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Abstract

We develop a dynamic model of credit markets in which both lending standards and the
quality of potential borrowers are endogenous. Borrowers can be of high or low quality, and
each lender privately decides on its lending standard, modeled as a technology that screens
out low types with cost proportional to the probability of detection. Lending standards have
externalities and are dynamic strategic complements: tighter screening worsens the future pool
of borrowers, increasing the incentive to screen in the future. Depending on initial conditions, the
economy converges either to a steady-state with normal lending standards or to one with tight
lending standards. Thus, even temporary adverse changes in fundamentalscan have amplified
and long-lasting effects on the health of credit markets. According to the model’s normative
predictions, lending standards can be inefficiently tight during credit crunches and we discuss
several policies such as government support for lending that can help ameliorate this inefficiency,
along with several pitfalls to avoid.
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1 Introduction

Because the profitability of originating a loan depends not only on the financial terms of the loan
but also on the probability with which the borrower repays, lenders have an incentive to impose
lending standards to avoid defaults. As such, lending standards are important components of the
equilibrium allocation of credit, influencing lending volumes, interest rates, and default rates. The
credit boom-bust cycle in the US in the 2000s appears to have been associated with relatively lax
lending standards prior to the financial crisis, and relatively tight lending standards during the
recession and subsequent sluggish recovery. But more generally, what drives lending standards?
Do lending standards have an important independent role to play in explaining credit-driven
boom-bust cycles? Can lending standards be too tight, calling for government intervention?

In this paper we propose a dynamic model of lending standards that speaks to these questions.
The model highlights two properties of lending standards. First, lending standards are dynamic
strategic complements. Borrowers whose loan applications are declined at one bank may seek further
applications at another one later. Thus, when one bank tightens lending standards, other banks are
later confronted with more adversely selected potential borrowers, which increases their incentive to
follow suit and tighten standards as well. Second, tight lending standards have negative externalities.
Lending standards that lead to the rejection of some potential borrowers raise the share of low-
quality applicants that apply for loans in the future which wastes banks’ resources on screening
more low-quality projects and/or increases the share of low-quality loans made. Since this is a
social cost that is not internalized by any individual bank, government intervention to prevent
excessively tight lending standards can be beneficial and we characterize constrained-efficient
policy and its implementation. Among other results, we show conditions under which policies such
as government-subsidized loan guarantees can increase welfare, and under which the same policy
can be detrimental to welfare if instead implemented after a delay.

Our model consists of a mass of competitive banks and a pool of potential borrowers, which are
initially identical conditional on public or readily-available information (e.g. identical within credit
score brackets). Each instant, borrowers are drawn from the pool and approach banks in search of a
loan to fund an investment project. Projects differ by the type of borrower, and can either be of high
or low quality, implying a positive or negative net present value for the investment project and thus
for the loan.

We conceptualize lending standards as the extent to which lenders expend effort to screen
a borrower by creating private information about the future payoff of lending to that borrower
before deciding whether or not to originate the loan. Provided the typical loan has positive net
present value, a bank can lend with lax lending standards, conditioning only on readily available
information (e.g. credit score). Alternatively, a bank may choose tight lending standards and
screen borrowers so as to identify (probabilistically) low-quality borrowers and avoid giving them
loans, for example by collecting and conditioning lending on soft information gathered through
interviewing the borrower or performing a detailed valuation of the project. By rejecting borrowers
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found to be low-quality, a bank with tighter lending standards worsens the pool of potential
borrowers for all banks in the future. Thus, the current quality of potential borrowers reflects past
lending standards. At the same time, lending standards depend on the current quality of potential
borrowers because the larger the share of low-quality borrowers in the pool, the more valuable it is
for banks to screen and tighten lending standards.

Our model makes the following five main contributions.
First, markets with the same set of fundamentals may see persistently different trajectories in

equilibrium lending standards, depending on their specific history (i.e. their initial conditions).
This idea is reflected in the fact that the model gives rise to multiple steady states in the single state
variable in our model—the share of high-quality potential borrowers in the pool, the pool quality.
This multiplicity is a consequence of the strategic complementarity inherent to the choice of lending
standards. When the pool quality is high, banks do not find it worth the effort to check the quality
of all applicants just to avoid the occasional low-quality borrower, and normal lending standards
are optimal, which do not reduce the quality of the pool. When the pool quality is low, however,
banks find it worthwhile to screen borrowers and so reject many low-quality borrowers which
contributes to the low average quality of the pool. Accordingly, in the steady state with normal
lending standards (“pooling steady state”), the volume of lending is high and, both because lending
involves no screening costs and because the average quality of borrowers is high, loan spreads
are low. In the steady state with tight lending standards (“screening steady state”), the volume
of lending is low and, both because lending involves screening costs and because these costs are
in equilibrium born only by the borrowers who are funded, loan spreads are high. Interestingly,
despite the multiplicity in steady states we prove that there exists a unique equilibrium, avoiding
any ambiguity in the model’s equilibrium predictions.

Second, as a result of the multiplicity of steady states, temporary changes in borrower quality can
lead to persistent, or even permanent, shifts in lending standards and loan volumes. In particular,
between the two stable steady states, there is a threshold pool quality: below the threshold, the
pool quality deteriorates until the screening steady state is reached; above the threshold, the
market improves and converges to the pooling steady state. In this setting, a temporary change
in market fundamentals—e.g. shifts in the payoff structure of borrowers’ projects or the share of
good borrowers entering the pool—can set in motion a self-reinforcing dynamic culminating in a
permanent shift in the credit market equilibrium. Thus, absent interventions or changes in market
fundamentals of the opposite sign, lending standards introduce sluggishness in the reaction of
credit markets to fluctuations in fundamentals.

Third, markets with lending standards can exhibit credit rationing, which slows the speed of
transitional dynamics even further. In our model, credit rationing can only occur during recoveries,
when the pool quality is set to improve over time as the credit market converges back to the pooling
steady state. The logic behind credit rationing in our model is quite different from the typical
credit rationing due to adverse selection (Stiglitz and Weiss (1981), Mankiw (1986)). If the pool
quality is set to improve rapidly over time, borrowers that have not been previously rejected have
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an incentive to delay loan applications with the prospect of cheaper lending rates down the road.
With these relatively high-quality borrowers staying out of the market, however, banks would find
it unprofitable to lend. In equilibrium, these two forces have to balance, with banks not lending to
all possible borrowers, and relatively high-quality borrowers being indifferent between delaying or
not. Since the natural “thawing” of frosty credit markets is slowed down in this region, we call this
phenomenon slow thawing.

Fourth, the two steady states can be Pareto-ranked. The planner always prefers the pooling
equilibrium. The key to this ranking is the negative externality associated with tight lending
standards: screening and rejection decisions are a bank’s private information, and in making these
decisions, each bank ignores its effects on the quality of the pool of potential borrowers.1

Fifth, motivated by this externality, government intervention can improve private market
outcomes in credit markets with lending standards. To characterize optimal policy, we study the
dynamic planning problem of a planner choosing the optimal path of lending standards. We
characterize the optimal policy concisely by a social threshold quality, above which the planner
prefers pooling and below which the planner prefers tight lending standards and screening. Our
main result here is that the social threshold always lies strictly below the private threshold. We argue
that this has significant implications for the regulatory response to transitory negative changes in
fundamentals of different magnitudes. For a temporary credit crunch that is caused by a decline
in pool quality that is relatively mild, no intervention is needed, as the private threshold is not
crossed. However, for large enough declines in the quality of the pool, the optimal response is an
intervention that ensures that banks do not screen and that credit standards remain normal. Such
interventions involve short-run costs and long-run benefits through improvements in the pool of
potential borrowers. Because the pool of potential borrowers is a common resource, there is no
way for individual banks to recover the costs from later profits absent collective, i.e. government,
actions.

Further, we show that the short-run costs are larger the later an intervention occurs, so that
early timing of interventions becomes crucial. In fact, if the government prefers not to intervene in
the steady state with tight lending standards, then a long enough delay by the government allows
the pool quality to fall below the social threshold, so that intervention becomes detrimental to
welfare. As we argue below, in such a scenario, once the government has missed the window to
act, it should focus only on structural reforms of the lending market instead, such as reforms to the
credit reporting system.

Related literature. In our analysis lenders may face adverse selection. This is because the pool of
borrowers may have been “cream skimmed,” with good borrowers being systematically removed
from the pool by lenders who employ tight lending standards. This source of adverse selection is

1It is worth noting that in our model, lending standards do not influence the quality of new potential borrowers
entering the pool of potential borrowers, which we take to be exogenous. For a model that endogenizes this margin, see
Hu (2018).
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also the central feature in Bolton et al. (2016) and Fishman and Parker (2015). In these two analyses
this source of adverse selection gives rise to a strategic complementarity with regard to information
acquisition that is conceptually similar to ours. That is, market participants find it more profitable
to acquire information about their trading counterparties if other market participants are acquiring
such information. Theirs are static models where the complementarity leads directly to multiple
equilibria (e.g., one with information acquisition and one without). And since these models are
static, they cannot address the evolution, over time, of information acquisition decisions - here,
lending standards - which is the focus of the dynamic model developed here. The intertemporal
aspect of our model is key, shaping equilibrium behavior, e.g. the multiplicity of steady states but
uniqueness of equilibrium, as well as the policy prescriptions, e.g. the importance of the timing of
interventions.

Ruckes (2004) and Dell’Ariccia and Marquez (2006) also analyze static models of lending stan-
dards but neither features the strategic complementarity we emphasize. In Ruckes (2004) lending
standards are strategic substitutes. This is because lenders simultaneously acquire information
about borrowers and if a borrower is rejected or quoted a high interest rate, the borrower cannot
then seek out other potential lenders. In Dell’Ariccia and Marquez (2006) there is cream skimming
by informed lenders but these lenders are endowed with their information.

