
Policy Effects of International Taxation on Firm Dynamics and Capital Structure

Adam Hal Spencer

The University of Nottingham (UK)

NBER SI ITM Thursday July 11th, 2019

Roadmap

- 2 Prologue Model: the Static Partial Equilibrium Case
- 3 Quantitative Model
- 4) Calibration of Quantitative Model
- 5 Quantitative Results: Removing the Repatriation Tax

6 Conclusion

Question

• How do tax reforms targeted at multinational firms affect domestic productivity, economic activity and welfare?

• Examples of tax reforms targeted at multinationals.

- Examples of tax reforms targeted at multinationals.
- U.S. Tax Cuts and Jobs Act (TCJA) removed the *repatriation tax* in 2017.

- Examples of tax reforms targeted at multinationals.
- U.S. Tax Cuts and Jobs Act (TCJA) removed the *repatriation tax* in 2017.
 - A tax that the U.S. Government previously levied on the overseas earnings of U.S. firms.

- Examples of tax reforms targeted at multinationals.
- U.S. Tax Cuts and Jobs Act (TCJA) removed the *repatriation tax* in 2017.
 - A tax that the U.S. Government previously levied on the overseas earnings of U.S. firms.
 - U.K. and Japan implemented similar reforms in 2009.

- Examples of tax reforms targeted at multinationals.
- U.S. Tax Cuts and Jobs Act (TCJA) removed the *repatriation tax* in 2017.
 - A tax that the U.S. Government previously levied on the overseas earnings of U.S. firms.
 - U.K. and Japan implemented similar reforms in 2009.
- U.K. cut its corporate tax rate to 15% 2015.

- Examples of tax reforms targeted at multinationals.
- U.S. Tax Cuts and Jobs Act (TCJA) removed the *repatriation tax* in 2017.
 - A tax that the U.S. Government previously levied on the overseas earnings of U.S. firms.
 - U.K. and Japan implemented similar reforms in 2009.
- U.K. cut its corporate tax rate to 15% 2015.
 - One reason stated by the Government was to increase FDI in Britain.

- Examples of tax reforms targeted at multinationals.
- U.S. Tax Cuts and Jobs Act (TCJA) removed the *repatriation tax* in 2017.
 - A tax that the U.S. Government previously levied on the overseas earnings of U.S. firms.
 - U.K. and Japan implemented similar reforms in 2009.
- U.K. cut its corporate tax rate to 15% 2015.
 - One reason stated by the Government was to increase FDI in Britain.
- OECD proposal to have a coordinated global minimum tax in 2019.

- Examples of tax reforms targeted at multinationals.
- U.S. Tax Cuts and Jobs Act (TCJA) removed the *repatriation tax* in 2017.
 - A tax that the U.S. Government previously levied on the overseas earnings of U.S. firms.
 - U.K. and Japan implemented similar reforms in 2009.
- U.K. cut its corporate tax rate to 15% 2015.
 - One reason stated by the Government was to increase FDI in Britain.
- OECD proposal to have a coordinated global minimum tax in 2019.
 - Aimed to reduce tax evasion by multinationals.

• How do these targeted tax reforms affect the domestic economy?

- How do these targeted tax reforms affect the domestic economy?
- "The activities of multinational firms account for almost one-third of world GDP and about one-fourth of employment" (OECD, 2018).

- How do these targeted tax reforms affect the domestic economy?
- "The activities of multinational firms account for almost one-third of world GDP and about one-fourth of employment" (OECD, 2018).
- Tax reforms aimed-at multinationals

- How do these targeted tax reforms affect the domestic economy?
- "The activities of multinational firms account for almost one-third of world GDP and about one-fourth of employment" (OECD, 2018).
- Tax reforms aimed-at multinationals
 - \Rightarrow Affects behaviour of multinational firms.

- How do these targeted tax reforms affect the domestic economy?
- "The activities of multinational firms account for almost one-third of world GDP and about one-fourth of employment" (OECD, 2018).
- Tax reforms aimed-at multinationals
 - \Rightarrow Affects behaviour of multinational firms.
 - \Rightarrow Changes goods and factor market conditions (equilibrium effects).

- How do these targeted tax reforms affect the domestic economy?
- "The activities of multinational firms account for almost one-third of world GDP and about one-fourth of employment" (OECD, 2018).
- Tax reforms aimed-at multinationals
 - \Rightarrow Affects behaviour of multinational firms.
 - \Rightarrow Changes goods and factor market conditions (equilibrium effects).
 - \Rightarrow Affects behaviour of non-multinationals.

- How do these targeted tax reforms affect the domestic economy?
- "The activities of multinational firms account for almost one-third of world GDP and about one-fourth of employment" (OECD, 2018).
- Tax reforms aimed-at multinationals
 - \Rightarrow Affects behaviour of multinational firms.
 - \Rightarrow Changes goods and factor market conditions (equilibrium effects).
 - \Rightarrow Affects behaviour of non-multinationals.
 - \Rightarrow Cross-sectional changes aggregate to have an impact on the macroeconomy.

• What determines the magnitude of the equilibrium effects' impact on non-multinationals?

- What determines the magnitude of the equilibrium effects' impact on non-multinationals?
- Depends on how sensitive non-multinationals' investment behaviour is to changes in market conditions.

- What determines the magnitude of the equilibrium effects' impact on non-multinationals?
- Depends on how sensitive non-multinationals' investment behaviour is to changes in market conditions.
 - Non-multinationals are typically smaller in size than multinationals (Flaaen (2014)).

- What determines the magnitude of the equilibrium effects' impact on non-multinationals?
- Depends on how sensitive non-multinationals' investment behaviour is to changes in market conditions.
 - Non-multinationals are typically smaller in size than multinationals (Flaaen (2014)).
 - Smaller firms are impacted more by financial frictions (Hennessy & Whited (2007)).

- What determines the magnitude of the equilibrium effects' impact on non-multinationals?
- Depends on how sensitive non-multinationals' investment behaviour is to changes in market conditions.
 - Non-multinationals are typically smaller in size than multinationals (Flaaen (2014)).
 - Smaller firms are impacted more by financial frictions (Hennessy & Whited (2007)).
- Non-multinationals investment behaviour may be affected significantly by financial frictions.

- What determines the magnitude of the equilibrium effects' impact on non-multinationals?
- Depends on how sensitive non-multinationals' investment behaviour is to changes in market conditions.
 - Non-multinationals are typically smaller in size than multinationals (Flaaen (2014)).
 - Smaller firms are impacted more by financial frictions (Hennessy & Whited (2007)).
- Non-multinationals investment behaviour may be affected significantly by financial frictions.
- Do these frictions interact with the equilibrium effects of the targeted tax reforms?

(i) Develop a general dynamic quantitative model that can be used to evaluate tax reforms targeted at multinationals on the macroeconomy.

- (i) Develop a general dynamic quantitative model that can be used to evaluate tax reforms targeted at multinationals on the macroeconomy.
 - Heterogeneous firms,

- (i) Develop a general dynamic quantitative model that can be used to evaluate tax reforms targeted at multinationals on the macroeconomy.
 - Heterogeneous firms,
 - Intensive (capital accumulation) and extensive margin investment.

- (i) Develop a general dynamic quantitative model that can be used to evaluate tax reforms targeted at multinationals on the macroeconomy.
 - Heterogeneous firms,
 - Intensive (capital accumulation) and extensive margin investment.
 - Financial frictions.

- (i) Develop a general dynamic quantitative model that can be used to evaluate tax reforms targeted at multinationals on the macroeconomy.
 - Heterogeneous firms,
 - Intensive (capital accumulation) and extensive margin investment.
 - Financial frictions.
- (ii) Apply this general framework to the removal of the U.S. repatriation tax.

- (i) Develop a general dynamic quantitative model that can be used to evaluate tax reforms targeted at multinationals on the macroeconomy.
 - Heterogeneous firms,
 - Intensive (capital accumulation) and extensive margin investment.
 - Financial frictions.
- (ii) Apply this general framework to the removal of the U.S. repatriation tax.
 - Study the steady state and transition path. Ask the following:

- (i) Develop a general dynamic quantitative model that can be used to evaluate tax reforms targeted at multinationals on the macroeconomy.
 - Heterogeneous firms,
 - Intensive (capital accumulation) and extensive margin investment.
 - Financial frictions.
- (ii) Apply this general framework to the removal of the U.S. repatriation tax.
 - Study the steady state and transition path. Ask the following:
 - (a) Does heterogeneity matter quantitatively?

