure as an average of within and outside

of home tract estimates, weighted by share of pings in each. Decomposing our baseline measure

by within and outside Census home tracts underlines the major differences between our expe-

rienced isolation measure compared to residential isolation. Within home tract isolation does

not equal traditional residential isolation because we include any visitors, not just residents, in

a tract’s exposure.
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Figure 8: Experienced vs residential isolation within and away from devices’ homes

The results reveal the time spent in one’s home neighborhood to be an important driver of
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experienced isolation, one that is commensurate with the large share of pings that we observe at

people’s homes (See Figure 8 in the Appendix for a decomposition of pings). Compared to an

isolation index of 21.5 calculated over all geohashes, one that is calculated only over devices’

home Census tract is higher at 28.8 percentage points on average across all MSAs and closer to

the traditional residential isolation estimate of 31.4. Conversely, removing each device’s home

Census tract from the calculation yields a lower average isolation of 12.8. Hence, individuals

seem to be exposed to a more diverse environment when leaving their home Census tract. While

all of these measures clearly yield different estimates in levels, the Spearman rank-correlations

between within and outside tract isolation and the baseline index are 0.997 and 0.973.

5.2.2 Features

As shown above, the difference between experienced and residential isolation is mainly driven

by individuals’ exposure outside their home Census tracts. As with devices’ homes, we can ask

how locations that contain certain “features” contribute to overall isolation. Are schools more

or less isolated than other places? Are outdoor spaces like parks, gardens, playgrounds or sports

fields? To answer these questions we take an approach analogous to the above. We determine

which geohash7s contain any of a number of features and then calculate the isolation index only

over this set.

Before showing how experienced isolation differs between the different features it may be

instructive to see what shares of pings is generated in each of these features. For each person,

each day and each hour of the day in which they are active, we therefore calculate the share of

pings spent in each type of feature. Figure 8 in the Appendix shows the average across days

(but within person and active hour) and finally averages across people to get the average share

of hourly pings spent within each feature. Note that home locations, transport infrastructure and

all other features will be taken to be mutually exclusive. That is, we will call any time spent in

the home geohash7 time spent at home and any time spent in geohash7s that contain primary

or secondary road or an airport “transportation” in that order of precedence. Only time spent in

geohashes that are neither home locations nor contain transportation infrastructure do we count

as time being spent in features. Note that a geohash7 may contain multiple features, in which

case we will uniformly distribute pings across features.

As to be expected, devices are more homebound in the morning and night with features like

restaurants and bars and retail seeing the most traffic mid-day. Homes, roads, and no feature
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geohash7s are the most frequented locations. We note that Figure 8 in the Appendix does not

contain information about the level of activity over time; for example, at 3 a.m. 66.5 percent of

our active devices are in their home geohash7, not of our total devices.

Figure 9 summarizes the differences in experienced isolation by feature type. The baseline

category contains all features, as well as time spent at home. The time spent at home is omit-

ted from the figure, and has much higher experienced isolation than all other types of features.

Experienced isolation in outdoor spaces like parks, gardens, sports fields and playgrounds is

only 55.8 percent of baseline isolation on average, and commercial establishments like restau-

rants and bars and retail stores have experienced isolation that is only 47.8 and 53.8 percent

of baseline isolation respectively. Isolation is among its lowest in places of entertainment like

(movie) theaters (26.7 percent of baseline) and accommodations like hotels (28.2 percent of

baseline). While the precise estimate of isolation varies across feature specifications, we show

in Appendix Section 2.3 that the correlation between feature only and baseline isolation remains

high.
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Figure 9: Experienced isolation relative to baseline for different features.

Error bars show mean ± 1 s.d.
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Decomposing feature use by race We observe the exposures and propensity to visit features

by race to explore the influence of race-specific exposure patterns on the variation in isolation

across features. Appendix Figure 9 breaks Figure 8 17 down by deciles of share Black of the

devices’ home geohash7. We plot the percentage of pings spent within each type of feature,

separately for all deciles. In general we can attribute a higher percentage of pings to any kind

of feature. For several features there are interesting differences over the deciles: The Blacker

the individual’s home neighborhood the more time he/she spends at civil, religious and social

organizations, the more time is spent at restaurants and bars and at retail establishments and on

roads and at airports and the less time is spent at schools.18 We note that time spent in one’s

home geohash7, however, is mostly constant across racial demographics.

Recall that the isolation index is the simple difference between the average exposure of

White people and the average exposure of Black people, both to White people. In Figure 11 we

show the average exposures to White people by race across feature specifications. The vertical

lines show mean exposures in our baseline specification. The distance between any pair of

points represents the isolation index in that feature. If the points overlapped, isolation would be

zero. If the White and Black populations were contributing equally to their change in exposure,

the points would meet at the dotted line splitting the difference between the baseline estimates.

A decrease in experienced isolation does not, however, require the average exposure for the

White and Black populations to monotonically approach each other. Mean exposure for Blacks

varies much more across features than for Whites.

For example, while the average exposure for Whites is roughly the same in entertainment

geohash7s as it is in civil, religious, and social organization geohash7s, experienced isolation

is only half as much in the latter. The difference in experienced isolation is driven entirely by

differences in exposure for Blacks. That is, White individuals are exposed to just as many other

Whites in entertainment geohash7s as in civil, religious, and social organization ones. Black

individuals, in contrast, are much more likely to be exposed to Whites in entertainment venues

than they are at civil, religious, and social organization. Intuitively, without-out-of-towners and

home bound specifications drive exposure for both Whites and Blacks away from each other,

increasing isolation.

17Both figures can be found in the Appendix.
18It is unclear how much of this reflects differential ping patterns versus uncontrolled urban-rural differences that

are correlated with race.
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5.3 By Race

Isolation being the difference in average exposures of Whites to Whites and Blacks to Whites,

we can ask whether differences between experienced and residential isolation reflect differences

in exposure that are uniform across the two groups or whether exposure differs by more between

the two measures for one of the two groups than it does for the other. In a lot of MSAs changes

in overall isolation are driven differentially by changes in exposure of Blacks to Whites.

Figure 10 shows the ratio of experienced to residential exposure to Whites across MSAs,

separately for Whites and Blacks. It shows that White exposures to White do not differ very

much between the two measures, though they are slightly lower on average. Experienced Black

exposures to White, in contrast, are substantially higher than the residential numbers would

suggest and also more heterogeneous across MSAs. That is, the reason experienced isolation is

lower than residential isolation in a lot of MSAs is that Blacks are actually exposed to Whites

far more than would be apparent from examining residential exposure rates.
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Figure 10: Experienced exposure / residential exposure to Whites, separately for Whites and Blacks
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Figure 11: Differences in exposure to White in different features, decomposition by race

6 Robustness

In this section we offer a number of robustness checks in which we depart from each of our as-

sumptions in the baseline measure for experienced isolation. The baseline experienced isolation

measure is calculated on a geohash7 grid, includes contributions from all visited geohashes, all

individuals who ever visit the geohash – both those from any particular MSA and those visiting

from out of town –, defines individuals as Black if they are“Black alone or in combination”,

and uses leave-one-out exposures (excluding an individual’s own demographic from their expo-

sure). We report summary statistics for the distributions of experienced isolation across MSAs

and the correlation with the measure under the baseline specification in Table 4. Our results

are robust to any of these changes to the baseline measure. The population-weighted average

experienced isolation is smaller than residential isolation in all robustness checks. Further, all

measures in our robustness checks are highly correlated with the baseline measure as well as

residential isolation.
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q5 mean median q95 correl.
with
base-
line

N

Baseline 0.049 0.215 0.222 0.368 1.000 361

Robustness checks

No Roads Or Airports 0.051 0.228 0.235 0.387 0.999 361
Only Pings < 12mph 0.054 0.232 0.239 0.394 1.000 361
Only Pings < 4mph 0.057 0.239 0.246 0.404 0.999 361
Only Pings < 4mph & No Roads
Or Airports

0.058 0.244 0.250 0.411 0.999 361

Only Pings < 8mph 0.055 0.235 0.242 0.398 1.000 361
Black = ”Black Alone” 0.051 0.221 0.230 0.374 0.999 361
Without Out-Of-Towners 0.052 0.222 0.226 0.373 0.999 361
All (Without Leave-One-Out
Exposures)

0.060 0.228 0.227 0.379 0.996 361

All (Exposure At Geohash5s) 0.020 0.147 0.142 0.294 0.973 361
All (Exposure At Geohash6s) 0.037 0.195 0.198 0.348 0.997 361

Table 4: Summary statistics for different variations of experienced isolation across the 361 MSAs

6.0.1 Roads and airports

Given today’s frequent use of cell phones for navigational purposes one may be worried that

the occasions on which we get to observe the geolocations of the devices in our sample skew

towards use while driving, times when no meaningful interaction takes places between the driver

and those around her. This is indeed the case. In Appendix Section 17, Figure 17 shows the

geohash7s covering Birmingham, AL and shades each geohash7 by the (re-weighted) number

of devices observed in the geohash over the entire sample period, with the most frequented areas

shown in yellow and less frequently visited areas shown in blue. It is immediately clear that

activity is concentrated on the road network around Birmingham.