Among dynamic adverse selection models ours is most closely related in style to Hu (2018),
where banks choose lending standards and the quality of the borrower pool evolves over time. The
key difference is that in his analysis, lending standards are strategic substitutes, due to the positive
response of the average quality of newly-entering borrowers to tighter lending standards. In this
context, Hu (2018) finds a number of interesting results regarding economic recoveries, e.g., his
model may exhibit double dip recoveries.

A number of papers study dynamic adverse selection models without information acquisition,
e.g., Daley and Green (2012, 2016), Malherbe (2014), Zryumov (2015) and Caramp (2017). Daley
and Green (2012, 2016) and Malherbe (2014) propose models where current markets can break
down when high-quality sellers remain absent, waiting for market prices to improve over time.
This behavior is related to, but distinct from, our slow thawing dynamics. In these models, the
path of market prices over time separates good sellers from bad. In our slow thawing dynamics,
the equilibrium composition of borrowers does not change, only the speed of lending is reduced.
Zryumov (2015) and Caramp (2017) study models where bad sellers strategically enter when market
prices are good. This, in and of itself, does not lead to a market shutdown (lower prices positively
select entrants), but as Caramp (2017) emphasizes, the larger presence of bad sellers can raise the
likelihood of adverse selection induced market failures in the future.

In our model, when lenders determine whether to lend they do not observe borrowers’ prior
activity, e.g., how long the borrowers have been in the market for a loan or whether the borrowers
have been previously denied credit. Similarly, in Daley and Green (2012, 2016) the history of offers
received by the informed party is not observable. These assumptions prevent the uninformed parties
from perfectly inferring the informed party’s information. By contrast, in Chari et al. (2014) the
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history of the privately-informed party is observed by potential trading partners; their equilibrium
features a partial separation of the high- and low-quality types.

In Gorton and He (2008) lending standards vary over time because of a different sort of strategic
interaction among lenders. Their’s is a repeated games model of tacit collusion among banks. In
equilibrium no bank defects from the collusive arrangement but a “punishment phase” can be
triggered. The punishment phase entails high lending standards which in turn implies less lending
and lower bank profits and is interpreted as a credit crunch. So even though the quality of borrowers
does not vary over time, lending standards do vary over time.

2 A Model of Lending Standards

Time is continuous and runs from t to infinity, t ∈ [0, ∞). There are two sets of agents: a unit mass
of potential borrowers who have no capital and are looking to fund projects and a large mass J of
competitive banks. All agents are risk neutral and have discount rate r > 0. The main state variable
in the model is the quality composition of the pool of borrowers, defined below and denoted by xt,
which both determines and is influenced by the main control variables, banks’ lending standards,
denoted by zjt, which will turn out to be identical across banks in equilibrium.

Borrowers and banks

Borrowers. At Poisson rate κ > 0, a potential borrower receives an investment opportunity. This
opportunity is a project that requires an up-front investment of 1. Borrowers have no capital and
must fund the investment externally. If the borrower raises the funds and makes the up-front
investment at time t, then the project returns both a pledgeable cash flow at time t + T and a
non-pledgeable private benefit u > 0 (in present value) to the borrower. With this private benefit all
borrowers will have the incentive to finance their project, even if they know they will receive no
monetary benefit.

To capture differences in borrower quality, we assume that there are two types of borrowers:
type H (“high quality”) and type L (“low quality”). Based on the pledgeable cash flow, type-H
borrowers always have positive NPV investment opportunities. That is, the pledgeable cash flow of
a type-H borrower’s project is DH, with gross return RH ≡ e−rTDH > 1. Type-L borrowers always
have negative NPV projects, with pledgeable cash flow DL and gross return RL ≡ e−rTDL < 1. A
borrower’s type is permanent, always type H or always type L. We refer to ρ ≡ RH−RL

1−RL
> 0 as the

(normalized) return spread between the investments of the two types.
When an investment opportunity arises, borrowers choose whether or not to apply to the

competitive banking sector for a unit of funding to implement their project. A borrower that applies
for funding is either approved or denied depending on whether she satisfies the bank’s lending
standards. If a borrower is funded, she invests in her project, exits the pool to run the project, and
is immediately replaced in the pool by a new potential borrower. Alternatively, if the borrower
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does not apply for funding or is denied funding, she returns to the pool where at rate κ > 0 a new
investment opportunity arises.

Potential borrowers in the pool “die” and leave the pool at Poisson rate δ > 0; and are replaced by
new borrowers. One can interpret ‘dying’ borrowers as ones who will no longer receive investment
opportunities. New borrowers arrive as type H with exogenous probability λ and as type L with
probability 1− λ.

These assumptions imply that the size of the pool is constant at 1. As will be shown, it suffices to
keep track of the fraction of type-H borrowers in the pool of potential borrowers at time t, xt ∈ [0, 1].
We allow for fluctuations in the size of the pool of borrowers in Section 5.

Finally, we assume throughout that the average project of a borrower entering the pool has
positive NPV based on the pledgeable cash flow.

Assumption 1. The average investment project has a positive net present value λRH + (1− λ)RL > 1.

Banks and lending standards. Banks make two decisions. First, they decide whether to be active
or inactive. Second, conditional on being active, they choose their lending standard, that is, how
aggressively to screen potential borrowers.

At any instant t, a bank may choose to be active, in which case it enters a competitive lending
market, where it may receive a loan application by a borrower. Alternatively a bank may choose to
be inactive in which case it makes no loans and consequently receives no loan applications. Let
θjt denote the probability that bank j is active at time t. While generally all banks are active in
our model, e.g. at all steady-states where x = const, there may be a region in the state space with
equilibrium credit rationing, θjt < 1, where banks offer fewer loans than borrowers demand.

An active bank j also chooses a lending standard zjt ∈ [0, z], where z ∈ [0, 1]. With lending
standard zjt, a type-L borrower is identified as such with probability zjt, in which case her loan is
denied.2 Otherwise, the borrower’s loan is approved. As along as screening is imperfect, zjt < 1,
some type-L borrowers get financed. A bank’s cost of utilizing the lending standard zjt is c̃zjt, where
c ≡ c̃

1−RL
> 0 is the (normalized) marginal cost. The most lax lending standard corresponds to

zjt = 0, in which case all loan applications are deemed to meet the lending standards of bank j.
Banks choose lending standards to maximize expected profit. Given a lending standard zjt, banks
offer to lend 1 in exchange for a promised loan payment at time t + T equal to Djt.

Due to symmetry and competition, it is without loss of generality to assume that all banks
choose the same probability of being active, θt, the same lending standard zt, and the same loan
payment Dt. With a loan face value of Dt, repayment is min{Dt, D}, where D is the payoff on the
investment, DL or DH depending on borrower type. Since type-L borrowers have negative NPV
investments, Dt > DL for a bank to break even in expectation. Thus, type-L borrowers always
default. The repayment Dt is without loss of generality bounded above by DH since any higher Dt

2A type-H borrower is never misidentified as a type L, a modelling assumption important for tractibility, as discussed
in Section 6.
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will not generate additional repayment. So if a loan is made (meaning the bank can break even)
then type-H borrowers will not default. We define Rt ≡ e−rTDt as the credit spread charged by the
bank since r + 1

T ln Rt is per-period interest rate on the loan. Rt always lies in (RL, RH).

Information structure. Before screening, banks cannot distinguish between type-H and type-L
borrowers.3 Borrowers have no private information about their type when they enter the pool.
And for as long as a borrower has no such private information, we call her an average borrower.
Some type-L borrowers learn that they are type-L after being denied funding by a bank because of
a failure to meet the lending standard. We call these borrowers rejected borrowers.4 The shares of
average and rejected borrowers are endogenously determined. For instance, the lower the lending
standard zt, the fewer rejected borrowers will bein the pool. All agents have common knowledge of
the structural parameters of the lending market and the initial fraction of type-H borrowers in the
pool, x0 ∈ [0, λ].5 Also, all agents can infer past, current, and future xt.

A borrower’s problem

Taking the path of credit spreads {Rt} as given, borrowers with investment opportunities choose
whether to apply for a loan at each time t. Let ϕa

t denote the probability that an average borrower
with an investment opportunity applies for a loan—as opposed to waiting in hope of an improve-
ment in borrowing opportunities. Let ϕr

t denote the probability that a rejected borrower with
an investment opportunity applies for a loan. Letting Ja

t and Jr
t denote the value functions of an

average borrower and a rejected borrower, respectively, the optimal strategies for the two satisfy
the following Hamilton-Jacobi-Bellman equations:

rJa
t = max

ϕa
t∈[0,1]

κθt ϕa
t {λ (RH − Rt + u) + (1− λ)(1− zt)u + (1− λ)zt Jr

t − Ja
t }+ J̇t

a − δJa
t (1a)

rJr
t = max

ϕr
t∈[0,1]

κθt ϕr
t{(1− zt)(u− Jr

t )}+ J̇t
r − δJr

t , (1b)

where Ja
t and Jr

t satisfy the transversality conditions limt→∞ e−(r+δ)t Ja
t = limt→∞ e−(r+δ)t Jr

t = 0.
For an average borrower, (1a) reflects three possible outcomes that may occur when she has an
investment opportunity, is matched with an active bank, and chooses to apply for financing:
with probability λ she is type H and is funded, receiving a monetary payoff of RH − Rt and u in
private benefits; with probability (1− λ)(1− zt), she is type L but satisfies the lending standard,
receiving a payoff of u in private benefits; and with probability (1− λ)zt, she is type L and does
not satisfy the lending standard (is rejected), receiving a payoff of Jr

t . For a rejected borrower who

3Observe that for each individual bank, previously screened loan applicants will represent a zero mass in the pool of
borrowers and can therefore be ignored.