- (i) Develop a general dynamic quantitative model that can be used to evaluate tax reforms targeted at multinationals on the macroeconomy.
 - Heterogeneous firms,
 - Intensive (capital accumulation) and extensive margin investment.
 - Financial frictions.
- (ii) Apply this general framework to the removal of the U.S. repatriation tax.
 - Study the steady state and transition path. Ask the following:
 - (a) Does heterogeneity matter quantitatively?
 - (b) Do dynamics matter quantitatively?

- (i) Develop a general dynamic quantitative model that can be used to evaluate tax reforms targeted at multinationals on the macroeconomy.
 - Heterogeneous firms,
 - Intensive (capital accumulation) and extensive margin investment.
 - Financial frictions.
- (ii) Apply this general framework to the removal of the U.S. repatriation tax.
 - Study the steady state and transition path. Ask the following:
 - (a) Does heterogeneity matter quantitatively?
 - (b) Do dynamics matter quantitatively?
 - (c) Do financial frictions matter quantitatively?

- (i) Develop a general dynamic quantitative model that can be used to evaluate tax reforms targeted at multinationals on the macroeconomy.
 - Heterogeneous firms,
 - Intensive (capital accumulation) and extensive margin investment.
 - Financial frictions.
- (ii) Apply this general framework to the removal of the U.S. repatriation tax.
 - Study the steady state and transition path. Ask the following:
 - (a) Does heterogeneity matter quantitatively?
 - (b) Do dynamics matter quantitatively?
 - (c) Do financial frictions matter quantitatively?

Answers: yes, yes and yes.

U.S. Repatriation Tax: Tradeoff

• U.S. repatriation tax: a rate that the U.S. Government levied on the overseas earnings of U.S. multinationals prior to 2018.

U.S. Repatriation Tax: Tradeoff

- U.S. repatriation tax: a rate that the U.S. Government levied on the overseas earnings of U.S. multinationals prior to 2018.
- Did its removal in the TCJA increase or decrease domestic economic activity?

• Depends on selection effects that move in both directions.

- Depends on selection effects that move in **both** directions.
- **Negative**: increases the relative value of being a multinational.

- Depends on selection effects that move in **both** directions.
- Negative: increases the relative value of being a multinational.

 \Rightarrow Offshores export production.

- Depends on selection effects that move in **both** directions.
- Negative: increases the relative value of being a multinational.
 - \Rightarrow Offshores export production.
 - \Rightarrow Downward-pressure on domestic activity.

- Depends on selection effects that move in both directions.
- Negative: increases the relative value of being a multinational.
 - \Rightarrow Offshores export production.
 - \Rightarrow Downward-pressure on domestic activity.
- Positive: "greater competitiveness" of U.S. firms.

- Depends on selection effects that move in both directions.
- Negative: increases the relative value of being a multinational.
 - \Rightarrow Offshores export production.
 - \Rightarrow Downward-pressure on domestic activity.
- Positive: "greater competitiveness" of U.S. firms.
 - \Rightarrow Increases the value to being a U.S. startup firm.

- Depends on selection effects that move in both directions.
- Negative: increases the relative value of being a multinational.
 - \Rightarrow Offshores export production.
 - \Rightarrow Downward-pressure on domestic activity.
- Positive: "greater competitiveness" of U.S. firms.
 - \Rightarrow Increases the value to being a U.S. startup firm.
 - \Rightarrow Higher domestic firm entry.

- Depends on selection effects that move in both directions.
- Negative: increases the relative value of being a multinational.
 - \Rightarrow Offshores export production.
 - \Rightarrow Downward-pressure on domestic activity.
- Positive: "greater competitiveness" of U.S. firms.
 - \Rightarrow Increases the value to being a U.S. startup firm.
 - \Rightarrow Higher domestic firm entry.
 - \Rightarrow Raises U.S. labour wages and drives out unproductive firms.

- Depends on selection effects that move in both directions.
- Negative: increases the relative value of being a multinational.
 - \Rightarrow Offshores export production.
 - \Rightarrow Downward-pressure on domestic activity.
- Positive: "greater competitiveness" of U.S. firms.
 - \Rightarrow Increases the value to being a U.S. startup firm.
 - \Rightarrow Higher domestic firm entry.
 - \Rightarrow Raises U.S. labour wages and drives out unproductive firms.
 - \Rightarrow Upward-pressure on domestic activity.

- Depends on selection effects that move in both directions.
- Negative: increases the relative value of being a multinational.
 - \Rightarrow Offshores export production.
 - \Rightarrow Downward-pressure on domestic activity.
- Positive: "greater competitiveness" of U.S. firms.
 - \Rightarrow Increases the value to being a U.S. startup firm.
 - \Rightarrow Higher domestic firm entry.
 - \Rightarrow Raises U.S. labour wages and drives out unproductive firms.
 - \Rightarrow Upward-pressure on domestic activity.
- Overall impact is a quantitative question.

• For tax reforms that target multinationals.

- For tax reforms that target multinationals.
- (a) Heterogeneity matters.

- For tax reforms that target multinationals.
- (a) Heterogeneity matters.
 - Remove repatriation tax and compare across steady states.

- For tax reforms that target multinationals.
- (a) Heterogeneity matters.
 - Remove repatriation tax and compare across steady states.
 - Has a quantitatively significant effect on macroeconomy.

- For tax reforms that target multinationals.
- (a) Heterogeneity matters.
 - Remove repatriation tax and compare across steady states.
 - Has a quantitatively significant effect on macroeconomy.
 - \uparrow productivity (1.2%), GDP (0.4%), wage (0.2%), welfare (0.2%).

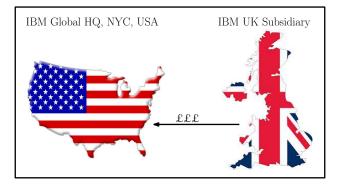
- For tax reforms that target multinationals.
- (a) Heterogeneity matters.
 - Remove repatriation tax and compare across steady states.
 - Has a quantitatively significant effect on macroeconomy.
 - \uparrow productivity (1.2%), GDP (0.4%), wage (0.2%), welfare (0.2%).
 - Approximate U.S. revenue neutrality.

- For tax reforms that target multinationals.
- (a) Heterogeneity matters.
 - Remove repatriation tax and compare across steady states.
 - Has a quantitatively significant effect on macroeconomy.
 - \uparrow productivity (1.2%), GDP (0.4%), wage (0.2%), welfare (0.2%).
 - Approximate U.S. revenue neutrality.

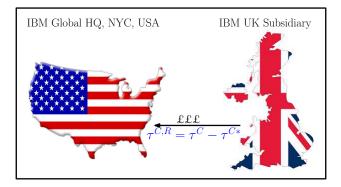
(b) Dynamics matter.

- For tax reforms that target multinationals.
- (a) Heterogeneity matters.
 - Remove repatriation tax and compare across steady states.
 - Has a quantitatively significant effect on macroeconomy.
 - \uparrow productivity (1.2%), GDP (0.4%), wage (0.2%), welfare (0.2%).
 - Approximate U.S. revenue neutrality.
- (b) Dynamics matter.
 - Remove repatriation tax and study transition between steady states.

- For tax reforms that target multinationals.
- (a) Heterogeneity matters.
 - Remove repatriation tax and compare across steady states.
 - Has a quantitatively significant effect on macroeconomy.
 - \uparrow productivity (1.2%), GDP (0.4%), wage (0.2%), welfare (0.2%).
 - Approximate U.S. revenue neutrality.
- (b) Dynamics matter.
 - Remove repatriation tax and study transition between steady states.
 - Some positive steady state effects are partially offset.

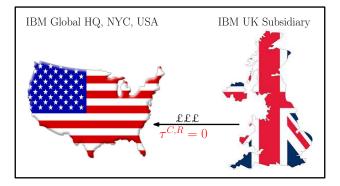

- For tax reforms that target multinationals.
- (a) Heterogeneity matters.
 - Remove repatriation tax and compare across steady states.
 - Has a quantitatively significant effect on macroeconomy.
 - \uparrow productivity (1.2%), GDP (0.4%), wage (0.2%), welfare (0.2%).
 - Approximate U.S. revenue neutrality.
- (b) Dynamics matter.
 - Remove repatriation tax and study transition between steady states.
 - Some positive steady state effects are partially offset.
 - \uparrow welfare smaller (0.1%) when accounting for transition.