To assess the importance of these likely non-interactions, we pull shapefiles for all primary

and secondary roads in the United States from the Census’ TIGER database. These roads in-

clude Interstates and main arteries in the US highway, state highway, or county highway systems

(See Appendix Section 1.5 for more precise definitions). Moreover, we pull shapefiles for all

major airports from OpenStreetMaps. Figure 18 is identical to Figure 17 19 but highlights the
19Both figures can be found in the Appendix.
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geohash7s in question. We then take all geohash7s which contain such transportation infras-

tructure and calculate experienced isolation either over only this set or over its complement.

Figure 19 in the Appendix shows that isolation is much lower when restricting the calcula-

tion of the index to geohash7s that contain transport infrastructure. Removing these geohashes

from the baseline index, however, has a comparatively small effect. This is because the overall

index is a weighted average of isolation in all the visited geohashes where devices are weighted

equally and geohashes are weighted within device by the number of pings within person. And

while the share of total pings in our data that is emitted in transportation geohashes stands at

more than 25 percent, the average share of such pings per person is substantially smaller (See

Figure 8 in the Appendix), which limits the influence of transportation infrastructure on the

measure.

Small roads The roads highlighted in Figure 18 in the Appendix clearly represent less than

the full set of roads that people travel along and whose use should not be counted as time spent

being exposed to others. Ideally, one may want to identify driving onall, even minor roads

and remove it from the analysis. Two properties of the data make this difficult. First, many

places where peopledo meaningfully interact with each other – be they restaurants, hotels or

even just residences – are in close proximity to roads, even major roads. While primary and

secondary roads are so wide that any ping observed in a geohash7 covering them is likely to

be due to driving, removing pings observed in geohash7s covering smaller roads runs the risk

of removing too much, indeed it risks removing pings in places like roadside restaurants where

lots of interactions take place! One may be tempted then to increase the resolution at which one

removes observations from the data. This, however, puts an enormous burden on the horizontal

accuracy of the geolocation, which is often not high enough to confidently tell someone sitting

in a restaurant apart from a person driving by outside the restaurant. Appendix Section 3.7.2

nevertheless shows a robustness check in which we remove activity even on small roads for a

subset of MSAs. This does not change estimated experienced isolation much; indeed it does

not even uniformly increase isolation.

Pings in transit An alternative way of avoiding counting activity on roads and other transport

infrastructure as interaction is to remove pings that are emitted while the device is in motion

from the calculations. That is, we can retain in the sample only those pings that are not part

of a sequence in which the device is moving at a speed exceeding some threshold. Appendix
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Section 3.7.2 gives details on this approach and shows experienced isolation as calculated on

samples thus narrowed.

The lower the speed threshold imposed, the fewer pings end up in the sample and the higher

are the estimates of experienced isolation. In our most restrictive specification in which we

remove all pings that are emitted at speeds exceeding 4 mph and all those that are emitted

in geohash7s that contain transportation infrastructure irrespective of speed, we retain barely

half the pings in our sample. As Table 4 shows, in this specification experienced isolation is

16 percent higher on average across all MSAs. Though the level of isolation differs between

the samples, the pairwise Pearson correlation coefficients between all the experienced isolation

measures on all samples are all essentially one.

6.0.2 Additional Robustness Results

Redefining which individuals are considered Black has a miniscule effect on measured isolation,

indeed the smallest effect of any specification. In contrast to residential isolation, our measure

of experienced isolation also captures exposure to out-of-town visitors. Excluding them and

only allowing for residents of an MSA to contribute to exposures in that MSA, we find higher

estimates of experienced isolation. Our measure is still below residential isolation.Since, intu-

itively, including an individual’s own demographic in their own exposure subtly biases exposure

toward the demographic of the individual, we exclude the individual’s exposure to herself in

our baseline measure. In line with this intuition, without leave-one-out exposures experienced

isolation estimates are the highest of any specification. Calculating exposures at the coarser

geohash6 and geohash5 parcels yields the lowest estimates of isolation since a larger and po-

tentially more diverse group of people is included in the construction of exposure. Consistent

across all specifications, while the exact estimates of isolation may vary, the rank of MSAs is

preserved.

7 Conclusion

In this paper, we study experienced racial segregation using data from mobile phones. In con-

trast to traditional residential isolation measures, we capture people’s exposure to visitors as

well as their exposure to people when leaving their neighborhood. Relative to residential iso-

lation, experienced isolation is lower, but it is very highly correlated with residential isolation,
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both overall and in terms of rank correlation. Thus, experienced isolation measures do not

change our ranking of cities in terms of racial mixing. However, a closer look at the data re-

veals when and where people of different races interact. A person’s home neighborhood has

substantially less exposure to other races than other places; schools and churches are among

the lowest exposure to other races outside of home. Universities and restaurants are places with

greater exposure to other races. The differences between residential and experienced isolation

are particularly driven by Black people’s greater exposure to White people when leaving their

homes. In general, people are less isolated during the middle of the day than other times. Our

results suggest several potential targets when aiming to reduce racial segregation.
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1 Dataset construction

1.1 Geohash Definitions

geohash length width height

5 4.9 km 4.9 km

6 1.2 km 609.4 m

7 152.9 m 152.4 m

8 38.2 m 19m

9 4.8m 4.8m

Online Appendix Table 1: Geohash lengths and the width and height of the corresponding cells at the
equator

1.2 Variable Definitions and Sources

We use data at the Census tract and Census block level from both the 2010 decennial
Census and the 2010 American Communities Survey (ACS). Table1.2 gives the full list of
variables from these surveys used, as well as the way in which we combine age groups and
races.

Online Appendix Table 2: Variable Definitions and Sources

Variable Description Source

2010 ACS variable B08015 001
Bachelor’s Degree Count Of Individuals Who Attaned At Most A Bachelor’s

Degree
2010 ACS variable B06009 005

Sum of 2010 ACS variables
B08101 001 and B08101 049

Drove Alone (Black Alone) Number Of Single Race Blacks Who Drive Alone To Work 2010 ACS variable B08105B 002
Drove Alone (White Alone) Number Of Single Race Whites Who Drive Alone To Work 2010 ACS variable B08105H 002
Carpooled (Black Alone) Number Of Single Race Blacks Who Carpool To Work 2010 ACS variable B08105B 003
Carpooled (White Alone) Number Of Single Race Whites Who Carpool To Work 2010 ACS variable B08105H 003
Employment Count Employment Count Sum of 2010 ACS variables

B17005 005, B17005 010,
B17005 016 and B17005 021

Gini Index Gini Index 2010 ACS variable B19083 001
Graduate or Professional De-
gree

Count Of Individuals Who Attained A Graduate/Professional
Degree

2010 ACS variable B06009 006

High School Graduate Count Of Individuals With At Most A High School (Or
Equivalent) Degree

2010 ACS variable B06009 003

2010 ACS variable B25001 001
Less than High School Count Of Individuals Without High School Degree 2010 ACS variable B06009 002
Median Age Median Age 2010 ACS variable B01002 001
Median Income Median Income In The Past 12 Months (In 2010

Inflation-Adjusted Dollars)
2010 ACS variable B06011 001
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Median Number of Rooms Median Number Of Rooms 2010 ACS variable B25018 001
Median House Value Median Value (In Dollars) Of Owner-Occupied Housing 2010 ACS variable B25077 001

2010 ACS variable B25003 001
Other Means of Tranpsort
(Black Alone)

Number Of Single Race Blacks Who Use Other Means Of
Transport To Work

2010 ACS variable B08105B 006

Other Means of Tranpsort
(White Alone)