4Thus there are three types of borrowers in the pool at any time: average borrowers who are actually type H, average
borrowers who are actually type L, and rejected borrowers (always type L). We show however that optimal behavior
depends only on the share of type-H borrowers, xt, because the behavior of all type-L borrowers is the same.

5Here, x0 = λ corresponds to a pool consisting entirely of average borrowers.
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has an investment opportunity and is matched with an active bank, (1b) reflects the fact that with
probability 1− zt, she satisfies the lending standard and receives a payoff of u in private benefits;
otherwise, she continues as a rejected borrower.

With strategies {ϕa
t , ϕr

t}, there is a flow of

κHt ≡ κϕa
t xt (2)

type-H borrowers applying for loans. Note that all of the type-H borrowers belong to the sub-pool
of average borrowers. There is a flow of

κLt ≡ κϕa
t
1− λ

λ
xt + κϕr

t
λ− xt

λ
(3)

type-L borrowers applying for loans. For the derivation of (3), let At denote the share of average
borrowers at time t, with 1− At being the share of rejected borrowers at time t. The fraction of
type-H borrowers in the whole pool is xt = Atλ. The flow of type-L borrowers equals κϕa

t A(1−
λ) + κϕr

t(1− A). Substituting in At = xt/λ yields (3). In equilibrium, it will be the case that
ϕa

t = ϕr
t = 1, so that κHt = κxt and κLt = κ(1− xt).

A bank’s problem

Since there is a flow κHt + κLt of loan applications by borrowers at time t, it is without loss to assume
that there are at most a flow of κHt + κLt active banks at time t. As will be seen below, there are cases
where some banks remain inactive in equilibrium, leaving only θt (κHt + κLt) active banks, with
θt ∈ [0, 1]. A fraction θt of the flow κHt + κLt of loan applications is then received by the θt(κHt + κLt)

active banks.
Conditional on flows κHt, κLt and credit spread Rt, an active bank’s lending standard z solves

Πt(Rt) ≡ max
z∈[0,z]

κHt(Rt − 1) + κLt(1− z)(RL − 1)− (κHt + κLt)c̃z. (4)

Taking z as given, Bertrand competition among banks then determines Rt by

Πt(Rt) = 0. (5)

Whenever this cannot be satisfied by any finite Rt, no bank will find it profitable to lend. In this
case, we set Rt = ∞ and θt = 0.

Evolution of the borrower pool

The evolution of the quality of the borrower pool is given by

ẋt = θtκLt(1− zt)λ− θtκHt(1− λ) + δ(λ− xt), (6)
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which is the combination of three distinct forces: the first term accounts for the θtκLt(1− zt) type-L
borrowers who are funded and replaced with a fraction λ of type-H borrowers; the second term
accounts for the θtκHt type-H borrowers who are funded and replaced with a fraction 1− λ of
type-L borrowers; and the third term accounts for the δλ type-H borrowers being born and δxt

borrowers dying each instant.

Equilibrium

We define an equilibrium as follows:

Definition 1. Given an initial share of type-H borrowers x0 ∈ [0, 1] in the pool, an equilibrium
consists of a path of the fraction of type-H borrowers {xt}, credit spreads {Rt}, shares of active
banks {θt}, borrowers’ application decisions {ϕa

t , ϕr
t}, implied application flows of type-H and

type-L borrowers {κHt, κLt}, and screening choices {zt} such that

• {ϕa
t , ϕr

t} solve each type’s maximization problem (1) given {Rt, zt, θt},

• {κHt, κLt} are determined by (2) and (3),

• zt solves the bank’s maximization problem (4) given {Rt, κHt, κLt},

• Rt is determined by the zero profit condition for banks (5) given κHt, κLt whenever possible; if
not, Rt = ∞ if κHt = 0,

• {xt} follows the law of motion (6),

• all banks enter, θt = 1, if a marginal inactive bank could make positive profits from lending,
which is the case if average borrowers strictly prefer a loan today,

λ (RH − Rt + u) + (1− λ)(1− zt)u + (1− λ)zt Jr − Ja > 0, (7)

the interest rate is below the largest rate Rt < RH; no banks enter, θt = 0, if κHt = 0; and
θt ∈ (0, 1] if banks are indifferent between lending and not which is the case when (7) holds
with equality.

A steady state (equilibrium) is an equilibrium in which all equilibrium objects {xt, Rt, θt, ϕa
t , ϕr

t , zt} are
constant over time.

To study variation in lending standards, we make the following assumption on parameters
throughout the remainder of this paper.

Assumption 2. The cost of bank screening c is not too low or too high:

1− λ < c < 1− xs + z−1 min {xsρ− 1, 0} ,

where xs = λ− λ (1−λ)z
(1−λz)+δκ−1 .
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The first inequality in Assumption 2 ensures that the bank screening cost c̃ is high enough that
tight lending standards do not strictly dominate normal lending standards. The second inequality
ensures that there can exist a steady state in which tight lending standards are optimal.

3 Equilibrium characterization

The model’s tractability allows for a tight analytical characterization of the set of equilibria, starting
with steady-state equilibria.

3.1 Steady-state equilibria

Borrowers’ and banks’ behavior simplifies significantly in a steady-state equilibrium.6 Borrowers,
facing the same interest rate Rt = R at all times, have no incentive to wait and therefore choose
ϕa

t = ϕr
t = 1. In fact, they strictly prefer borrowing to waiting, as in (7), which is why all banks

prefer to be active in a steady state, θ = 1. This follows because, for any bank to be active, the loan
rate needs to be weakly below the highest pledgeable payoff, R ≤ RH, but then Ja > 0, which is
equivalent to (7) in a steady state.

The steady-state quality of the pool x and the steady-state lending standard z are jointly deter-
mined, by the interaction of two forces. On the one hand, the law of motion of x, (6), implies that
when ẋ = 0,

x = λ− λ
(1− λ) z

(1− λz) + δκ−1 . (8)

This equation highlights that tighter lending standards—higher z—are associated with a lower
steady-state quality of the pool of borrowers x, as more low-quality borrowers are rejected by
banks. This effect is greater when the effects of lending standards on the pool are more persistent
(low death rate δ) or when opportunities to invest arise more frequently (high κ) and so potential
investors are evaluated more frequently.

On the other hand, banks solve (4) and choose tighter lending standards z precisely when the
pool is more adversely selected,

z =


0 if x > x

[0, z] if x = x

z if x < x

, where x ≡ 1− c. (9)

The combination of the two equations (8) and (9) is illustrated in Figure 1. Both represent downward-
sloping relationships between x and z, and given Assumption 2 admit three intersections, each of
which represents a steady-state equilibrium. This logic is summarized in the following proposition.

6Since prices and quantities are constant, we drop the time subscripts for this subsection.
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Figure 1: The two forces shaping steady-state equilibria.
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Note: This figure shows two curves whose intersections yield the steady-state pool quality x and the steady-state lending
standard z. The solid line represents the optimal choice of the lending standard, (9). The dashed line represents the pool
quality x that is caused by any given lending standard z through the law of motion.

Proposition 1 (Steady state equilibria). There exist three steady-state equilibria:

(i) A pooling steady state with z = 0 and xp = λ.

(ii) A screening steady state with z = z and x = xs ≡ λ− λ (1−λ)z
(1−λz)+δκ−1 .

(iii) A mixed steady state with z = λ−x
λ−λx

(
1 + δκ−1) ∈ (0, z) and x = x.

The root of the multiplicity is a dynamic strategic complementarity among banks. According to (9),
banks naturally respond to a lower quality pool by tightening their lending standards; however,
according to (8), tighter lending standards worsen the pool itself, creating an even bigger incentive
for banks to tighten their standards in the future. This reasoning rationalizes the existence of the
pooling and screening equilibria, see Figure 1. The mixed steady state formally exists but will turn
out to be unstable and therefore play no role in the remainder of the analysis.

The pooling and screening steady states have the following important characteristics.

Corollary 1 (Quality of funded borrowers). In the pooling steady state,

1. the credit spread R is lower.

2. more projects are funded: κ relative to κx + κ(1− x)(1− z) in the screening steady state.

3. the default rate is higher: the share of funded borrowers who are of type L is (1−x)(1−z)
x+(1−x)(1−z) .

The first point follows from the observation that a lower pool quality, ceteris paribus, hurts
banks’ profits, and therefore requires larger credit spreads for banks to break even. This is true, even
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if banks choose to screen more, in which case credit spreads rise partly due to greater screening
costs. The second point follows from the fact that screening reduces the flow of borrowers that
receive funding. The third point has the following subtlety. In fact, when δ = 0 (no birth and death
from the pool of potential borrowers), the default rate, which in our model equals the share of
type L borrowers among all funded borrowers, is equal to 1− λ in any steady state. Indeed, in the
screening steady state, the imposition of tight lending standards exactly balances the low average
project quality in the pool. This leads to the same share of bad projects being funded as in the
pooling equilibrium.7

This may give the impression that tight lending standards cannot be social optimal. They are
costly and may not improve the quality of funded borrowers while lowering the volume of funding.
Yet, as the following section emphasizes, this is a dynamic model where the transition to one of the
steady states plays a crucial role.