- For tax reforms that target multinationals.
- (a) Heterogeneity matters.
 - Remove repatriation tax and compare across steady states.
 - Has a quantitatively significant effect on macroeconomy.
 - \uparrow productivity (1.2%), GDP (0.4%), wage (0.2%), welfare (0.2%).
 - Approximate U.S. revenue neutrality.
- (b) Dynamics matter.
 - Remove repatriation tax and study transition between steady states.
 - Some positive steady state effects are partially offset.
 - \uparrow welfare smaller (0.1%) when accounting for transition.
- (c) Financial frictions matter.


- For tax reforms that target multinationals.
- (a) Heterogeneity matters.
 - Remove repatriation tax and compare across steady states.
 - Has a quantitatively significant effect on macroeconomy.
 - \uparrow productivity (1.2%), GDP (0.4%), wage (0.2%), welfare (0.2%).
 - Approximate U.S. revenue neutrality.
- (b) Dynamics matter.
 - Remove repatriation tax and study transition between steady states.
 - Some positive steady state effects are partially offset.
 - \uparrow welfare smaller (0.1%) when accounting for transition.
- (c) Financial frictions matter.
 - Reform looks better in the presence of financial frictions.

- For tax reforms that target multinationals.
- (a) Heterogeneity matters.
 - Remove repatriation tax and compare across steady states.
 - Has a quantitatively significant effect on macroeconomy.
 - \uparrow productivity (1.2%), GDP (0.4%), wage (0.2%), welfare (0.2%).
 - Approximate U.S. revenue neutrality.
- (b) Dynamics matter.
 - Remove repatriation tax and study transition between steady states.
 - Some positive steady state effects are partially offset.
 - \uparrow welfare smaller (0.1%) when accounting for transition.
- (c) Financial frictions matter.
 - Reform looks better in the presence of financial frictions.
 - Steady state welfare decreases when frictions are shut-down.

U.S. Repatriation Tax: Institutional Details


U.S. Repatriation Tax: Institutional Details

• $\tau^{C,R} = \tau^C - \tau^{C*}$ is the U.S. repatriation tax rate pre-reform where

- τ^{C} is U.S. domestic corporate tax rate (35%),
- $\tau^{{\cal C}*}$ is foreign domestic corporate tax rate.

U.S. Repatriation Tax: Institutional Details

• $\tau^{C,R} = \tau^C - \tau^{C*}$ is the U.S. repatriation tax rate pre-reform where

- τ^{C} is U.S. domestic corporate tax rate (35%),
- $\tau^{\mathit{C}*}$ is foreign domestic corporate tax rate.
- $\tau^{C,R} = 0$ post-reform.

Roadmap

1 Introduction

Prologue Model: the Static Partial Equilibrium Case

3 Quantitative Model

Quantitative Results: Removing the Repatriation Tax

6 Conclusion

Prologue Model

• How do these tax reforms targeted at multinationals affect the entire firm cross-section?

Prologue Model

- How do these tax reforms targeted at multinationals affect the entire firm cross-section?
- Start by focusing on the export-FDI decision in a simple partial equilibrium context.

Prologue Model

- How do these tax reforms targeted at multinationals affect the entire firm cross-section?
- Start by focusing on the export-FDI decision in a simple partial equilibrium context.
- In the context of removing the repatriation tax.

Spencer (Nottingham, UK)

Prologue Model Setup

• Two Countries: Home (H) and Foreign (F).

- Two Countries: Home (H) and Foreign (F).
- One good: made by heterogeneous H firms.

- Two Countries: Home (H) and Foreign (F).
- One good: made by heterogeneous H firms.
- All from the perspective of H firms: fixed unit mass. No F firms.

- Two Countries: Home (H) and Foreign (F).
- One good: made by heterogeneous H firms.
- All from the perspective of H firms: fixed unit mass. No F firms.
- Corporate tax rates: τ^{C} for H earnings, τ^{C*} for F earnings and $\tau^{C,U} = \tau^{C} \tau^{C*}$ for repatriated F earnings.

- Two Countries: Home (H) and Foreign (F).
- One good: made by heterogeneous H firms.
- All from the perspective of H firms: fixed unit mass. No F firms.
- Corporate tax rates: τ^{C} for H earnings, τ^{C*} for F earnings and $\tau^{C,U} = \tau^{C} \tau^{C*}$ for repatriated F earnings.
- Draw productivity $\theta \in \mathcal{U}[\underline{\theta}, \overline{\theta}]$.

- Two Countries: Home (H) and Foreign (F).
- One good: made by heterogeneous H firms.
- All from the perspective of H firms: fixed unit mass. No F firms.
- Corporate tax rates: τ^{C} for H earnings, τ^{C*} for F earnings and $\tau^{C,U} = \tau^{C} \tau^{C*}$ for repatriated F earnings.
- Draw productivity $\theta \in \mathcal{U}[\underline{\theta}, \overline{\theta}]$.
- Production function $y = \theta$ for output y.

• Firms are price-takers.

Spencer (Nottingham, UK)

- Firms are price-takers.
- Price of goods in H is unity: P^{H*} for price in F.

- Firms are price-takers.
- Price of goods in H is unity: P^{H*} for price in F.
- Assume inelastic demand for goods made by H firms in F.

- Firms are price-takers.
- Price of goods in H is unity: P^{H*} for price in F.
- Assume inelastic demand for goods made by H firms in F.
- P^{H*} clears the market for H goods in F.

• Discrete choice setup as in Helpman, Melitz, & Yeaple (2004).

- Discrete choice setup as in Helpman, Melitz, & Yeaple (2004).
- Firms make discrete choice to maximise payoff to shareholders.

- Discrete choice setup as in Helpman, Melitz, & Yeaple (2004).
- Firms make discrete choice to maximise payoff to shareholders.
- Conditional on θ :

- Discrete choice setup as in Helpman, Melitz, & Yeaple (2004).
- Firms make discrete choice to maximise payoff to shareholders.
- Conditional on θ :
 - Exit (E): zero payoff.

- Discrete choice setup as in Helpman, Melitz, & Yeaple (2004).
- Firms make discrete choice to maximise payoff to shareholders.
- Conditional on θ :
 - Exit (E): zero payoff.
 - Pure domestic (D): sell to H market only.

- Discrete choice setup as in Helpman, Melitz, & Yeaple (2004).
- Firms make discrete choice to maximise payoff to shareholders.
- Conditional on θ :
 - Exit (E): zero payoff.
 - Pure domestic (D): sell to H market only.
 - Exporter (X): produce goods in H for sale in F.

- Discrete choice setup as in Helpman, Melitz, & Yeaple (2004).
- Firms make discrete choice to maximise payoff to shareholders.
- Conditional on θ :
 - Exit (E): zero payoff.
 - Pure domestic (D): sell to H market only.
 - Exporter (X): produce goods in H for sale in F.
 - Multinational (M): produce goods in F for sale in F.

- Discrete choice setup as in Helpman, Melitz, & Yeaple (2004).
- Firms make discrete choice to maximise payoff to shareholders.
- Conditional on θ :
 - Exit (E): zero payoff.
 - Pure domestic (D): sell to H market only.
 - Exporter (X): produce goods in H for sale in F.
 - Multinational (M): produce goods in F for sale in F.
- Fixed capital expenditure of x^D if non-exiting.

- Discrete choice setup as in Helpman, Melitz, & Yeaple (2004).
- Firms make discrete choice to maximise payoff to shareholders.
- Conditional on θ :
 - Exit (E): zero payoff.
 - Pure domestic (D): sell to H market only.
 - Exporter (X): produce goods in H for sale in F.
 - Multinational (M): produce goods in F for sale in F.
- Fixed capital expenditure of x^D if non-exiting.
- Exporter and multinational incur additional fixed costs x^X and x^M respectively.