Number Of Single Race Whites Who Use Other Means Of
Transport To Work

2010 ACS variable B08105H 006

2010 ACS variable B25003 002
Population in Poverty Count Of Individuals With Income Below Poverty Level For

The Past 12 Months
2010 ACS variable B17001 002

2010 ACS variable B06009 001
2010 ACS variable B17005 001
2010 ACS variable B17001 001

Public Transportation (Black
Alone)

Number Of Single Race Blacks Who Use Public Transport To
Work

2010 ACS variable B08105B 004

Public Transportation (White
Alone)

Number Of Single Race Whites Who Use Public Transport To
Work

2010 ACS variable B08105H 004

Some College or Associate’s
Degree

Count Of Individuals Who At Most Had Some College 2010 ACS variable B06009 004

Aggregate Travel Time to
Work (In Minutes)

Sum Of Travel Time For Everyone Who Works Outside Of
Home

2010 ACS variable B08013 001

Unemployment Count Unemployment Count Sum of 2010 ACS variables
B17005 006, B17005 011,
B17005 017 and B17005 022

Walked (Black Alone) Number Of Single Race Blacks Who Walk To Work 2010 ACS variable B08105B 005
Walked (White Alone) Number Of Single Race Whites Who Walk To Work 2010 ACS variable B08105H 005
Worked at Home (Black
Alone)

Number Of Single Race Blacks Who Work At Home 2010 ACS variable B08105B 007

Worked at Home (White
Alone)

Number Of Single Race Whites Who Work At Home 2010 ACS variable B08105H 007

2010 ACS variable B08105B 001
2010 ACS variable B08105H 001

Asian Alone Single Race Non-Hispanic Asian Population Count 2010 Decennial Census variable
P009008

Average Household Size Average Household Size 2010 Decennial Census variable
P017001

Black Alone Single Race Non-Hispanic Black Population Count 2010 Decennial Census variable
P009006

Black Alone or in Combination Single Or Multiracial Non-Hispanic Black Population Count Sum of 2010 Decennial Census
variables P009013, P009018,
P009019, P009020, P009021,
P009029, P009030, P009031,
P009032, P009039, P009040,
P009041, P009042, P009043,
P009044, P009050, P009051,
P009052, P009053, P009054,
P009055, P009060, P009061,
P009062, P009063, P009066,
P009067, P009068, P009069,
P009071 and P009073

Female: Under 17 Years Female Popluation Under 17 Years Old Sum of 2010 Decennial Cen-
sus variables P012027, P012028,
P012029 and P012030

Female: 18 and 24 years Female Population Between 18 And 24 Sum of 2010 Decennial Cen-
sus variables P012031, P012032,
P012033 and P012034
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Female: 25 to 34 years Female Population Between 25 And 34 Sum of 2010 Decennial Census
variables P012035 and P012036

Female: 35 to 49 years Female Population Between 35 And 49 Sum of 2010 Decennial Census
variables P012037, P012038 and
P012039

Female: 50 to 61 years Female Population Between 50 And 61 Sum of 2010 Decennial Census
variables P012040, P012041 and
P012042

Female: 62 to 74 years Female Population Between 62 And 74 Sum of 2010 Decennial Cen-
sus variables P012043, P012044,
P012045 and P012046

Female: 75 and older Female Population 75 And Older Sum of 2010 Decennial Census
variables P012047, P012048 and
P012049

Hispanic or Latino Hispanic Or Latino Population Count 2010 Decennial Census variable
P009002

Male: Under 17 Years Male Popluation Under 17 Years Old Sum of 2010 Decennial Cen-
sus variables P012003, P012004,
P012005 and P012006

Male: 18 and 24 years Male Population Between 18 And 24 Sum of 2010 Decennial Cen-
sus variables P012007, P012008,
P012009 and P012010

Male: 25 to 34 years Male Population Between 25 And 34 Sum of 2010 Decennial Census
variables P012011 and P012012

Male: 35 to 49 years Male Population Between 35 And 49 Sum of 2010 Decennial Census
variables P012013, P012014 and
P012015

Male: 50 to 61 years Male Population Between 50 And 61 Sum of 2010 Decennial Census
variables P012016, P012017 and
P012018

Male: 62 to 74 years Male Population Between 62 And 74 Sum of 2010 Decennial Cen-
sus variables P012019, P012020,
P012021 and P012022

Male: 75 and older Male Population 75 And Older Sum of 2010 Decennial Census
variables P012023, P012024 and
P012025

Rural Population Rural Population 2010 Decennial Census variable
P002005

Total Number of Families Total Number Of Families 2010 Decennial Census variable
P035001

Total Population Total Population 2010 Decennial Census variable
P009001

Urban Population Urban Population 2010 Decennial Census variable
P002002

Vacant Housing Units Number Of Vacant Housing Units 2010 Decennial Census variable
H005001

White Alone Single Race Non-Hispanic White Population Count 2010 Decennial Census variable
P009005

MSA geohash share: accom-
modation

The Share Of Geohash7s That Contain A Accommodation
Feature Out Of All Geohash7s In The Msa For Which We
Observe A Device.

Calculations based on SafeGraph
movement and InfoUSA data

MSA geohash share: civil reli-
gious and social organizations

The Share Of Geohash7s That Contain A Civil Religious And
Social Organizations Feature Out Of All Geohash7s In The Msa
For Which We Observe A Device.

Calculations based on SafeGraph
movement and InfoUSA data
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MSA geohash share: education The Share Of Geohash7s That Contain A Education Feature Out
Of All Geohash7s In The Msa For Which We Observe A
Device.

Calculations based on SafeGraph
movement and InfoUSA data

MSA geohash share: entertain-
ment

The Share Of Geohash7s That Contain A Entertainment Feature
Out Of All Geohash7s In The Msa For Which We Observe A
Device.

Calculations based on SafeGraph
movement and InfoUSA data

MSA geohash share: restau-
rants and bars

The Share Of Geohash7s That Contain A Restaurants And Bars
Feature Out Of All Geohash7s In The Msa For Which We
Observe A Device.

Calculations based on SafeGraph
movement and InfoUSA data

MSA geohash share: retail The Share Of Geohash7s That Contain A Retail Feature Out Of
All Geohash7s In The Msa For Which We Observe A Device.

Calculations based on SafeGraph
movement and InfoUSA data

MSA geohash share: sports
and recreation

The Share Of Geohash7s That Contain A Sports And
Recreation Feature Out Of All Geohash7s In The Msa For
Which We Observe A Device.

Calculations based on SafeGraph
movement and InfoUSA data

MSA geohash share: primary
and secondary roads

The Share Of Geohash7s That Contain A Primary And
Secondary Roads Feature Out Of All Geohash7s In The Msa
For Which We Observe A Device.

Calculations based on SafeGraph
movement and InfoUSA data

MSA geohash share: parks The Share Of Geohash7s That Contain A Parks Feature Out Of
All Geohash7s In The Msa For Which We Observe A Device.

Calculations based on SafeGraph
movement and InfoUSA data

MSA geohash share: colleges The Share Of Geohash7s That Contain A Colleges Feature Out
Of All Geohash7s In The Msa For Which We Observe A
Device.

Calculations based on SafeGraph
movement and InfoUSA data

MSA geohash share: play-
grounds

The Share Of Geohash7s That Contain A Playgrounds Feature
Out Of All Geohash7s In The Msa For Which We Observe A
Device.

Calculations based on SafeGraph
movement and InfoUSA data

MSA geohash share: pitches The Share Of Geohash7s That Contain A Pitches Feature Out Of
All Geohash7s In The Msa For Which We Observe A Device.

Calculations based on SafeGraph
movement and InfoUSA data

MSA geohash share: kinder-
gartens

The Share Of Geohash7s That Contain A Kindergartens Feature
Out Of All Geohash7s In The Msa For Which We Observe A
Device.

Calculations based on SafeGraph
movement and InfoUSA data

1.3 Demographic Imputation

To impute racial demographics, we match each home geohash7 to the set of blocks from the
2010 decennial Census that overlap it. We then calculate, for each block, the share of the
block that overlaps the home geohash. Under the assumption that each race’s population
is distributed uniformly within block we can then calculate each race’s population in the
area covered by a geohash7. For each geohash7 we can then sum over these subset areas
of each intersecting block. We calculate the share of each race as the ratio between the
race’s population and the total population of the geohash. Figure 1 shows geohash djfq8cs
in Jefferson County, AL. The geohash overlaps a total of five Census blocks, one of which
(Block 1003) is uninhabited. Of the four other blocks the percent white ranges from 36%
to 79%. In the Census block that covers the majority of the geohash, however, the percent
white is 64%. All told, we impute the percent white of the geohash to be 65%.
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Online Appendix Figure 1: Matching home geohash7 djfq8cs to blocks in Jefferson county

1.4 Sample re-weighting

Table 3 shows Census tracts in Metropolitan Statistical Areas to which we can match no
device in the panel via its home location.