3.2 Transitional dynamics

An important factor that simplifies the steady state analysis is the fact that banks are always active
in a steady state, θ = 1. This is no longer true in equilibria with dynamics. In particular, there are
now up to two regions in which banks may choose to remain inactive. Naturally, this is the case
when the quality of the pool x is very low, so that even a breakeven loan rate at its maximum of
R = RH is not enough to recoup the losses incurred from lending to the many type-L borrowers in
the pool. Formally, this requires x to be so low that Π(RH) < 0, or equivalently,

θ(x) =

0 if x < x

[0, 1] if x = x
, where x ≡ 1− z + cz

ρ− z
(10)

Somewhat more surprisingly, however, banks may also remain inactive in a subset of the pooling
region, where inactivity can endogenously reduce the volume of lending and slow down the speed
of convergence to the pooling steady state. We refer to this region as “slow-thawing” region and it
is described in detail in Section 3.3. Until then, we assume parameters are such that there is no such
region:

Assumption 3 (No slow thawing). Assume that there is no slow-thawing region, that is, θ(x) = 1 for all
x ≥ x.

For the sake of exposition, this assumption is stated in terms of endogenous objects. The
analytical condition is stated in the next section.

Under Assumption 3, the equilibrium transitional dynamics are as follows.

7The results in Corollary 1 are robust to alternative assumptions on the dynamics of the borrower pool, e.g. assuming
a constant inflow, rather than a constant pool size.
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Figure 2: State space and banks’ optimal strategies.
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Proposition 2 (Transitional dynamics without slow thawing). Suppose Assumption 3 holds and
x0 ∈ [0, λ] is the initial fraction of type-H borrowers in the pool. There is a unique equilibrium, in which
banks’ activity policy satisfies (10) for x ≤ x, their lending standards are given by (9), and borrowers never
wait, ϕa

t = ϕr
t = 1. As t→ ∞, the credit market converges to

(i) the screening steady state, xt → xs, if x0 < x.

(ii) the mixed steady state, xt → x, if x0 = x

(iii) the pooling steady state, xt → xp, if x0 > x

Proposition 2 provides a complete characterization of the equilibrium transitional dynamics.
Despite the multiplicity of steady states (Proposition 1), there is a unique equilibrium for any x 6= x̄,
giving unambiguous model predictions..

The model predictions can be seen in Figure 2, which illustrates the state space of the credit
market and highlights the transitional dynamics in the three different regions of bank behavior: the
“no lending” region for low pool qualities, where banks are inactive (θt = 0) and the pool quality
improves only due to death and birth; the “tight lending standards” region, where banks screen
borrowers zt = z and the market approaches the screening steady state; and the “normal lending
standards” region where banks choose zt = 0 and the market returns to the pooling steady state.

A crucial part of the diagram is at x = x. This point represents a sharp boundary between the
tight and normal lending standards regions and gives rise to an important model prediction, a
“bifurcation” property: when x0 lies above x, the credit market converges to the pooling steady state;
when x0 lies below x, however, the self-reinforcing nature of tight lending standards pushes the
market to the screening steady state.

The bifurcation property also comes out in Figure 3 where we simulate the credit market with
two different initial values for x0, one just above x (green, solid) and one just below x (red, dashed).
As can be seen, this small difference in initial conditions leads to quite different evolutions of pool
qualities x, credit spreads R, and lending volumes κHt + κLt(1− z). The final panel of Figure 3
shows the evolution of the quality of funded borrowers, κHt/ (κHt + κLt(1− z)), which is one minus
the default rate. The market with the relatively lower initial pool quality initially has a much lower
lending volume and default rate, as banks are imposing tight lending standards. Interesting, the
two markets initially have quite similar credit spreads. Over time, and foreshadowing our results
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Figure 3: The self-reinforcing property of lending standards.
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Note. This figure shows two sets of transitional dynamics in a credit market without slow thawing. Green and solid is a
market starting at x0 = x + ε and therefore banks have normal lending standards; red and dashed is a market starting at
x0 = x− ε and therefore banks impose tight lending standards. The parameters used for this simulation are as follows:
TBD.
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Figure 4: Breakeven credit spread as function of pool quality x.
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Note: Grey is the component of the credit spread that is due to default risk (the default spread). Hatched is the component
of the credit spread that is due to intermediation costs (the intermediation spread).

on efficiency and optimal policy, the slightly lower initial pool quality causes convergence to a
steady-state with much higher credit spreads and lower lending volume but quite similar default
rates (asymptotically identical according to Corollary 1).

Interestingly, we can characterize both equilibrium credit spreads Rt across credit markets and
the relative roles of both expected default and intermediation costs. First, how do credit spreads
vary with pool quality xt? Markets with higher xt have lower default rates for any given lending
standard, but also are more likely to have normal lending standards, and so higher default rates
and higher bank funding costs. The second effect suggests that a higher x could be associated with
a higher default rate and so a higher credit spread, but this turns out not to be the case. As the
following proposition formally proves, Rt is still inversely related to xt.

Proposition 3 (Equlibrium credit spread). The equilibrium credit spread Rt = R(x) is decreasing in the
fraction of type-H borrowers x and is given by

Rt = R(x) =


∞ if x < x

1 + (1− RL)x−1 {cz + (1− z)(1− x)} if x ≤ x < x

1 + (1− RL)x−1 {1− x} if x ≥ x

. (11)

Using (11), we can decompose R(x)− 1 into a default spread, (1− RL)x−1(1− z(x))(1− x) where
z(x) is the optimal screening choice given x; and into an intermediation spread (1− RL)x−1cz(x).
Figure 4 plots the credit spread R(x) and these two components over the state space, illustrating the
inverse relationship of R(x)−1 with pool quality x. The shaded areas in Figure 4 highlight that the
default spread changes discretely at x = x as banks switch between screening and not screening,
but this change is offset by an equally large change in the spread due to the costs of intermediation.
The spread rises significantly due to intermediation costs at lower pool qualities x. The decoupling
of credit spreads and credit risk in this region of the state space provides a new rationale for why, at
times, credit spreads may appear to be high given the credit risk. He and Milbradt (2014) attribute
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such high credit spreads to low liquidity. Alternatively one might rely on risk aversion as an
explanation. Here the high credit spread derives from the costs of intermediation.

The monotonicity of R(x) is also reflected in Figure 3, with a rising loan rate for the credit
market with the lower quality of potential borrowers and a falling loan rate for the market with
higher quality. The falling loan rate raises an obvious question: wouldn’t average borrowers have
an incentive to wait for lower loan rates? The answer is yes in certain cases. Credit can be restricted
even with normal lending standards, so that both lending volume and the improvement of the pool
of borrowers are slowed, and credit markets recover (“thaw”) much more slowly than otherwise.

3.3 Slow thawing

When x0 is just above x, it is possible that if θt = 1 and R(x) were as defined in Proposition 3,
then the increase in xt over time would lead to so rapid a decline in Rt that average borrowers
would strictly prefer not to accept loans but would instead prefer to wait for lower credit spreads
(ϕa = 0). This, however, would cause a market shutdown because no bank is willing to lend to
rejected borrowers only, and therefore cannot be an equilibrium. Instead, the equilibrium must
exhibit a slower speed of transition so that the improvement in the pool of potential borrowers and
the decline in rates both occur more slowly and average borrowers are willing to accept loans in
equilibrium. For this transition to be slower, it must be that not all banks are active (θt < 1), which
can only be the case if there are no profits to be made from making a new loan (see Definition 1).
This is precisely the case when borrowers are also indifferent between waiting and applying for
loans. The following proposition proves that these strategies are indeed an equilibrium.

Proposition 4 (Slow thawing). There exists a threshold x̂ ∈ (0, xp), such that: (i) if x̂ ≤ x, there is no
slow thawing; if (ii) x̂ > x, then for any x ∈ [x, x̂), a positive fraction of banks are inactive θ(x) < 1, where8

θ(x) =
(r + δ) (RH − R(x))
−κR′(x)(λ− x)

− δκ−1. (12)

where R(x) = 1 + (1− RL)x−1 {1− x}. Borrowers are indifferent and apply for loans, ϕa
t = ϕr

t = 1. x̂ is
determined as the unique solution to θ(x̂) = 1 in (0, xp).

The intuition for the expression in (12) comes directly from the indifference condition of average
borrowers. Again, focus on the instructive special case where u→ 0. Then, the HJB of an average
borrower is given by

rJa
t = max

ϕa
t∈[0,1]

κθt ϕa
t {λ (RH − Rt)− Ja}+ J̇a − δJa

with indifference between applying for a loan or not requiring that Ja(x) = λ (RH − R(x)). Substi-
tuting this back into the HJB yields an equation for the speed ẋ at which the pool needs to improve

8For the sake of readability, we assume here that the utility benefit from running a project is comparatively small,
u→ 0.
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Figure 5: Slowly thawing credit markets.

x x̂ xp = λ
0

Equilibrium speed

Speed with all
banks active

Average borrowers’
indifference speed

Slow recovery

average borrower quality x

sp
ee

d
ẋ

Note. This figure illustrates when there exists a region with “slow thawing” where credit markets recover only very
slowly from a crisis. The green solid line represents the speed at which the pool quality needs to improve for average
borrowers to be exactly indifferent between applying for loans (strictly preferred below the curve) and waiting (strictly
preferred above). The red dashed line represents the speed of improvement when all banks are active. The equilibrium
speed (black solid line) is the minimum of both curves.

for average borrowers to be indifferent,

−λR′(x)ẋ︸ ︷︷ ︸
benefit of waiting

= (r + δ)λ (RH − R(x))︸ ︷︷ ︸
opportunity cost of waiting

. (13)

When is ẋ the equilibrium speed? Precisely when θt is such that ẋ satisfies the law of motion of x,
(6). Together, (13) and (6) give (12).