- Discrete choice setup as in Helpman, Melitz, & Yeaple (2004).
- Firms make discrete choice to maximise payoff to shareholders.
- Conditional on θ :
 - Exit (E): zero payoff.
 - Pure domestic (D): sell to H market only.
 - Exporter (X): produce goods in H for sale in F.
 - Multinational (M): produce goods in F for sale in F.
- Fixed capital expenditure of x^D if non-exiting.
- Exporter and multinational incur additional fixed costs x^X and x^M respectively.
- Tradeoff: x^M > x^X, exporters incur proportional iceberg variable cost of i ∈ [0, 1].

$$V(\theta) = \max[V^{E}(\theta), V^{D}(\theta), V^{X}(\theta), V^{M}(\theta)]$$

$$V^{E}(\theta) = 0$$

$$V^{D}(\theta) = -x^{D} + (1 - \tau^{C})\theta$$

$$V^{X}(\theta) = -x^{D} - x^{X} + (1 - \tau^{C})\theta + (1 - \tau^{C})(1 - i)P^{H*}\theta$$

$$V^{M}(\theta) = -x^{D} - x^{M} + (1 - \tau^{C})\theta + \underbrace{(1 - \tau^{C}, U - \tau^{C*})}P^{H*}\theta$$

$$V(\theta) = \max[V^{E}(\theta), V^{D}(\theta), V^{X}(\theta), V^{M}(\theta)]$$

$$V^{E}(\theta) = 0$$

$$V^{D}(\theta) = -x^{D} + (1 - \tau^{C})\theta$$

$$V^{X}(\theta) = -x^{D} - x^{X} + (1 - \tau^{C})\theta + (1 - \tau^{C})(1 - i)P^{H*}\theta$$

$$V^{M}(\theta) = -x^{D} - x^{M} + (1 - \tau^{C})\theta + \underbrace{(1 - \tau^{C}, U - \tau^{C*})}_{\text{Pre-reform: }(1 - \tau^{C})}P^{H*}\theta$$

$$V(\theta) = \max[V^{E}(\theta), V^{D}(\theta), V^{X}(\theta), V^{M}(\theta)]$$

$$V^{E}(\theta) = 0$$

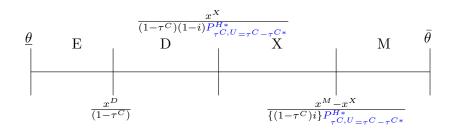
$$V^{D}(\theta) = -x^{D} + (1 - \tau^{C})\theta$$

$$V^{X}(\theta) = -x^{D} - x^{X} + (1 - \tau^{C})\theta + (1 - \tau^{C})(1 - i)P^{H*}\theta$$

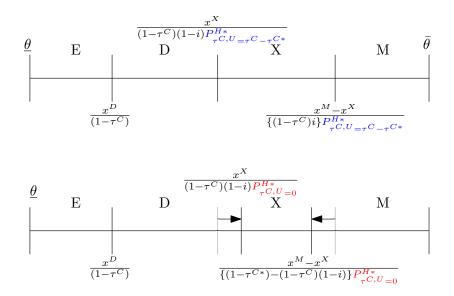
$$V^{M}(\theta) = -x^{D} - x^{M} + (1 - \tau^{C})\theta + \underbrace{(1 - \tau^{C}, U - \tau^{C*})}_{\text{Post-reform: }(1 - \tau^{C*})}P^{H*}\theta$$

Spencer (Nottingham, UK)

$$V(\theta) = \max[V^{E}(\theta), V^{D}(\theta), V^{X}(\theta), V^{M}(\theta)]$$


$$V^{E}(\theta) = 0$$

$$V^{D}(\theta) = -x^{D} + (1 - \tau^{C})\theta$$


$$V^{X}(\theta) = -x^{D} - x^{X} + (1 - \tau^{C})\theta + (1 - \tau^{C})(1 - i)P^{H*}\theta$$

$$V^{M}(\theta) = -x^{D} - x^{M} + (1 - \tau^{C})\theta + \underbrace{(1 - \tau^{C}, U - \tau^{C*})}_{\text{Post-reform: }(1 - \tau^{C*})} \stackrel{P^{H*}}{\to} \theta$$

Prologue Model: Pre-Reform

Prologue Model: Post-Reform

• Cross-sectional effects on the export-FDI decision come through:

- Cross-sectional effects on the export-FDI decision come through:
 - (1) Direct effect: tax savings.

- Cross-sectional effects on the export-FDI decision come through:
 - (1) Direct effect: tax savings.
 - (2) Terms of trade effect: lower goods price abroad.

- Cross-sectional effects on the export-FDI decision come through:
 - (1) Direct effect: tax savings.
 - (2) Terms of trade effect: lower goods price abroad.
- How does the reform affect the exit-domestic decision?

- Cross-sectional effects on the export-FDI decision come through:
 - (1) Direct effect: tax savings.
 - (2) Terms of trade effect: lower goods price abroad.
- How does the reform affect the exit-domestic decision?
- How do financial frictions impact the equilibrium effects?

- Cross-sectional effects on the export-FDI decision come through:
 - (1) Direct effect: tax savings.
 - (2) Terms of trade effect: lower goods price abroad.
- How does the reform affect the exit-domestic decision?
- How do financial frictions impact the equilibrium effects?
- Need a quantitative model.

Roadmap

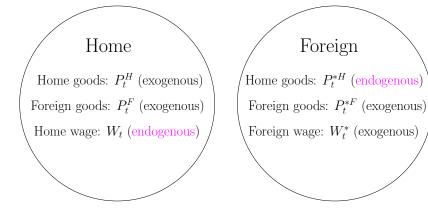
1 Introduction

2 Prologue Model: the Static Partial Equilibrium Case

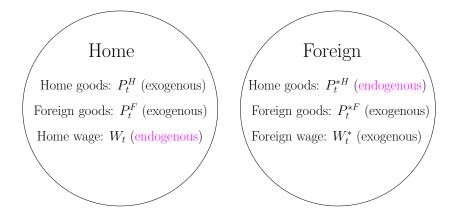
Quantitative Model

5 Quantitative Results: Removing the Repatriation Tax

6 Conclusion


• Fully dynamic in discrete time.

- Fully dynamic in discrete time.
- Six agents: households, firms and government in H and F.


- Fully dynamic in discrete time.
- Six agents: households, firms and government in H and F.
- Focus is on heterogeneous H firms; all others are representative.

- Fully dynamic in discrete time.
- Six agents: households, firms and government in H and F.
- Focus is on heterogeneous H firms; all others are representative.
- H firms make one variety, F firms make another.

- Fully dynamic in discrete time.
- Six agents: households, firms and government in H and F.
- Focus is on heterogeneous H firms; all others are representative.
- H firms make one variety, F firms make another.
- Households want to consume both varieties.

• Home Country is a "small open economy".

- Home Country is a "small open economy".
- Exogenous demand curve for Home goods in Foreign.

• H firms draw idiosyncratic productivity shocks from persistent distribution

$$\log(\theta_t) = \rho_{\theta} \log(\theta_{t-1}) + \epsilon_{t,\theta}, \ \ \epsilon_{t,\theta} \sim N(0, \sigma_{\theta}^2)$$

• H firms draw idiosyncratic productivity shocks from persistent distribution

$$\log(\theta_t) = \rho_{\theta} \log(\theta_{t-1}) + \epsilon_{t,\theta}, \ \ \epsilon_{t,\theta} \sim N(0, \sigma_{\theta}^2)$$

• Produce using capital $(k_t^H \text{ in } H \text{ and } k_t^{H*} \text{ in } F)$ and labour in each country.

• H firms draw idiosyncratic productivity shocks from persistent distribution

$$\log(\theta_t) = \rho_{\theta} \log(\theta_{t-1}) + \epsilon_{t,\theta}, \ \ \epsilon_{t,\theta} \sim N(0, \sigma_{\theta}^2)$$

- Produce using capital (k^H_t in H and k^{H*}_t in F) and labour in each country.
- Capital adjustment costs.

$$\Phi(i_t^c,k_t^c) = rac{\phi_c}{2} rac{(i_t^c)^2}{k_t^c} \;\; ext{for} \; c \in \{H,F\}$$

• H firms draw idiosyncratic productivity shocks from persistent distribution

$$\log(\theta_t) = \rho_{\theta} \log(\theta_{t-1}) + \epsilon_{t,\theta}, \ \ \epsilon_{t,\theta} \sim N(0, \sigma_{\theta}^2)$$

- Produce using capital $(k_t^H \text{ in } H \text{ and } k_t^{H*} \text{ in } F)$ and labour in each country.
- Capital adjustment costs.

$$\Phi(i_t^c, k_t^c) = \frac{\phi_c}{2} \frac{(i_t^c)^2}{k_t^c} \text{ for } c \in \{H, F\}$$

 Same selection setup as prologue model: exit the industry (E), be a domestic firm (D), exporter (X) or multinational (M).