44



MSA tract GEOID tract population MSA population

Ann Arbor, MI 26161421900 1,491 344,791
Bakersfield - Delano, CA 06029004302 5,710 839,631
Boston - Cambridge - Quincy, MA -
NH

25025980101 535 4,552,402

Buffalo - Niagara Falls, NY 36029940100 34 1,135,509
Clarksville, TN - KY 21221980200 6 273,949
Corpus Christi, TX 48355980000 11 428,185
Detroit - Warren - Livonia, MI 26087336500 952 4,296,250
Detroit - Warren - Livonia, MI 26163985500 11 4,296,250
Florence, SC 45041980100 4 205,566
Gulfport - Biloxi, MS 28047980000 85 248,820
Honolulu, HI 15003980800 1 953,207
Kansas City, MO - KS 29165030307 11 2,035,334
Knoxville, TN 47009980200 25 698,030
Lakeland - Winter Haven, FL 12105980000 3 602,095
Los Angeles - Long Beach - Santa
Ana, CA

06037980003 2 12,828,837

Miami - Fort Lauderdale - Pompano
Beach, FL

12086980100 18 5,564,635

Miami - Fort Lauderdale - Pompano
Beach, FL

12099008102 672 5,564,635

Minneapolis - St. Paul - Bloomington,
MN - WI

27163070802 448 3,279,833

Monroe, LA 22073980000 3 176,441
New York - Northern New Jersey -
Long Island, NY - NJ - PA

34029980100 1 18,897,109

New York - Northern New Jersey -
Long Island, NY - NJ - PA

36119982000 1,749 18,897,109

Reno - Sparks, NV 32031980300 8 425,417
Richmond, VA 51183870202 1,082 1,258,251
Rochester, NY 36051031000 1,008 1,054,323
Savannah, GA 13051980000 2 347,611
Scranton - Wilkes - Barre, PA 42079980100 5 563,631
State College, PA 42027981202 1,999 153,990
Texarkana, TX - Texarkana, AR 05091980000 18 136,027
Vineland - Millville - Bridgeton, NJ 34011010103 4,405 156,898
Vineland - Millville - Bridgeton, NJ 34011010402 1,256 156,898
Washington - Arlington - Alexandria,
DC - VA - MD - WV

51059980300 4 5,582,170

Yuma, AZ 04027980005 502 195,751
Online Appendix Table 3: Census tracts in Metropolitan Statistical Areas with non-zero population but
no device home locations

Population numbers are taken from the 2010 decennial Census.

45



1.5 Features

1.5.1 Roads and other transport infrastructure

We take into account the following types of transport infrastructure:
• primary roads: “Primary roads are generally divided, limited-access highways within

the Federal interstate highway system or under state management. These highways are
distinguished by the presence of interchanges and are accessible by ramps and may in-
clude some toll highways." (U.S. Census Bureau 2017)). We pull shapefiles for all pri-
mary roads from the Census’ TIGER database (U.S. Census Bureau 2017).

• secondary roads: "Secondary roads are main arteries, usually in the U.S. highway, state
highway, or county highway system. These roads have one or more lanes of traffic in each
direction, may or may not be divided, and usually have at-grade intersections with many
other roads and driveways.". We pull shapefiles for all primary roads from the Census’
TIGER database (U.S. Census Bureau 2017).

• airports. We pull all items in the OpenStreetMaps catalog with tag aeroway=aerodrome,
with non-empty tag iata and with a geometry type that is either a POLYGON or a MUL-
TIPOLYGON. This should include all major public and some military airports. It will
not include smaller, mostly municipal airports and airports for which OSM only has point
data

For all three of these features we create geohash covers at the geohash7 level. That is, we
find the set of geohash7s that have intersection with the feature in question

1.5.2 InfoUSA

In addition to businesses like restaurants, bars, places of entertainment, retail establish-
ments, etc. the InfoUSA dataset also contains information about educational institutions
and sports and recreational facilities. InfoUSA contains NAICS8 categories, which we
aggregate further. We look at the top 334 NAICS8 categories in the data, which together
cover 95% of all establishments and assign them manually to a handful of categories. The
mapping between NAICS8 and categories is given in Table 4:
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Combined category NAICS8 Category # of items share of all items in infoUSA dataset

Retail Supermarkets/Other Grocery (Exc Convenience) Strs 90850 0.58 %
Retail Pharmacies & Drug Stores 73215 0.47 %
Retail Convenience Stores 72947 0.47 %
Retail Used Merchandise Stores 62472 0.4 %
Retail All Other General Merchandise Stores 59747 0.38 %
Retail Gift, Novelty & Souvenir Stores 54629 0.35 %
Retail Women’s Clothing Stores 40032 0.26 %
Retail Beer, Wine & Liquor Stores 39694 0.25 %
Retail Other Clothing Stores 33709 0.22 %
Retail Retail Bakeries 29162 0.19 %
Retail Hobby, Toy & Game Stores 26008 0.17 %
Retail Department Stores (Except Discount Dept Stores) 24993 0.16 %
Retail Optical Goods Stores 22419 0.14 %
Retail Hardware Stores 22188 0.14 %
Retail All Other Specialty Food Stores 21094 0.13 %
Retail Food (Health) Supplement Stores 20193 0.13 %
Retail All Other Health & Personal Care Stores 17774 0.11 %
Retail Book Stores 15910 0.1 %
Retail Clothing Accessories Stores 15578 0.1 %
Retail Office Supplies & Stationery Stores 12213 0.08 %
Retail Paint & Wallpaper Stores 10619 0.07 %
Retail Children’s & Infants’ Clothing Stores 9963 0.06 %
Retail Electronic Shopping 9871 0.06 %
Retail Men’s Clothing Stores 9420 0.06 %
Retail Meat Markets 9398 0.06 %
Restaurants bars Full-Service Restaurants 607719 3.89 %
Restaurants bars Snack & Nonalcoholic Beverage Bars 66575 0.43 %
Restaurants bars Limited-Service Restaurants 16778 0.11 %
Civil social religious organizations Religious Organizations 386741 2.47 %
Civil social religious organizations Civil & Social Organizations 64645 0.41 %
Education Elementary & Secondary Schools 174380 1.12 %
Education Colleges, Universities & Professional Schools 27442 0.18 %
Education Libraries & Archives 26059 0.17 %
Education Museums 19108 0.12 %
Accommodation Hotels (Except Casino Hotels) & Motels 70789 0.45 %
Accommodation All Other Traveler Accommodation 12420 0.08 %
Accommodation Bed-&-Breakfast Inns 10338 0.07 %
Sports recreation Fitness & Recreational Sports Centers 65877 0.42 %
Entertainment Motion Picture Theaters (Except Drive-Ins) 8763 0.06 %
Entertainment Theater Companies & Dinner Theaters 6484 0.04 %

Online Appendix Table 4: InfoUSA NAICS8 categories and their combination

All of the geographical data in infoUSA is point data -- latitude and longitude pairs -- and we
find the set of geohash7s that contain all latitudes and longitudes that belong to places of
different kinds. This is likely fine for features whose geographic extent is rather limited. A
restaurant or bar is likely to be contained in a ˜ 500 × 500 ft. rectangle. For features like
educational institutions this may be more of a limitation.