Figure 5 schematically illustrates this logic. The green solid line represents the speed ẋ at which
average borrowers are indifferent between borrowing now and waiting for the pool to improve.
This is an increasing line as the benefit of waiting declines the closer x is to the pooling steady
state. The red dashed line represents the speed at which the pool quality improves when all banks
choose to be active. Clearly, where this line falls in the “borrow” region, it is also equal to the
equilibrium speed, shown in black solid. Where it is in the “wait” region, however, for x < x̂, it
cannot be an equilibrium. There, a fraction 1− θ(x) of banks choose to be inactive, bringing down
the equilibrium speed to match the one along the indifference curve. This leads to a hump-shaped
thawing speed: initially little lending due to the threat of average borrowers waiting, a period of
slow thawing as lending volume and the pool quality accelerate, followed by a period of normal
convergence to the steady state.9

9Note that Figure 5 does not showẋ just to the left of x̄ because it is negative. By Proposition 3), ẋ < 0 implies Ṙ < 0.
With spreads decreasing over time, there is no incentive to delay and so no region of slow thawing.
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What determines how likely or how strong this period of slow-down is? The following corollary
reveals the roles of interest rates, project payoffs, and meeting frequencies.

Corollary 2. Fix a quality of the borrower pool x ∈ (x, xp) and let ẋ denote the speed of improvement in the
pool’s quality. Then:

1. Worse projects slow down the recovery: ẋ falls with lower RL, RH.

2. Low interest rates can backfire: if x is in the slow-thawing region, x < x̂, ẋ falls with lower r.

3. Easy access to banks does not speed up the recovery: if x is in the slow-thawing region, x < x̂, greater
meeting frequencies κ do not raise ẋ; for x > x̂, ẋ rises with κ.

Most noteworthy are the comparative statics in 2 and 3. When r (or δ) is low, holding RL, RH

fixed, this effectively makes average borrowers more willing to wait, shifting down the indifference
curve in Figure 5 and slowing down the recovery. This channel suggests that typical expansion-
arymonetary policy – reducing bank funding rates to raise lending volume and stimulate credit
markets – can backfire, or at least be less effective, in aiding the recovery from a financial crisis.

When the meeting frequency κ of borrowers and banks increases, the red line in Figure 5
increases. This naturally increases the speed of the recovery towards the steady state outside the
slow-thawing region. Inside that region, however, it has no effect. In fact, even when κ → ∞, the
transition towards the pooling steady state is slow and entirely determined by the indifference
condition (13).

Figure 6 juxtaposes the transitional dynamics with slow thawing (solid green line) and the
transitional dynamics without slow thawing (dashed red line). The latter was computed by ruling
out slow thawing by assumption, imposing ϕa

t = 1, θt = 1, and dropping equilibrium equation 7 in
place of . .assuming that potential borrowers are myopic in the sense that (and only in the sense
that) when they have the opportunity to invest, they approach the competitive banking sector and
accept the loan and invest rather than optimally choosing whether instead to wait for their next
opportunity to borrow ,. As is visible in the first panel, slow thawing can greatly slow the transition
back to the pooling steady state and lead to a relatively low lending volume.

In closing, it is important to note that a similar region with slow thawing can also appear in the
region between x and xs and slow down the convergence to the screening steady state from the left.
Since our focus lies on the transitions between the pooling and screening steady states, we have
relegated the characterization of that region to Appendix B.

4 Efficiency

At the heart of the positive model predictions is a dynamic strategic complementarity: when current
banks operate tight lending standards and screen out low-quality borrowers, future banks prefer
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Figure 6: Slowly thawing credit markets.
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Note. The plots compare two transitions back to the pooling steady state. Green solid is a transition without “slow
thawing”, where average borrowers always accept current loan offers and banks do not ration credit; red dashed is a
transition with slow thawing, where banks ration credit in equilibrium.
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tight lending standards as well. We next characterize the (constrained) efficient outcomes.10

4.1 Constrained efficient policy

In our concept of constrained efficiency, we allow the planner to control banks’ activity and screening
decisions, subject to borrowers’ application decisions, so as to maximize the sum of agents’ utilities.11

To keep the derivations and exposition clear, we focus on the case where the private benefit from
running the project u is vanishingly small, u → 0. In this section, it is further assumed that the
planner can set the path of market interest rates {Rt}, and therefore prevent average borrowers
from waiting (i.e. there is no slow thawing). We discuss relaxing this assumption below.

The constrained efficient planning problem is then given by

max
zt∈[0,z],θt∈[0,1]

∫ ∞

0
e−rtκθt {xt(RH − 1) + (1− zt)(1− xt)(RL − 1)− c̃zt} dt (14)

subject to the law of motion of xt, (6). The solution to this problem is given in the next proposition.

Proposition 5 (Second-best policy). There exist thresholds x∗, x∗ ∈ [0, x) such that the second-best
planner sets:

θt =

0 if xt < x∗

1 if xt > x∗
and zt =

z if xt < x∗

0 if xt > x∗
(15)

Here, x∗ is the largest x that satisfies

rx + αsxs

r + αs (RH − 1) + (1− z)
(

1− rx + αsxs

r + αs

)
(RL − 1)− c̃z︸ ︷︷ ︸

Average social benefit of screening

≥ rx + αpxp

r + αp (RH − 1) +
(

1− rx + αpxp

r + αp

)
(RL − 1)︸ ︷︷ ︸

Average social benefit of pooling

(16)

where αp = κ + δ, αs = κ + δ− zλκ. In particular, for any xt ∈ (x∗, x), equilibrium lending standards are
(second-best) inefficiently tight.

Proposition 5 reveals that the optimal policy is similar in spirit to the equilibrium: when the
quality of the pool is relatively high, x > x∗, normal lending standards, z = 0, are optimal; when it
is not, tight lending standards are optimal. But, importantly, the cutoffs for the optimal policy and
for the market equilibrium differ: There exists a region in the state space, (x∗, x), where equilibrium
lending standards are too tight relative to the constrained-efficient outcome.

10The unconstrained efficient allocation (first-best) in our model would allow the planner to only fund average
borrowers, which, given Assumption 2, he would do without screening.

11Since borrowers and banks are risk-neutral, this is without loss when the planner has access to transfers between
agents.
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Figure 7: Constrained efficient vs. equilibrium lending standards.
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To develop an intuition for this finding, imagine the current pool quality is x and banks operate
normal lending standards, z = 0, in all periods from now on so that the credit market ultimately
converges to the pooling steady state xp. In (16), one can think of rx+αpxp

r+αp as the time-averaged
fraction of type-H borrowers funded. The weight on current x is r, as with greater discounting
the present becomes relatively more important; the weight on the (long-run) steady state xp is
αp = κ + δ, which is the speed at which x converges to xp. The average social benefit of screening is
therefore the weighted average surplus from lending to each type of borrower,

rx + αpxp

r + αp (RH − 1) +
(

1− rx + αpxp

r + αp

)
(RL − 1).

An analogous expression describes the social benefit of screening, where we additionally account
for both the costs of screening and the fact banks successfully screen a fraction z̄ of of low-quality
borrowers, giving rise to (16).

In contrast, the private cut-off, x, is the largest value satisfying

x(R− 1) + (1− z) (1− x) (RL − 1)− c̃z︸ ︷︷ ︸
Average private benefit of screening

≥ x(R− 1) + (1− x) (RL − 1)︸ ︷︷ ︸
Average private benefit of pooling

(17)

which is calculated using the current fraction x of type-H borrowers and entirely ignores the dynamic
consequences from screening and pooling. In particular, since in the relevant region it holds that

rx + αsxs

r + αs < x <
rx + αpxp

r + αp

agents privately ignore the dynamic costs from screening relative to pooling. Therefore, x∗ < x.
The private and social thresholds are shown in Figure 7.

Another way to highlight the differential dynamic consequences of pooling and screening is to
compare steady states.

Corollary 3. When both steady states exist (Assumption 2), the screening steady state has strictly lower
welfare than the pooling steady state.

If δ = 0, this result would be a simple consequence of the fact that screening potential borrowers
is costly and the quality of funded borrowers is independent of the steady state (Corollary 1). But
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Figure 8: Early interventions dominate late ones.
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Note. This figure shows how intervention policies affect a credit market that is transitioning towards the screening
steady state. The horizontal axis shows the time at which an intervention starts (where 0 corresponds to the immediate,
constrained efficient intervention).

with δ > 0, screening borrowers has a social benefit because a share of them are never funded. Still,
the corollary shows that, as long as the cost c of screening is not too low (in which case the pooling
steady state ceases to exist), welfare of the pooling steady state always dominates welfare of the
screening steady state.

There are two important practical implications from the existence of a non-empty interval (x∗, x)
where the equilibrium diverges from the optimal allocation.

1. Intervention timing matters. Figure 8 simulates the characteristics of a credit market that starts
at a given x0 ∈ (x∗, x) for various times when an intervention starts (on the horizontal axis). The
later the time of intervention is, the lower is the quality of the borrow pool when the policy switches
from screening to pooling (left panel). Later intervention times thus increase the short-run losses
incurred at the start of the intervention and are therefore welfare-inferior to early interventions.
In fact, after a sufficiently long time, if xt has fallen below x∗, intervening may even be welfare-
dominated by not intervening at all and allowing the market to converge to the screening steady
state, despite its having lower welfare than the pooling steady state. That is, a late intervention
may be worse than a policy of not intervening at all, a result that underscores the importance of the
timing of interventions in our model. However, it may instead be the case that even at the screening
steady state, it is still optimal to intervene and relax lending standards. In this case, intervention is
always optimal (when the quality of the pool is weakly above that in the screening steady state).