• H firms draw idiosyncratic productivity shocks from persistent distribution

$$\log(\theta_t) = \rho_{\theta} \log(\theta_{t-1}) + \epsilon_{t,\theta}, \ \ \epsilon_{t,\theta} \sim N(0, \sigma_{\theta}^2)$$

- Produce using capital $(k_t^H \text{ in } H \text{ and } k_t^{H*} \text{ in } F)$ and labour in each country.
- Capital adjustment costs.

$$\Phi(i_t^c, k_t^c) = \frac{\phi_c}{2} \frac{(i_t^c)^2}{k_t^c} \text{ for } c \in \{H, F\}$$

- Same selection setup as prologue model: exit the industry (E), be a domestic firm (D), exporter (X) or multinational (M).
- Fixed capital and operating expenses of each status: (x^l, x^{l,O}) for l ∈ {D, X, M}.

• H firms can raise external financing at Home: equity and debt.

- H firms can raise external financing at Home: equity and debt.
- New equity (e) is raised at a premium $\zeta(e)$

$$\zeta(e) = \eta_0 + \eta_1 |e| + \eta_2 e^2$$

- H firms can raise external financing at Home: equity and debt.
- New equity (e) is raised at a premium $\zeta(e)$

$$\zeta(e) = \eta_0 + \eta_1 |e| + \eta_2 e^2$$

• Can borrow b_t with debt tax shields (interest tax deductions) up to liquidation value of capital stocks.

$$b_{t+1} \leq \xi^H k_{t+1}^H + \xi^{H*} k_{t+1}^{H*}$$

• Homeland Investment Act (2004): one-time repatriation tax holiday.

- Homeland Investment Act (2004): one-time repatriation tax holiday.
- Model incorporates occasional repatriation tax holidays pre-reform:

- Homeland Investment Act (2004): one-time repatriation tax holiday.
- Model incorporates occasional repatriation tax holidays pre-reform:
 - Stochastic repatriation tax rate pre-reform $\tau_t^{C,U}$.

- Homeland Investment Act (2004): one-time repatriation tax holiday.
- Model incorporates occasional repatriation tax holidays pre-reform:
 - Stochastic repatriation tax rate pre-reform $\tau_t^{C,U}$.
 - Some probability of statutory rate $\tau^{C} \tau^{C*}$ with complementary probability of temporary zero rate.

• Apple Sells \$12 Billion of Bonds to Keep Cash Overseas (Bloomberg, 2014).

- Apple Sells \$12 Billion of Bonds to Keep Cash Overseas (Bloomberg, 2014).
- Model allows multinationals to defer repatriation and wait for a tax holiday pre-reform.

- Apple Sells \$12 Billion of Bonds to Keep Cash Overseas (Bloomberg, 2014).
- Model allows multinationals to defer repatriation and wait for a tax holiday pre-reform.
- Can borrow against their overseas earnings while they wait:

$$b_{t+1} \leq \xi^H k_{t+1}^H + \xi^{H*} k_{t+1}^{H*}$$

Quantitative Model Equilibrium: Incumbents

• Denote an incumbent's state vector $\vec{\varphi}_t = (k_t^H, k_t^{H*}, b_t, \theta_t, \tau_t^{C,U})$.

Quantitative Model Equilibrium: Incumbents

- Denote an incumbent's state vector $\vec{\varphi}_t = (k_t^H, k_t^{H*}, b_t, \theta_t, \tau_t^{C,U})$.
- Seek to maximise present value to equityholders.

Quantitative Model Equilibrium: Incumbents

- Denote an incumbent's state vector $\vec{\varphi}_t = (k_t^H, k_t^{H*}, b_t, \theta_t, \tau_t^{C,U})$.
- Seek to maximise present value to equityholders.
- Make discrete choice conditional on state vector

$$V_t(\vec{\varphi}_t) = \max_{s \in \{E, D, X, M\}} V_t^s(\vec{\varphi}_t)$$

• Denote $s_{t-1}(\vec{\varphi}_{t-1}) \in \{D, X, M\}$ the state of the firm last period.

Quantitative Model Equilibrium: Incumbent Exiting

$$V_t^E(\vec{\varphi_t}) = \underbrace{\xi^H k_t^H + \xi^{H*} k_t^{H*}}_{\text{Liquidation value of capital stocks}} - \underbrace{b_t}_{\text{Debt obligation}} \text{ for } \xi^H, \xi^{H*} \in [0, 1]$$

Quantitative Model Equilibrium: Incumbent Domestic

Quantitative Model Equilibrium: Incumbent Exporter

$$V_t^X(\vec{\varphi}_t) = \max_{\{k_{t+1}^H, b_{t+1}\}} d_t^X(\vec{\varphi}_t) + \beta \mathbb{E}_t[V_{t+1}(\vec{\varphi}_{t+1})]$$

$$d_t^X(\vec{\varphi}_t) = e_t^X(\vec{\varphi}_t) - \mathbb{1}_{e_t^X(\vec{\varphi}_t) < 0}\zeta(e_t^X(\vec{\varphi}_t))$$

$$e^{X}(\vec{\varphi_t}) = (1 - \tau^{C}) \left(\theta_t(k_t^{H})^{\alpha} (n_t^{H})^{\gamma} - W_t n_t^{H} - x^{D,O} \right) - i_t^{H} - \Phi^{H}(i_t^{H}, k_t^{H})$$

+
$$(1-\tau^{C})\left(\{1-i\}P_{t}^{H*}\theta_{t}(k_{t}^{H})^{\alpha}(n_{t}^{X})^{\gamma}-W_{t}n_{t}^{X}-x^{X,O}\right)$$

Earnings from export sales

$$-\underbrace{(1-\mathbb{1}_{s_{t-1}=X})x^{X}}_{\text{Initial X fixed capex}} + \xi^{H*}k_{t}^{H*} + \frac{b_{t+1}}{1+r} - b_{t} + b_{t}\left(1-\frac{1}{1+r}\right)\tau^{C}$$

$$i_t^H = k_{t+1}^H - (1 - 2\delta)k_t^H$$

 $b_{t+1} \leq \xi^H k_{t+1}^H.$

Quantitative Model Equilibrium: Incumbent Multinational

$$\begin{split} V_{t}^{M}(\vec{\varphi}_{t}) &= \max_{\{k_{t+1}^{H}, k_{t+1}^{H}, b_{t+1}\}} d_{t}^{M}(\vec{\varphi}_{t}) + \beta \mathbb{E}_{t}[V_{t+1}(\vec{\varphi}_{t+1})] \\ d_{t}^{M}(\vec{\varphi}_{t}) &= e_{t}^{M}(\vec{\varphi}_{t}) - \mathbb{1}_{e_{t}^{M}(\vec{\varphi}_{t}) < 0} \zeta(e_{t}^{M}(\vec{\varphi}_{t})) \\ e^{M}(\vec{\varphi}_{t}) &= (1 - \tau^{C}) \left(\theta_{t}(k_{t}^{H})^{\alpha}(n_{t}^{H})^{\gamma} - W_{t}n_{t}^{H} - x^{D,O} \right) - i_{t}^{H} - \Phi^{H}(i_{t}^{H}, k_{t}^{H}) \\ &+ \underbrace{u_{t}(\vec{\varphi}_{t})}_{\text{Repatriations}} \times \left\{ \mathbb{1}_{u_{t}(\vec{\varphi}_{t}) \geq 0} \left(\frac{1 - \tau_{t}^{C,U} - \tau^{C*}}{1 - \tau^{C*}} \right) + \mathbb{1}_{u_{t}(\vec{\varphi}_{t}) < 0} \right\} \\ &- \underbrace{(1 - \mathbb{1}_{s_{t-1}(\vec{\varphi}_{t-1}) = M}) x^{M}}_{\text{Initial M fixed capex}} + \frac{b_{t+1}}{1 + r} - b_{t} + b_{t} \left(1 - \frac{1}{1 + r} \right) \tau^{C} \end{split}$$