1.5.3 OpenStreetMaps

Because infoUSA’s richness is limited and it leans heavily towards businesses we comple-
ment it with data from OpenStreetMaps (OSM), an open source project whose aim is to
“create and provide free geographic data, such as street maps, to anyone”. Items in the
OSM catalog are marked with tags. We pull all features with the following tags:

• leisure=park: “A park is an area of open space provided for recreational use, usually
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designed and in semi-natural state with grassy areas, trees and bushes. Parks are often but
not always municipal.” (http://wiki.openstreetmap.org/wiki/Tag:leisure%3Dpark)

• leisure=playground: “Marks a children’s playground. These are outdoor (sometimes
indoor) areas for children to play. Often they provide equipment such as swings, climb-
ing frames and roundabouts. They are often part of a larger park, but are also found in
residential areas.” (http://wiki.openstreetmap.org/wiki/Tag:leisure%3Dplayground)

• leisure=pitch: “[A]n area designed for playing a particular sport, normally designated
with appropriate markings. Examples include: tennis court, basketball court, ball park,
riding arena.” (http://wiki.openstreetmap.org/wiki/Tag:leisure%3Dpitch)

• leisure=garden: “A garden is a distinguishable planned space, usually outdoors,
set aside for the display, cultivation, and enjoyment of plants and other forms
of nature. The garden can incorporate both natural and man-made materials.”
(http://wiki.openstreetmap.org/wiki/Tag:leisure%3Dgarden)

• amenity=school: “A primary or secondary school (pupils typically aged 6 to 18)”
(http://wiki.openstreetmap.org/wiki/Tag:amenity%3Dschool)

• amenity=kindergarten: “A place for looking after
preschool children and (typically) giving early education.”
(http://wiki.openstreetmap.org/wiki/Tag:amenity%3Dkindergarten)

• amenity=university: “An educational institution designed for instruction, ex-
amination, or both, of students in many branches of advanced learning.”
(http://wiki.openstreetmap.org/wiki/Tag:amenity%3Duniversity)

• amenity=college: “A place for further education, usually a post-secondary education
institution” (http://wiki.openstreetmap.org/wiki/Tag:amenity%3Dcollege)

The items tagged with these terms are a mix of point and two-dimensional polygon data.
Since the point data contains lots of false positives- e.g. things that belong to parks but
aren’t themselves parks -we take only the polygon data and, as with the infoUSA data,
cover it with geohash7s.

Data quality varies considerably by tag. Features that are important for generating maps –
OSM’s primary purpose – rather than for more detailed semantics look like they are con-
siderably more complete. Correspondingly, the data on parks is better than the data on
e.g. kindergartens. Since some of the tags describe features that are similar in function we
combine them into compound features. We combine colleges, universities, schools, and
kindergartens into the education category from InfoUSA, and parks, playgrounds, pitches
and gardens into “outdoor spaces”.
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2 Results

2.1 Experienced and residential isolation across the United States

0.5 1.0 1.5
experienced isolation / residential isolation

Online Appendix Figure 2: Ratio of experienced to residential isolation by MSA

The sample is restricted at the 97.5th percentile.

−0.2 −0.1 0.0
experienced isolation − residential isolation

Online Appendix Figure 3: Difference between experienced and residential isolation by MSA
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MSA Exp Res MSA Exp Res