2. Better screening technology may be detrimental to welfare. Suppose the cost c̃ of operating tight
lending standards falls. While it is clear that such a reduction in costs necessarily raises efficiency in
any steady-state equilibrium, it can decrease welfare because it raises thresholds both for the market
convergence to a screening equilibrium and for the efficient intervention, x and x∗. Therefore, if a
market is just recovering from a crisis, with x0 just above x, such a technological improvement may
cause x to rise above x0 and thereby prevent a recovery and lead to a reduction in welfare. If x∗ also
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rises above x0 then it is too costly for policy to mitigate this decline in welfare.
A decrease in costs c̃ represents an improvement in private information technology. What

happens if instead public information technology (e.g. credit reporting) improves? A crude way to
capture such a change is as an increase in δ, an increase in the probability that rejected borrowers
die. While the death of average borrowers has no effect on equilibrium as they are replaced in the
pool by an equal measure of new average borrowers, a greater death rate of rejected borrowers
does matter for equilibrium. A larger δ increases (decreases) the speed of convergence when x
is increasing (decreasing), and raises the pool quality in the screening steady state, so therefore
unambiguously increasing welfare. Thus, the welfare effects of improving public information are
unambiguously positive.

4.2 Implementation of the constrained optimum

There are several ways in which a government or a regulating authority could implement the
constrained efficient outcome, that is, normal lending standards when x ∈ (x∗, x), where we
continue to assume that there is no slow thawing. Since such an intervention entails short-run
losses (see Figure 8) and the model’s banking sector is competitive, either the government or type-H
borrowers have to carry that burden.

An example for a policy in the first category is a government-funded loan insurance program.
In this case, the government would provide an insurance benefit b > 0 to be paid whenever a
borrower defaults. Assuming b is in present value terms, this incentivizes banks to pool precisely if

b
1− RL

> 1− c
1− x

.

This condition is satisfied for b = 0 in the region x > x where pooling is privately optimal. It
requires nonzero insurance benefits b = b(x) > 0 when x < x. As function of the pool quality,
b(x) is decreasing in x. This means, a typical intervention starting from some x0 < x requires large
insurance benefits early on, which are then phased out over time, until they disappear entirely.

Our model is thus consistent with the ability of government loan guarantees to increase the
efficiency of credit markets by decreasing lending standards and interest rates. Examples of such
loan guarantees in the US include mortgage markets, student loans, and credit for international
trade. All these loan guarantees require that the borrower meet eligibility requirement and/or
condition rates on readily-available public information. Also notably, the retraction of a loan
guarantee arguably characterized the start of the US financial crisis of 2008-2009. By allowing
Lehman Brothers to fail, the US government retracted an implicit guarantee of the short-term debt
of large financial institutions. In response, lenders (buyers of short-term commercial paper of
financial institutions) tightened lending standards and interest rates rose and lending volumes
declined.12

12Of particular import was the withdrawal of lending by market mutual funds, which as structured did not have the
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Because this implementation entails a subsidy from the government to the banking sector, this
policies reduces credit spreads. But a policymaker could implement the optimum instead by taxing
future interest payments and refunding to all lenders (the equivalent of a loan guarantee funded
from future bank interest earnings from loans of the same cohort). Such a policy would not entail a
subsidy from the taxpayer so the burden clearly falls upon type-H borrowers. As a result, the policy
increases credit spreads.

We assume that the private sector cannot observe which borrowers are rejected. But if the
government could monitor banks and measure either lending standards or rejections (but, like the
private sector, not observe the identity of the rejected agent), then another policy that implements
the constrained optimum is to tax lending standards or rejections at a high enough rate to ensure
normal lending standards (when x ∈ (x∗, x)). This policy is the most direct: taxing the activity
– tight lending standards – that has the negative externality. Interestingly, this policy increases
equilibrium spreads even though no tax is collected. But because the profits from type-H borrowers
have to cover the losses from lending to more type-L projects, this policy raises credit spreads.

Note finally, that all such policies are not privately optimal without market-wide collusion.
Thus, there is a role for government in a competitive market.

4.3 Limits to constrained efficiency

In practice, regulations or policies like government-funded loan subsidy or insurance programs are
rarely undertaken for the entire financial sector, but instead usually apply only to certain types of
institutions, such as traditional banks but not money market mutual funds or shadow banks for
example.13 We consider a situation where the government can only affect the lending decisions of
some fraction η ∈ [0, 1) of banks. For lack of a better term we refer to these banks as government-
owned banks, even though they do not need to be literally owned by the government. We now ask
what the optimal policy is under such limiting circumstances. For this section, we focus on the case
without slow thawing or inactivity, i.e. θ = 1, and further assume that government-owned banks
always charge the same market interest rates as their private competitors.

To state the new planning problem for a given x0, denote by zp(x) the optimal screening action
of a private bank, that is, zp(x) = 0 . Then, the planner solves the same objective as before,

max
zt

∫ ∞

0
e−rtκ {xt(RH − 1) + (1− zt)(1− xt)(RL − 1)− c̃zt} dt

ability to evaluate borrowers. Further, by regulation they were not allowed to lend more than 0.5% of their assets to
any institution limited which limited the profits that might otherwise cover the cost of higher lending standards. In our
model, this would be a restriction that any one bank could only provide a fraction of the funds needed by any given
borrower, so lending would require several banks.

13For example, in the US financial crisis of 2008, the government extended deposit guarantees from traditional banks
to money market mutual funds, but also did not extend the guarantees to other short-term debt markets. Similarly, the
government bailed out the government-sponsored mortgage lending agencies and traditional banks but not private label
securitizers nor mortgage brokers.

25



subject to the same law of motion of xt,

ẋt = (κ + δ) (λ− xt)− κztλ(1− xt),

with the exception that zt is now subject to an additional constrained,

zt ∈ [(1− η)zp(xt), (1− η)zp(xt) + ηz], (18)

rather than the entire interval [0, z]. This is owed to the fact that only a fraction η of overall lending
standards can be controlled by the government.

Constraint (18) is no mild alteration to the planning problem. As we show in Appendix A.10,
the optimal policy still takes a threshold form, where now there is a threshold x∗(η) that depends
on the share of government-owned banks η. For low levels of η, this threshold is exactly equal
to x, that is, the planner does not want to implement any other allocation than the competitive
equilibrium. Only when η is sufficiently large,

η > 1− (κ + δ) (λ− x)
κzλ(1− x)

, (19)

does the planner find it optimal to intervene in some region of the state space, x∗(η) < x.
Why is not optimal for the planner to intervene for low η? The planner’s motivation for

intervention is to shift away from convergence to the screening steady state to convergence to the
pooling steady state. If, however, η is below the threshold in (19), the planner is not able to relax
overall lending standards enough to induce the state xt to move towards pooling for values of
xt close to the private threshold x. Thus, it lacks the “firepower” to get to pooling and instead
of getting stuck somewhere between the screening and pooling steady states, it chooses not to
intervene at all.

5 A credit boom-bust cycle

One of the most salient features of the credit market is that it appears to come in “boom-bust cycles.”
In our model, booms and lending standards interact; neither is solely exogenously driving the
other. We now demonstrate how our model can give rise to boom-bust dynamics. While such
dynamics can be driven by exogenous movements in either lending standards or inflows to the
pool of potential borrowers, in this section we study a credit boom shock driven by changes in the
pool of borrowers.

The credit boom

We feed into the model a “market size shock” which allows a flow rate µ of new borrowers to enter
the pool until time T. The new borrowers are assumed to have a lower fraction of type-H borrowers,
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λ < λ, capturing the idea that these are not borrowers that usually believe they are able to get a
loan.14 Thus, the total size of the pool now evolves according to

Ṅt = µ1{t≤T} − δ(Nt − 1). (20)

Our model in Section 2 involves a fixed pool size N = 1 and therefore needs to be amended to allow
for dynamics in N. However, as we show in Appendix C, since the law of motion of N is entirely
exogenous in the model, the model still applies to a “normalized” version of the credit market,
where all absolute quantities (total volume of loans, total welfare, profit, etc) are to be thought of as
normalized by N. The only adjustment that then needs to be made is that the fraction of type-H
borrowers, x, now evolves according to

ẋt = θtκLt(1− zt)λt − θtκHt(1− λt) + N−1
t
(
δ + µ1{t≤T}

)
(λt − xt)

where λt is the average quality of new borrowers entering into the pool,

λt ≡
µ

µ + δ
1{t≤T}λ +

δ

µ + δ
λ.

For the simulations in this section, we calibrate the model parameters as follows: TBD. Under
this parameterization, the market turns out not to have a region with slow thawing.

The boom-bust cycle

We simulate the response to two different boom lengths, with T0 = 2 years and T1 = 4 years. The
results are shown in Figure 9. As the solid green line shows, the short boom goes hand in hand with
an increasing lending volume and a decline in the quality of borrowers, and ends in a soft decline
ultimately converging back to the original steady state. Contrast this with the long boom (dashed
red line). This boom ends in an abrupt decline in volume, an increase in lending standards, and a
permanent transition away from the original steady state.

6 Discussion and Extensions

In this section, we discuss the importance of a few of our assumptions and several extension of our
model.

The first point to emphasize is that there are potential benefits of lending standards omitted from
our model that may be pertinent in some lending markets. In particular, tight lending standards

14We allow entering borrowers to know their average quality λ.
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Figure 9: The boom-bust cycle.
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The transitions were computed using these parameters: TBD.
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provide an incentive to improve quality along the dimension that is being evaluates. Thus tight
standards could increase the average quality of new projects, as potential borrowers exert effort
to avoid having type-L projects.15 Under this assumption, tighter lending standards would have
a positive externality: tighter standards today would increase the quality of the pool of potential
borrowers for all banks in the future. This would provide a countervailing force to the effect of
rejected borrowers in our model that would raise the relative efficiency of a steady state with
screening.