 $u_{t}(\vec{\varphi_{t}}) = (1 - \tau^{C*}) \left(P_{t}^{H*} \theta_{t}(k_{t}^{H*})^{\alpha} (n_{t}^{H*})^{\gamma} - W_{t}^{*} n_{t}^{H*} - x^{M*,O} \right) - i_{t}^{H*} - \Phi^{H*}(i_{t}^{H*}, k_{t}^{H*})$

$$i_t^H = k_{t+1}^H - (1 - \delta)k_t^H$$
$$i_t^{H*} = k_{t+1}^{H*} - (1 - \delta)k_t^{H*}$$
$$b_{t+1} \le \xi^H k_{t+1}^H + \xi^{H*} k_{t+1}^{H*}.$$

1

Quantitative Model Equilibrium: New Entrant

• New entrants always start as domestic firms.

$$\begin{split} V_t^N &= \max_{\{k_{t+1}^H, b_{t+1}\}} -i_t^H - x^D + \frac{b_{t+1}}{1+r} + \beta \mathbb{E}_t^N [V_{t+1}(\vec{\varphi}_{t+1})] \\ i_t^H &= k_{t+1}^H \\ b_{t+1} &\leq \xi^H k_{t+1}^H. \end{split}$$

Roadmap

Introduction

2 Prologue Model: the Static Partial Equilibrium Case

3 Quantitative Model

4 Calibration of Quantitative Model

Quantitative Results: Removing the Repatriation Tax

6 Conclusion

• Discipline the model with data to answer the quantitative questions:

- Discipline the model with data to answer the quantitative questions:
 - (i) Does heterogeneity matter?

- Discipline the model with data to answer the quantitative questions:
 - (i) Does heterogeneity matter?
 - (ii) Do dynamics matter?

- Discipline the model with data to answer the quantitative questions:
 - (i) Does heterogeneity matter?
 - (ii) Do dynamics matter?
 - (iii) Do financial frictions matter?

Parameters Calibrated Inside the Model

Name	Variable	Value	Moment Targeted
x ^D	Fixed CAPEX for entry	0.48	Exit/entry rate
x ^X	Fixed CAPEX for exporter	0.70	Transition probability (D,X)
x ^M	Fixed CAPEX for multinational	1.30	Transition probability (D,M)
<i>x</i> ^{<i>D</i>,0}	Fixed OPEX for domestic	0.30	Transition probability (D,D)
x ^{X,0}	Fixed OPEX for exporter	0.21	Transition probability (X,X)
<i>x</i> ^{<i>M</i>*,<i>O</i>}	Fixed OPEX for multinational	1.17	Transition probability (M,M)
ϕ	Adjustment cost scaling	0.05	Mean investment to book ratio
ζ_0	Equity issuance cost	0.05	Fraction of firms issuing equity
ζ_1	Equity issuance cost	0.02	Mean issuance to book ratio
ζ_2	Equity issuance cost	0.01	Std. dev. issuance to book ratio

Parameters Calibrated Inside the Model

Name	Variable	Value	Moment Targeted
x^D	Fixed CAPEX for entry	0.48	Exit/entry rate
x ^X	Fixed CAPEX for exporter	0.70	Transition probability (D,X)
<i>x^M</i>	Fixed CAPEX for multinational	1.30	Transition probability (D,M)
<i>x</i> ^{<i>D</i>,<i>O</i>}	Fixed OPEX for domestic	0.30	Transition probability (D,D)
x ^{X,O}	Fixed OPEX for exporter	0.21	Transition probability (X,X)
x ^{M*,0}	Fixed OPEX for multinational	1.17	Transition probability (M,M)
ϕ	Adjustment cost scaling	0.05	Mean investment to book ratio
ζ_0	Equity issuance cost	0.05	Fraction of firms issuing equity
ζ_1	Equity issuance cost	0.02	Mean issuance to book ratio
ζ_2	Equity issuance cost	0.01	Std. dev. issuance to book ratio

Parameters Calibrated Inside the Model

Name	Variable	Value	Moment Targeted
x^D	Fixed CAPEX for entry	0.48	Exit/entry rate
x ^X	Fixed CAPEX for exporter	0.70	Transition probability (D,X)
<i>x^M</i>	Fixed CAPEX for multinational	1.30	Transition probability (D,M)
<i>x</i> ^{<i>D</i>,<i>O</i>}	Fixed OPEX for domestic	0.30	Transition probability (D,D)
x ^{X,O}	Fixed OPEX for exporter	0.21	Transition probability (X,X)
x ^{M*,0}	Fixed OPEX for multinational	1.17	Transition probability (M,M)
ϕ	Adjustment cost scaling	0.05	Mean investment to book ratio
ζ0	Equity issuance cost	0.05	Fraction of firms issuing equity
ζ_1	Equity issuance cost	0.02	Mean issuance to book ratio
ζ2	Equity issuance cost	0.01	Std. dev. issuance to book ratio

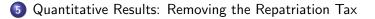
Transition Probabilities

Data Transition Probabilities				
t/t+1	Domestic	Exporter	Multinational	Exit
Domestic	84.62	5.41	0.03	9.93
Exporter	13.14	80.69	0.84	5.32
Multinational	0.27	1.86	91.75	6.13
Entrant	85.95	12.89	1.18	

Model Transition Probabilities (* targeted moments)					
t/t+1	Domestic	Exporter	Multinational	Exit	
Domestic	76.90*	6.05*	0.07*	17.33	
Exporter	10.69	85.21*	4.10	0.00	
Multinational	14.70	0.00	85.30*	0.00	
Entrant	95.00	0.05	0.00		

Data source: U.S. census from Boehm, Flaaen, Nayar (2016)

Other Moments


Targeted Moment	Data (%)	Model (%)
Fraction of firms issuing equity	33.14	30.14
Mean equity issuance to book ratio	5.60	4.52
S.D. of equity issuance to book ratio	21.41	20.92
Mean investment to book ratio	5.80	8.32
Exit rate	9.55	8.75
Untargeted Moment	Data (%)	Model (%)
Aggregate repatriations to F earnings	7.33	9.31
Productivity advantage (X over D)	38.80	37.45
Productivity advantage (M over D)	53.70	48.21
Mean debt to book ratio	18.77	23.22
S.D. of debt to book ratio	41.01	37.89
Fraction of exporting (X) firms	15.64	23.02
Fraction of multinational (M) firms	5.60	7.12

Data sources: Compustat, BEA, Helpman, Melitz, & Yeaple (2004)

Roadmap

Introduction

- 2 Prologue Model: the Static Partial Equilibrium Case
- 3 Quantitative Model
- 4
- Calibration of Quantitative Model

• Start in pre-reform steady state with $\tau_t^{C,U} \ge 0$.

- Start in pre-reform steady state with $\tau_t^{C,U} \ge 0$.
- Three sets of quantitative results:

- Start in pre-reform steady state with $\tau_t^{C,U} \ge 0$.
- Three sets of quantitative results:

(1) Set $\tau_t^{C,U} = 0$ and study effect on steady state ('long-run').

- Start in pre-reform steady state with $\tau_t^{C,U} \ge 0$.
- Three sets of quantitative results:

(I) Set $\tau_t^{C,U} = 0$ and study effect on steady state ('long-run').

(II) Set $\tau_t^{C,U} = 0$ and study effect on transition ('short-run').

Counterfactual Design

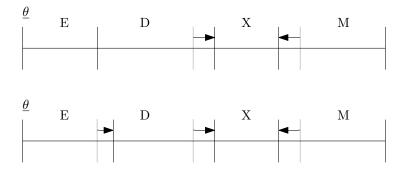
- Start in pre-reform steady state with $\tau_t^{C,U} \ge 0$.
- Three sets of quantitative results:

(1) Set $\tau_t^{C,U} = 0$ and study effect on steady state ('long-run').

(II) Set $\tau_t^{C,U} = 0$ and study effect on transition ('short-run').

(III) Set $\zeta_0 = \zeta_1 = \zeta_2$ and re-run exercise (I) above (financial frictions).

(I) Long-run results: does heterogeneity matter?