Abilene, TX 0.07 0.16 Lancaster, PA 0.17 0.25
Akron, OH 0.22 0.33 Lansing, MI 0.15 0.21
Albany, GA 0.28 0.35 Laredo, TX 0.01 0.00
Albany, NY 0.20 0.32 Las Cruces, NM 0.03 0.01
Albuquerque, NM 0.07 0.08 Las Vegas, NV 0.10 0.15
Alexandria, LA 0.28 0.40 Lawrence, KS 0.04 0.04
Allentown, PA 0.15 0.22 Lawton, OK 0.06 0.07
Altoona, PA 0.03 0.03 Lebanon, PA 0.09 0.11
Amarillo, TX 0.20 0.31 Lewiston, ID 0.03 0.01
Ames, IA 0.04 0.04 Lewiston, ME 0.14 0.11
Anchorage, AK 0.11 0.15 Lexington, KY 0.12 0.18
Anderson, IN 0.15 0.21 Lima, OH 0.16 0.22
Anderson, SC 0.16 0.17 Lincoln, NE 0.06 0.09
Anniston, AL 0.19 0.24 Little Rock, AR 0.27 0.37
Appleton, WI 0.04 0.04 Logan, UT 0.04 0.04
Asheville, NC 0.11 0.13 Longview, TX 0.17 0.19
Athens, GA 0.18 0.20 Longview, WA 0.04 0.04
Atlanta, GA 0.29 0.39 Los Angeles, CA 0.22 0.35
Atlantic City, NJ 0.25 0.37 Louisville, KY 0.24 0.36
Auburn, AL 0.13 0.14 Lubbock, TX 0.18 0.30
Augusta, GA 0.21 0.24 Lynchburg, VA 0.15 0.18
Austin, TX 0.15 0.23 Macon, GA 0.26 0.34
Bakersfield, CA 0.17 0.22 Madera, CA 0.24 0.28
Baltimore, MD 0.31 0.46 Madison, WI 0.13 0.16
Bangor, ME 0.03 0.02 Manchester, NH 0.06 0.08
Barnstable Town, MA 0.04 0.06 Manhattan, KS 0.12 0.13
Baton Rouge, LA 0.30 0.39 Mankato, MN 0.04 0.04
Battle Creek, MI 0.17 0.24 Mansfield, OH 0.10 0.19
Bay City, MI 0.05 0.06 McAllen, TX 0.12 0.03
Beaumont, TX 0.33 0.49 Medford, OR 0.03 0.03
Bellingham, WA 0.03 0.01 Memphis, TN 0.32 0.44
Bend, OR 0.02 0.01 Merced, CA 0.08 0.08
Billings, MT 0.04 0.07 Miami, FL 0.23 0.36
Binghamton, NY 0.08 0.11 Michigan City, IN 0.19 0.23
Birmingham, AL 0.38 0.49 Midland, TX 0.18 0.29
Bismarck, ND 0.04 0.02 Milwaukee, WI 0.41 0.59
Blacksburg, VA 0.03 0.02 Minneapolis, MN 0.17 0.25
Bloomington, IL 0.07 0.07 Missoula, MT 0.02 0.00
Bloomington, IN 0.05 0.07 Mobile, AL 0.29 0.42
Boise City, ID 0.02 0.01 Modesto, CA 0.08 0.09
Boston, MA 0.26 0.39 Monroe, LA 0.37 0.49
Boulder, CO 0.02 0.02 Monroe, MI 0.07 0.07
Bowling Green, KY 0.09 0.14 Montgomery, AL 0.27 0.37
Bremerton, WA 0.05 0.06 Morgantown, WV 0.03 0.05
Bridgeport, CT 0.27 0.44 Morristown, TN 0.06 0.08
Brownsville, TX 0.09 0.05 Mount Vernon, WA 0.06 0.07
Brunswick, GA 0.22 0.29 Muncie, IN 0.15 0.26
Buffalo, NY 0.33 0.51 Muskegon, MI 0.28 0.44
Burlington, NC 0.17 0.20 Myrtle Beach, SC 0.12 0.10
Burlington, VT 0.04 0.05 Napa, CA 0.17 0.21
Canton, OH 0.15 0.20 Naples, FL 0.26 0.34
Cape Coral, FL 0.22 0.34 Nashville, TN 0.21 0.32
Cape Girardeau, MO 0.22 0.25 New Haven, CT 0.25 0.39
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Carson City, NV 0.03 0.04 New Orleans, LA 0.28 0.44
Casper, WY 0.02 0.02 New York, NY 0.35 0.53
Cedar Rapids, IA 0.07 0.06 Niles, MI 0.34 0.49
Champaign, IL 0.14 0.23 North Port, FL 0.19 0.27
Charleston, SC 0.15 0.20 Norwich, CT 0.12 0.20
Charleston, WV 0.13 0.18 Ocala, FL 0.17 0.21
Charlotte, NC 0.22 0.32 Ocean City, NJ 0.12 0.14
Charlottesville, VA 0.09 0.10 Odessa, TX 0.13 0.18
Chattanooga, TN 0.26 0.41 Ogden, UT 0.05 0.08
Cheyenne, WY 0.04 0.05 Oklahoma City, OK 0.15 0.23
Chicago, IL 0.37 0.52 Olympia, WA 0.06 0.06
Chico, CA 0.06 0.07 Omaha, NE 0.23 0.32
Cincinnati, OH 0.27 0.41 Orlando, FL 0.19 0.25
Clarksville, TN 0.12 0.16 Oshkosh, WI 0.04 0.03
Cleveland, OH 0.39 0.56 Owensboro, KY 0.09 0.08
Cleveland, TN 0.05 0.06 Oxnard, CA 0.13 0.17
Coeur d’Alene, ID 0.02 0.01 Palm Bay, FL 0.12 0.15
College Station, TX 0.15 0.20 Palm Coast, FL 0.06 0.05
Colorado Springs, CO 0.09 0.12 Panama City, FL 0.12 0.18
Columbia, MO 0.08 0.07 Parkersburg, WV 0.02 0.02
Columbia, SC 0.23 0.29 Pascagoula, MS 0.25 0.31
Columbus, GA 0.23 0.33 Pensacola, FL 0.16 0.22
Columbus, IN 0.03 0.02 Peoria, IL 0.25 0.39
Columbus, OH 0.25 0.35 Philadelphia, PA 0.33 0.49
Corpus Christi, TX 0.14 0.20 Phoenix, AZ 0.15 0.21
Corvallis, OR 0.02 0.02 Pine Bluff, AR 0.37 0.47
Crestview, FL 0.07 0.06 Pittsburgh, PA 0.23 0.35
Cumberland, MD 0.09 0.07 Pittsfield, MA 0.06 0.07
Dallas, TX 0.23 0.32 Pocatello, ID 0.02 0.01
Dalton, GA 0.12 0.15 Port St. Lucie, FL 0.20 0.27
Danville, IL 0.24 0.32 Portland, ME 0.06 0.08
Danville, VA 0.19 0.19 Portland, OR 0.07 0.10
Davenport, IA 0.13 0.18 Poughkeepsie, NY 0.16 0.23
Dayton, OH 0.31 0.46 Prescott, AZ 0.03 0.02
Decatur, AL 0.20 0.28 Providence, RI 0.18 0.27
Decatur, IL 0.19 0.27 Provo, UT 0.02 0.03
Deltona, FL 0.17 0.27 Pueblo, CO 0.06 0.08
Denver, CO 0.18 0.27 Punta Gorda, FL 0.07 0.07
Des Moines, IA 0.14 0.21 Racine, WI 0.23 0.28
Detroit, MI 0.41 0.58 Raleigh, NC 0.16 0.21
Dothan, AL 0.19 0.22 Rapid City, SD 0.05 0.06
Dover, DE 0.12 0.10 Reading, PA 0.21 0.30
Dubuque, IA 0.06 0.07 Redding, CA 0.02 0.02
Duluth, MN 0.04 0.05 Reno, NV 0.07 0.11
Durham, NC 0.21 0.27 Richmond, VA 0.23 0.32
Eau Claire, WI 0.03 0.02 Riverside, CA 0.14 0.19
El Centro, CA 0.15 0.09 Roanoke, VA 0.23 0.36
El Paso, TX 0.01 0.01 Rochester, MN 0.10 0.10
Elizabethtown, KY 0.11 0.13 Rochester, NY 0.30 0.44
Elkhart, IN 0.18 0.22 Rockford, IL 0.21 0.28
Elmira, NY 0.05 0.16 Rocky Mount, NC 0.22 0.19
Erie, PA 0.16 0.27 Rome, GA 0.17 0.19
Eugene, OR 0.02 0.02 Sacramento, CA 0.18 0.26
Evansville, IN 0.12 0.17 Saginaw, MI 0.34 0.51
Fairbanks, AK 0.06 0.09 Salem, OR 0.05 0.06
Fargo, ND 0.05 0.03 Salinas, CA 0.14 0.23
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Farmington, NM 0.08 0.10 Salisbury, MD 0.18 0.24
Fayetteville, AR 0.05 0.05 Salt Lake City, UT 0.08 0.12
Fayetteville, NC 0.10 0.11 San Angelo, TX 0.08 0.14
Flagstaff, AZ 0.06 0.08 San Antonio, TX 0.14 0.20
Flint, MI 0.37 0.50 San Diego, CA 0.16 0.24
Florence, AL 0.14 0.16 San Francisco, CA 0.17 0.29
Florence, SC 0.20 0.20 San Jose, CA 0.10 0.14
Fond du Lac, WI 0.05 0.05 San Luis Obispo, CA 0.01 0.23
Fort Collins, CO 0.04 0.03 Sandusky, OH 0.15 0.19
Fort Smith, AR 0.13 0.19 Santa Barbara, CA 0.09 0.12
Fort Wayne, IN 0.25 0.37 Santa Cruz, CA 0.06 0.08
Fresno, CA 0.13 0.19 Santa Rosa, CA 0.06 0.09
Gadsden, AL 0.26 0.36 Savannah, GA 0.22 0.31
Gainesville, FL 0.16 0.23 Scranton, PA 0.09 0.11
Gainesville, GA 0.18 0.23 Seattle, WA 0.11 0.17
Glens Falls, NY 0.01 0.01 Sebastian, FL 0.18 0.20
Goldsboro, NC 0.17 0.19 Sheboygan, WI 0.08 0.10
Grand Forks, ND 0.05 0.05 Sherman, TX 0.12 0.12
Grand Junction, CO 0.03 0.03 Shreveport, LA 0.27 0.38
Grand Rapids, MI 0.20 0.31 Sioux City, IA 0.15 0.22
Great Falls, MT 0.04 0.04 Sioux Falls, SD 0.08 0.09
Greeley, CO 0.08 0.09 South Bend, IN 0.18 0.26
Green Bay, WI 0.09 0.15 Spartanburg, SC 0.17 0.23
Greensboro, NC 0.25 0.34 Spokane, WA 0.03 0.04
Greenville, NC 0.15 0.13 Springfield, IL 0.18 0.27
Greenville, SC 0.16 0.20 Springfield, MA 0.27 0.38
Gulfport, MS 0.17 0.20 Springfield, MO 0.04 0.04
Hagerstown, MD 0.09 0.15 Springfield, OH 0.17 0.27
Hanford, CA 0.07 0.12 St. Cloud, MN 0.08 0.06
Harrisburg, PA 0.25 0.37 St. George, UT 0.03 0.03
Harrisonburg, VA 0.08 0.11 St. Joseph, MO 0.07 0.06
Hartford, CT 0.28 0.43 St. Louis, MO 0.38 0.52
Hattiesburg, MS 0.24 0.27 Steubenville, OH 0.14 0.16
Hickory, NC 0.12 0.13 Stockton, CA 0.15 0.20
Hinesville, GA 0.12 0.09 Sumter, SC 0.17 0.19
Holland, MI 0.08 0.08 Syracuse, NY 0.27 0.40
Honolulu, HI 0.02 0.03 Tallahassee, FL 0.18 0.25
Hot Springs, AR 0.11 0.14 Tampa, FL 0.21 0.30
Houma, LA 0.15 0.11 Terre Haute, IN 0.06 0.08
Houston, TX 0.24 0.35 Texarkana, TX 0.17 0.23
Huntington, WV 0.07 0.10 Toledo, OH 0.25 0.38
Huntsville, AL 0.21 0.30 Topeka, KS 0.15 0.20
Idaho Falls, ID 0.02 0.02 Trenton, NJ 0.27 0.40
Indianapolis, IN 0.28 0.40 Tucson, AZ 0.09 0.13
Iowa City, IA 0.08 0.08 Tulsa, OK 0.19 0.28
Ithaca, NY 0.06 0.06 Tuscaloosa, AL 0.26 0.32
Jackson, MI 0.12 0.24 Tyler, TX 0.21 0.29
Jackson, MS 0.33 0.41 Utica, NY 0.17 0.29
Jackson, TN 0.23 0.32 Valdosta, GA 0.20 0.24
Jacksonville, FL 0.23 0.32 Vallejo, CA 0.11 0.15
Jacksonville, NC 0.07 0.09 Victoria, TX 0.12 0.17
Janesville, WI 0.16 0.20 Virginia Beach, VA 0.19 0.28
Jefferson City, MO 0.11 0.13 Visalia, CA 0.07 0.06
Johnson City, TN 0.05 0.08 Waco, TX 0.20 0.29
Johnstown, PA 0.12 0.14 Warner Robins, GA 0.10 0.09
Jonesboro, AR 0.14 0.13 Washington, DC 0.26 0.38
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Joplin, MO 0.03 0.02 Waterloo, IA 0.21 0.31
Kalamazoo, MI 0.16 0.21 Wausau, WI 0.06 0.06
Kankakee, IL 0.28 0.44 Wenatchee, WA 0.02 0.01
Kansas City, MO 0.25 0.38 Wheeling, WV 0.04 0.05
Kennewick, WA 0.08 0.10 Wichita Falls, TX 0.14 0.19
Killeen, TX 0.14 0.17 Wichita, KS 0.19 0.30
Kingsport, TN 0.05 0.04 Williamsport, PA 0.10 0.14
Kingston, NY 0.07 0.10 Wilmington, NC 0.16 0.20
Knoxville, TN 0.16 0.24 Winchester, VA 0.08 0.11
Kokomo, IN 0.07 0.11 Winston, NC 0.25 0.37
La Crosse, WI 0.03 0.04 Worcester, MA 0.14 0.20
Lafayette, IN 0.06 0.07 Yakima, WA 0.08 0.13
Lafayette, LA 0.19 0.23 York, PA 0.16 0.22
Lake Charles, LA 0.28 0.42 Youngstown, OH 0.26 0.40
Lake Havasu City, AZ 0.04 0.02 Yuma, AZ 0.12 0.12
Lakeland, FL 0.16 0.17