Further, we note that tractability motivates some of our specific assumptions about the inflow
of new potential borrowers. Our assumptions imply that the pool of potential borrowers has a
constant size, which implies that x is our sole state variable. One could instead for example assume
that the inflow of new potential borrowers is constant, which would imply that the size of the pool
would vary. While the choice of screening would still depend only on x, the dynamics of the market
would in this alternative depend on the size of the pool as well as on x. While this would affect
the dynamics of the market, this would not change many of the main lessons of the model, and in
particular, the market would still exhibit two steady states (Corollary 1 would hold for a different
range of parameter values) and the results on their relative efficiency, Corollary 3 derived in the
Section 4.1, would still hold.

Turning to the banking sector, we have assumed that it is competitive so that banks make no
profits in equilibrium. We conjecture that the qualitative features of the steady-states, dynamics
and welfare results would all remain if banks shared the surplus of a match with a given potential
borrower. The analysis is simplified by assuming that potential borrowers have all the bargaining
power (or equivalently that banks compete by posting lending terms) as we have done.

Do our main results rely on our specific screening technology? For example, our screening
technology never mistakes a type H borrower for a type L borrower. Such mistakes would imply
that potential borrowers who are screened do not learn their type with certainty, and so there would
be a distribution of beliefs among potential borrowers, with beliefs depending on the number of
times a borrower had been screened and rejected for a loan. Such complexity would change the
exact formula for ẋ. And it would complicate the analysis of the slow thawing region by potentially
making possible regions with different speeds of slow thawing. Apart from this region however,
since potential borrowers with different beliefs behave identically in the model (outside of any slow
thawing region), our main results would remain intact.

Other changes to the screening technology are even less consequential. Our model can easily
incorporate a screening technology is non-linear in cost. Concavity replicates our current results.
Convexity would imply that rather than necessarily screening at a level of z̄, banks might choose a
lower level instead that equated marginal benefits of screening and marginal costs which would
then necessarily depend on, and be increasing in, x. We have assumed that screening produces a
binary signal, and it would be inconsequential to instead assume a continuous signal (banks would

15As noted earlier, Hu (2018) develops a model with this feature and studies its dynamics.
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simply choose a cutoff value for their binary decision). Finally, if screening were correlated across
banks, this would increase the strategic complementarity at the heart of our model since when one
bank screens and rejects a potential borrower, it makes it easier for the next bank to detect that
borrower as bad and so raises the private value to screening.

We have discussed the model as model of lending with a debt contract. But in fact, in our
model there is an equity contract that delivers exactly the same payoffs to banks and borrowers of
each type. This equivalence arises because of the model has only two types of investors so that all
good. With more types, our model could become significantly more complex in general. While the
exact degree of complexity would depend on how well the screening technology detected different
types, the extensions we have considered have all involved more state variables, which raises the
possibility of non-linear dynamics that can occur in such systems.

7 Concluding Remarks

The implications of our analysis all follow from the dynamic strategic complementarity associated
with lending standards. If yesterday’s lenders employed tight lending standards then it will be
optimal for today’s lenders to do the same. This is because yesterday’s tight standards adversely
affect the quality of today’s pool of borrowers; that is, the pool will be cream skimmed. The adverse
selection problem created by this cream skimming leads today’s lenders to employ the same tight
lending standards as yesterday’s lenders. And so on for tomorrow’s lenders. Alternatively, if
yesterday’s lenders employed normal lending standards then it will again be optimal for today’s
lenders to do the same. With normal lending standards, the pool of borrowers will evolve toward
a pool comprised of average borrowers; and this is a pool (given our assumptions) that calls for
normal lending standards.

Even if tight lending standards are not socially optimal, they may be the unique equilibrium
outcome. For that case, we considered the possibility of government intervention that replaces
an inefficient unique equilibrium with an alternative more efficient unique equilibrium; one with
normal lending standards. Capitalizing on our dynamic model, we showed that while there are
interventions that can put the market on the path to the socially efficient steady state outcome, the
timing of the intervention is crucial for determining whether the intervention is value enhancing. If
the intervention is delayed too long, it will not be value enhancing. An intervention considered
involves a temporary subsidized (partial) loan guarantee program. Temporarily offering loan
guarantees can eliminate lenders’ incentives to employ tough lending standards. This in turn leads
to an improvement of the borrower pool and then subsequent lenders will have the incentive to
employ normal lending standards even without loan guarantees.

We considered the possibility that the borrower pool temporarily expands through the addition
of below-average borrowers. By assumption, even though they are below-average borrowers, they
are still good enough to be profitably funded with normal lending standards. The expansion of
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the borrower pool represents a boom that converts previously unfundable borrowers into now
fundable borrowers. This boom may result in an immediate increase in lending volume followed
by a bust, where the volume of lending collapses. Underlying the boom is a reliance on normal
lending standards and underlying the bust is an endogenous switch to tight lending standards.

Our paper opens up several avenues for future research. For example, the government interven-
tion that is analyzed effectively assumes that the negative shock that put the market on the path to
the inefficient steady state is expected to never recur. But suppose it might recur. Is government
intervention still optimal? Addressing this question requires a specification of the social cost of
a government giveaway, e.g., a subsidized loan guarantee. With that we expect that it can be
shown that if the likelihood that the shock recurs is low enough, then government intervention
will be value enhancing. This is because with a low probability of a negative shock, the cost of an
intervention can be amortized over a longer period of time.

Another extension could allow borrowers to exert costly private effort to improve the quality
of the projects that they seek to finance. The incentive to create a good project will vary with the
lending standards; which way is not immediately obvious and will depend on how it is modeled.
But suppose tighter standards incentivize effort (to meet the tighter standards). Then there will be
two factors driving the quality of the borrower pool over time: lending standards and borrower
effort. This might be most interesting for a case in which the optimal lending standard is not
always at a corner (as in our analysis). In that case, a drop in the lending standard has possibly
countervailing effects: (i) the adverse selection problem becomes less severe (for reasons analyzed in
this paper); and (ii) borrowers may exert less effort (anticipating an easier time receiving financing).
Such a framework is therefore well-suited to study the conditions under which lending standards
continue to entail a dynamic strategic complementarity.
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A Proofs and derivations

A.1 Steady state equilibria: Proof of Proposition 1

The three pairs (x, z) mentioned in Proposition 1 are solutions to (8) and (9) if λ > x, xs < x,
and λ−x

λ−λx

(
1 + δκ−1) < z. The first two of these hold by Assumption 2 and the third is a straight

consequence of the second.
We claim that the three pairs indeed constitute equilibria, with θ = 1, ϕa = ϕr = 1 and with R

pinned down by Proposition 3. To prove this, first note that the law of motion (6) as well as the
bank’s maximization problem (4) are satisfied due to (8) and (9). The zero profit condition (5) pins
down the interest rate (see our proof to Proposition 3). Finally, in any steady state the average
borrower strictly prefers a loan today, that is,

λ (RH − R + u) + (1− λ)(1− z)u + (1− λ)zJr − Ja > 0,

and since R ≤ RH (which holds since xs ≥ x with x as in (10) due to Assumption 2) we have that
θ = 1 and ϕa = ϕr = 1.

A.2 Proof of Corollary 1

The flow of projects being funded in the pooling steady state is κ, compared to κxs + κ(1− xs)(1− z)
in the screening steady state. The credit spread result follows directly from Proposition 3 and the
fact that R(x) is strictly decreasing in x. The equilibrium default rate is given by

κ(1− x)(1− z)
κ(1− x)(1− z) + κx

=

(
1 +

x
(1− x)(1− z)

)−1

which can further be simplified to

(1− λ)

(
1 +

λzδκ−1

(1 + δκ−1)(1− z)

)−1

.

Thus, when δ = 0, the equilibrium default rate is always equal to 1− λ, irrespective of the steady
state.

A.3 Proof of Proposition 2

Let x0 ∈ [x, x) (x0 ∈ (x, λ]). In that case, z = z (z = 0) is the optimal bank strategy (see (4)), and
therefore the law of motion of x, (6), necessarily describes the unique equilibrium dynamics of x. By
Assumption 6, θt = 1 and therefore also ϕa

t = 1 = ϕr
t (due to (7)).

The case x0 = x is straightforward as x is a steady state.
Finally, if x < x, R(x) = ∞, which is why the only possible equilibrium involves θt = 0. In that
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region, therefore, the pool improves according to ẋt = δ(λ− xt), until x hits x, in which case the
law of motion switches to be the same as the one for an initial quality x0 ∈ [x, x).

A.4 Proof of Proposition 3

The zero profit condition (5) implies that

Π(R) = κH(R− 1) + κL(1− z)(RL − 1)− (κH + κL)c̃z = 0.

Reformulating this we obtain

κx(R− 1)/(RL − 1) + κ(1− x)(1− z) + κcz = 0

R = 1 + (1− RL)
cz + (1− x)(1− z)

x
which proves Proposition 3.

A.5 Proof of Proposition 4

Define θ(x) as in (12) and define x̂ implicitly as the unique value of x < λ with θ(x) = 1. Such
a value exists since θ(x) is strictly increasing and continuous in x with θ(0) = −δκ−1 < 0 and
limx→λ θ(x) = ∞.