Variable	Change (%)
U.S. goods price in Foreign (P^{H*})	-0.44

Variable	Change (%)
U.S. goods price in Foreign (P^{H*})	-0.44
Measure of U.S. firms	1.39

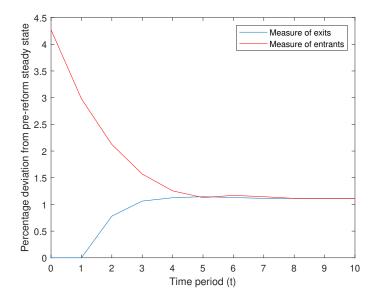
-

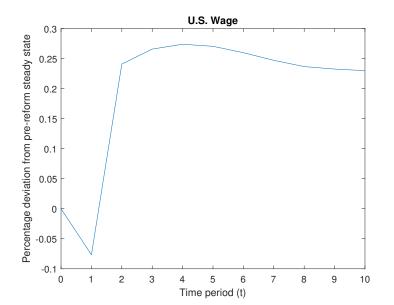
Variable	Change (%)
U.S. goods price in Foreign (P^{H*})	-0.44
Measure of U.S. firms	1.39
U.S. wage (W)	0.23

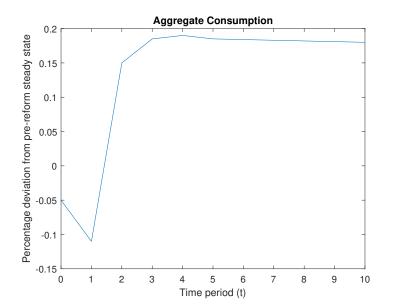
Moment	Pre-reform	Post-reform
Entry/exit rate	8.75	8.78
Fraction of exporting (X) firms	23.02	22.90
Fraction of multinational (M) firms	7.12	7.24

Firm Status	Change (%)
Multinational	-0.17
Exporter	0.01
Domestic	0.03
Exiter	0.09

Percentage changes in average productivity


Variable	Change (%)
Domestic output	0.40
Exports	-0.30
Productivity	1.18
Dividends	0.68
U.S. Government taxes	-0.05
U.S. Welfare	0.18


(II) Short-run results: do dynamics and transitions matter?


• Start in pre-reform steady state at t = -1.

- Start in pre-reform steady state at t = -1.
- U.S. Government announces the reform at the end of period *t* = 0 to be effective from *t* = 1 onwards.

- Start in pre-reform steady state at t = -1.
- U.S. Government announces the reform at the end of period *t* = 0 to be effective from *t* = 1 onwards.
- Map convergence to new steady state.

(III) Financial Frictions

(III) Do financial frictions matter?

(III) Financial Frictions

Variable	Change (%)	Change (%)
	(Without frictions)	(With frictions)

• In the counterfactual without financial frictions:

Variable	Change (%)	Change (%)
	(Without frictions)	(With frictions)
U.S. goods price in Foreign (P^{H*})	-0.62	-0.44

- In the counterfactual without financial frictions:
 - Terms of trade effect is stronger.

Variable	Change (%)	Change (%)
	(Without frictions)	(With frictions)
U.S. goods price in Foreign (P^{H*})	-0.62	-0.44

- In the counterfactual without financial frictions:
 - Terms of trade effect is stronger.
 - Marginal cost of foreign investment is lower for newly-established multinationals.

Variable	Change (%)	Change (%)
	(Without frictions)	(With frictions)
U.S. goods price in Foreign (P^{H*})	-0.62	-0.44

- In the counterfactual without financial frictions:
 - Terms of trade effect is stronger.
 - Marginal cost of foreign investment is lower for newly-established multinationals.
 - \Rightarrow Larger increase in supply of goods to the foreign market.

(III) Financial Frictions

Variable	Change (%)	Change (%)
	(Without frictions)	(With frictions)
U.S. goods price in Foreign (P^{H*})	-0.62	-0.44

 \Rightarrow Bigger drop in value of exporting.

(III) Financial Frictions

Variable	Change (%)	Change (%)
	(Without frictions)	(With frictions)
U.S. goods price in Foreign (P^{H*})	-0.62	-0.44
Measure of U.S. firms	0.36	1.39

 \Rightarrow Bigger drop in value of exporting.

 \Rightarrow Pushes-back against the pro-competitive effect: weaker entry.

(III) Financial Frictions

Variable	Change (%)	Change (%)
	(Without frictions)	(With frictions)
U.S. goods price in Foreign (P^{H*})	-0.62	-0.44
Measure of U.S. firms	0.36	1.39
U.S. wage (W)	-0.05	0.23

 \Rightarrow Bigger drop in value of exporting.

 \Rightarrow Pushes-back against the pro-competitive effect: weaker entry.

 \Rightarrow Decrease in the U.S. wage.

Variable	Change (%)	Change (%)	
	(Without frictions)	(With frictions)	
Domestic output	0.18	0.40	
Exports	-0.42	-0.30	
Productivity	0.31	1.18	
Dividends	0.10	0.68	
U.S. Government taxes	-0.08	-0.05	
U.S. Welfare	-0.12	0.18	

Roadmap

Introduction

- 2 Prologue Model: the Static Partial Equilibrium Case
- 3 Quantitative Model
- 4) Calibration of Quantitative Model
- 5 Quantitative Results: Removing the Repatriation Tax

6 Conclusion

• How do tax reforms targeted at multinationals affect the domestic macroeconomy?

- How do tax reforms targeted at multinationals affect the domestic macroeconomy?
- I develop a new framework to address this question.

- How do tax reforms targeted at multinationals affect the domestic macroeconomy?
- I develop a new framework to address this question.
- Punchline: quantitative significance of

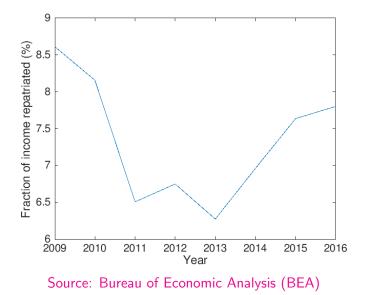
- How do tax reforms targeted at multinationals affect the domestic macroeconomy?
- I develop a new framework to address this question.
- Punchline: quantitative significance of
 - Heterogeneity,

- How do tax reforms targeted at multinationals affect the domestic macroeconomy?
- I develop a new framework to address this question.
- Punchline: quantitative significance of
 - Heterogeneity,
 - Dynamics,

- How do tax reforms targeted at multinationals affect the domestic macroeconomy?
- I develop a new framework to address this question.
- Punchline: quantitative significance of
 - Heterogeneity,
 - Dynamics,
 - Financial frictions.

- How do tax reforms targeted at multinationals affect the domestic macroeconomy?
- I develop a new framework to address this question.
- Punchline: quantitative significance of
 - Heterogeneity,
 - Dynamics,
 - Financial frictions.
- U.S. application: 0.1% ↑ in welfare and approximate revenue neutrality.

Appendix Contents


- Related literature.
- Equilibrium of static model with financial frictions
- Transition probabilities
- Aggregate repatriations data
- Capital structure of U.S. multinationals
- Response of incumbent multinationals to reform.
 - Data
 - Model
- Welfare losses without financial frictions? Theory of second best.

Transition Probabilities

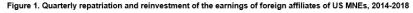
Data Transition Probabilities						
t/t+1	Domestic	Exporter	Multinational	Exit		
Domestic	84.62	5.41	0.03	9.93		
Exporter	13.14	80.69	0.84	5.32		
Multinational	0.27	1.86	91.75	6.13		
Entrant	85.95	12.89	1.18			

Data source: U.S. census from Boehm, Flaaen, Nayar (2016)

Aggregate Repatriations Data

Capital Structure of Multinationals

Multinationals Only						
Variable	Mean	Median	Std. dev.			
Cash/Assets	0.1	0.1	0.2			
Debt/Assets	0.2	0.1	0.3			
Dividends/Assets	0.1	0.0	0.1			
Equity issuance/Assets	0.1	0.3	3.5			


Source: Compustat

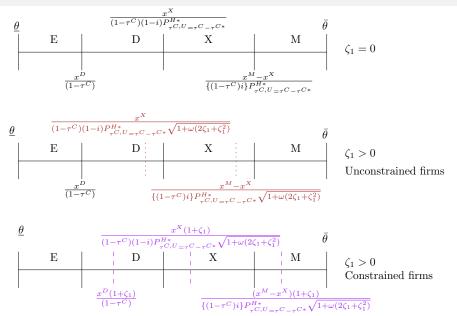
Response of Incumbent Multinationals (Data)

- Homeland Investment Act 2004: "repatriation tax holiday".
 - Temporary reduction to 5.25%.
 - "A \$1 increase in repatriations was associated with an increase of almost \$1 in payouts to shareholders" (Dharmapala et al. (2011)).