2.2 Residential isolation, device-based specifications

Specification mean corr.
with
tradi-
tional

count

Traditional Residential Isolation 0.314 1.000 361

Device-based

Unweighted Tract Imputation on Devices (Panel 1) 0.300 0.994 361
Weighted Tract Imputation on Devices (Panel 2) 0.314 1.000 361
Device-based Residential Isolation (Panel 3) 0.311 0.999 361
Online Appendix Table 5: Summary statistics for Residential Isolation Specifications
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2.3 Experienced isolation

q5 mean median q95 correl.
with
base-
line

N

Baseline 0.049 0.215 0.222 0.368 1.000 361

Features

Accommodation 0.003 0.067 0.057 0.145 0.825 361
Civil, Religious And Social
Organizations

0.015 0.152 0.158 0.310 0.982 361

Education 0.013 0.135 0.126 0.277 0.950 361
Entertainment 0.000 0.064 0.056 0.143 0.802 359
Outdoor Spaces (Parks, Etc.) 0.013 0.129 0.119 0.276 0.949 361
Restaurants And Bars 0.007 0.115 0.099 0.250 0.925 361
Retail 0.010 0.128 0.118 0.261 0.951 361
Roads And Airports 0.010 0.097 0.089 0.202 0.943 361
Sports And Recreation 0.005 0.094 0.084 0.199 0.907 361
No Features 0.053 0.232 0.246 0.396 0.997 361
No Features, Not At Home
(Broadly Defined)

0.018 0.149 0.147 0.294 0.980 361

At Home (Narrowly Defined) 0.074 0.292 0.303 0.473 0.996 361
No Exposure From Homes
(Narrowly Defined)

0.020 0.141 0.138 0.274 0.987 361

Homes

No Homes (Broadly Defined) 0.016 0.131 0.125 0.264 0.979 361
No Homes (Narrowly Defined) 0.024 0.155 0.155 0.293 0.992 361
Outside Home Tract 0.011 0.128 0.119 0.262 0.973 361
Within Home Tract 0.070 0.288 0.300 0.469 0.997 361

Online Appendix Table 6: Summary statistics for different variations of experienced isolation across the
361 MSAs
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2.4 Experienced isolation, decomposition by time
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Online Appendix Figure 4: Experienced vs residential isolation at different times throughout the day, by
MSA
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Online Appendix Figure 5: Experienced vs residential isolation at different times throughout the day, by
MSA
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2.5 Experienced isolation, decomposition by feature

Figures 6 and 7 show isolation indices that are computed on only those geohashes that
contain particular “features.”
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Online Appendix Figure 6: Experienced vs residential isolation for different features
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Online Appendix Figure 7: Experienced vs residential isolation for different features

In Table 7 we list these exposure averages by race estimated on the various features.
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Weighted mean exposure for white Weighted mean exposure for black Experienced isolation

at home (narrowly defined) only 0.71 0.42 0.29
within home tract only 0.71 0.43 0.29
all 0.69 0.48 0.22
civil, religious and social organizations only 0.65 0.50 0.15
retail only 0.65 0.52 0.13
outside home tract only 0.66 0.53 0.13
outdoor spaces (parks, etc.) only 0.67 0.54 0.12
education only 0.66 0.54 0.12
restaurants and bars only 0.65 0.54 0.12
roads and airports only 0.66 0.57 0.10
sports and recreation only 0.67 0.58 0.09
accommodation only 0.65 0.58 0.07
entertainment only 0.65 0.59 0.07

Online Appendix Table 7: Average exposure for Whites and Blacks and overall experienced isolation,
separately for each feature

2.6 Experienced isolation, decomposition by time and feature
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Online Appendix Figure 8: Shares of pings observed in geohash7s containing features of different types
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Online Appendix Figure 9: Shares of pings observed in geohash7s containing features of different types.

Shares are shown by racial composition of home geohash7 of the device.
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2.7 Correlates with differences in experienced and residential isola-
tion

mean
below
me-
dian

sd for
below
me-
dian

mean
above
me-
dian

sd for
above
me-
dian

t value p value

share in accommodation 0.788 0.154 0.764 0.180 1.961 0.050
share in civil, social,
religious/organizations

0.808 0.168 0.746 0.162 5.014 0.000

share in education 0.794 0.157 0.759 0.177 2.765 0.006
share in entertainment 0.808 0.184 0.745 0.143 5.112 0.000
share in parks, gardens, pitches,
playgrounds

0.824 0.185 0.731 0.133 7.786 0.000

share in restaurants, bars 0.810 0.174 0.744 0.154 5.416 0.000
share in retail 0.808 0.176 0.746 0.154 5.006 0.000
share in sports, recreation 0.808 0.190 0.746 0.135 5.085 0.000
share in transportation 0.785 0.176 0.767 0.158 1.461 0.144
share White that drive alone 0.795 0.191 0.757 0.138 3.099 0.002
share White carpooling 0.767 0.169 0.785 0.165 -1.436 0.152
share White using public
transportation

0.817 0.182 0.737 0.141 6.579 0.000

share White walking 0.785 0.156 0.767 0.178 1.458 0.145
share White working at home 0.794 0.187 0.759 0.144 2.843 0.005
share White using other
transportation

0.750 0.136 0.801 0.191 -4.134 0.000

share Black that drive alone 0.774 0.184 0.777 0.149 -0.245 0.806
share Black carpooling 0.772 0.181 0.780 0.153 -0.590 0.555
share Black using public
transportation

0.821 0.191 0.734 0.127 7.217 0.000

share Black walking 0.795 0.172 0.757 0.161 3.021 0.003
share Black working at home 0.797 0.166 0.756 0.167 3.381 0.001
share Black using other
transportation

0.773 0.169 0.779 0.166 -0.520 0.603

travel time to work per capita 0.802 0.195 0.752 0.130 4.123 0.000
Online Appendix Table 8: Average ratio of experienced to residential isolation above and below the
median of each variable for transportation measures and feature resident shares
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3 Robustness checks

3.1 Leave-one-out-exposures

Figure 10 contrasts experienced isolation computed with and without leave-one-out expo-
sures. The naive non-leave-one-out estimator counts a person as being exposed not just to
others but also to themselves in whatever geohash7 they visit, whereas the non-leave-one-
out estimator removes every person from the computation of their exposure.20 The Figure
shows that this makes a substantial difference for the level of measured experienced isola-
tion – isolation is 10% higher under the naive estimator – but leaves the ordering of MSAs
mostly unperturbed (Spearman rank-correlation: 0.99).
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Online Appendix Figure 10: Experienced isolation with and without leave-one-out exposures

20This makes a particularly large difference for the treatment of people’s home locations, the location that makes
up a substantial share of people’s pings and therefore has an outsized influence on experienced isolation. The
naive estimator will take people to be exposed to people very much like themselves – themselves! – while the
leave-one-out estimator removes this bias.
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3.2 Race definitions
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Online Appendix Figure 11: Experienced isolation under different race definitions for all MSAs

Experienced isolation under the “black alone” definition is higher by about 0.004 in ab-
solute value or by about 4 percent on average. As Figure 11 demonstrates, however, the
correlation between the two indices is almost unity and in only a few handfuls of MSAs
do the indices differ significantly.

3.3 Geographic resolution

What difference does the size of places make for the analysis? What differences does it
make, in other words, how large the areas are over which one assumes people are exposed
to one another? We run the analysis at different geohash resolutions and compare calcu-
lated isolation indices. We do everything at the geohash5, geohash6 and geohash7 levels.
The resolution makes quite a difference for the isolation we calculate:
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Online Appendix Figure 12: Experienced isolation at different geohash resolutions for all MSAs

The move from geohash5 to geohash6 substantially increases measured isolation from 0.080 to
0.126. The move to geohash7 increases isolation further. The additional increase to 0.135,
however, is rather small.