Assume x̂ > x. Conjecture for any x0 ∈ [x, x̂) that the equilibrium is one with θt = θ(xt). To
verify the conjecture, we need to show that average borrowers are indifferent between taking a loan
and waiting. Assuming u→ 0 in (1a), this is equivalent to

Ja
t = λ(RH − R(xt))

with
rJa

t = J̇a
t − δJa

t .

Putting the two together, we obtain (13),

−λR′(x)ẋ = (r + δ)λ (RH − R(x)) .

The law of motion for x with θ < 1 is ẋt = (κθ + δ)(λ− x), which, together with (13) yields (12)
and therefore confirms that average borrowers are, by construction, precisely indifferent.
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A.6 Proof of Corollary 3

By Assumption 2, c ≥ 1− λ. Therefore, welfare in the screening steady state is bounded above,16

Ws = xsρ− (1− z) (1− xs)− cz ≤ xs (ρ + 1− z)− (1− z)− (1− λ)z = xs (ρ + 1− z)− (1− λz)

Welfare in the pooling steady state is Wp = xp(ρ + 1)− 1. Observe that Ws is linear in xs, with a
slope that is less than that of Wp, but an intercept that is greater. Thus, Ws can only ever be above
Wp if xs is as small as possible. Clearly, given the formula for xs, xs is smallest as a function of δ if
δ = 0. In that case, after a bit of algebra, we find

Ws =
1− z

1− λz︸ ︷︷ ︸
<1

Wp − (1− λz)
z(1− λ)

1− z
< Wp

Therefore, welfare of the pooling steady state always dominates that of the screening steady state.

A.7 Proof of Proposition 5

We prove Proposition 5 in two steps. First, we determine the efficient screening policy z∗(x). To
do so, let V(x, z) denote the present value of welfare if the current state of the market is x and the
screening policy is z from hereafter, that is,

V(x, z) ≡ rx + αzxz

r + αz (RH − 1) + (1− z)
(

1− rx + αzxz

r + αz

)
(RL − 1)− c̃z. (21)

where αz ≡ κ + δ− λκz and xz ≡ λ− λ (1−λ)z
(1−λz)+δκ−1 . Also, denote by

v(x, z) ≡ r {x(RH − 1) + (1− z)(1− x)(RL − 1)− c̃z}

the flow value of policy z at state x. Finally, we call

d(x, z) ≡ κ(1− x)(1− z)λ− κx(1− λ) + δ(λ− x)

the derivative of x at state x under policy z (see the law of motion in (6)). Observe that

rV(x, z) = v(x, z) + Vx(x, z)d(x, z) (22)

as well as
d(xs, z) = 0 d(xp, 0) = 0. (23)

We first prove the following helpful lemma.

16We define all welfare expressions here as multiples of κ, for expositional clarity. κ multiplies both Ws and Wp equally.
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Lemma 1. We have:

1. If λκρ ≥ r + κ + δ, pooling is strictly optimal for any state x, i.e. z∗(x) = 0.

2. If λκρ < r + κ + δ, V(x, z) has negative cross-partials, Vxz < 0.

3. If λκρ < r + κ + δ and V(x, 0) > V(x, z1) for some z1 > 0, then also V(x, 0) > V(x, z2) for
any z2 ∈ (0, z1).

Proof. Assume λκρ ≥ r + κ + δ. Suppose pooling were not strictly optimal for every state x. First,
if d(x, z∗(x)) is ever non-negative for some x < λ, there must be a steady state at some x0 ∈ [0, λ)

with some z∗(x0) > 0. This cannot be optimal since

V(x0, z0) < V(x0, 0)

is equivalent to (after a few lines of algebra)

−
(
r + (1− λ)αp − rx0) (ρκλ− (r + κ + δ)) < (r + αs)(r + αp)c

which is true since the left hand side is negative. Second, assume d(x, z∗(x)) is positive everywhere.
Then, xp = λ is still the unique steady state. Let V(x) the optimal value function. It has to hold that

rV(x) = v(x, z∗(x)) + V′(x)d(x, z∗(x)). (24)

Rearranging,

V′(x) =
rV(x)− v(x, z∗(x))

d(x, z∗(x))
≡ F(V(x), x).

Compare this to the ODE describing the value of pooling,

Vx(x, 0) =
rV(x, 0)− v(x, 0)

d(x, 0)
= F0(V(x, 0), x)

Observe that F(V, x) > F0(V, x) for any x for which z∗(x) > 0.17 Since V(xp) = V(xp, 0), it must
be that V(x) < V(x, 0) for x sufficiently small. This contradicts our assumption that V(x) is the
optimal value function. Thus, pooling is optimal for every state.

Assume λκρ < r + κ + δ. Simple algebra based on (21) implies that

Vx =
r

r + αz (RH − 1) + (1− z)
r

r + αz (1− RL) > 0

and
Vxz = r

λκρ− (r + κ + δ)

(r + αz)2(1− RL)
< 0.

17Note that V′(x) > 0 by a simple envelope argument.
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With this result in mind, we can characterize z∗(x).

Lemma 2. Assume λκρ < r + κ + δ. The efficient screening policy z∗(x) is to screen if x < x∗ and to pool
if x > x∗, where

V(x∗, 0) = V(x∗, z) (25)

as long as the solution to that equation is greater or equal to xs. Otherwise, x∗ is determined by

vz(x∗, 0) + Vx(x∗, 0)dz(x∗, 0) = 0. (26)

Proof. First, notice that x∗ is indeed well-defined, in that if the solution to (25) is xs, then (26) is also
solved by xs. Assume

V(xs, 0) = V(xs, z).

Combining (22) and (23), we can rewrite V(xs, 0) and V(xs, z) and obtain

v(xs, 0) + Vx(xs, 0)d(xs, 0) = v(xs, z) + Vx(xs, z)d(xs, z).

Since d(xs, z) = 0, this can be combined into

v(xs, z)− v(xs, 0) + Vx(xs, 0) (d(xs, z)− d(xs, 0)) = 0 (27)

which is equivalent to (26) as v and d are linear in z. Moreover, going these steps backwards, if
x∗ < xs, then (27) holds with inequality and therefore

V(xs, 0) > V(xs, z). (28)

Now we proceed to our main argument, a proof by contradiction. We distinguish four possible
cases.

Case 1: There exists x > x∗ with x ≥ xs where screening is optimal. If true, this would require
there to be at least one point x0 ∈ [x∗, λ) where the planner strictly prefers to remain at x0 forever
(by choosing strategy z0 ∈ (0, z] such that d(x0, z0) = 0) over pooling. In math,

V(x0, z0) > V(x0, 0).

Since V has a negative cross-partial Vxz < 0 (Lemma 1), this implies that V(x∗, z0) > V(x∗, 0) and
V(xs, z0) > V(xs, 0), which, by point 3 in Lemma 1, is contradicting either (25) or (28).

Case 2: There exists x < x∗ with x ≥ xs where pooling is optimal. If true, this would require
there to be at least one point x0 ∈ (xs, x∗] where the planner strictly prefers to remain at x0 forever
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(by choosing strategy z0 ∈ [0, z) such that d(x0, z0) = 0) over screening. In math,

V(x0, z0) > V(x0, z).

Since V has a negative cross-partial Vxz < 0 (Lemma 1), this implies that V(x∗, z0) > V(x∗, z),
which by point 3 in Lemma 1, contradicts (25).

Case 3: There exists x > x∗ with x ≤ xs where screening is optimal. If true, this would require
there to be at least one point x0 ∈ [x∗, xs] where the planner strictly prefers to screen with some
intensity z0 > 0 in the current instant while pooling is chosen thereafter. That is,

v(x0, z0) + Vx(x0, 0)d(x0, z0) > v(x0, 0) + Vx(x0, 0)d(x0, 0).

Due to linearity of this equation, it also has to hold with z0 = z, and therefore also expressed as
derivative,

vz(x0, 0) + Vx(x0, 0)dz(x0, 0) > 0. (29)

Since this is a linear equation in x0, to be consistent with (26), it must be that (29) in fact holds
for any x0 > x∗, including x0 = xp = λ. In that case, however, (29) simplifies to vz(xp, 0) +
Vx(xp, 0)dz(xp, 0) > 0, which is false, since Vx(x, 0) > 0, dz(x, 0) < 0 and vz(xp, 0) = −κ(1 −
RL) (c− (1− λ)) < 0 by Assumption 2.

Case 4: There exists x < x∗ ≤ xs where pooling is optimal. Let V(x) be our conjectured value
function left of x∗. By design, V(x) solves

rV(x) = v(x, z) + V′(x)d(x, z)

where d(x, z) = αz(xs − x) and V′(x) solves

(r + αz)V′(x) = vx(x, z) + V′′(x)d(x, z).

This ODE can be solved explicitly, giving18

V′(x) = A(xs − x)−β +
vx(x, z)
r + αz ≡ f1(x)

where β = 1 + r
αz and A ∈ R is a parameter to fit the boundary condition V′(x∗) = Vx(x∗, 0).

Could it ever be that the planner prefers pooling in this region? If so, we would have to have for
some x < x∗ that

v(x, z) + V′(x)d(x, z) < v(x, 0) + V′(x)d(x, 0)

18Note that vx(x, z) is a constant in x.
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which is equivalent to

V′(x) <
r(1− RL)

κλ
− rc̃

κλ(1− x)
≡ f2(x).

Notice that f1(x) and f2(x), which intersect at x = x∗ can only have a single intersection since ... to
be continued.

A.8 Derivation of law of motion for credit boom shock

tbd

A.9 Constrained efficiency with slow thawing

tbd

A.10 Optimal policy with government banks

B Slow thawing during convergence to screening steady state

tbd

C Boom-bust cycle

tbd
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