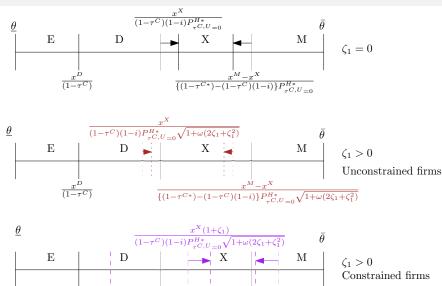
Spencer (Nottingham, UK)

Response of Incumbent Multinationals (Data)

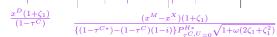
Note: Quarterly repatriated earnings and reinvested earnings sum to the total quarterly earnings of foreign affiliates of US MNEs. Figures are rounded.


Source: US Bureau of Economic Analysis.

Response of Incumbent Multinationals (Model)


- Keep status for a given state the same post-reform as it was pre-reform.
- Keep all prices and the mass of firms constant.

Variable	(%) of Aggregate Response
U.S. output	0.50
Foreign output	-1.20
Dividends	62.30
Debt	-30.20


Static Model with Financial Frictions: Equilibrium

Static Model with Financial Frictions: Counterfactual

Constrained firms

Theory of Second Best

- Why do we get welfare decreasing in the absence of financial frictions?
- Other taxes are in place.
- If there were no other taxes, then domestic wage would be higher.
- More incentive for FDI.
- Fewer pure domestics/exporters: less potential for offshoring.
- Welfare gains: tax savings by MNEs distributed to shareholders.

Related Literature

(1) Heterogeneity, selection effects and international policy reforms.

Melitz (2003), Helpman, Melitz, & Yeaple (2004), Eaton, Kortum, & Kramarz (2011), Antràs & Yeaple (2014), McGrattan & Prescott (2009), Burstein & Monge-Naranjo (2009), Ramondo (2014), Ramondo & Rodríguez-Clare (2013), McGrattan (2012)

(2) Dynamics in trade models.

Alessandria, Choi, & Ruhl (2014), Ruhl & Willis (2017), Fitzgerald, Haller, & Yedid-Levi (2016), Brooks & Dovis (2019), Ravikumar, Santacreu, & Sposi (2017)

Related Literature

(3) Tax reforms and productivity.

Restuccia & Rogerson (2008), Gourio & Miao (2009), Chen, Qi, & Schlagenhauf (2018), Acemoglu, Akcigit, Alp, Bloom, & Kerr (2018)

(4) Structural corporate finance.

Strebulaev & Whited (2012), Riddick & Whited (2009), Nikolov & Whited (2014), Li, Whited, & Wu (2016), Gomes (2001),

(5) Repatriation taxes.

Gu (2017), Curtis, Garın, & Mehkari (2017), Albertus, Glover, & Levine (2018), Arena & Kutner (2015), Foley, Hartzell, Titman, & Twite (2007), Harford, Wang, & Zhang (2017)

- Acemoglu, D., Akcigit, U., Alp, H., Bloom, N., & Kerr, W. (2018). Innovation, reallocation, and growth. *American Economic Review*, 108(11), 3450–91.
- Albertus, J. F., Glover, B., & Levine, O. (2018). Foreign investment of us multinationals: The effect of tax policy and agency conflicts.
- Alessandria, G., Choi, H., & Ruhl, K. (2014). *Trade adjustment dynamics and the welfare gains from trade* (Tech. Rep.). National Bureau of Economic Research.
- Antràs, P., & Yeaple, S. R. (2014). Multinational firms and the structure of international trade. In *Handbook of international economics* (Vol. 4, pp. 55–130). Elsevier.
- Arena, M. P., & Kutner, G. W. (2015). Territorial tax system reform and corporate financial policies. *The Review of Financial Studies*, 28(8), 2250–2280.
- Brooks, W., & Dovis, A. (2019). Credit market frictions and trade liberalizations. *Journal of Monetary Economics*.
- Burstein, A. T., & Monge-Naranjo, A. (2009). Foreign know-how, firm control, and the income of developing countries. *The Quarterly Journal of Economics*, 124(1), 149–195.

- Chen, D., Qi, S., & Schlagenhauf, D. (2018). Corporate income tax, legal form of organization, and employment. *American Economic Journal: Macroeconomics*, 10(4), 270–304.
- Curtis, C. C., Garın, J., & Mehkari, M. S. (2017). *Repatriation taxes* (Tech. Rep.). Working paper.
- Dharmapala, D., Foley, C. F., & Forbes, K. J. (2011). Watch what i do, not what i say: The unintended consequences of the homeland investment act. *The Journal of Finance*, *66*(3), 753–787.
- Eaton, J., Kortum, S., & Kramarz, F. (2011). An anatomy of international trade: Evidence from french firms. *Econometrica*, *79*(5), 1453–1498.
- Fitzgerald, D., Haller, S., & Yedid-Levi, Y. (2016). *How exporters grow* (Tech. Rep.). National Bureau of Economic Research.
- Flaaen, A. (2014). Multinational firms in context. Working Paper.
- Foley, C. F., Hartzell, J. C., Titman, S., & Twite, G. (2007). Why do firms hold so much cash? a tax-based explanation. *Journal of Financial Economics*, 86(3), 579–607.
- Gomes, J. F. (2001). Financing investment. *American Economic Review*, *91*(5), 1263–1285.

- Gourio, F., & Miao, J. (2009). *Transitional dynamics of dividend tax reform* (Tech. Rep.). Boston University-Department of Economics.
- Gu, T. (2017). Us multinationals and cash holdings. *Journal of Financial Economics*, 125(2), 344–368.
- Harford, J., Wang, C., & Zhang, K. (2017). Foreign cash: Taxes, internal capital markets, and agency problems. *The Review of Financial Studies*, 30(5), 1490–1538.
- Helpman, E., Melitz, M. J., & Yeaple, S. R. (2004). Export versus fdi with heterogeneous firms. *American economic review*, 94(1), 300–316.
- Hennessy, C. A., & Whited, T. M. (2007). How costly is external financing? evidence from a structural estimation. *The Journal of Finance*, 62(4), 1705–1745.
- Li, S., Whited, T. M., & Wu, Y. (2016). Collateral, taxes, and leverage. *The Review of Financial Studies*, *29*(6), 1453–1500.
- McGrattan, E. R. (2012). Transition to fdi openness: Reconciling theory and evidence. *Review of Economic Dynamics*, 15(4), 437–458.
- McGrattan, E. R., & Prescott, E. C. (2009). Openness, technology capital, and development. *Journal of Economic Theory*, 144(6), 2454–2476.

- Melitz, M. J. (2003). The impact of trade on intra-industry reallocations and aggregate industry productivity. *Econometrica*, 71(6), 1695–1725.
- Nikolov, B., & Whited, T. M. (2014). Agency conflicts and cash: Estimates from a dynamic model. *The Journal of Finance*, *69*(5), 1883–1921.
- Ramondo, N. (2014). A quantitative approach to multinational production. *Journal of International Economics*, *93*(1), 108–122.
- Ramondo, N., & Rodríguez-Clare, A. (2013). Trade, multinational production, and the gains from openness. *Journal of Political Economy*, 121(2), 273–322.
- Ravikumar, B., Santacreu, A. M., & Sposi, M. (2017). Capital accumulation and dynamic gains from trade.
- Restuccia, D., & Rogerson, R. (2008). Policy distortions and aggregate productivity with heterogeneous establishments. *Review of Economic dynamics*, 11(4), 707–720.
- Riddick, L. A., & Whited, T. M. (2009). The corporate propensity to save. *The Journal of Finance*, *64*(4), 1729–1766.

Ruhl, K. J., & Willis, J. L. (2017). New exporter dynamics. *International Economic Review*, 58(3), 703–726.

Strebulaev, I. A., & Whited, T. M. (2012). Dynamic models and structural estimation in corporate finance. Foundations and Trends® in Finance, 6(1-2), 1–163.