3.4 Temporal resolution – weighting by day-hours instead of pings

Our baseline experienced isolation measure is calculated under the assumption that every
geolocation ping constitutes a visit to a place – that every ping whose latitude/longitude
pair falls within a geohash7 constitutes a visit to that geohash7. Since both the frequency
and the consistency with which devices emit pings are heterogeneous across devices and
over time one may worry that e.g. a small number of devices that emit a lot of pings
would have an outsized influence on the index. As a robustness check we therefore re-
calculate the index by counting not all pings but only the first ping emitted on a particular
day and during a particular hour of the day. A device that emits three pings in a particular
geohash7, one on 01/01/2017 9:15:00, one on 01/01/2017 9:20:00 and one on 01/02/2017
9:20:00 would contribute the device’s exposure pattern to the geohash thrice in the baseline
specification but only twice under day-hour weighting.
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Online Appendix Figure 13: Experienced isolation for all MSAs under hour-weighting vs. ping-
weighting

Figure 13 contrasts experienced isolation under both weighting schemes and shows day-hour
weighting to lead to lower measured experienced isolation in all but three MSAs, all in
California. The Spearman rank-correlation between experienced isolation under the two
measures is 0.88.

3.5 Out-of-towners

Figure 14 contrasts our baseline experienced isolation measure in which we count exposure
to all with a measure in which we count only exposure to people from the same MSA.
Isolation is lower if one counts exposure only to local residents. Out-of-towers increase

experienced isolation on average:
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Online Appendix Figure 14: Experienced isolation with and without out-of-towners for all MSAs

What determines this difference is the MSA’s overall racial composition: The blacker the MSA
is to begin with, the larger the contribution to overall experienced isolation that’s caused
by the exposure to people from outside the MSA. To put it another way: In MSAs that are
blacker, visitors accentuate segregation. The white places get whiter and the black places
get blacker when people visit:
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Online Appendix Figure 15: Experienced isolation by shares of Blacks and Whites

3.6 Other Home Definitions

First, we look at how much the experienced isolation measure is shaped by time spent at
home. Figure 16 shows the comparison between residential isolation and experienced iso-
lation where for the latter homes are included or excluded from the isolation computation
in different ways:

1. all shows the overall, baseline isolation index, with all geohash7s included as in Figure
12

2. at home (narrowly defined) calculates the index only in the home geohash7
3. no homes (narrowly defined) removes the device’s home geohash7 from the calculation

of average isolation (the complement of (2))
4. no homes (broadly defined) does the same as (3) but removes not only the device’s home

geohash7 but also all eight neighboring geohashes so as to account for inaccuracies in the
GPS signal and for GPS drift

5. no exposure from homes (narrowly defined) removes each device in its (narrow) home
location not only from the calculation of isolation as in (3) but also removes the device’s
contribution to the exposure of others. That is, we assume that someone who is in their
place of home no longer interacts with others and no longer contributes to the exposure
of others visiting that place.
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Online Appendix Figure 16: Experienced vs residential isolation for different treatments of devices’
homes

The results reveal the time spent at home or very near the home to be an important driver of ex-
perienced isolation, one that is commensurate with the large share of pings that we observe
at people’s homes (See Figure 8 for a decomposition of pings). Compared to an isolation
index calculated over all geohashes, one that is calculated only over devices’ home lo-
cations is higher by 43.1 percent on average across all MSAs and considerably closer to
residential isolation. Conversely, indices that remove home locations from the calculation
successively more aggressively have lower values across the board, reflecting higher ex-
posure to diverse others outside the home. Removing the home geohash7 alone lowers
experienced isolation by 41.7 percent relative to baseline. Removing the area around the
home reduces it by 58.3 percent. Assuming, finally, that people at home no longer con-
tribute to the exposure of those in the same geohash7 also reduces isolation significantly
by 49.7 percent relative to baseline. While all of these measure’s clearly yield different
estimates in levels, the minimum Spearman rank-correlation between any and the baseline
index is 0.97.

In Table 9 we show specifications of residential isolation varying the degree to which we bound
exposure around the home.
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q5 mean median q95 correl.
with
base-
line

N

Baseline 0.049 0.215 0.222 0.368 1.000 361

Residential Comparisons

At Home (Narrowly Defined) 0.074 0.292 0.303 0.473 0.996 361
Comparable Residential Isolation
(Device-Based)

0.053 0.311 0.321 0.531 0.985 361

No Exposure From Homes
(Narrowly Defined)

0.020 0.141 0.138 0.274 0.987 361

No Homes (Broadly Defined) 0.016 0.131 0.125 0.264 0.979 361
No Homes (Narrowly Defined) 0.024 0.155 0.155 0.293 0.992 361
Outside Home Tract 0.011 0.128 0.119 0.262 0.973 361
Within Home Tract 0.070 0.288 0.300 0.469 0.997 361

Online Appendix Table 9: Summary statistics for Home-bound Specifications

3.7 Transport infrastructure

We offer robustness checks on our analysis of the role of transportation infrastructure in
the main text. First, we report results accounting for primary and secondary roads, finding
that they do not have a significant impact on our results. Then, we look at the impact of
people in transit on major roads.
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3.7.1 Excluding primary and secondary roads

Online Appendix Figure 17: Activity in Birmingham, AL

primary road secondary road airport

Online Appendix Figure 18: Activity in Birmingham, AL, transportation infrastructure highlighted
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Online Appendix Figure 19: Experienced isolation for all MSAs, including and excluding transportation
infrastructure

3.7.2 Pings in transit

We take the sequence of timestamped latitudes and longitudes, compute the Haversine
distance between successive pings in the sequence and divide by the time difference to
obtain the speed the device was traveling at. We then restrict the sample to only those
pings for which the speed is less than either 12, 8 or 4 mph. Note that the speed may
exceed this threshold in the data even for devices that are really at rest for reasons of GPS
drift or other geolocation inaccuracies.

Table 10 shows how these restrictions impact the sample in terms of
• devices in sample: the number of users with more than one ping
• geohash7s in sample: The number of geohash7s with more than one ping
• pings in sample: The total number of pings
It does so for a completely unrestricted, "Baseline" sample, for the sample in which pri-
mary and secondary roads and airports are removed at the geohash7 level as they are in
the main text, and for the samples where pings that occur at more than 12, 8 or 4 mph are
removed. Finally, the table shows statistics under a fairly restrictive criterion, one in which
we remove both pings emitted in geohash7s that contain primary or secondary roads or
airports and pings emitted at speeds exceeding 4 mph.
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devices geohash7s pings

all 17,397,580 98,853,493 101,989,194,959
no roads or airports 17,328,912 91,277,728 76,324,902,186
only pings < 12mph 17,381,896 79,837,642 68,019,968,506
only pings < 8mph 17,381,803 75,775,799 65,123,085,955
only pings < 4mph 17,381,553 69,193,133 60,991,437,300
only pings < 4mph & no roads or airports 17,307,535 62,639,284 53,991,029,734

Online Appendix Table 10: Sample statistics restricting exposure during transportation

We remove pings emitted at speeds exceeding different thresholds or near transport infrastructure.

Figure 20 shows the geohash7s just west of downtown Birmingham, AL, colored by the number
of devices ever seen in each geohash over the entire 4-month sample. The transportation
network is clearly visible.

Online Appendix Figure 20: Number of devices seen in all geohash7s West of Downtown Birmingham
in baseline sample

Removing pings that occur at more than 4, 8 or 12 mph goes some ways towards removing the
major arteries visible in the full sample.
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< 8 mph < 4 mph

Baseline < 12 mph

Online Appendix Figure 21: Number of devices seen in all geohash7s West of Downtown Birmingham
in speed-restricted samples

Figure 22, finally, shows the effect of removing all of this activity on experienced isolation.
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Online Appendix Figure 22: Experienced isolation restricting exposure in transport

These measures are restricted to samples that are speed-restricted or from which geohash7s with trans-
portation infrastructure have been removed, means across MSAs.
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The average difference in experienced isolation between baseline and the most aggressive vari-
ation with only pings< 4 mph and roads or airports removed is almost 16 percent. Though
the level of isolation differs between the samples, the pairwise Pearson correlation coef-
ficients between all the experienced isolation measures on all samples are all essentially
one.
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